
Mitigating the Performance Degradation due to Faults in
Non-Architectural Structures

Constantinos Kourouyiannis∗ Yiannakis Sazeides∗ Veerle Desmet+

∗Dept. of Computer Science +Dept. of Electronics and Information Systems
University of Cyprus, Nicosia Ghent University, Belgium

Abstract
Continuous circuit and wire miniaturization in-

creasingly exert more pressure on the computer de-
signers to address the issue of reliable operation in
the presence of faults. Virtually all previous mi-
croarchitectural studies on processor reliability and
yield improvement aim to solve the problem for ar-
chitectural resources.

Faults in non-architectural resources received
little attention because they do not affect correct-
ness. However, faults in non-architectural struc-
tures can degrade processor performance and may
need to be addressed to ensure acceptable perfor-
mance levels, in particular for applications where
performance is of paramount importance, e.g. in
real time systems that can not afford missing dead-
lines.

This work first quantifies the performance im-
plications of faults in two non-architectural struc-
tures: a line-predictor and a return-address-stack.
A simulation based analysis of a high-end proces-
sor that experiences faults in 25% of the cells in
the line-predictor and the return-address-stack re-
vealed an average performance degradation of 5%.
Next, we engineered a hardware protection scheme
that combines a low-cost fault detection and repair
through address remapping. This scheme can re-
cover most of the performance loss when faults are
present, while it rarely degrades performance when
no faults exist.

Introduction

Current computer technology scaling trends are
leading us toward smaller feature size and larger
transistor budgets per chip. These developments
force the designer to address the issue of depend-
able operation with little or no performance degra-

dation in the presence of faults.
Our work quantifies the performance implica-

tions of faults in two non-architectural structures
to determine whether such structures merit pro-
tection against faults. In particular, the struc-
tures we examine are a line-predictor and a return-
address-stack. Additionally, we propose and eval-
uate the effectiveness of a simple fault detection
and repair scheme. The proposed scheme detects
during execution that there are significant accesses
to defective entries and remaps the accesses to dif-
ferent locations to reduce the number of accesses
to defective entries.

Low-cost fault detection

We propose a low-cost approximate detection
scheme for predictors where a counter is associated
per data bit position with separate counters used
for the input and output data. The input counters
are updated when predictions are written to the
array and the output counters are updated when
predictions are read from the array. At regular in-
tervals the counters are checked to detect possible
faults in the array. This is done by searching for
any large difference between the input and output
counter at each bit position. As such the counters
are used to track the balance of the ones being
written and read in an array per bit position. We
refer to the threshold used to decide that an abso-
lute difference value is large as the delta-threshold.
The counters are reset after each interval.

The size of the counters and the value of the
delta-threshold can have an impact as they may
lead to false positives and false negatives being
detecting a problem when there is none and not
detecting a problem when there is one respectively.
For lower cost, we can use one instead of two

1



counters per bit position and increment at the in-
put and decrement at the output on the same bit
value. To further reduce cost, we can share coun-
ters across bit positions.

The above detection scheme can detect frequent
accesses to faulty entries but does not provide in-
formation as to which are the faulty entries. This
compromise is made in an effort to keep the over-
head of detection as low as possible.

Address Remapping

The idea of remapping logical to physical loca-
tions to avoid faults have been proposed before
but, as far as we know, all previous work required
knowledge of which entries are defective and the
remapping function mapped a previously defec-
tive entry to either a non-defective entry or to
a spare [1, 2]. The remapping function we em-
ploy simply redistributes the accesses, i.e. there
are no spares to remap to, and no two entries that
mapped to different locations before remapping
are mapped together after the remapping.

An analysis of the access distributions of pre-
diction structures shows that very few entries are
responsible for the majority of correct predictions
for the line predictor and the return-address-stack.
Therefore, when accesses to faulty entries are de-
tected by the fault detection unit, it may be possi-
ble for a remapping function to remap frequently
accessed faulty entries to rarely accessed entries
without a fault. In this ideal case, the performance
will be as if there were no faults and no further
remapping is needed. Of course, it is possible for
remapping to make things worse, i.e. increase the
number of faulty accessed entries. In that case,
we rely on the detection mechanism to detect that
and perform another remapping. This process can
be allowed to repeat forever. We found, how-
ever, that it can lead to worse performance than
no-remapping. Consequently, to prevent this un-
ending detection-and-remapping cycle a throttling
mechanism can be employed to turn-off remapping
if too many remappings are performed over a short
time.

Results

We extended the validated cycle accurate simu-
lator sim-alpha [3] to measure the performance of
a high performance out-of-order superscalar pro-
cessor with and without faults.We quantify the
performance implications with increasing num-
ber of faults in the line-predictor and the return-
address-stack for three scenarios: worst-case, best-
case and average-case. Assuming n faults, the
worst-case scenario injects n faults in the top n
entries that gave the most correct predictions. For
the best-case the n faults are injected in the en-
tries that gave the least correct predictions. To
determine the average-case performance we use an
analytical approach.

The average-case results for the line predictor
show that with 512 defective entries, without re-
pair, no benchmark suffers more than 3% slow-
down. However, when faulty entries increase to
1024, the average-case performance degradation
can be up to 6%. The results for the return-
address-stack follow the same trend.

Finally, we did experiments to evaluate the
effectiveness of our proposed detection-repair
scheme where the faults are injected in random
locations. The results shows that for the major-
ity of the runs the proposed scheme works, i.e.
when there is degradation due to faults it is usu-
ally recovered and when there is no degradation
the performance does not get worse.

References

[1] F. A. Bower, P. G. Shealy, S. Ozev, and D. J.
Sorin. Tolerating hard faults in microprocessor ar-
ray structures. In Proceedings of the 34th Annual
International Conference on Dependable Systems
and Networks, pages 51–60, June 2004.

[2] A. Das, S. Ozdemir, G. Memik, J. Zambreno, and
A. Choudhary. Mitigating the effects of process
variations: Architectural approaches for improving
batch performance. In Workshop on Architectural
Support for Gigascale Integration, 2007.

[3] R. Desikan, D. Burger, S. Keckler, and T. Austin.
Sim-alpha: a validated execution driven alpha
21264 simulator. Technical report, Department of
Computer Sciences, University of Texas at Austin,
2001.

2


