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Abstract
This paper presents the Alpha EV8 conditional branch pre-
dictor. The Alpha EV8 microprocessor project, canceled in
June 2001 in a late phase of development, envisioned an
aggressive 8-wide issue out-of-order superscalar microar-
chitecture featuring a very deep pipeline and simultaneous
multithreading. Performance of such a processor is highly
dependent on the accuracy of its branch predictor and con-
sequently a very large silicon area was devoted to branch
prediction on EV8. The Alpha EV8 branch predictor relies
on global history and features a total of 352 Kbits.

The focus of this paper is on the different trade-offs per-
formed to overcome various implementation constraints for
the EV8 branch predictor. One such instance is the pipelin-
ing of the predictor on two cycles to facilitate the prediction
of up to 16 branches per cycle from any two dynamically
successive, 8 instruction fetch blocks. This resulted in the
use of three fetch-block old compressed branch history in-
formation for accesing the predictor. Implementation con-
straints also restricted the composition of the index func-
tions for the predictor and forced the usage of only single-
ported memory cells.

Nevertheless, we show that the Alpha EV8 branch pre-
dictor achieves prediction accuracy in the same range as the
state-of-the-art academic global history branch predictors
that do not consider implementation constraints in great de-
tail.

1 Introduction

The Alpha EV8 microprocessor [2] features a 8-wide su-
perscalar deeply pipelined microarchitecture. With mini-
mum branch misprediction penalty of 14 cycles, the per-
formance of this microprocessor is very dependent on the
branch prediction accuracy. The architecture and technolo-
gy of the Alpha EV8 are very aggressive and new challenges
were confronted in the design of the branch predictor. This
paper presents the Alpha EV8 branch predictor in great de-
tail. The paper expounds on different constraints that were
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faced during the definition of the predictor, and on various
trade-offs performed that lead to the final design. In par-
ticular, we elucidate on the following: (a) use of a global
history branch prediction scheme, (b) choice of the predic-
tion scheme derived from the hybrid skewed branch predic-
tor 2Bc-gskew[19], (c) redefinition of the information vector
used for indexing the predictor that combines compressed
branch history and path history, (d) different prediction and
hysteresis table sizes: prediction tables and hysteresis tables
are accessed at different pipeline stages, and hence can be
implemented as physically distinct tables, (e) variable his-
tory lengths: the four logical tables in the EV8 predictor
are accessed using four different history lengths, (f) guaran-
teeing conflict free access to the bank-interleaved predictor
with single-ported memory cells for up to 16 branch pre-
dictions from any two 8-instruction dynamically succesive
fetch blocks, and (g) careful definition of index functions
for the predictor tables.

This work demonstrates that in spite of all the hard-
ware and implementation constraints that were encountered,
the Alpha EV8 branch predictor accuracy was not compro-
mised and stands the comparison with virtually all equiva-
lent in size, global history branch predictors that have been
proposed so far.

The overall EV8 architecture was optimized for sin-
gle process performance. Extra performance obtained by
simultaneous multithreading was considered as a bonus.
Therefore, the parameters of the conditional branch predic-
tor were tuned with single process performance as the pri-
mary objective. However, the EV8 branch predictor was
found to perform well in the presence of a multithreaded
workload.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly presents the instruction fetch pipeline of the
Alpha EV8. Section 3 explains why a global history branch
predictor scheme was preferred over a local. In Section 4,
we present the prediction scheme implemented in the Al-
pha EV8, 2Bc-gskew. This section also presents the design
space of 2Bc-gskew. The various design dimensions were
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harnessed to fit the EV8 predictor in 352 Kbits memory bud-
get. Section 5 presents and justifies the history and path in-
formation used to index the branch predictor. On the Alpha
EV8, the branch predictor tables must support two indepen-
dent reads of 8 predictions per cycle. Section 6 presents the
scheme used to guarantee two conflict-free accesses per cy-
cle on a bank-interleaved predictor. Section 7 presents the
hardware constraints for composing index functions for the
prediction tables and describes the functions that were even-
tually used. Section 8 presents a step by step performance
evaluation of the EV8 branch predictor as constraints are
added and turn-around solutions are adopted. Finally, we
provide concluding remarks in Section 9.

2 Alpha EV8 front-end pipeline
To sustain high performance, the Alpha EV8 fetches up

to two, 8-instruction blocks per cycle from the instruction
cache. An instruction fetch block consists of all consecutive
valid instructions fetched from the I-cache: an instruction
fetch block ends either at the end of an aligned 8-instruction
block or on a taken control flow instruction. Not taken
conditional branches do not end a fetch block, thus up to 16
conditional branches may be fetched and predicted in every
cycle.

On every cycle, the addresses of the next two fetch
blocks must be generated. Since this must be achieved in
a single cycle, it can only involve very fast hardware. On
the Alpha EV8, a line predictor [1] is used for this purpose.
The line predictor consists of three tables indexed with the
address of the most recent fetch block and a very limited
hashing logic. A consequence of simple indexing logic is
relatively low line prediction accuracy.

To avoid huge performance loss, due to fairly poor line
predictor accuracy and long branch resolution latency (on
the EV8 pipeline, the outcome of a branch is known the ear-
liest in cycle 14 and more often around cycle 20 or 25), the
line predictor is backed up with a powerful program counter
(PC) address generator. This includes a conditional branch
predictor, a jump predictor, a return address stack predic-
tor, conditional branch target address computation (from
instructions flowing out of the instruction cache) and final-
address selection. PC-address-generation is pipelined in t-
wo cycles as illustrated in Fig. 1: up to four dynamically
succesive fetch blocks A, B, C and D are simultaneously in
flight in the PC-address-generator. In case of a mismatch
between line prediction and PC-address-generation, the in-
struction fetch is resumed with the PC-address-generation
result.

3 Global vs Local history
The previous generation Alpha microprocessor [7] in-

corporated a hybrid predictor using both global and local
branch history information. On Alpha EV8, up to 16 branch
outcomes (8 for each fetch block) have to be predicted per

Blocks  A and B

Phase 1 Phase 1 Phase  0

Blocks C and D

is completed
PC address generation

Blocks Y and Z

Phase  0

is completed

Phase 1Phase  0

Line prediction
is completed

prediction tables read 

Cycle  1 Cycle  2 Cycle 3

Figure 1. PC address generation pipeline

cycle. Implementing a hybrid branch predictor for EV8
based on local history or including a component using lo-
cal history would have been a challenge.

Local branch prediction requires for each prediction a
read of the local history table and then a read of the predic-
tion table. Performing the 16 local history reads in parallel
requires a dual-ported history table. One port for each fetch
block is sufficient since one can read in parallel the histo-
ries for sequential instructions on sequential table entries.
But performing the 16 prediction table reads would require
a 16-ported prediction table.

Whenever an occurrence of a branch is inflight, the spec-
ulative history associated with the younger inflight occur-
rence of the branch should be used [8]. Maintaining and
using speculative local history is already quite complex
on a processor fetching and predicting a single branch per
cycle[20]. On Alpha EV8, the number of inflight branch-
es is possibly equal to the maximum number of inflight in-
structions (that is more than 256). Moreover, in EV8 when
indexing the branch predictor there are up to three fetch
blocks for which the (speculative) branch outcomes have
not been determined (see Fig. 1). These three blocks may
contain up to three previous occurrences of every branch in
the fetch block. In contrast, single speculative global histo-
ry (per thread) is simpler to build and as shown in Section 8
the accuracy of the EV8 global history prediction scheme is
virtually insensitive to the effects of three fetch blocks old
global history.

Finally, the Alpha EV8 is a simultaneous multithreaded
processor [25, 26]. When independent threads are running,
they compete for predictor table entries. Such interference
on a local history based scheme can be disastrous, because
it pollutes both the local history and prediction tables. What
is more, when several parallel threads are spawned by a s-
ingle application, the pollution is exacerbated unless the lo-
cal history table is indexed using PC and thread number.
In comparison, for global history schemes a global history
register must be maintained per thread, and parallel thread-
s - from the same application - benefit from constructive
aliasing [10].
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4 The branch prediction scheme
Global branch history branch predictor tables lead to a

phenomenon known as aliasing or interference [28, 24], in
which multiple branch information vectors share the same
entry in the predictor table, causing the predictions for t-
wo or more branch substreams to intermingle. “De-aliased”
global history branch predictors have been recently intro-
duced: the enhanced skewed branch predictor e-gskew [15],
the agree predictor [22], the bimode predictor [13] and the
YAGS predictor [4]. These predictors have been shown to
achieve higher prediction accuracy at equivalent hardware
complexity than larger “aliased” global history branch pre-
dictors such as gshare [14] or GAs [27]. However, hybrid
predictors combining a global history predictor and a typ-
ical bimodal predictor only indexed with the PC [21] may
deliver higher prediction accuracy than a conventional sin-
gle branch predictor [14]. Therefore, “de-aliased” branch
predictors should be included in hybrid predictors to build
efficient branch predictors.

The EV8 branch predictor is derived from the hybrid
skewed branch predictor 2Bc-gskew presented in [19]. In
this section, the structure of the hybrid skewed branch pre-
dictor is first recalled. Then we outline the update policy
used on the EV8 branch predictor. The three degrees of
freedom available in the design space of the 2Bc-gskew pre-
dictor are described: different history lengths for the pre-
dictor components, size of the different predictor compo-
nents and using smaller hysteresis tables than prediction ta-
bles. These degrees of freedom were leveraged to design the
“best” possible branch predictor fitting in the EV8 hardware
budget constraints.

4.1 General structure of the hybrid skewed pre-
dictor 2Bc-gskew

The enhanced skewed branch predictor e-gskew is a very
efficient single component branch predictor [15, 13] and
therefore a natural candidate as a component for a hybrid
predictor. The hybrid predictor 2Bc-gskew illustrated in Fig.
2 combines e-gskew and a bimodal predictor. 2Bc-gskew
consists of four 2-bit counters banks. Bank BIM is the bi-
modal predictor, but is also part of the e-gskew predictor.
Banks G0 and G1 are the two other banks of the e-gskew
predictor. Bank Meta is the meta-predictor. Depending
on Meta, the prediction is either the prediction coming out
from BIM or the majority vote on the predictions coming
out from G0, G1 and BIM

4.2 Partial update policy
In a multiple table branch predictor, the update policy

can have a bearing on the prediction accuracy [15]. Par-
tial update policy was shown to result in higher prediction
accuracy than total update policy for e-gskew.

Applying partial update policy on 2Bc-gskew also results
in better prediction accuracy. The bimodal component ac-
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Figure 2. The 2Bc-gskew predictor

curately predicts strongly biased static branches. Therefore,
once the metapredictor has recognized this situation, the
other tables are not updated and do not suffer from alias-
ing associated with easy-to-predict branches.

The partial update policy implemented on the Alpha EV8
consists of the following:

� on a correct prediction:
when all predictors were agreeing do not update (see
Rationale 1)
otherwise: strengthen Meta if the two predictions were
different, and strengthen the correct prediction on all
participating tables G0, G1 and BIM as follows:
-strengthen BIM if the bimodal prediction was used
-strengthen all the banks that gave the correct predic-
tion if the majority vote was used

� on a misprediction:
when the two predictions were different, first update
the chooser (see Rationale 2), then recompute the over-
all prediction according to the new value of the choos-
er:
-correct prediction: strengthens all participating tables
-misprediction: update all banks

Rationale 1 The goal is to limit the number of strength-
ened counters on a correct prediction. When a counter is
strengthened, it is harder for another (address,history) pair
to “steal” it. But, when the three predictors BIM, G0 and
G1 are agreeing, one counter entry can be stolen by another
(address, history) pair without destroying the majority pre-
diction. By not strengthening the counters when the three
predictors agree, such a stealing is made easier.

Rationale 2 The goal is to limit the number of counters
written on a wrong prediction: there is no need to steal a
table entry from another (address, history) pair when it can
be avoided.

4.3 Using distinct prediction and hysteresis arrays
Partial update leads to better prediction accuracy than

total update policy due to better space utilization. It also
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allows a simpler hardware implementation of a hybrid pre-
dictor with 2-bit counters.

When using the partial update described earlier, on a cor-
rect prediction, the prediction bit is left unchanged (and not
written), while the hysteresis bit is strengthened on partic-
ipating components (and need not be read). Therefore, a
correct prediction requires only one read of the prediction
array (at fetch time) and (at most) one write of the hystere-
sis array (at commit time). A misprediction leads to a read
of the hysteresis array followed by possible updates of the
prediction and hysteresis arrays.

4.4 Sharing a hysteresis bit between several coun-
ters

Using partial update naturally leads to a physical imple-
mentation of the branch predictor as two different memory
arrays, a prediction array and a hysteresis array.

For the Alpha EV8, silicon area and chip layout con-
straints allowed less space for the hysteresis memory array
than the prediction memory array. Instead of reducing the
size of the prediction array, it was decided to use half size
hysteresis tables for components G1 and Meta. As a result,
two prediction entries share a single hysteresis entry: the
prediction table and the hysteresis table are indexed using
the same index function, except the most significant bit.

Consequently, the hysteresis table suffers from more
aliasing than the prediction table. For instance, the follow-
ing scenario may occur. Prediction entries A and B share
the same hysteresis entry. Both (address, history) pairs as-
sociated with the entries are strongly biased, but B remains
always wrong due to continuous resetting of the hysteresis
bit by (address, history) pair associated with A. While such
a scenario certainly occurs, it is very rare: any two consec-
utive accesses to B without intermediate access to A will
allow B to reach the correct state. Moreover, the partial up-
date policy implemented on the EV8 branch predictor limits
the number of writes on the hysteresis tables and therefore
decreases the impact of aliasing on the hysteresis tables.

4.5 History lengths

Previous studies of the skewed branch predictor [15] and
the hybrid skewed branch predictor [19] assumed that ta-
bles G0 and G1 were indexed using different hashing func-
tion on the (address, history) pair but with the same history
length used for all the tables. Using different history lengths
for the two tables allows slightly better behavior. Moreover
as pointed out by Juan et al. [12], the optimal history length
for a predictor varies depending on the application. This
phenomenon is less important on a hybrid predictor featur-
ing a bimodal table as a component. Its significance is fur-
ther reduced on 2Bc-gskew if two different history lengths
are used for tables G0 and G1. A medium history length
can be used for G0 while a longer history length is used for
G1.

BIM G0 G1 Meta

prediction table 16K 64K 64K 64K
hysteresis table 16K 32K 64K 32K
history length 4 13 21 15

Table 1. Characteristics of Alpha EV8 branch
predictor

4.6 Different prediction table sizes

In most academic studies of multiple table predictors
[15, 13, 14, 19], the sizes of the predictor tables are con-
sidered equal. This is convenient for comparing different
prediction schemes. However, for the design of a real pre-
dictor in hardware, the overall design space has to be ex-
plored. Equal table sizes in the 2Bc-gkew branch predictor
is a good trade-off for small size predictors (for instance
4*4K entries). However, for very large branch predictors
(i.e 4 * 64K entries), the bimodal table BIM is used very
sparsely since each branch instruction maps onto a single
entry.

Consequently, the large branch predictor used in EV8
implements a BIM table smaller than the other three com-
ponents.

4.7 The EV8 branch predictor configuration

The Alpha EV8 implements a very large 2Bc-gskew pre-
dictor. It features a total of 352 Kbits of memory, consisting
of 208 Kbits for prediction and 144 Kbits for hysteresis. De-
sign space exploration lead to the table sizes indexed with
different history lengths as listed in Table 1. It may be re-
marked that the table BIM (originally the bimodal table) is
indexed using a 4-bit history length. This will be justified
when implementation constraints are discussed in Section
7.

5 Path and branch outcome information

The accuracy of a branch predictor depends both on the
prediction scheme and predictor table sizes as well as on the
information vector used to index it. This section describes
how pipeline constraints lead to the effective information
vector used for indexing the EV8 Alpha branch predictor.
This information vector combines the PC address, a com-
pressed form of the three fetch blocks old branch and path
history and path information form the three last blocks.

5.1 Three fetch blocks old block compressed his-
tory

Three fetch blocks old history Information used to read
the predictor tables must be available at indexing time. On
the Alpha EV8, the branch predictor has a latency of t-
wo cycles and two blocks are fetched every cycle. Fig. 1
shows that the branch history information used to predict

4



a branch outcome in block D can not include any (specu-
lative) branch outcome from conditional branches in block
D itself, and also from blocks C, B and A. Thus the EV8
branch predictor can only be indexed using a three fetch
blocks old branch history (i.e updated with history informa-
tion from Z) for predicting branches in block D.

Block compressed history lghist When a single branch is
predicted per cycle, at most one history bit has to be shifted
in the global history register on every cycle. When up to
16 branches are predicted per cycle, up to 16 history bits
have to be shifted in the history on every cycle. Such an
update requires complex circuitry. On the Alpha EV8, this
complex history-register update would have stressed critical
paths to the extent that even older history would have had
to be used (five or even seven-blocks old).

Instead, just a single history bit is inserted per fetch block
[5]. The inserted bit combines the last branch outcome with
path information. It is computed as follows: whenever at
least one conditional branch is present in the fetch block,
the outcome of the last conditional branch in the fetch block
(1 for taken, 0 for not-taken) is exclusive-ORed with bit
4 in the PC address of this last branch. The rationale for
exclusive-OR by a PC bit the branch outcome is to get a
more uniform distribution of history patterns for an appli-
cation. Highly optimized codes tend to exhibit less taken
branches than not-taken branches. Therefore, the distribu-
tion of “pure” branch history outcomes in those applications
is non-uniform.

While using a single history bit was originally thought
of as a compromising design trade-off - since it is possible
to compress up to 8 history bits into 1 - Section 8 shows
that it does not have significant effect on the accuracy of the
branch predictor.

Notation The block compressed history defined above
will be referred to as lghist.

5.2 Path information from the three last fetch
blocks

Due to EV8 pipeline constraints (Section 2), three fetch-
blocks old lghist is used for the predictor. Although, no
branch history information from these three blocks can be
used, their addresses are available for indexing the branch
predictor. The addresses of the three previous fetch blocks
are used in the index functions of the predictor tables.

5.3 Using very long history

The Alpha EV8 features a very large branch predictor
compared to those implemented in previous generation mi-
croprocessors. Most academic studies on global history
branch predictors have assumed that the length of the global
history is smaller or equal to log� of the number of entries
of the branch predictor table. For the size of predictor used
in Alpha EV8, this is far from optimal even when using

lghist. For example, when considering “not compressed”
branch history for a 4*64K 2-bit entries 2Bc-gskew predic-
tor, using equal history length for G0, G1 and Meta, history
length 24 was found to be a good design point. When con-
sidering different history lengths, using 17 for G0, 20 for
Meta and 27 for G1 was found to be a good trade-off.

For the same predictor configuration with three fetch
blocks old lghist, slightly shorter length was found to be
the best performing. However, the optimal history length
is still longer than log� of the size of the branch predictor
table: for the EV8 branch predictor 21 bits of lghist history
are used to index table G1 with 64K entries.

In Section 8, we show empirically that for large predic-
tors, branch history longer than log� of the predictor table
size is almost always beneficial.

6 Conflict free bank interleaved branch pre-
dictor

Up to 16 branch predictions from two fetch blocks must
be computed in parallel on the Alpha EV8. Normally, since
the addresses of the two fetch blocks are independent, each
of the branch predictor tables would have had to support two
independent reads per cycle. Therefore the predictor tables
would have had to be multi-ported, dual-pumped or bank-
interleaved. This section presents a scheme that allowed the
implementation of the EV8 branch predictor as 4-way bank
interleaved using only single-ported memory cells. Bank
conflicts are avoided by construction: the predictions as-
sociated with two dynamically successive fetch blocks are
assured to lie in two distinct banks in the predictors.

6.1 Parallel access to predictions associated with
a single block

Parallel access to all the predictions associated with a s-
ingle fetch block is straightforward. The prediction tables
in the Alpha EV8 branch predictor are indexed based on a
hashing function of address, three fetch blocks old lghist
branch and path history, and the three last fetch block ad-
dresses. For all the elements of a single fetch block, the
same vector of information (except bits 2, 3 and 4 of the
PC address) is used. Therefore, the indexing functions used
guarantee that eight predictions lie in a single 8-bit word in
the tables.

6.2 Guaranteeing two successive non-conflicting
accesses

The Alpha EV8 branch predictor must be capable of de-
livering predictions associated with two fetch blocks per
clock cycle. This typically means the branch predictor must
be multi-ported, dual-pumped or bank interleaved.

On the Alpha EV8 branch predictor, this difficulty is
circumvented through a bank number computation. The
bank number computation described below guarantees by
construction that any two dynamically successive fetch

5



unshuffle

Cycle  0

Phase 1

Y and Z  flows out A and B  flows out
from the line predictor        completed

Phase 0 Phase 0 Phase 0Phase 1 Phase 1

Cycle  1 Cycle  2

from the line predictor

bank number  computation
        for  A and B

bank selection

wordline selection

column selection

final PC selection

PC address generation
     completed

prediction tables reads

Figure 3. Flow of the branch predictor tables read access

blocks will generate accesses to two distinct predictor
banks. Therefore, bank conflicts never occur. Moreover,
the bank number is computed on the same cycle as the
address of the fetch block is generated by the line predictor,
thus no extra delay is added to access the branch predictor
tables (Fig. 3). The implementation of the bank number
computation is defined below:

let BA be the bank number for instruction fetch block A,
let Y, Z be the addresses of the two previous access slots,
let BZ be the number of the bank accessed by instruction
fetch block Z, let (y52,y51,..,y6,y5,y4,y3,y2,0,0) be the bi-
nary representation of address Y, then BA is computed as
follows:
if ((y6,y5)==BZ) then BA=(y6,y5�1) else BA= (y6,y5)

This computation guarantees the prediction for a fetch
block will be read from a different bank than that of the
previous fetch block. The only information bits needed to
compute the bank numbers for the two next fetch blocks A
and B are bits (y6,y5), (z6,z5) and BZ : that is two-block
ahead [18] bank number computation. These information
bits are available one cycle before the effective access on
the branch predictor is performed and the required compu-
tations are very simple. Therefore, no delay is introduced
on the branch predictor by the bank number computation.
In fact, bank selection can be performed at the end of Phase
1 of the cycle preceding the read of the branch predictor
tables.

7 Indexing the branch predictor

As previously mentioned, the Alpha EV8 branch pre-
dictor is 4-way interleaved and the prediction and hystere-
sis tables are separate. Since the logical organization of
the predictor contains the four 2Bc-gskew components, this

should translate to an implementation with 32 memory ta-
bles. However, the Alpha EV8 branch predictor only im-
plements eight memory arrays: for each of the four banks
there is an array for prediction and an array for hysteresis.
Each word line in the arrays is made up of the four logical
predictor components.

This section, presents the physical implementation of the
branch predictor arrays and the constraints they impose on
the composition of the indexing functions. The section al-
so includes detailed definition of the hashing functions that
were selected for indexing the different logical components
in the Alpha EV8 branch predictor.

7.1 Physical implementation and constraints

Each of the four banks in the Alpha EV8 branch pre-
dictor is implemented as two physical memory arrays: the
prediction memory array and the hysteresis memory array.
Each word line in the arrays is made up of the four logical
predictor components.

Each bank features 64 word lines. Each word line con-
tains 32 8-bit prediction words from G0, G1 and Meta, and
8 8-bit prediction words from BIM. A single 8-bit predic-
tion word is selected from the word line from each predictor
table G0, G1, Meta and BIM. A prediction read spans over
3 half cycle phases (5 phases including bank number com-
putation and bank selection). This is illustrated in Fig. 3
and 4. A detailed description is given below.
1.Wordline selection: one of the 64 wordlines of the ac-
cessed bank is selected. The four predictor components
share the 6 address bits needed for wordline selection. Fur-
thermore, these 6 address bits can not be hashed since the
wordline decode and array access constitute a critical path
for reading the branch prediction array and consequently -
inputs to decoder must be available at the very beginning of
the cycle.
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Figure 4. Reading the branch prediction ta-
bles

2. Column selection: each wordline consists of multiple
8-bit prediction entries of the four logical predictor tables.
One 8-bit prediction word is selected for each of the logical
predictor tables. As only one cycle phase is available to
compute the index in the column, only a single 2-entry XOR
gate is allowed to compute each of these column bits.
3. Unshuffle: 8-bit prediction words are systematically
read. This word is further rearranged through a XOR per-
mutation (that is bit at position i is moved at position i�f ).
This final permutation ensures a larger dispersion of the
predictions over the array (only entries corresponding to a
branch instruction are finally useful). It allows also to dis-
criminate between longer history for the same branch PC,
since the computation of the parameter f for the XOR per-
mutation can span over a complete cycle: each bit of f can
be computed by a large tree of XOR gates.
Notations The three fetch-blocks old lghist history will
be noted H= (h20, .., h0). A= (a52,..,a2,0,0) is the address
of the fetch block. Z and Y are the two previous fetch block-
s. I = (i15,..,i0) is the index function of a table, (i1,i0) be-
ing the bank number, (i4,i3,i2) being the offset in the word,
(i10,i9,i8,i7,i6,i5) being the line number, and the highest or-
der bits being the column number.

7.2 General philosophy for the design of indexing
functions

When defining the indexing functions, we tried to apply
two general principles while respecting the hardware im-
plementation constraints. First, we tried to limit aliasing
as much as possible on each individual table by picking in-
dividual indexing function that would spread the accesses
over the predictor table as uniformly as possible. For each
individual function, this normally can be obtained by mix-
ing a large number of bits from the history and from the ad-
dress to compute each individual bit in the function. How-
ever, general constraints for computing the indexing func-
tions only allowed such complex computations for the un-
shuffle bits. For the other indexing bits, we favored the use

of lghist bits instead of the address bits. Due to the inclu-
sion of path information in lghist, lghist vectors were more
uniformly distributed than PC addresses. In [17], it was
pointed out that the indexing functions in a skewed cache
should be chosen to minimize the number of block pairs
that will conflict on two or more ways. The same applies
for the 2Bc-gskew branch predictor.

7.3 Shared bits
The indexing functions for the four prediction tables

share a total of 8 bits, the bank number (2 bits) and the
wordline number (i10, .., i5). The bank number compu-
tation was described in Section 6.

The wordline number must be immediately available at
the very beginning of the branch predictor access. There-
fore, it can either be derived from information already avail-
able earlier, such as the bank number, or directly extracted
from information available at the end of the previous cycle
such as the three fetch blocks old lghist and the fetch block
address.

The fetch block address is the most natural choice, since
it allows the use of an effective bimodal table for component
BIM in the predictor. However, simulations showed that the
distribution of the accesses over the BIM table entries were
unbalanced. Some regions in the predictor tables were used
infrequently and others were congested.

Using a mix of lghist history bits and fetch block ad-
dress bits leads to a more uniform use of the different word
lines in the predictor, thus allowing overall better predic-
tor performance. As a consequence, component BIM in the
branch predictor uses 4 bits of history in its indexing func-
tion.

The wordline number used is given by
(i10,i9,i8,i7,i6,i5)= (h3,h2,h1,h0,a8,a7).

7.4 Indexing BIM
The indexing function for BIM is already using 4 his-

tory bits, that are three fetched blocks old, and some path
information from two fetched block ahead (for bank num-
ber computation). Therefore path information from the last
instruction fetch block (that is Z) is used. The extra bits for
indexing BIM are (i13,i12,i11,i4,i3,i2)= (a11,a��a�,a���
a�,a4,a�� z�,a�� z�).

7.5 Engineering the indexing functions for G0, G1
and Meta

The following methodology was used to define the in-
dexing functions for G0, G1 and Meta. First, the best histo-
ry length combination was determined using standard skew-
ing functions from [17]. Then, the column indices and the
XOR functions for the three predictors were manually de-
fined applying the following principles as best as we could:
1.favor a uniform distribution of column numbers for the
choice of wordline index.

7



Column index bits must be computed using only one two-
entry XOR gate. Since history vectors are more uniformly
distributed than address numbers, to favor an overall good
distribution of column numbers, history bits were generally
preferred to address bits.
2. if, for the same instruction fetch block address A, two
histories differ by only one or two bits then the two occur-
rences should not map onto the same predictor entry in any
table : to guarantee this, whenever an information bit is X-
ORed with another information bit for computing a column
bit, at least one of them will appear alone for the computa-
tion of one bit of the unshuffle parameter.
3. if a conflict occurs in a table, then try to avoid it on the
two other tables: to approximate this, different pairs of his-
tory bits are XORed for computing the column bits for the
three tables.

This methodology lead to the design of the indexing
functions defined below:

Indexing G0 To simplify the implementation of column s-
electors, G0 and Meta share i15 and i14. Column selection
is given by
(i15, i14, i13, i12, i11)= (h��h��,h��h��,h	�h�,a��
h�,h��� h�).
Unshufling is defined by (i4,i3,i2)= ( a	 � a� � a�� �

a�� � h� � h�� � h� � z�,a��a11�h9 �h10�h12�z6
�a5, a2�a14�a10�h6�h4�h7�a6).

Indexing G1 Column selection is given by
(i15, i14, i13, i12, i11)=
(h19�h12,h18�h11,h17�h10,h16�h4,h15�h20).
Unshuffling is defined by (i4,i3,i2)=
(a4�a11�a14�a6�h4�h6 �h9�h14�h15�h16�z6,
a3�a10�a13�h5�h11�h13�h18�h19� h20�z5,a2�a5
�a9� h4 �h8�h7�h10�h12�h13�h14�h17)

Indexing Meta Column selection is given by
(i15, i14, i13, i12, i11)= (h7�h11,h8�h12,
h5�h13,h4�h9,a9�h6).
Unshuffling is defined by (i4,i3,i2)= (a4�a10�a5
�h7�h10�h14�h13�z5, a3�a12�a14�a6�h4� h6
�h8�h14, a2�a9� a11�a13� h5�h9�h11�h12�z6)

8 Evaluation

In this section, we evaluate the different design decisions
that were made in the Alpha EV8 predictor design. We first
justify the choice of the hybrid skewed predictor 2Bc-gskew
against other schemes relying on global history. Then step
by step, we analyze benefits or detriments brought by design
decisions and implementation constraints.

8.1 Methodology
8.1.1 Simulation
Trace driven branch simulations with immediate update
were used to explore the design space for the Alpha EV8

branch predictor, since this methodology is about three or-
ders of magnitude faster than the complete Alpha EV8 pro-
cessor simulation. We checked that for branch predictors
using (very) long global history as those considered in this
study, the relative error in number of branch misprediction-
s between a trace driven simulation, assuming immediate
update, and the complete simulation of the Alpha EV8, as-
suming predictor update at commit time, is insignificant.

The metric used to report the results is mispredictions
per 1000 instructions (misp/KI). To experiment with histo-
ry length wider than log� of table sizes, indexing functions
from the family presented in [17, 15] were used for all pre-
dictors, except in Section 8.5. The initial state of all entries
in the prediction tables was set to weakly not taken.

8.1.2 Benchmark set
Displayed simulation results were obtained using traces col-
lected with Atom[23]. The benchmark suite was SPECIN-
T95. Binaries were highly optimized for the Alpha 21264
using profile information from the train input. The traces
were recorded using the ref inputs. One hundred mil-
lion instructions were traced after skipping 400 million in-
structions except for compress (2 billion instructions were
skipped). Table 2 details the characteristics of the bench-
mark traces.

8.2 2Bc-gskew vs other global history based pre-
dictors

We first validated the choice of the 2BC-gskew predic-
tion scheme against other global prediction schemes. Fig. 5
shows simulation results for predictors with memorization
size in the same range as the Alpha EV8 predictor. Dis-
played results assume conventional branch history. For all
the predictors, the best history length results are presented.
Fig. 6 shows the number of additional mispredictions for
the same configurations as in Fig. 5 but using log� of the
table size, instead of the best history length.

The illustrated configurations are:

� a 4*32K entries (i.e. 256 Kbits) 2Bc-gskew using his-
tory lengths 0, 13, 16 and 23 respectively for BIM,
G0, Meta and G1, and a 4*64K entries (i.e. 512Kbits)
2Bc-gskew using history lengths 0, 17, 20 and 27. For
limited(log�) history length, the lengths are equal for
all tables and are 15 for the 256Kbit configuration and
16 for the 512Kbit.

� a bimode predictor [13] consisting of two 128K en-
tries tables for respectively biased taken and not taken
branches and a 16 Kentries bimodal table, for a total
of 544 Kbits of memorization1. The optimum history

1The original proposition for the bimode predictor assumes equal sizes
for the three tables. For large size predictors, using a smaller bimodal table
is more cost-effective. On our benchmark set, using more than 16K entries
in the bimodal table did not add any benefit.
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Benchmark compress gcc go ijpeg li m88ksim perl vortex

dyn. cond. branches (x1000) 12044 16035 11285 8894 16254 9706 13263 12757
static cond. branches 46 12086 3710 904 251 409 273 2239

Table 2. Benchmark characteristics

Figure 5. Branch prediction accuracy for var-
ious global history schemes

Figure 6. Additional Mispredictions when us-
ing log� table size history

length (for our benchmark set) was 20. For log� histo-
ry length 17 bits were used.

� a 1M entries (2M bits) gshare. The optimum history
length (on our benchmark set) was 20 (i.e log� of the
predictor table size).

� a 288 Kbits and 576 Kbits YAGS predictor [4] (respec-
tive best history length 23 and 25 ) the small configu-
ration consists of a 16K entry bimodal and two 16K
partially tagged tables called direction caches, tags are
6 bits wide. When the bimodal table predicts taken
(resp. not-taken), the not-taken (resp. taken) direction
cache is searched. On a miss in the searched direction
cache, the bimodal table provides the prediction. On
a hit, the direction cache provides the prediction. For
log� history length 14 bits (resp 15 bits) were used. 1

Figure 7. Impact of the information vector on
branch prediction accuracy

First, our simulation results confirm that, at equivalen-
t memorization budget 2Bc-gskew outperforms the other
global history branch predictors except YAGS. There is no
clear winner between the YAGS predictor and 2Bc-gskew.
However, the YAGS predictor uses (partially) tagged arrays.
Reading and checking 16 of these tags in only one and half
cycle would have been difficult to implement. Second, the
data support that, predictors featuring a large number of en-
tries need very long history length and log� table size histo-
ry is suboptimal.

8.3 Quality of the information vector

The discussion below examines the impact of successive
modifications of the information vector on branch predic-
tion accuracy assuming a 4*64K entries 2Bc-gskew predic-
tor. For each configuration the accuracies for the best his-
tory lengths are reported in Fig. 7. ghist represents the
conventional branch history. lghist,no path assumes that
lghist does not include path information. lghist+path in-
cludes path information. 3-old lghist is the same as before,
but considering three fetch blocks old history. EV8 info vec-
tor represents the information vector used on Alpha EV8,
that is three fetch blocks old lghist history including path
information plus path information on the three last blocks.

lghist As expected the optimal lghist history length is
shorter than the optimal real branch history: (15, 17, 23)
instead of (17, 20, 27) respectively for tables G0, Meta and
G1. Quite surprisingly (see Fig. 7), lghist has same per-
formance as conventional branch history. Depending on the
application, there is either a small loss or a small benefit in
accuracy. Embedding path information in lghist is gener-
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Figure 8. Adjusting table sizes in the predictor

ally beneficial: we determined that is more often useful to
de-alias otherwise aliased history paths.

The loss of information from branches in the same fetch
block in lghist is balanced by the use of history from more
branches (eventhough represented by a shorter information
vector): for instance, for vortex the 23 lghist bits represen-
t on average 36 branches. Table 3 represents the average
number of conditional branches represented by one bit in
lghist for the different benchmarks.

Three fetch blocks old history Using three fetch blocks
old history slightly degrades the accuracy of the predictor,
but the impact is limited. Moreover, using path information
from the three fetch blocks missing in the history consis-
tently recovers most of this loss.

EV8 information vector In summary, despite the fac-
t that the vector of information used for indexing the Alpha
EV8 branch predictor was largely dictated by implementa-
tion constraints, on our benchmark set this vector of infor-
mation achieves approximately the same levels of accuracy
as without any constraints.

8.4 Reducing some table sizes

Fig. 8 shows the effect of reducing table sizes. The
base configuration is a 4*64K entries 2Bc-gskew predictor
(512Kbits). The data denoted by small BIM shows the per-
formance when the BIM size is reduced from 64K to 16K
2-bit counters. The performance with a small BIM and half
the size for GO and Meta hysteresis tables is denoted by
EV8 Size. The latter fits the 352Kbits budget of the Alpha
EV8 predictor. The information vector used for indexing
the predictor is the information vector used on Alpha EV8.

Reducing the size of the BIM table has no impact at all
on our benchmark set. Except for go, the effect of using half
size hysteresis tables for G0 and Meta is barely noticeable.
go presents a very large footprint and consequently is the
most sensitive to size reduction.

Figure 9. Effect of wordline indices

8.5 Indexing function constraints

Simulations results presented so far did not take into ac-
count hardware constraints on the indexing functions. 8 bits
of index must be shared and can not be hashed, and compu-
tation of the column bits can only use one 2-entry XOR gate
Intuitively, these constraints should lead to some loss of ef-
ficiency, since it restricts the possible choices for indexing
functions.

However, it was remarked in [16] that (for caches) partial
skewing is almost as efficient as complete skewing. The
same applies for branch predictors: sharing 8 bits in the
indices does not hurt the prediction accuracy as long as the
shared index is uniformly distributed.

The constraint of using unhashed bits for the wordline
number turned out to be more critical, since it restricted the
distribution of the shared index. Ideally for the EV8 branch
predictor, one would desire to get the distribution of this
shared 8 bit index as uniform as possible to spread accesses
on G0, G1 and Meta over the entire table.

Fig. 9 illustrates the effects of the various choices made
for selecting the wordline number. address only, no path
assumes that only PC address bits are used in the shared
index and that no path information is used in lghist. address
only, path assumes that only PC address bits are used in the
shared index, but path information is embedded in lghist.
no path assumes 4 history bits and 2 PC bits as wordline
number, but that no path information is used in lghist. EV8
illustrates the accuracy of the Alpha EV8 branch predictor
where 4 history bits are used in the wordline number index
and path information is embedded in the history. Finally
complete hash recalls the results assuming hashing on all
the information bits and 4*64K 2Bc-gskew ghist represents
the simulation results assuming a 512Kbits predictor with
no constraint on index functions and conventional branch
history.

Previously was noted that incorporating path informa-
tion in lghist has only a small impact on a 2Bc-gskew pre-
dictor indexed using hashing functions with no hardware
constraints. However, adding the path information in the
history for the Alpha EV8 predictor makes the distribution
of lghist more uniform, allows its use in the shared index
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compress gcc go ijpeg li m88ksim perl vortex

lghist/ghist 1.24 1.57 1.12 1.20 1.55 1.53 1.32 1.59

Table 3. Ratio lghist/ghist

Figure 10. Limits of using global history

and therefore can increase prediction accuracy.
The constraint on the column bits computation indirect-

ly achieved a positive impact by forcing us to very careful-
ly design the column indexing and the unshuffle functions.
The (nearly) total freedom for computing the unshuffle was
fully exploited: 11 bits are XORed in the unshuffling func-
tion on table G1. The indexing functions used in the final
design outperform the standard hashing functions consid-
ered in the rest of the paper: these functions (originally de-
fined for skewed associative caches [17])exhibit good inter-
bank dispersion, but were not manually tuned to enforce the
three criteria described in Section 7.5.

To summarize, the 352 Kbits Alpha EV8 branch predic-
tor stands the comparison against a 512 Kbits 2Bc-gskew
predictor using conventional branch history.

9 Conclusion

The branch predictor on Alpha EV8 was defined at the
beginning of 1999. It features 352 Kbits of memory and de-
livers up to 16 branch predictions per cycle for two dynami-
cally succesive instruction fetch blocks. Therefore, a global
history prediction scheme had to be used. In 1999, the hy-
brid skewed branch predictor 2Bc-gskew prediction scheme
[19] represented state-of-the-art for global history predic-
tion schemes. The Alpha EV8 branch predictor implements
a 2Bc-gskew predictor scheme enhanced with an optimized
update policy and the use of different history lengths on the
different tables.

Some degrees of freedom in the definition of 2Bc-gskew
were tuned to adapt the predictor parameters to silicon area
and chip layout constraints: the bimodal component is s-
maller than the other components and the hysteresis tables
of two of the other components are only half-size of the pre-
dictor tables.

Implementation constraints imposed a three fetch blocks

old compressed form of branch history, lghist, instead of the
effective branch history. However, the information vector
used to index the Alpha EV8 branch predictor stands the
comparison with complete branch history. It achieves that
by combining path information with the branch outcome to
build lghist and using path information from the three fetch
blocks that have to be ignored in lghist.

The Alpha EV8 is four-way interleaved and each bank
is single ported. On each cycle, the branch predictor sup-
ports requests from two dynamically succesive instruction
fetch blocks but does not require any hardware conflict res-
olution, since bank number computation guarantees by con-
struction that any two dynamically succesive fetch blocks
will access two distinct predictors banks.

The Alpha EV8 branch predictor features four logical
components, but is implemented as only two memory ar-
rays, the prediction array and the hysteresis array. There-
fore, the definition of index functions for the four (logi-
cal) predictor tables is strongly constrained: 8 bits must
be shared among the four indices. Furthermore, timing
constraints restrict the complexity of hashing that can be
applied for indices computation. However, efficient index
functions turning around these constraints were designed.

Despite implementation and size constraints, the Al-
pha EV8 branch predictor delivers accuracy equivalent to
a 4*64K entries 2Bc-gskew predictor using conventional
branch history for which no constraint on the indexing func-
tions was imposed.

In future generation microprocessors, branch prediction
accuracy will remain a major issue. Even larger predic-
tors than the predictor implemented in the Alpha EV8 may
be considered. However, this brute force approach would
have limited return except for applications with a very large
number of branches. This is exemplified on our bench-
mark set in Fig. 10 that shows simulation results for a
4*1M 2-bit entries 2Bc-gskew predictor. Adding back-up
predictor components [3] relying on different information
vector types (local history, value prediction [9, 6], or new
prediction concepts (e.g., perceptron [11]) to tackle hard-
to-predict branches seems more promising. Since such a
predictor will face timing constraints issues, one may con-
sider further extending the hierarchy of predictors with in-
creased accuracies and delays: line predictor, global histo-
ry branch prediction, backup branch predictor. The backup
branch predictor would deliver its prediction later than the
global history branch predictor.
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