
© 2008 Babak Falsafi

Babak Falsafi

PARSA
Parallel Systems Architecture Lab
EPFL
people.epfl.ch/babak.falsafi
www.c2s2.org

Presenting work of many

© 2008 Babak Falsafi

Computers: A Fabric of Our Society

Data Centers

Communication, commerce, entertainment, health
services, transportation, government, …

© 2008 Babak Falsafi

How did we get here? Moore’s Law

Technology forecast in 1965 by Gordon Moore
= 2x transistors every 24 months

3

Intel
4004

80386
80486

Pentium Pro
Pentium 4 Pentium

Dual Core
Quad Core

80286

8086 in
 th

ou
sa

nd

tra
ns

ist
or

s
Intel’s family of microprocessors

[source Wikipedia]

© 2008 Babak Falsafi

Perceived Moore’s Law: Performance

Computer architecture + circuits
 Performance doubles every 18 months!

4

Intel
4004 80386

80486

Pentium Pro
Pentium 4

Pentium

Dual Core
Quad Core

80286

8086

30 K transistors

1.9 G transistors

© 2008 Babak Falsafi

Our ideal 100-billion trans. chip

We have so far succeeded in riding the
Moore’s Law because microprocessors

1.  Ran legacy SW (serial)
2.  Scaled in performance
3.  Maintained power envelope
4.  Did not fail (were robust)

Expectations are high
 can we continue delivering?

© 2008 Babak Falsafi

Our likely 100-billion trans. chip
Several key challenges, or “walls”, facing

computer system designers

Hardware may fail (this talk)
 in-the-field solutions
Power does not scale
 customize
Multicore chips
 need parallel SW
Memory…..

6

?

© 2008 Babak Falsafi

Outline

•  Overview
•  Computers with unruly transistors
•  Detecting/correcting error in logic
•  Detecting/correcting error in memory

7

© 2008 Babak Falsafi

Why would hardware fail?

As devices scale, there are three emerging
sources of error that manifest in circuits:

1.  Transient (soft error)
  Upsets in latches & SRAM

2.  Gradual (variability)
  Sensitivity in device performance

3.  Time-dependent (degradation)
  Small devices age faster

8

© 2008 Babak Falsafi 9

Sources of Error: Transient
•  Scaling — increasing density, decreasing charge
•  In pipeline latches and memory

  Complex, large-scale coding techniques don’t apply

SER/Chip (Logic & Mem)

0

50

100

150

180 130 90 65 45 32 22 16

R
e
la
t
iv
e

Source: Borkar, Intel

Exponential increase in bitflips!

© 2008 Babak Falsafi

Memory

Logic

Source of Error: Transient

Naturally occurring cosmic rays upset
charges in latches & memory cells:
  Future chips: single strike multiple upsets

10

Memory

Logic Smaller cells
Lower voltage

Higher variability

© 2008 Babak Falsafi

Sources of Error: Manufacturing

Manufacturing uses lithography to fabricate
  Increasingly difficult to produce transistor of

certain size when below wavelength
  Two identically designed transistors on chip

each will have different speeds

Small fluctuation affects transistor speed
  in material density across chip
  in size across chip

11

Dramatic increase in defect density!

© 2008 Babak Falsafi 12

Sources of Error: Manufacturing

•  Increasing variability at manufacture

Need to deal with manufacturing variability & defects!

10
100

1000
10000

1000 500 250 130 65 32
Technology Node (nm)

Me
an

 #
Do

pa
nt

s Random Dopant Fluctuations

0.01

0.1

1

1980 1990 2000 2010 2020

micron

10

100

1000

nm

Sources: Borkar/Bohr, Intel

Sub-wavelength Lithography

© 2008 Babak Falsafi 13

Sources of Error: Lifetime

•  Transistors/wires degrade through time
  Electromigration, oxide breakdown,…
  As we scale, transistors/wires age faster

Electromigration

Accelerated chip failure!

Source:Zörner

© 2008 Babak Falsafi 14

Sources of Error: Heat & Voltage
•  Time-dependent variability

  Switch slower in hot spots or change in V
  Smaller devices, more sensitive to fluctuation

Temperature hot spots
Source: Borkar, Intel

Need to deal with gradual error!

© 2008 Babak Falsafi

Increase in Leakage Power

Leakage is exponentially dependent on
temperature exacerbates heat swing

15

0
100
200
300
400

 500
 600
 700

90nm 65nm 45nm 32nm 22nm 16nm

Po
we

r (
W

) Leakage
 Switching

100 mm2 chip
[derived from Borkar’s keynote]

© 2008 Babak Falsafi

Burn-in may phase out?

Chips are stress-tested in “burn-in” ovens
•  At high temperatures, device failure accelerated
•  Historically, reliable way to catch chips that die early

With rising leakage power,
 burn-in may phase out:

  all chips will burn!

16

Need to deal with high chip infant mortality
in the field!

© 2008 Babak Falsafi

Why does it matter? [S. Mitra]

Today:
•  20,000-processor datacenter
•  One “major” error every 20 days

Undetected errors can be unwavering:
  Which way did the bit flip?
  Bank account deposit of 20K CHF could be

either 3.6K CHF or 53K CHF

May need fast repair:
  downtime cost 100K-10M CHF/hour

17

© 2008 Babak Falsafi

Conventional Approaches are
too Expensive!

Building all circuits redundantly can only be
for a small market segment (e.g., IBM z990)

Need “cheap” techniques
•  Little hardware & fast
•  Current codes too complex
•  Software (e.g., Google) too slow

Need fast detectors if always engaged
•  Correctors only when error occurs

18

Not affordable for all!

© 2008 Babak Falsafi

What should we do?

Must design reliable systems with unreliable
components
  Can’t even count on circuits

Need cost-effective solutions to reliability at all
computing stack layers:
  Algorithmic
  Programming model
  System software
  Architecture
  Circuit

19

© 2008 Babak Falsafi

Outline

•  Overview
•  Computers with unruly transistors
•  Detecting/correcting error in logic
•  Detecting/correcting error in memory

20

© 2008 Babak Falsafi

Architectural Techniques to
Protect Computation

Checker processor
  DIVA, SHREC, …
  High coverage, but dedicated HW

Symptom-based techniques
  Cheap, but low coverage

Signature-based techniques
  Distributed checkers in HW/SW

Redundant multithreading
  AR-SMT, RMT, Reunion, etc…
  Pay overhead when needed

21

© 2008 Babak Falsafi 22

Redundant Multithreading

Redundant execution
 Single pipe or across cores
 Detect soft error
 Within core hard error

Across chips
  Tolerate chip failure

Key challenges
  How to detect errors?

 Need low latency, low bandwidth
  How to replicate input

Regs

Core

Caches

Regs

Core

Caches

=
DMR across cores

© 2008 Babak Falsafi 23

Error Detection: Latency
•  Existing solution: compare chip-external traffic

  Errors can hide in cache for millions of instructions
  Recovery harder with longer detection latencies

R1 R2 + R3

M[20] R1

Writeback M[20]
time

Original error

Enters cache

Exits cache

Registers

Core

Cache

© 2008 Babak Falsafi 24

Error Detection: Tradeoffs

 Want high coverage with low bandwidth

Full-state comparison

Core

Caches

Regs

Chip-external comparison

Core

Caches

Regs

De
cr

ea
sin

g
ba

nd
wi

dt
h

In
cr

ea
sin

g
co

ve
ra

ge

© 2008 Babak Falsafi 25

Fingerprinting:
Low-Overhead Error Detection

[IEEE MICRO top pick’04]

•  Hash updates to execution state
•  Compare across redundant threads (or against

pre-computed values)
 Bounded error detection latency
 Reduced comparison bandwidth
  Little hardware overhead

R1 R2 + R3
R2 M[10]
M[20] R1

Instructions Execution bits

...001010101011010100101010...

R1 R2 M[20]

= 0xC3C9

Fingerprint

© 2008 Babak Falsafi 26

10
0 10

2 10
4 10

6

1

Checkpoint Interval (instructions)

Co
ve

ra
ge

Error Detection: Coverage

 16-bit (CRC) fingerprint near perfect coverage
 Chip-external acceptable coverage for >1M

Fingerprinting

0 Chip-external

I/O not recoverable

© 2008 Babak Falsafi

FIRST: Fingerprinting in Reliability &
Self Test [SELSE’07]

•  Periodically stress test system
  initialize processor and load fault tests
  Lower voltage, increase frequency
  continuously monitor and summarize internal state
  compare w/reference (e.g., RTL or unstressed core)

Fetch

R
etire

RF

ROB

FU
s ISQ

MemQ

0xC3C9

Fingerprint

Reference

Test
Program

Signature comparison exposes faults

© 2008 Babak Falsafi

 N/2-way reliable CMP

Reunion: Fingerprinting DMR
[Micro’06]

Shared Cache

Use on-chip cache hierarchy to supply memory
  minimizes complexity (no need for custom queues)
  but, we need same input at the same time

Core
$

Core
$

Core
$

Core
$

N-way CMP

© 2008 Babak Falsafi

Load Value Incoherence

C0

C1

C0

taken

X⇐1

not taken R1⇐X beq R1

R1⇐X’ beq R1

divergent!

Challenge: making redundant
cores agree on inputs

© 2008 Babak Falsafi

Detecting Load Value Incoherence

Cores disagree on a load value
  Appears as difference in retiring register values
  Fingerprint mismatch (as in soft error)!

One mechanism detects both soft errors and
load value incoherence

C0’

$

C0

$

Shared Cache

X=1 X=0

© 2008 Babak Falsafi

Reunion Performance

Reunion incurs a small performance overhead
 Slip between cores exposed at serializing events
 More requests at shared cache

Incremental performance cost for a
design without strict input replication hardware

N
o

rm
a
li

ze
d

 I
P

C

© 2008 Babak Falsafi

DMR across chips
Fingerprinting has minimal overhead

Can run Reunion across chips or in a
distributed system

•  As long as two threads do not synch often,
 can have threads far apart

•  Machine isolation is key in many reliability
 applications

Have working design for a multi-chip system

© 2008 Babak Falsafi

Other examples of
signature-based techniques

Argus [Sorin, et al., Top picks 07]
Use distributed checker logic

  Check control‐flow & data‐flow using signatures
  Compute correctly (adds, mul=plies, etc.)
  Interact correctly with memory (loads, stores)

Enables comprehensive error detec=on in a
single core!

33

© 2008 Babak Falsafi

Architectural Support for
Monitoring in Software

Blackboxes record crashing of planes
•  Why can’t machines provide “execution” recorder?
•  Wouldn’t it be nice for machines to allow replay?

Systems may crash because of SW or HW bugs
or security attacks

•  Monitoring may detect (and correct) bugs

34

© 2008 Babak Falsafi

Example: Logs & Lifeguards
[IEEE Top Pick 08]

35

Store/examine “log” of execution
–  Support a broad range of monitors (“lifeguards”)

–  Can monitor functionality (HW & SW) and performance
–  Unify HW & SW debugging

–  Great use of lots of cores on chip

core1 core2 core3 coren

Log
……..

HW
Lifeguard

Security
Lifeguard Performance

Lifeguard Your SW

Multi-core chip

© 2008 Babak Falsafi

Outline

•  Overview
•  Computers with unruly transistors
•  Detecting/correcting error in logic
•  Detecting/correcting error in memory

36

© 2008 Babak Falsafi

Conventional memory
protection

: defect
: bit upset

Small amount of redundancy
 1-bit ECC

2:1 interleaving

Small-scale error correction

Can’t detect large-scale defects
Can’t repair large-scale error

© 2008 Babak Falsafi

Significant overhead for high coverage

•  Multi-bit ECC
- Large area overhead
- High power overhead
- Long latency

•  High degrees of bit interleaving
- Only clustered error coverage
- High power overhead

•  Larger amount of hardware redundancy
- Large area overhead for high defect coverage

No low-overhead solution for high-density defects and
large-scale multi-bit error coverage

© 2008 Babak Falsafi

2D error coding [Micro 07]

Higher multi-bit error coverage

  Less hardware redundancy
  Repair only large-scale defects

  Vertical coding in background
  Also low-overhead code
  Large-scale correction (with H. code)

Higher defect coverage
Lower VLSI overhead

 H. Code

 V. Code

  Fast horizontal coding
  Multi-bit error detection
  Optional small-scale correction

Array

© 2008 Babak Falsafi

0%

25%

50%

75%

100%

8-b
it E

DC

1-b
it E

CC

2-b
it E

CC

4-b
it E

CC

8-b
it E

CC

64b word
256b word

Multi-bit ECC does not scale

 Significant increase in area and energy

Storage overhead Energy overhead

0%

100%

200%

300%

8-b
it E

DC

1-b
it E

CC

2-b
it E

CC

4-b
it E

CC

8-b
it E

CC

64b word / 64kB
256b word / 4MB

© 2008 Babak Falsafi

0%

200%

400%

600%

Non
e 2:1 4:1 8:1 16

:1

64b word / 64kB
256b word / 4MB

Energy overhead per read

Bit interleaving does not scale

 Significant increase in energy

© 2008 Babak Falsafi

Hardware redundancy does not scale

Low defect tolerance even with large redundancy

Ce
ll d

efe
ct

ra
te

Amount of redundancy in 4MB SRAM

Defect rate tolerance

© 2008 Babak Falsafi

2D coding: concept

 Horizontal code
 Multi-bit error detection
 (e.g., logically interleaved parity)
 Optional small-scale correction
  Fast common-case operation

Combining two low-overhead coding
 Effective multi-bit error correction

Array

 H. Code

 V. Code

 Vertical code
 Multi-bit error detection
 (e.g., logically interleaved parity)
 Updated in background

© 2008 Babak Falsafi

2D coding: scalable protection

8x4

4:1 interleaving

 1-bit ECC

 256x256

32-bit error coverage 4-bit error coverage

29x8

8:1 interleaving

4-bit
 ECC

 128x256

32-bit EDC

ECC
8-bit EDC

2D coding

8x4

32

 256x256

© 2008 Babak Falsafi

0%
5%

10%
15%

L1 D-cache L1 D-cache (PS) L2 cache L1 D-cache (PS) + L2 cache

Architectural performance overhead

 Fat CMP Lean CMP

Overall average performance loss < 3%

© 2008 Babak Falsafi

0%

50%

100%

150%

200%

2D
 (E

DC8
+In

tv
4,

ED
C3

2)

2C
3D

+In
tv
16

4C
5D

+In
tv
8

8C
9D

+In
tv
4

ED
C8

+In
tv
4,

 W
r-
th

ro
ug

h

N
o
rm

al
iz

ed
 O

ve
rh

ea
d

Code Area Coding Latency Dynamic Power

325% 309% 352% 432%

VLSI overhead

0%

50%

100%

150%

200%

2:1 16b
EDC +

32b EDC

16:1 2b
ECC

8:1 4b
ECC

4:1 8b
ECC

459% 504% 423%

•  32b error coverage

•  4MB SRAM

•  Normalized to 2:1,
1b-ECC protection

overhead costs

No
rm

ali
ze

d
VL

SI
 ov

er
he

ad

2D coding incurs much less VLSI overheads

© 2008 Babak Falsafi

Other techniques

Remapping of cells:
•  Under aggressive voltage scaling:

Wilkerson et al., Top Picks ’08
•  And/or when high defect rates with

erasure codes

DRAM memory
•  Chipkill, distributed parity, ….

47

© 2008 Babak Falsafi

Summary

These are best of times I can imagine for
computer system designers & architects

•  Must build reliable systems from unreliable
components

•  Need cheap mechanisms, configured only when
needed

•  There are no silver bullets these are great times
for academia to lead and have impact

48

© 2008 Babak Falsafi 49

Thank you!
Visit our website:
http://parsa.epfl.ch/babak.falsafi

PARSA
Parallel Systems Architecture Lab
EPFL
www.c2s2.org

