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Computers: A Fabric of Our Society 

Data Centers 

Communication, commerce, entertainment, health 
services, transportation, government, … 
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How did we get here? Moore’s Law 

Technology forecast in 1965 by Gordon Moore 
= 2x transistors every 24 months 
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Perceived Moore’s Law: Performance 

Computer architecture + circuits  
   Performance doubles every 18 months! 
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Our ideal 100-billion trans. chip 

We have so far succeeded in riding the 
Moore’s Law because microprocessors 

1.  Ran legacy SW (serial) 
2.  Scaled in performance 
3.  Maintained power envelope 
4.  Did not fail (were robust) 

Expectations are high  
   can we continue delivering? 
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Our likely 100-billion trans. chip 
Several key challenges, or “walls”, facing 

computer system designers 

Hardware may fail (this talk) 
     in-the-field solutions 
Power does not scale 
     customize 
Multicore chips 
     need parallel SW 
Memory….. 
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Outline 

•  Overview 
•  Computers with unruly transistors 
•  Detecting/correcting error in logic 
•  Detecting/correcting error in memory 
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Why would hardware fail? 

As devices scale, there are three emerging 
sources of error that manifest in circuits: 

1.  Transient (soft error) 
  Upsets in latches & SRAM 

2.  Gradual (variability) 
  Sensitivity in device performance 

3.  Time-dependent (degradation) 
  Small devices age faster 

8 



© 2008 Babak Falsafi 9 

Sources of Error: Transient 
•  Scaling — increasing density, decreasing charge 
•  In pipeline latches and memory 

  Complex, large-scale  coding techniques don’t apply 
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Exponential increase in bitflips! 
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Memory 

Logic 

Source of Error: Transient 

Naturally occurring cosmic rays upset 
charges in latches & memory cells: 
  Future chips: single strike  multiple upsets  
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Memory 

Logic Smaller cells 
Lower voltage 

Higher variability 
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Sources of Error: Manufacturing 

Manufacturing uses lithography to fabricate 
  Increasingly difficult to produce transistor of 

certain size when below wavelength  
  Two identically designed transistors on chip 

each will have different speeds 

Small fluctuation affects transistor speed 
  in material density across chip 
  in size across chip 
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Dramatic increase in defect density! 
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Sources of Error: Manufacturing 

•  Increasing variability at manufacture 

Need to deal with manufacturing variability & defects! 
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Sources of Error: Lifetime 

•  Transistors/wires degrade through time 
  Electromigration, oxide breakdown,… 
  As we scale, transistors/wires age faster 

Electromigration 

Accelerated chip failure! 

Source:Zörner 
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Sources of Error: Heat & Voltage 
•  Time-dependent variability 

  Switch slower in hot spots or change in V 
  Smaller devices, more sensitive to fluctuation 

Temperature hot spots 
Source: Borkar, Intel 

Need to deal with gradual error! 
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Increase in Leakage Power 

Leakage is exponentially dependent on 
temperature  exacerbates heat swing 
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Burn-in may phase out? 

Chips are stress-tested in “burn-in” ovens 
•  At high temperatures, device failure accelerated 
•  Historically, reliable way to catch chips that die early 

With rising leakage power,  
   burn-in may phase out: 

  all chips will burn! 

16 

Need to deal with high chip infant mortality 
in the field! 
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Why does it matter? [S. Mitra] 

Today: 
•  20,000-processor datacenter 
•  One “major” error every 20 days 

Undetected errors can be unwavering: 
  Which way did the bit flip? 
  Bank account deposit of 20K CHF could be 

either 3.6K CHF or 53K CHF 

May need fast repair:  
  downtime cost 100K-10M CHF/hour 

17 
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Conventional Approaches are  
too Expensive! 

Building all circuits redundantly can only be 
for a small market segment (e.g., IBM z990) 

Need “cheap” techniques 
•  Little hardware & fast 
•  Current codes too complex 
•  Software (e.g., Google) too slow 

Need fast detectors if always engaged 
•  Correctors only when error occurs 

18 

Not affordable for all! 
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What should we do? 

Must design reliable systems with unreliable 
components 
  Can’t even count on circuits 

Need cost-effective solutions to reliability at all 
computing stack layers: 
  Algorithmic 
  Programming model 
  System software 
  Architecture 
  Circuit 

19 
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Outline 

•  Overview 
•  Computers with unruly transistors 
•  Detecting/correcting error in logic 
•  Detecting/correcting error in memory 

20 
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Architectural Techniques to 
Protect Computation 

Checker processor 
  DIVA, SHREC, … 
  High coverage, but dedicated HW 

Symptom-based techniques 
  Cheap, but low coverage 

Signature-based techniques 
  Distributed checkers in HW/SW 

Redundant multithreading 
  AR-SMT, RMT, Reunion, etc… 
  Pay overhead when needed 

21 
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Redundant Multithreading 

Redundant execution 
 Single pipe or across cores 
 Detect soft error 
 Within core hard error 

Across chips 
  Tolerate chip failure 

Key challenges 
  How to detect errors? 

 Need low latency, low bandwidth 
  How to replicate input 

Regs 

Core 

Caches 

Regs 

Core 

Caches 

= 
DMR across cores 
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Error Detection: Latency 
•  Existing solution: compare chip-external traffic 

  Errors can hide in cache for millions of instructions 
  Recovery harder with longer detection latencies 
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Error Detection: Tradeoffs 

 Want high coverage with low bandwidth 

Full-state comparison 
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Fingerprinting:  
Low-Overhead Error Detection  

[IEEE MICRO top pick’04] 

•  Hash updates to execution state 
•  Compare across redundant threads (or against 

pre-computed values) 
 Bounded error detection latency 
 Reduced comparison bandwidth 
  Little hardware overhead 

R1  R2 + R3 
R2  M[10] 
M[20]  R1 

Instructions Execution bits 

...001010101011010100101010... 

R1 R2 M[20] 

= 0xC3C9 

Fingerprint 
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Error Detection: Coverage 

 16-bit (CRC) fingerprint  near perfect coverage 
 Chip-external  acceptable coverage for >1M 

Fingerprinting 

0 Chip-external 

I/O not recoverable 



© 2008 Babak Falsafi 

FIRST: Fingerprinting in Reliability &  
Self Test [SELSE’07] 

•  Periodically stress test system 
  initialize processor and load fault tests  
  Lower voltage, increase frequency 
  continuously monitor and summarize internal state 
  compare w/reference (e.g., RTL or unstressed core) 
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 N/2-way reliable CMP  

Reunion: Fingerprinting DMR 
[Micro’06] 

Shared Cache 

Use on-chip cache hierarchy to supply memory 
  minimizes complexity (no need for custom queues) 
  but, we need same input at the same time 
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Load Value Incoherence 

C0 

C1 

C0 
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R1⇐X’ beq R1 

divergent! 

Challenge: making redundant  
cores agree on inputs 
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Detecting Load Value Incoherence 

Cores disagree on a load value 
  Appears as difference in retiring register values 
  Fingerprint mismatch (as in soft error)! 

One mechanism detects both soft errors and 
load value incoherence 

C0’ 

$ 

C0 

$ 

Shared Cache 

X=1 X=0 
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Reunion Performance 

Reunion incurs a small performance overhead  
 Slip between cores exposed at serializing events 
 More requests at shared cache 

Incremental performance cost for a 
design without strict input replication hardware 
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DMR across chips 
Fingerprinting has minimal overhead 

Can run Reunion across chips or in a 
distributed system 

•  As long as two threads do not synch often,     
  can have threads far apart 

•  Machine isolation is key in many reliability  
  applications 

Have working design for a multi-chip system 
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Other examples of  
signature-based techniques 

Argus [Sorin, et al., Top picks 07] 
Use distributed checker logic 

  Check control‐flow & data‐flow using signatures 
  Compute correctly (adds, mul=plies, etc.) 
  Interact correctly with memory (loads, stores) 

Enables comprehensive error detec=on in a 
single core! 

33 
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Architectural Support for 
Monitoring in Software 

Blackboxes record crashing of planes 
•  Why can’t machines provide “execution” recorder? 
•  Wouldn’t it be nice for machines to allow replay? 

Systems may crash because of SW or HW bugs 
or security attacks 

•  Monitoring may detect (and correct) bugs 

34 
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Example: Logs & Lifeguards 
[IEEE Top Pick 08] 

35 

Store/examine “log” of execution 
–  Support a broad range of monitors (“lifeguards”) 

–  Can monitor functionality (HW & SW) and performance 
–  Unify HW & SW debugging 

–  Great use of lots of cores on chip 

core1 core2 core3 coren 

Log 
…….. 

HW 
Lifeguard 

Security 
Lifeguard Performance 

Lifeguard Your SW 

Multi-core chip 
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Outline 

•  Overview 
•  Computers with unruly transistors 
•  Detecting/correcting error in logic 
•  Detecting/correcting error in memory 

36 
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Conventional memory 
protection  

: defect 
: bit upset 

Small amount of redundancy 
 1-bit ECC 

2:1 interleaving 

Small-scale error correction 

Can’t detect large-scale defects 
Can’t repair large-scale error 
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Significant overhead for high coverage  

•  Multi-bit ECC 
-  Large area overhead 
-  High power overhead 
-  Long latency 

•  High degrees of bit interleaving 
-  Only clustered error coverage 
-  High power overhead 

•  Larger amount of hardware redundancy 
-  Large area overhead for high defect coverage 

No low-overhead solution for high-density defects and 
large-scale multi-bit error coverage 
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2D error coding [Micro 07] 

Higher multi-bit error coverage 

  Less hardware redundancy 
  Repair only large-scale defects 

  Vertical coding in background 
  Also low-overhead code 
  Large-scale correction (with H. code) 

Higher defect coverage 
Lower VLSI overhead 

   H. Code 

   V. Code 

  Fast horizontal coding 
  Multi-bit error detection 
  Optional small-scale correction 

Array 
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Hardware redundancy does not scale 

Low defect tolerance even with large redundancy  
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2D coding: concept 

 Horizontal code 
 Multi-bit error detection 
   (e.g., logically interleaved parity) 
 Optional small-scale correction 
  Fast common-case operation 

Combining two low-overhead coding  
 Effective multi-bit error correction 

Array 

   H. Code 

   V. Code 

 Vertical code 
 Multi-bit error detection 
   (e.g., logically interleaved parity) 
 Updated in background 
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2D coding: scalable protection  

8x4 

4:1 interleaving 

 1-bit ECC 
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32-bit error coverage 4-bit error coverage 
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   Fat CMP     Lean CMP 

Overall average performance loss < 3% 
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2D coding incurs much less VLSI overheads 
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Other techniques 

Remapping of cells: 
•  Under aggressive voltage scaling: 

Wilkerson et al., Top Picks ’08 
•  And/or when high defect rates with 

erasure codes 

DRAM memory 
•  Chipkill, distributed parity, …. 

47 
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Summary 

These are best of times I can imagine for 
computer system designers & architects 

•  Must build reliable systems from unreliable 
components 

•  Need cheap mechanisms, configured only when 
needed 

•  There are no silver bullets  these are great times 
for academia to lead and have impact 

48 
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Thank you! 
Visit our website: 
http://parsa.epfl.ch/babak.falsafi 

PARSA 
Parallel Systems Architecture Lab 
EPFL 
www.c2s2.org 


