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Welcome to the 3rd Workshop on Dependable Architectures! 

Current computer technology trends present to the hardware and software designer novel 
opportunities to improve performance and at the same time many challenges to overcome. 
One of the formidable challenges is to provide dependable operation - in terms of reliability 
and availability - for a system made of unreliable components. 

The combination of various developments brought dependability to prominence: soft-error 
rate is projected to increase with scaling; variability due to non-deterministic placement of 
dopant atoms and channel length is increasing design margins; better than worst-case design 
techniques for power/performance require error detection/correction; aggressive application 
of power-saving mechanisms such as clock- and Vdd-gating are increasing voltage droops; 
the verification manpower budget is becoming a significant part of the design effort; oxide 
breakdown and electromigration are decreasing processor lifetimes. 

New research frontiers are therefore open for exploration that will lead to the discovery and 
development of dependable architectures, this includes research at all design levels: circuit, 
architecture, compiler, OS and network. This workshop aims to become a forum for academia 
and industry to discuss and present ideas and recent developments in the design and 
evaluation of dependable architectures both software and hardware. 

We like to thank the authors for submitting their work at WDA-3 and the program committee 
members for providing on-time detail reviews. Finally, we like to recognize Costas 
Kourougiannis for handling the workshop’s web-page.  
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KEYNOTE 
 

What to do with 100 Billion potentially misbehaving transistors on a chip 
 

Babak Falsafi 
Professor of CS, EPFL 

Adjunct Professor of ECE & CS, Carnegie Mellon 
 
The demand for computer system performance continues to grow to keep pace with our daily 
needs and to enable solutions to previously infeasible computing problems.  Advances in 
semiconductor fabrication along with architectural and circuit innovation have helped 
computer system designers to accommodate this increase in performance demand since the 
emergence of microprocessors in the 70's.  As a result, microprocessor vendors today market 
high-end products with roughly two billion transistors per chip offering unprecedented 
computational performance and capabilities. Unfortunately, while technology roadmap 
projections forecast the continued increase in the number of transistors per chip well into the 
next decade, there are fundamental sources of hardware and software bottleneck in sight that 
may impede the way to design and performance scalability of computer systems.  
 
In this talk, I will present a few of these fundamental challenges and potential research 
directions in computer system designs to harness performance from future hundred-billion 
transistor chips and beyond. 
 
Bio: 
 
Babak Falsafi is a Professor in the School of Computer and Communication Sciences at 
EPFL, and an Adjunct Professor of Electrical and Computer Engineering and Computer 
Science at Carnegie Mellon. He is the Microarchitecture thrust leader for the FCRP Center for 
Circuit and System Solutions and directs the Parallel Systems Architecture Laboratory 
(PARSA) at EPFL. His research targets architectural support for parallel programming, 
resilient systems, architectures to break the memory wall, and analytic and simulation tools 
for computer system performance evaluation. In 1999, he showed in collaboration with T. N. 
Vijaykumar for the first time that multiprocessors need not support relaxed memory 
consistency models to achieve high performance. He is a recipient of an NSF CAREER award 
in 2000, IBM Faculty Partnership Awards between 2001 and 2004, and an Alfred P. Sloan 
Research Fellowship in 2004. He is a senior member of IEEE and ACM. 
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ABSTRACT 
The relentless pace of transistor scaling has brought 
with it an increasing need for fault tolerance 
capabilities in logic devices. A common technique for 
providing this is processor replication in a fully-
lockstepped fashion. This paper presents a 
hypervisor-based replication implementation, which 
can be applied to commodity hardware to allow for 
virtually-lockstepped system operation. It offers the 
benefits of full replication ranging from error 
detection through simple duplex execution to error 
correction through triplex execution, and can be 
extended to support Byzantine fault tolerance (BFT). 

Virtualization hardware support is used to 
minimize replication overhead and processor state 
fingerprinting is employed to reduce the fault 
detection latency. The fingerprinting facilitates the 
detection of errors before they are recorded to a 
checkpointed state, which allows for recovery to a 
known-good state prior to a crash. The benchmarks 
considered indicate a performance overhead in the 
range of 2% to 5% with a non-optimized 
implementation, and fault injection trials show that 
fault detection latency can be reduced between 43% 
and 98% for the prototype considered. 

1. INTRODUCTION 
A major challenge that has emerged in the 

pursuit to fabricate ever smaller and faster 
transistors into increasingly complex chip designs is 
the ability to maintain a very high level of processor 
reliability. It is a concern in all modern semi-
conductor process technologies and continues to 
become more so as Moore’s Law leads scaling of 
devices down to only tens of nanometers and allows 
designers to incorporate many billions of transistors 
into a single chip. 

There are a number of factors that contribute to 
the challenge. First, the devices are becoming 
increasingly susceptible to transient faults, which are 
caused by radiation events and electromagnetic 
interference. The soft error rates of combinational 
logic are fast approaching the levels at which 
protection was necessary in memory devices [24] 

and are expected to induce a higher failure rate than 
all other means of failure combined if not countered 
by fault-tolerance techniques [2]. 

In addition to soft errors, there continues to be 
an increase in the degree of static and dynamic 
transistor variability and much higher rates of 
transistor performance degradation and wear-out [4, 
26]. The increases to chip complexity are also 
expected to limit the validation possible during post-
fabrication testing [13]. This will result in marginal 
hardware being produced that must be maintained 
in the field by fault tolerance mechanisms. 

Unlike memory devices, which can typically be 
protected from faults in a straightforward fashion by 
incorporating redundant information in the form of 
parity or error correction coding, logic devices have 
proven much more difficult to protect. The most 
common approach taken is to replicate the entire 
device, as doing so allows for comparisons to be 
made between replicas. The replication can be done 
at a micro-architectural level, such as the pipeline of 
the processor [11, 18, 19], at the system level 
through full machine duplication [3, 29], or 
somewhere in between [17]. It may be done in a 
software-transparent fashion with specialized 
hardware, through software-only approaches, or by 
incorporating a combination of both hardware and 
software support [1, 11, 19]. 

The goal of this paper is to explore a low-
overhead, hypervisor-based replication that reduces 
fault detection latency by comparing a hashed 
“fingerprint” of the virtual CPU state at regular 
intervals. Specifically, the latency being considered is 
the period of time from when a fault is introduced in 
the system until it is discovered, if ever. If the fault is 
manifested as an erroneous value in a register, it is 
often discovered much later when the system 
crashes or hangs, but it may also be masked or lead 
to silent data corruption (SDC). The benefit of the 
early detection afforded by the fingerprint 
comparisons is that a rollback can be done to a 
checkpoint of a known good state prior to the error. 

The prototype is based on the KVM virtual 
machine monitor [15], which takes advantage of 
commonly-available hardware support to improve 
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system performance and fault detection capabilities. 
The benefit of this approach over previous work is 
that it is inexpensive to deploy and maintains high 
performance and simplicity by exploiting hardware 
support present in practically all modern processors 
ranging from low-power netbooks to enterprise-
level servers. The benchmarks considered in this 
paper indicate that this is a viable option with an 
overhead on the order of 5%, while the fault 
injection experiments indicate that processor state 
fingerprinting can significantly reduce fault detection 
latency. 

2. REPLICATION & VIRTUAL LOCKSTEP 
There is a long history in the enterprise server 

space of providing fault tolerance through lockstep-
based replication. Lockstepped execution ensures 
that all replicas begin in the same state, receive the 
same, deterministic inputs, and progress through the 
same state transitions. Any divergences can be 
detected by differences in processor state or in the 
output from the chip. 

A varying degree of lockstep is possible, ranging 
from cycle-level lockstep in which all cores execute 
exactly the same stream of execution to systems in 
which a single core actively executes the code and 
sends updates to one or more passive replicas that 
can take over if a failure is detected. These 
enterprise-class systems are highly specialized and 
very costly to deploy. They require customized 
hardware and possibly a layer of middleware for 
managing the replication [3, 29]. 

Virtual lockstep is a term given to systems that 
do not necessarily execute in full lockstep directly on 
the hardware. Instead, a virtualization layer in 
interposed to act as a middleware for coordination 
of the lockstepped operation without the need for 
specialized underlying hardware. 

2.1. Virtualization Technology 
A hypervisor, also referred to as a virtual 

machine monitor (VMM), sits logically between the 
hardware and the operating system. It facilitates 
system virtualization by allowing a software-only 
implementation of a machine to be seen as real 
hardware by the operating system running on it. By 
offering this additional layer of abstraction, the 
virtual hardware interface offers a simplified view of 
hardware that is amenable to deterministic 
execution, and therefore to virtual lockstep 
operation. 

Although the concept of virtualization was 
originally developed over forty years ago, the wide-

spread use of virtual machines only started to take 
hold within the last decade. In that time, the 
capabilities of system virtualization have expanded 
significantly, including the introduction of hardware 
support by all major processor manufacturers. 
Practically all modern computing platforms support 
virtualization to some degree and most offer a high 
level of hardware support. 

The hardware support specifically considered in 
this paper is the Intel Virtualization Technology (VT-
x) [27]. It provides for a new mode of operation 
termed VMX root mode. This new mode was 
designed to overcome challenges in software-only 
virtualization such as ring aliasing, address-space 
compression, and non-faulting access to privileged 
processor state. It does this by running (resuming) an 
operating system (the guest) in VMX non-root mode 
and transitioning control (exiting) back to the VMM 
(the host) in VMX root mode whenever necessary. 
The guest can then use all four ring levels, is 
guaranteed to exit to the host on all privileged 
instructions, and the processor changes the linear 
address space whenever control is transferred 
between the guest and the host. 

A portion of the state of the host and the guest 
is maintained in a page of memory called a Virtual 
Machine Control Structure (VMCS), which is set up 
with a physical address mapping known to the VMM 
and passed to the processor whenever a guest is 
resumed. This structure stores the segment, control, 
instruction pointer, stack pointer, and flag registers. 
Control fields are also present to define the types of 
operations for which the VMM has requested 
control. There is some virtual processor state, such 
as the remaining general purpose registers, that are 
not contained in the VMCS and must be saved and 
restored manually by the VMM software. 

2.2. Related Work in Virtual Lockstep 
The first work in the area of virtual lockstep 

operation made use of a custom hypervisor designed 
to run on the HP PA-RISC Unix system [5]. This 
implementation made use of a software-only VMM, 
which ran single primary and backup nodes in a 
leader/follower configuration synchronized on 
epoch boundaries.  

An epoch, defined by the instruction retirement 
counters, provides a means of injecting interrupt 
vectors at the same deterministic position in both 
the primary and backup. The primary executes one 
epoch ahead of the backup and has the task of 
choosing values for all nondeterministic events, such 
as the reading of the timestamp counter or input 



from an I/O operation, as well as buffering of 
external interrupts for delivery at the end of the 
epochs. 

In the event that the primary crashes, the 
backup will detect the missing heartbeat signal, 
which is triggered by the expiration of a timer, and 
take over beginning at the start of the epoch in 
which the primary crashed. It may repeat disk or 
network operations that the primary completed 
before crashing, but it is assumed that the network 
or storage drivers are capable of handling these 
repeat requests. 

One key limitation of this model is the necessity 
of fail-stop behavior in the primary. In other words, 
the only failure of the primary for which the backup 
is capable of detecting and recovering from is a 
system crash or similar event which causes the 
heartbeat signal to not be received. It is possible that 
the error was caused by a latent fault that occurred 
many epochs prior and did not result in an 
immediate crash. The fault may have also been in 
state that was transferred to the backup, in which 
case the backup will proceed to reproduce the crash. 

A more recent proposal for a virtually 
lockstepped system is based on the Xen hypervisor 
[20]. In this model, a new network/voting (NV) 
domain is defined, which has the logic for the 
replication and communication of the dom0 (host) 
and domU (guest) domains. This model is based on 
replicating at a much higher level, however. The 
replicas provide network-based services and must be 
consistent only from the point of view of a network 
client, which gives flexibility in the underlying 
hardware and software at the cost of limited scope. 

Another approach to providing benefits similar 
to virtual lockstep is the use of rapid checkpointing. 
In contrast to lockstepped execution, a backup 
replica in a checkpoint-based system does not 
actively re-execute code. Instead, the primary 
records a full snapshot of the current state of the 
processor and memory and sends it to the backup, 
which allows it to pick up where a primary left off in 
case of failure. An example of this is given in [8], 
where the Xen hypervisor is again used. In this 
model, the backup receives system checkpoints from 
the primary at a rate as high as once every 25ms. 
The primary is able to buffer I/O until the end of an 
epoch, at which time it is committed to both the 
primary and backup. 

The rapid checkpoint model has a simpler 
implementation than a virtually lockstepped system, 
and is also much easier to apply to multiprocessor 
guests. These benefits come at the cost of the actual 

execution not being replicated. That is, if a fault is 
present in the primary that causes an incorrect value 
to be computed, the value will be transferred to the 
backup and not regenerated. The checkpointing of 
faulty state was found to happen with high 
probability in [7]. This limits the fault model to 
immediate fail-stop behavior of the primary. 

3. FAULT DETECTION 
As indicated in the previous section, it is 

preferable to not just detect an error when a system 
crashes, but detect when the fault that caused it 
occurs. This gives the system an opportunity to take 
the steps necessary to avoid a crash. To do this, it is 
necessary to track the state of the processor and not 
just monitor the signals that leave the chip. This 
requirement is due to the latency in the 
manifestation of errors at the outputs of the 
processor. For example, a register that is struck by a 
particle and has a bit flipped will likely not be 
immediately accessed. It may even be written back 
to memory and read in again much later. By the time 
the error becomes software-visible, it is unlikely that 
a recovery is possible. 

3.1. Processor State Fingerprinting 
One way to ensure that an error is detected as 

soon as possible is to execute all replicas in virtual 
lockstep and compare the full state of the processor 
on a regular basis. It is very expensive in terms of 
bandwidth and power consumption to make such 
extensive comparisons, however. An optimization is 
to hash the processor state into a unique fingerprint 
and make a comparison based on that single value. 
This is much faster, and if an appropriate hash is 
used, collisions can be kept to a minimum and the 
accuracy of the fault detection can be maintained. 

There is a wide range of hashing algorithms that 
can be applied to the data representing the 
processor state varying in complexity from simply 
adding the registers together to applying a complex 
cryptographic hash like SHA-2. 

It is not possible to tell from the fingerprint 
exactly which parts of the processor state have 
diverged since that information is lost in the hashing 
process. It is sufficient, if intermittent checkpoints 
are taken, to trigger a roll back to the last known 
good checkpoint and resume execution. 

3.2. Related Work in Fingerprinting 
Fingerprints have been used to reduce fault 

detection latency on enterprise-class server systems 
[10, 25]. In this work, a dual-modular redundant 
server with cores lockstepped at the hardware level 



is enhanced to maintain a hash representative of the 
history of execution. Information about instruction 
commits are hashed using a cyclic redundancy code 
(CRC). It is observed that error detection latency can 
be improved considerably at a small cost in terms of 
compute and bandwidth resources, although the 
cost of developing such specialized capabilities in the 
processor pipeline is quite significant. 

4. FAULT-TOLERANT SYSTEM MODEL 
The model presented in this paper is a virtually 

lockstepped system described in detail in [14]. The 
goal of the model is to be directly applicable to a 
variety of systems, ranging from simple dual-core 
platforms to future networks on chip (NoCs) with 
hundreds of cores on a single die. This is 
accomplished by allowing a primary instance of a 
hypervisor to be coupled with an arbitrary number 
of backup replicas, each instantiated on a separate 
machine or logical partition. 

 
Figure 1. System with many-to-one protection level. 

 
An example is shown in Figure 1 where a single 

backup can be dynamically tied to one of the guests 
running on the primary VMM when the underlying 
hardware for the guest is detected to be faulty. The 
other extreme is shown in Figure 2, where there are 
three backup replicas for a single primary instance, 
which is necessary to support BFT [6]. 
 

 
Figure 2. System with one-to-many protection level. 

4.1. Replication Coverage 
The main goal of the model is to protect the 

processor from single-event upsets. It is assumed 
that the main memory, storage, and network devices 
can be replicated through other means, such as 
memory sparing, RAID, or network adapter teaming, 
respectively. For this reason, these devices are left 
outside the sphere of replication. 

4.2. Fault Injection Model 
The behavior of the system in response to faults 

is simulated by altering the state of the virtual 
processor to model bit flips. This can be done easily 
since the VMM has complete control over the state 
of the guest. The injection is done in a manner 
similar to that presented in [16], where the Xen 
hypervisor is used as a fault injection vehicle for a 
Linux guest. That work looked at only four registers, 
but defined a method of categorizing the types of 
errors seen and recorded the latency of the error in 
terms of machine cycles. 

4.3. Error Detection 
Errors are detected by comparing a hashed 

fingerprint of the virtual processor state at regular 
intervals. This is different from the fingerprinting 
approach taken in [10, 25]. Rather than hashing 
information about retired instructions, the 
virtualization hardware is utilized by hashing the 
information stored in the VMCS. 

The main reason for this choice is that it takes 
advantage of a well-defined, hardware-accessible 
structure, which allows for the hardware to be 
trivially optimized, reducing the hashing overhead. 
For example, the microcode could be updated to do 
the hashing, or a specialized or idle processing core 
could be used to hash the memory region. 

State comparisons are made on execution 
boundaries determined by exits from the guest to 
the VMM. The rate of comparison can be adjusted to 
trade off performance for reduced detection latency 
and higher detection accuracy. 

5. PROTOTYPE DETAILS 
The prototype that has been developed is based 

on the KVM hypervisor. For the purposes of this 
paper, it has been implemented only on the Intel x86 
architecture with support for uniprocessor guests, 
since it is significantly more complex to support 
multi-processor deterministic execution and the 
performance overhead is not yet practical [9]. All 
replication logic is incorporated into the userspace 
portion of the hypervisor, along with a small amount 
of support code in the kernel module. 
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5.1. Hypervisor Overview 
The KVM hypervisor has been integrated into 

the mainline Linux kernel since version 2.6.20 and 
has recently been ported to support most major 
architectures, including x86, IA64, and PowerPC. It 
uses the QEMU emulator for virtual device models, 
and so runs in the context of a Linux process, which 
makes it trivial to start multiple instances and to tie 
them to specific processing cores. The hard disk 
image provided to each instance can be backed by a 
file-based disk image (qcow2), which is easily 
replicated and supports checkpoint snapshots. Inter-
replica communication in the prototype is done 
through a buffer allocated in shared memory, which 
is sufficient for duplex and triplex configurations. An 
extension to BFT is possible if a decentralized, group 
coordination and communication protocol is applied. 

5.2. Virtual Lockstep Details 
In order to run replicas in lockstep, it is 

necessary to remove all nondeterminism from the 
system [22]. This includes synchronous sources such 
as instructions that access the timestamp counter or 
read in data from an I/O port, as well as 
asynchronous sources, such as external interrupts. 
Direct memory access (DMA) replication has not yet 
been implemented, but it must be dealt with as a 
combination of both cases (i.e., an I/O instruction 
that occurs asynchronously). This is an optimization 
left as future work. 

The replicas are synchronized based on the 
number of deterministic exits that occur to VM-root 
mode. That is, each time a VM exit occurs at a point 
in the execution that is guaranteed to be 
deterministic, a counter is incremented and the 
hypervisor is given the opportunity to inject 
asynchronous events, such as virtual interrupts. This 
ensures that the asynchronous events occur 
deterministically and at the same point in all 
replicas. In the prototype, lightweight exits (those 
handled entirely in the kernel) are not counted. 

The data from the synchronous, non-
deterministic instructions, which include those that 
do string or value I/O operations, memory-mapped 
I/O, or read the timestamp counter, are copied into 
a structure and stored into a circular broadcast 
buffer with a flag indicating the type of operation. 
The buffer is shared among all hypervisors in a 
typical producer/consumer fashion. The primary 
stores the items and signals the backup(s) when an 
item is available. When a backup gets to the same 
synchronous instruction, it retrieves the information 
stored in the buffer and verifies the flag matches the 

type of operation it expects. It then either overrides 
the input it received or verifies the output it 
produced, depending on the direction of the event. 
It is possible in this way to detect errors at the I/O 
level, but as described earlier, it is desirable to 
detect them even sooner. 

The asynchronous, nondeterministic events (i.e., 
external interrupts) are captured by the primary and 
placed into a second shared buffer. Their delivery 
into the primary is delayed until the first VM entry 
following a deterministic exit for which the guest is 
ready to accept the interrupt. If both of the 
requirements are met, the event is injected and its 
details are recorded in the shared buffer. The backup 
replicas peek at this buffer to determine the point at 
which they must inject the next event, which is 
defined by the deterministic exit count. When a 
replica arrives at the target position, the event is 
removed from the buffer and injected. It is assured 
that the event will be deliverable, unless a fault has 
occurred, since the state of the system is identical to 
the primary. 

One of the sources of nondeterminism seen in 
the KVM hypervisor is in memory paging. It appears 
to be due to different paging behavior of the file-
backed guest hard disk images. To skirt this problem, 
the replicas are run in a ramdisk, which means that 
the virtual hard disks are placed entirely in memory 
so that access to a physical hard disk, and the 
subsequent page faults, are not required. This 
limitation does not affect the main goals of assessing 
the benefit of early fault detection, and resolving it is 
left as a future optimization. 

A second potential issue is that by synchronizing 
only on deterministic exits from the guest, it is 
possible for the guest to never exit deterministically 
and consequently make no forward progress. For the 
purposes of this paper, the benchmarks executed 
have a steady rate of deterministic exits and avoid 
the problem. This limitation can be averted by 
ensuring a minimum rate of deterministic exits by 
generating interrupts with the performance 
counters, for example. 

5.3. Fingerprinting Details 
The error detection capabilities of the system 

are enhanced by verifying the state of the virtual 
processor at the deterministic execution boundaries. 
This means that ideally, faults are detected at the 
first deterministic exit after they are introduced, as 
long as they affect one or more of the fields in the 
VMCS. 



The fingerprints are generated using a simple 
multiplicative hashing algorithm defined in [23] and 
added by the primary to each item placed in the 
shared buffers. This allows the backup to easily 
compare its state to that of the primary while doing 
the standard checks against the buffer entry. 

It is possible to enhance the error detection 
capabilities further by including additional state into 
the fingerprint calculation. For example, it would be 
desirable to have the general purpose registers 
included, even though they are not part of the 
VMCS. This is certainly possible, but it precludes the 
optimization of directly using a hardware-only 
approach to generating the fingerprints (at least 
without a microcode or hardware extension). 

6. EVALUATION AND BENCHMARKS 
The prototype of the proposed model is 

evaluated along multiple vectors. First, the 
performance overhead of the virtual lockstep 
implementation is assessed. The fault injection 
capabilities are then considered, and finally the fault 
detection latency is evaluated. 

6.1. Test Platform 
The test platform includes an Intel Xeon X3360, 

which is a 2.93GHz quad-core processor with 
support for the latest VT-x hardware extensions. The 
system has 4GB of main memory with 2GB reserved 
for use in hosting a single primary and backup. The 
hypervisor is a modified version of KVM-33 that is 
run on a 32-bit Ubuntu 7.04 installation. The guest 
image is a 32-bit Slackware 10.2 installation with 
default kernel settings and 128MB of main memory. 

6.2. Benchmarks 
The benchmarks considered for this paper is are 

Linux kernel compilations. These were chosen 
because they offer high levels of both processor and 
I/O activity. For the purposes of overhead 
estimation, both a relatively small kernel (2.4.31) 
and a larger kernel (2.6.20) are considered. The 2.4 
kernel is the default for the Slackware 10.2 guest 
and the 2.6.20 kernel is from the public Linux kernel 
servers. They are compiled in the guest with gcc 
3.3.6 and default configuration options. 

6.3. Virtual Lockstep Overhead 
The overhead of virtual lockstepped execution 

comes from a number of sources. There is the cost 
of the primary recording the values for all 
nondeterministic events and the backup then 
retrieving them and making the necessary 
comparisons. There is also the cost of delaying 

interrupt delivery to occur at deterministic 
boundaries, and finally, there is the cost of the 
primary stalling when it runs too far ahead and fills 
the buffer or similarly when the buffer is empty and 
the backup must stall. Because the hypervisors are 
pinned to processing cores, there is a relatively small 
slack that accumulates between them so the final 
issue can be handled using reasonably sized buffers. 

The overhead attributed to the replication is 
estimated by comparing the performance of a 
virtually lockstepped execution to an identical 
instance that is virtualized but not replicated. The 
results are shown in Table 1 and indicate a very 
reasonable overhead of approximately 2%-5%. The 
times are an average of ten trials and were tracked 
using VMCALL instructions, which allow the guest to 
call back into host. The guest executes the VMCALL 
immediately before and after the compilation and 
the host reads the platform timestamp counter and 
calculates the difference. 

These numbers will vary significantly depending 
on the platform on which it is run, and it is expected 
that running the guests on a hard disk will add to the 
overhead. There are also workloads that will exhibit 
a larger performance hit, but this initial analysis 
indicates that it will likely be a tolerable hit and that 
virtual lockstep can be made practical given the 
benefits it provides. 
 
Table 1: Overhead of Linux kernel compile for virtual 
lockstep compared to virtualization only 

Primary Virtualized Lockstepped Overhead 

Linux 2.4.31 128.5s 135.1s 5.1% 

Linux 2.6.20 255.3s 258.8s 1.4% 

Backup    

Linux 2.4.31 128.5s 135.6s 5.5% 

Linux 2.6.20 255.3s 259.2s 1.5% 

 

6.4. Fault Injection 
As mentioned previously, there are benefits to 

using a virtual machine as a platform for fault 
injection experiments. First, it has direct access to 
the system registers, as well as the guest stack, 
interrupt descriptor table, and memory. This makes 
fault injection as simple as altering bits of state and 
resuming the guest execution. 

From the very large space of possible fault 
targets, a few key registers have been chosen and 
are listed in Table 2. They were selected to align well 
with similar work [12, 16, 28], as well as to give 
reasonable coverage of both registers that are 
stored in the VMCS and those that are not. 



A fault is modeled by flipping a bit, which is 
done by xor-ing a 1 to the target bit. All faults are 
injected into the backup replica of a duplex system. 
This allows for direct comparison of the processor 
state and output to the primary to detect the effects 
of the fault. The two bit positions targeted were 
chosen somewhat arbitrarily as bit 4 and bit 16. The 
main reasoning was to flip one near the lower 
portion of the register so that the affected value will 
move only a small amount (e.g., two to 16 
instructions in the case of RIP) and to flip a higher 
order bit so as to cause a more significant change for 
cases when the value is treated as a number. 
 
Table 2: Registers considered for fault injection 

Register In VMCS? Description 

RIP Y Instruction pointer 

RSP Y Stack pointer 

RAX N Accumulator 

RCX N Counter 

RBP N Base pointer 

RSI N Data (Source) 

CS_B Y Code segment (Base) 

 

6.5. Fault Detection 
Faults are injected during a compilation of the 

Linux 2.4.31 kernel, and the time of the injection is 
varied randomly. The compilation is run for 10,000 
deterministic VM exits plus a random number of 
additional deterministic VM exits from 0 to 2

16
, 

which is generated by /dev/random in the host Linux 
kernel. After injection, the guest is run for at least 
50,000 additional deterministic VM exits, which is on 
the order of the runtime considered in [16, 21]. 

The first set of data considered are whether the 
guest fails or continues to run to completion. This is 
broken down by failure mode in Figure 3. A crash 
means that a guest fails, dumps failure information, 
and stops executing, while a hang means that the 
guest ends up in a state in which no forward 
progress is made but it doesn’t stop. 

It is notable that faults in RAX and RCX rarely 
cause the system to crash. Only a fault in the high bit 
of RAX causes a significant failure rate. This also 
holds true for RBP and RSI, which are the other 
registers not saved in the VMCS. In general, it is 
observed that faults in registers that are not part of 
the VMCS caused a much lower failure rate than 
those that are. This isn’t surprising since the point of 
the VMCS is to automatically store the state of the 
most critical registers in the CPU.  

 
Figure 3. % of failures by register [faulty bit position]. 

 
It may be that data are silently corrupted (SDC) 

in the cases where no crash occurs and work is in 
progress to verify this. It is straightforward to detect 
some forms of SDC in the kernel compile benchmark 
considered by retrieving the generated binaries and 
comparing them to known-good copies. It is more 
difficult, however, to determine if latent errors have 
been introduced into the running kernel of the guest 
machine. 

To detect the errors resulting from the fault 
injections, guest state fingerprints are generated and 
compared on every deterministic exit. The 
fingerprints are derived by hashing most of the fields 
in the VMCS. The CR3 and TSC Offset are excluded 
from the hash since they are expected to differ. 
Registers for unused features such as SMM are also 
excluded. The Interrupt Error Code is not included 
since it is updated only on exits for interrupts that 
would deliver an error code to the stack and may be 
stale otherwise. The final two fields not part of the 
hash are Access Rights for FS and GS registers. The 
descriptor privilege level of these fields is not 
consistent on all exits. 

It is extremely unlikely that a fault introduced 
into a system register will cause an immediate crash 
or hang. There is generally a period of time from 
when a fault is injected until the system fails, and for 
the purposes of this paper, this is considered the 
base fault detection latency. The improved fault 
detection latency is the time from when the same 
fault is injected until it is detected in a fingerprint 
comparison. The benefit of the improved detection 
latency is that it is typically much shorter and 
improves the probability of successful rollback and 
recovery. 

The data presented in Figure 4 demonstrate that 
the fingerprint-based model is capable of detecting 
errors within only a few exits, whereas there are 
often dozens or hundreds of exits before the system 
finally crashes. The average reduction across all 
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registers except RSP is 97% and is as high as 98% for 
RIP. It is notable that a fault in the high bit of RSP 
does cause the system to crash much earlier than 
the other fault targets considered, but the faults are 
still detected in the fingerprint comparisons 43% 
earlier, on average. 

6.6. Fingerprinting Optimizations 
The final breakdown of the data is focused on 

finding ways of optimizing the performance of the 
fingerprinting approach. Specifically, the size of all 
fields of the VMCS that have been considered in the 
hash is only 396 bytes, which is quite small, but 
hashing the data does have a performance cost that 
should be minimized. The most obvious optimization 
is to exclude VMCS fields that are unlikely to play a 
part in detecting a fault in the system. 

Figures 5 and 6 break down the fields of the 
VMCS in which differences were detected for the 
fault targets considered. These are the fields 
affected only on the first exit after which a 
difference is detected, and there are a surprising 
few. Additional fields often become corrupted on 
subsequent exits before the guest crashes, but are 
not included. 

The small subset of VMCS fields consists of 44 or 
60 bytes on 32- or 64-bit host systems, respectively, 
and represents the minimal set of fields that need to 
be included in the fingerprint to provide equivalent 
detection coverage to including all fields for the fault 
model considered in this paper. We believe that this 
subset will expand very little as data are gathered for 
additional workloads. It is possible to optimize even 
more since there are a number of fields that always 
appear to occur together or in addition to other 
fields. For example, every time a fault is detected in 
FS Selector, GS Selector is also faulty. 

 

 
Figure 4. Average time to error detection using 
fingerprints versus time to guest crash measured in 
terms of deterministic exits from fault injection. 

 
Figure 5. VMCS fields first affected by fault in bit 4 of 
registers. 
 

 
Figure 6. VMCS fields first affected by fault in bit 16 
of registers. 

7. CONCLUSION AND FUTURE WORK 
In the near future, it will be essential to apply 

new techniques to computing systems to ensure 
reliable operation. The goal of this paper is to 
present a virtual lockstep implementation that is 
software based, yet capable of using hardware 
features for enhanced performance and fault 
detection capabilities. The result is a system that has 
a low performance overhead and significantly 
reduces the time to detection of faults that occur in 
the processor. 

This work also indicates that it may be beneficial 
to extend the virtualization hardware capabilities to 
support fingerprinting and state comparison. Our 
current implementation uses a hash of a subset of 
the processor state as a basis for fault detection; this 
provides limited detection coverage as faults that 
occur between VM exits may not manifest in 
changes to the VMCS state. Nonetheless, our 
approach can accommodate additional fault 
detection coverage if provided by hardware, without 
significant changes to the framework. 

For instance, detection can take into account 
the history of instructions between VM exits if 

0

20

40

60

80

100

120

RIP [4] RSP [4] CSB [4] RIP [16] RSP [16] CSB [16]

A
ve

ra
ge

 D
e

te
rm

in
is

ti
c 

Ex
it

s

Time to Detection Time to Crash Detection Benefit

0%

20%

40%

60%

80%

100%

CS_B [4] RBP [4] RIP [4] RSI [4] RSP [4]

CR0_READ_SHADOW CS_BASE EXCEPTION_BITMAP

EXIT_QUALIFICATION FS_SELECTOR GS_SELECTOR

INTERRUPTIBILITY_INFO RFLAGS ENTRY_EXCEP_ERR_CODE

ENTRY_INTR_INFO_FIELD EXIT_INST_LEN EXIT_REASON

0%

20%

40%

60%

80%

100%

CS_B [16] RBP [16] RIP [16] RSI [16] RSP [16]

CR0_READ_SHADOW CS_BASE EXCEPTION_BITMAP

EXIT_QUALIFICATION FS_SELECTOR GS_SELECTOR

INTERRUPTIBILITY_INFO RFLAGS ENTRY_EXCEP_ERR_CODE

ENTRY_INTR_INFO_FIELD EXIT_INST_LEN EXIT_REASON



hardware is enhanced in a manner similar to what is 
described in [10, 25], as well as by including more 
registers than are currently in the VMCS and 
performing hashing using optimized hardware. By 
making these capabilities available to the hypervisor, 
fault detection and checkpoint rollback at VM exit 
boundaries can be done reliably. 
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Abstract 
As semiconductor manufacturing enters advanced 
nanometer design paradigm, aging and device wear-out 
related degradation is becoming a major concern. 
Negative Bias Temperature Instability (NBTI) is one of 
the main sources of device lifetime degradation. The 
severity of such degradation depends on the operation 
history of a chip in the field, including such 
characteristics as temperature and workloads. In this 
paper, we propose a system level reliability management 
scheme where a chip dynamically adjusts its own 
operating frequency and supply voltage over time as the 
device ages. Major benefits of the proposed approach are 
(i) increased performance due to reduced frequency 
guard banding in the factory and (ii) continuous field 
adjustments that take environmental operating conditions 
such as actual room temperature and the power supply 
tolerance into account. The greatest challenge in 
implementing such a scheme is to perform calibration 
without a tester. Much of this work is performed by a 
hypervisor like software with very little hardware 
assistance. This keeps both the hardware overhead and 
the system complexity low. This paper describes the entire 
system architecture including hardware and software 
components. Our simulation data indicates that under 
aggressive wear-out conditions, scheduling interval of 
days or weeks is sufficient to reconfigure and keep the 
system operational, thus the run time overhead for such 
adjustments  is of no consequence at all. 

1. Introduction 
The likelihood of device wear-out is a growing problem 
for advanced nanometer technology. International 
Technology Roadmap for Semiconductors (ITRS) states 
that “the development of semiconductor technology in the 
next 7 years will bring a broad set of reliability challenges 
at a pace that has not been seen in the last 30 years” [1]. 
The relentless pursuit of smaller geometries is 
approaching a point where technology limitations are 
pushing designs toward tighter constraints and expensive 
margins, elevating concerns about device availability and 

reliability [2]. The potential for these failures1 decreases 
the expected lifetime of the processor, creating a lifetime 
reliability problem. 

Processor lifetimes are traditionally managed through a 
combination of quality control in manufacturing and 
conservative design parameters that reduce stress on a 
processor (e.g., running at a lower clock frequency and 
voltage to avoid high temperatures). Processors are 
typically designed with a mean-time-to-failure of 30 
years, which assures few if any units will fail during 11 
years of “expected consumer use” assumed by 
manufacturers [3]. Scaling trends make quality control to 
meet this reliability goal more expensive while 
conservative designs negatively impact performance. 

Device aging has had a significant impact on transistor 
performance. Increased current density and temperature 
leads to faster degradation of transistors over time due to 
oxide wear out and hot-carrier degradation effects. Until 
90nm technology, the degradation was small enough to be 
concealed by an upfront design margin in the product 
specification. But as the technology approaches 45nm and 
below, the worst case degradation is expected to become 
too large to be taken as an upfront design margin [2]. 

Product life acceleration with burn-in test is becoming 
less meaningful as well. To quote ITRS [1], “Two trends 
are forcing a dramatic change in the approach and 
methods for assuring product reliability. First, the gap 
between normal operating and accelerated test conditions 
is continuing to narrow, reducing the acceleration factors. 
Second, increased device complexity is making it 
impossible or prohibitively expensive to exercise or 
stimulate the product to obtain sufficient fault coverage in 
accelerated life tests. As a result, the efficiency and even 

                                                                 
1 Wear-out related failures, or intrinsic hard faults are distinct 
from extrinsic hard faults, which are permanent faults that result 
from manufacturing defects and are already present when a 
processor is tested in the factory. Thus, extrinsic hard faults are 
weeded out by testing. In contrast to extrinsic hard faults, the 
probability of intrinsic hard faults increases with long-term 
processor utilization. This paper addresses intrinsic hard faults. 



the ability to meaningfully test reliability at the product 
level are rapidly diminishing.” 

Negative Bias Temperature Instability (NBTI) is a major 
source of device lifetime degradation [4]. NBTI affects 
PMOS transistors when the voltage at the gate is negative, 
causing the threshold voltage to increase. As a result both 
FMAX and VMIN of the design are impacted. The FMAX is 
degraded because the circuits become slower over time, 
while memory structures experience an increase of their 
minimum voltage (VMIN) to keep their contents.  

Current practice is to use conservative frequency guard-
bands of 10-20% to account for performance loss due to 
device aging [5][6].  For example, a device that clocks at 
3GHz/1.1V during testing may be sold as a 2.7GHz/1.0V 
part to account for expected performance loss over 
product life time. This, in turn, requires designers to target 
for higher frequency of operation, thus significantly 
increasing power consumption [5][7].   

The solution we propose avoids a large guard-band 
upfront, continually adjusting frequency and voltage over 
product lifetime. The main idea behind this scheme is to 
enable the system to adaptively adjust the operating 
frequency/voltage with minimal guard-bands to allow the 
system to operate at its peak performance throughout its 
life. The adjustments are transparent to the operating 
system and application’s software. This fine-grain 
management of device aging provides additional benefits 
of workload adaptation, runtime field testing, and non-
stop system operation, which is not permissible in the 
conventional FMAX or VMIN testing that requires a tester.   

The rest of the paper is organized as follows. The 
remainder of this section is devoted to providing some 
background and related work on NBTI and its impact on 
device reliability, followed by motivation for the 
proposed scheme. In section 2, discuss lifetime reliability 
models for processors. In section 3, we describe our 
proposed reliability management architecture. Section 4 
and 5 provide our experimental methodology and data 
analysis. We conclude in section 6. 

1.1 NBTI & Related Work 
The severity of threshold voltage degradation due to 
NBTI depends on the operation history of a chip in the 
field: circuit parameters like operating frequency, supply 
voltage and temperature variance play a role, as well as 
data patterns due to variation in the workload 
characteristics. The workload determines the length of 
time a PMOS transistor may spend in ON state, when 
most of the performance degradation happens.  

We have already mentioned why burn-in is losing 
effectiveness against NBTI problems [8]. Researchers 
have proposed solutions to mitigate NBTI by: reducing 
the amount of time the PMOS transistors observe a “0” at 
their gates [9]; resorting to classical redundancy 
techniques [10]; using software logging to handle crash 

detection and recovery [11]; using circuit and logic 
techniques to catch dynamic errors using special 
sequential circuits [11][12]; using runtime adaptation of 
the processor to changing application behavior, termed as 
Dynamic Reliability Management (DRM) [13][14].  

Although these techniques address the shortcomings of 
burn-in and guard-bands, they are either applied at a 
coarse-grain granularity or they require significant design 
cost overhead. For example, Razor DVS [15] proposes a 
technique to eliminate safety margins by running below 
critical voltage and subsequently tuning the processor 
voltage based on error rate. One of the main drawbacks of 
this work is the upfront additional circuitry required for 
Razor flip flops (RFF) and their associated power 
overhead. As RFFs are used on critical paths, meeting the 
chip’s timing requirements and recovering pipeline state 
are challenging tasks that incur design overheads. On the 
other hand, DRM’s uniform allocation provides high 
performance only for some applications, those that have 
high reliability slack, whereas our technique provides 
higher performance for all applications during the initial 
years and gracefully degrade performance as the device 
ages. 

T. Austin et al., [16] propose a new software-based defect 
detection and diagnosis technique, which is based on 
using special firmware to insert tests for diagnosis and if 
needed repair through resource reconfiguration. Smolens 
et al., [17] present an in-field early wear-out fault 
detection scheme that relies on the Operating System to 
switch between functional and scan mode to test the chip 
in near-marginal conditions. Our technique uses similar 
software/hardware framework to address transistor aging, 
where the chip not only tests itself but also adapts to the 
changing conditions. 

1.2 Motivation & Vision 
The main drawback of burn-in and manufacturing time guard-
bands is that they are static and expensive. Static guard-band 
may not be adequate for all parts; if the guard-band is 
increased, it may be excessive for other parts. This points 
to a need for flexible and scalable approaches that allow 
for continuous adjustments to combat degradation. The 
workloads running on a hardware platform are not static, 
but variable. The number of applications, their 
performance and power requirements, and the usage 
models vary based on the user demands and 
environmental conditions. Therefore, continuous 
adjustment of frequency/voltage seems natural. 

We propose a system level architecture that is based on 
virtualization of device aging management. 
Virtualization, in this context, is a software process with 
some hardware collateral that helps finding the optimal 
frequency. The proposed virtual framework provides 
architects with a layer of software that resides in memory 
concealed from all conventional software, thus isolating 
the functions of the implementation-specific device aging 



management features from the user and the operating 
system. The main idea is to expose the details of lower 
level hardware specific components to special software. 
This software provides flexible management capabilities 
of sensing, testing, and adapting the system over its 
lifetime. In an effort to address the drawbacks of 
conventional approaches discussed earlier, the proposed 
scheme has the following objectives: 

Flexibility and Scalability: The layers of abstraction that 
exist between the hardware and software should hide 
intricate details that are necessary to manage 
frequency/voltage of the system efficiently and insulate 
OS. This will allow hardware to evolve freely. 

Low Cost: Frequency calibration without a tester will 
require some hardware collateral. This should be kept at 
bare minimum and should not impact power and 
performance of a processor. 

Maximized Performance with non-stop management: 
Benefits from frequency adjustments will be greatest 
when the frequency decrements are small and adjustment 
is continuous. 

Self and Field Testing: Proposed scheme allows the 
hardware to be its own instrument and enables self test 
during field operation. The flexibility of software allows 
the system to adapt to the changing environment and 
invoke the device aging management at variable intervals. 
Thus, if the device was controlling a Mars Rover, it will 
continue to adjust its operating frequency and voltage 
without requiring a tester attached to it. 

Crash Recovery and Workload Adaptation: The proposed 
management software provides checkpoint capabilities to 
enable system recovery while the system tests itself. 
Additionally, the real-time environment and varying 
workload demands are used to optimize their effects on 
the lifetime reliability. 

In summary the vision of the proposed virtual framework 
for device aging management is to adjust the system as 
performance degrades over its lifetime, and provide a cost 
effective and flexible solution that scales for future 
technologies. 

2. Modeling Lifetime Reliability 
In this section we discuss models for lifetime reliability. 
We provide a brief background on lifetime reliability 
concepts. Then we discuss the failure mechanisms and 
models proposed in [3]. The NBTI model and reliability 
concepts form the basis of our work. 

2.1 Lifetime Reliability Background 
Processor lifetime can be expressed in mean-time-to-
failure (MTTF). Typical designs target a MTTF of 30 
years [3]. While this value may seem long for processors, 
which are typically replaced every few years, it is 
important to distinguish between the expected years of 

consumer use and the MTTF. The expected consumer use 
for a processor is 11 years [3]; the much longer MTTF 
ensures that the probability of failure during the expected 
use is small and in lies the tail end of the failure 
distribution. An alternative lifetime metric is failures-in-
time (FIT), or the number of failures expected per billion 
hours. FIT relates to MTTF as: 

  FIT = 109 / MTTF 

FIT is a convenient expression compared to MTTF 
because FIT values can be summed while MTTF cannot. 
A MTTF of 30 years can be expressed as about 4000 FIT. 

Failures can occur in several components due to several 
mechanisms, as is discussed in the next subsection. These 
component failures are typically related to processor 
failure using the sum-of-failure-rates (SOFR) model, 
which assumes the first failure of any component under 
any mechanism causes the entire system to fail, that each 
failure mechanism is independent, and that each 
mechanism’s failure rate is constant (i.e., not a function of 
time or the age of the processor). Using this model, the 
FIT of the processor can be computed by summing the 
FIT rates of each failure mechanism for each component. 

Of course, actual failure rates are not constant, they 
increase with processor age. However, time-invariant 
failure models are commonly used due to their availability 
and simplicity. 

2.2 RAMP: Failure Mechanisms and Model 
Lifetime reliability is affected by five primary wear-out 
mechanisms expressed in the RAMP (Reliability Aware 
Microprocessor) model proposed in [3][30]: Electro-
migration, Stress migration, Time-dependent dielectric 
breakdown, Thermal cycling, and NBTI. Electro-
migration is the accumulation or depletion of interconnect 
material due to long-term current flow. Stress migration is 
the migration of interconnect material due to mechanical 
stress caused by differing thermal expansion rates of 
materials. Time-dependent dielectric breakdown is the 
formation of a conductive path in the nominally insulating 
gate-oxide of transistors. Thermal cycling is damage, 
particularly in the processor package, from repeated 
changes in temperature. Reference [30] provides a more 
detailed description of the above failure mechanisms. 

For each failure mechanism, RAMP provides expressions 
proportional to the MTTF for each individual component. 
The MTTF can be expressed as a function of temperature 
– higher temperature and wider temperature swings 
generally cause more failures than other parameters such 
as voltage, frequency, and activity factor. The relevant 
equations all take this simplified form [30]: 

 MTTF = K * f (Temperature) 

The proportionality constants (K) in these equations relate 
to the cost of “qualifying” the processor to achieve the 



desired MTTF. For a system with the same target MTTF, 
a design with higher proportionality constants (K) 
survives more wear and incurs more expense for 
materials, testing, reliability analysis, and so on. 

To relate easily-understandable architectural parameters 
to reliability cost, [3] uses a “qualification temperature,” 
Tqual, as a proxy for cost and these proportionality 
constants. Tqual is a fixed, design-time parameter for a 
processor. A design with higher Tqual implies higher 
proportionality constants (i.e., K from above) and higher 
reliability cost. As in [3], for a given target MTTF, the 
proportionality constants (K) for a specific Tqual for each 
failure mechanism are computed by assuming a constant 
temperature of Tqual (using the technology’s voltage and 
frequency values and worst-case activity factors for the 
functions that take those parameters). RAMP uses the 
proportionality constants computed for a Tqual to 
determine the observed MTTF based on observed 
processor temperature, voltage, frequency, and activity 
factor. 

In this paper we primarily focus on NBTI as it has 
received a lot of recent attention. However, we note that 
the proposed scheme will work equally well for several 
other failure models. 

3. System Reliability Manager 
In this section we present the idea of a system reliability 
manager in the context of protection against device 
performance degradation caused by NBTI or similar 
physical causes. The core requirement for this manager is 
to sense the impact of power delivery, temperature and 
the workload on the hardware platform, and subsequently 
respond by reconfiguring the platform. The 
reconfiguration is primarily confined to the adaptation of 
supply voltage and/or operating frequency.  

Pure hardware implementation of a reliability manager is 
costly and requires a priori information about the usage of 
a chip.  On the other hand, pure software based approach 
needs instrumentation capabilities to address the issue of 
low level communication with the hardware. 
Additionally, operating system based implementation 
lacks flexibility due to strict interface abstractions to the 
hardware platform. These constraints drive us towards 
virtual management where the processor tests itself and 
finds its own frequency and voltage. An integral part of 
this system is crash recovery management that is built 
into the virtual layer. 

The viability of a system reliability manager revolves 
around a cost-effective solution that can deliver self-
testing and self-recovery capabilities in a flexible and 
scalable manner. In this section we describe this in detail. 
Our scheme has both hardware and software components. 
The hardware components are the knobs and their control 
mechanisms to adapt supply voltage and/or frequency to 
the changing reliability requirements [18]. The hardware 

platform also provides support for processor virtualization 
features like expanded isolation capabilities, and 
mechanisms for smooth and quick thread context 
switching capabilities [19]. 

The software component of our scheme is the device 
aging management software than runs natively as a guest 
privileged process on the hardware platform.  We assume 
a thin Virtual Machine Monitor (VMM) running 
underneath the OS software stack, which is primarily used 
to enter and exit the System Reliability Manager (SRM) 
[19]. SRM software is concealed from all conventional 
software including the Operating System and may share 
the caching hierarchy of the platform for performance 
reasons. SRM software maintains a software timer for 
invocation control and crash recovery. SRM software also 
provides system checkpoint capabilities to enable self-
testing capabilities without taking the system offline. 
Finally, the SRM software enables carefully crafted 
functional stress tests or built-in self-test control to 
identify degradation at a component granularity, and 
provides adjustments for sustained performance levels at 
target reliability. SRM software is akin to hypervisor that 
is commercially available [20]. 

3.1 SRM Architecture Framework 
A high level system’s view of the SRM architecture is 
shown in Figure 1. The SRM maintains a timer that is 
setup at chip initialization and then on every subsequent 
SRM exit. This timer is adjusted by the SRM to adjust its 
sampling to optimize the reliability requirements. When 
SRM is active, it has the highest privileged access to the 
hardware platform and the knobs to control supply 
voltage and operating frequency. The interface between 
SRM and the hardware platform is shown in Figure 1. 

Hardware

Software

OS/Applications with Abstractions

System Manager

Thin (Virtual) Layer of Software 
With Knowledge of Hardware

 

Figure 1. System Reliability Manager’s System View 

The Voltage Control Register (VCR) and the Frequency 
Control Register (FCR) are adjusted to control the 
hardware platform configuration. Once SRM software 
completes its work to determine the actions regarding 
device aging management, it exits via the VMM and 
passes control back to the Operating System. As a result, 
our approach delivers a hardware-software co-designed 



solution that assists the hardware to dynamically adjust to 
tackle the reliability concerns over the chip lifetime. 

Div Inc/Dec

DIV
PLL

REFCLK

Divider
Control

PLL Control

System 
CLK

Voltage
Control
Register

Frequency
Control
Register

Voltage
Regulator

Module

VID Command

Supply Voltage

System Reliability Manager

SRM 
Controller

 

Figure 2. SRM  Interface & Hardware View 

3.2 SRM Software Flow 
Figure 3 shows the flow diagram for the SRM software. 
Instead of using a worst-case guard-band over the entire 
lifetime of a design, the system starts off with the best-
case frequency and voltage setting at first boot-up by 
invoking SRM. First invocation of SRM is specifically 
useful to calibrate a system to its power supply and 
cooling environment. 

The steps for FMAX testing are as follows: 

i) Upon entry to SRM, all states are check pointed to 
ensure recovery from catastrophic system failure 
during testing. This includes the known operating 
FMAX/VMIN for system 

ii) FCR is initialized to a low frequency value to set 
the frequency of the system. SRM timer is setup to 
enable self-recovery, and then test sequences are 
initiated  

iii) If the test passes, FCR value is adjusted for a higher 
frequency, the timer is reset and test is rerun (back 
to step ii) 

iv) If the test fails, upper limit on frequency is found 

 

v) If the system hangs, the timer interrupts. This 
interrupt automatically updates FCR to the last 
good value and passes control back to SRM for 
system recovery 

Once the FMAX is found for a given VDD, the SRM adds a 
small guard-band to last until the next invocation of SRM. 

It also schedules the timer for next invocation of SRM 
and exits by giving control back to the OS. SRM can be 
invoked during subsequent boot-ups or by request from 
system administrator. This is especially helpful when 
user/OS knowledge of system’s usage and load can be 
used to invoke re-evaluation of the chip. Additionally, 
SRM timer can be setup based on product specification or 
some on-chip degradation sensing mechanism. For 
example, NBTI which is shown to have a large 
dependence on temperature can be analytically modeled 
in the SRM software, which can use the chip’s thermal 
sensors to approximate the scheduling interval for re-
evaluation. Additionally, if the system is expected to 
degrade 10MHz every month, the SRM timer can also be 
statically setup to re-evaluate monthly.  

Similar set of steps can also be used to find VMIN for a 
given frequency. The information about VMIN is critical 
for correct operation of Dynamic Voltage and Frequency 
Scaling (DVFS) for thermal management [21]. 

 

System Bootup Administrator Timer Expiration

Invoke SRM

Checkpoint System State for Rollback Recovery

Capture Operating Frequency

Setup SRM Timer 
for Crash Recovery

SRM 
TIMER

Raise Chip Frequency 
(Re-lock PLLs)

Invoke Functional Stress 
Threads for Chip Testing

Stress Test 
Result?

PASS

FAIL

Set System Operating Frequency/Voltage (with margin)

Set SRM Timer for Next Invocation and Exit

Capture Operating Voltage

Setup SRM Timer 
for Crash Recovery

Raise Chip Voltage 
(Voltage Regulator)

Invoke Array BIST
for Chip Testing

Array BIST 
Result?

FAIL

Test FMAX / VMINFMAX VMIN

SR
M

 N
ot

 D
on

e

 

Figure 3. SRM Software Flow 

3.3 Self-Testing Mechanisms  
A key requirement for successful reconfiguration is 
complete knowledge about locations of failures and the 
nature of such failures. Our architecture framework offers 
low cost testing similar to the work presented in earlier 
research [16][17][22][23]. Instead of relying on costly and 
time consuming built-in structures our software based 
scheme offers comprehensive functional testing 



framework.  Based on our data analysis, presented in 
section 5, SRM is invoked at the granularity of weeks or 
days, so our methodology can use tests that run for longer 
durations (10s of ms). Figure 4 shows a flow diagram of 
the major components and their interactions for FMAX 
testing. First phase involves carefully crafting software 
threads for the target system. In the second phase, these 
tests are compiled into SRM software, where code, data 
and exception handlers are setup along with routines for 
final result checking. During runtime, these test sequences 
are applied to the hardware platform as shown in Figure 
3. Since these tests are run in the system environment 
unlike [23], the tests can make explicit external memory 
references. 

Most of the modern designs come with lots of SRAM 
arrays. Due to a standardized structure of these arrays, 
built-in self-test (BIST) is commonly available on most 
designs with a diverse set of test vectors. Our framework 
provides a simple interface through SRM software to 
invoke these BIST engines and then check their results to 
determine a pass/fail for VMIN testing. 
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Figure 4. Functional FMAX Testing Framework 

3.4 Checkpoint and Crash Recovery  
The main idea presented in this paper is to push the 
operating frequency and voltage to its limit, while the 
chip degrades during its lifetime. A major hurdle in such 
an architecture framework is that the system may crash 
during testing under such extreme operating conditions. 
The result of such a crash may range from incorrect 
results to a total system failure where a reset may be 
necessary. Our framework provides a cost-effective 
software-only mechanism to revert the system back to its 
pre-crash checkpoint of the system similar to SafetyNet 
[24] and ReVive [25].  

Whenever SRM is invoked to find the optimal operating 
frequency and voltage, a system-wide checkpoint is 
initiated. The checkpoint includes the state of the core 
registers, memory values and coherence/communication 

messages. The core registers are explicitly check-pointed, 
while the memory/coherence state is logged whenever an 
action (store or a transfer of ownership) might have to be 
undone. Additionally, all components in the chip are 
coordinated such that a consistent checkpoint is taken and 
stored in the non-volatile memory. Now the SRM can 
start its path finding process as shown in Figure 3. 

In case the SRM is invoked due to a crash, the system 
rollback process is initiated. The cores restore their 
register checkpoints and the caches/memories unroll their 
local logs to recover the system to the consistent global 
state at the pre-crash recovery point. After the recovery, 
the system resumes execution. As the SRM invocation is 
done infrequently, the cost of taking a checkpoint and 
rollback is negligible considering that it’s a one time cost 
for each SRM invocation. 

3.5 Self-Recovery Knobs 
The knobs needed to adjust FMAX and VMIN at runtime are 
shown in Figure 1. For operating frequency adjustment 
the new frequency setting can be adjusted by re-locking 
the PLL to the required setting. Additionally, the 
operating voltage is adjusted by sending a command to 
the voltage regulator module (VRM) to adjust the chip 
voltage. The VRM subsequently returns a new supply 
voltage. The SRM provides a simple interface to the 
hardware platform to request changes to the operating 
frequency and voltage. 

4. Experimental Methodology  
In this section we discuss our simulation environment. 
We use SESC cycle-level MIPS simulator for developing 
the SRM framework [26]. We have extended SESC to 
invoke Wattch [27] and Cacti [28] power estimation tools, 
and HotSpot temperature modeling tool [29]. For 
evaluating processor lifetime reliability at runtime, we 
integrated the RAMP model [30] in our simulator. 
Although RAMP provides analytical models for five 
intrinsic failure mechanisms, we only use NBTI in this 
study. We model a single superscalar processor with a 
floorplan containing twenty two structures. System 
parameters used are shown in TABLE I . 

The NBTI model used in RAMP is based on recent work 
by Zafar et al. at IBM [4]. This model shows that NBTI 
has a strong dependence on temperature in addition to 
electric field. The temperature and average MTTF is 
tracked for each structure in the processor over the entire 
simulation run. Our framework assumes that the first 
instance of any structure failing causes the entire 
processor to fail. 



200 cyclesOff-chip memory latency

152, 64ROB Size, LSQ

2M 8-way shared, 10 cyclesL2

64KB 4-way I & D, 2 cyclesL1

6, 4, 4 (out-of-order)Fetch, Issue, Retire Width

Processor Parameters

200 cyclesOff-chip memory latency

152, 64ROB Size, LSQ

2M 8-way shared, 10 cyclesL2

64KB 4-way I & D, 2 cyclesL1

6, 4, 4 (out-of-order)Fetch, Issue, Retire Width

Processor Parameters

10,000 cyclesTemperature Sampling Interval

85°CMaximum Temperature

0.5 mmDie Thickness

0.8 K/WPackage Thermal Resistance

45°CAmbient Temperature

Hotspot Parameters

10,000 cyclesTemperature Sampling Interval

85°CMaximum Temperature

0.5 mmDie Thickness

0.8 K/WPackage Thermal Resistance

45°CAmbient Temperature

Hotspot Parameters

10,000 cyclesRAMP Sampling Interval

82°CQualification Temperature per Structure

RAMP Parameters

10,000 cyclesRAMP Sampling Interval

82°CQualification Temperature per Structure

RAMP Parameters

 
TABLE I . System Parameters 

For our analysis, we chose SPEC2000 benchmarks. The 
choice of benchmark phases is primarily based on their 
thermal behavior with mcf being cold, gcc, gzip, ammp 
being moderate, and vortex, equake, art, bzip2 being hot. 
Each benchmark is fast forwarded 2 billion instructions, 
followed by HotSpot and RAMP initialization for each 
structure. This ensures that the processor as well as 
HotSpot and RAMP model get sufficient warm up. 

We assume 65nm technology with chip wide maximum 
VDD of 1.1V, and frequency of 2.0 GHz. For SRM 
evaluation, we vary Vdd and frequency by 5% downward 
steps up to a minimum of 0.88V and 1.6 GHz. For each 
benchmark, twenty five simulations are conducted with a 
pre-determined frequency/voltage setting. Each 
simulation is run for 1 billion instructions and 
performance evaluated based on throughput. At the end of 
each simulation, average MTTF per structure is sorted for 
each structure and the worst case MTTF is reported. For 
analysis purposes, we use an MTTF of 1 year, while we 
realize that expected consumer use for a processor is 11 
years. Our results should hold for an 11 year MTTF as 
well. 

5. Data Analysis 
Figure 5 shows the impact of varying frequency at a given 
voltage setting for the hottest structure in the bzip2 
benchmark. As the frequency is scaled down, the 
benchmark’s performance degrades, while the 
temperature falls. On the other hand, Figure 6 shows that 
impact of voltage on temperature, assuming the chip 
remains functional. We assume that initially the chip is 
fully functional at 2.0GHz and 1.1V, which implies that 
for this voltage, frequencies below 2.0GHz are allowed. If 
the voltage is lowered, the maximum operating frequency 
will degrade. SRM on its invocation iteratively evaluates 
for the maximum possible operating frequency under a 

specified operational voltage. The key question is: What 
is the scheduling interval for SRM? 

 

Figure 5. Scaling Freq. for bzip2: Thermal profile for IntReg 

 

Figure 6. Scaling voltage for bzip2: Thermal profile for IntReg 
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Figure 7. Lifetime Reliability Tradeoffs for SRM 

Figure 7 plots the performance and the worst case MTTF 
for all benchmarks when simulation is run at 2GHz and 
1.1V.  It can be concluded from our simulations that the 



performance (IPC or throughput) of a benchmark directly 
impacts the worst case MTTF for the chip. How quickly 
one can expect a failure to occur is dependent on the 
workload. So, a mechanism that keeps track of the 
performance of each live thread in the system is desirable 
for tuning the scheduling algorithm for the SRM. 

Figure 8 and Figure 9 show the impact of chip’s lifetime 
degradation when voltage or frequency is scaled down. 
The rate of change in MTTF is linear and its slope is 
dependent on the type of benchmark. This data shows that 
workload’s thermal and performance behavior can be 
used as a metric to track the rate of change in the MTTF. 

We also observe from this data that even though we 
designed our system to sustain MTTF of 1 year with a 

qualification temperature of 82°C for each structure, the 
worst case MTTF can be better than expected. For 
example, mcf benchmark has the worst case temperature 
of ~80°C, which results in no expected degradation for 
the 1 year period. Hence, if the system only runs under a 
similar workload conditions, the SRM scheduling is not 
needed for the 1 year period. 

On the other hand, if vortex or similar thermally hot 
workloads are being run on the system for the prescribed 
period, initially a monthly re-evaluation will suffice and 
once the system starts degrading and the operational 
settings have to be changed, re-evaluation can be 
scheduled for twice a week. 
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Figure 8. Impact of varying Voltage across benchmarks 
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Figure 9. Impact of varying Frequency across benchmarks 
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Figure 10. Rate of change for worst case MTTF as a function of benchmarks and operating conditions 

Figure 10 shows the worst case MTTF degradation for each 
benchmark under all operating conditions (sorted by 
MTTF) considered in this study. The x-axis shows that all 
benchmarks can achieve an MTTF of 1 year if the system 
constantly operates at 1.6GHz and 0.88V, but this comes at 
the cost of performance. On the other hand, if the operating 
conditions are initially set to 2GHz and 1.1V, the system 
can be operational for most of its lifetime. SRM can be 
invoked at regular intervals to adjust the frequency 
downwards and keep the system operational. Additionally, 
as the system starts deteriorating, the history can be 
recorded to guide the fine-grain scheduling interval for 
SRM. This is not described here for the sake of brevity of 
this paper. 

6. Conclusions 
We have presented a novel device aging management 
scheme for continuous adjustment of frequency and 
minimum supply voltage based on a co-designed virtual 
machine. The scheme requires no tester for determining 
FMAX and VMIN. Hardware collateral to implement this 
scheme is minimal that includes instructions for updating 
frequency and voltage control registers, which are already 
found in modern processor systems. The proposed solution 
allows the hardware to be its own instrument and enables 
self test during field operation by guiding the system to 
crash and recover during adjustment of its operating 
conditions. By insulating the device aging management 
from conventional software, the proposed framework 
shields the system and application software from managing 
low level details. The flexibility of software allows the 
system to adapt to the changing environment and invokes 
device aging management at appropriate intervals. The 
greatest benefits of this approach are (i) device operation 
near peak frequency throughout product life and (ii) 
protection against failure due to insufficient lifetime guard-

band, (iii) no system downtime or change from a user 
perspective.  
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Abstract

Technology scaling has led to growing concerns
about reliability in microprocessors. Currently, fault
tolerance techniques rely on explicit redundant exe-
cution for fault detection or recovery which incurs
significant performance, power, or hardware over-
head. This paper makes the observation that value
predictability is a low-cost (albeit imperfect) form of
program redundancy that can be exploited for fault
tolerance. We propose to use the output of a value
predictor to check the correctness of predicted in-
structions, and to treat any mismatch as an indi-
cator that a fault has potentially occurred. On a
mismatch, we trigger recovery using the same hard-
ware mechanisms provided for mispeculation recov-
ery. To reduce false positives that occur due to value
mispredictions, we limit the number of instructions
that are checked in two ways. First, we character-
ize fault vulnerability at the instruction level, and
only apply value prediction to instructions that are
highly susceptible to faults. Second, we use confi-
dence estimation to quantify the predictability of in-
struction results, and apply value prediction accord-
ingly. In particular, results from instructions with
higher fault vulnerability are predicted even if they
exhibit lower confidence, while results from instruc-
tions with lower fault vulnerability are predicted only
if they exhibit higher confidence. Our experimental
results show such selective prediction significantly
improves reliability without incurring large perfor-
mance degradation.

1 Introduction

Soft errors are intermittent faults caused by cos-
mic particle strikes and radiation from packaging
materials. They do not cause permanent damage,
but still corrupt normal program execution. Tech-
nology scaling combined with lower supply voltages
make systems more vulnerable to soft errors. Hence,
soft errors have become an increasingly important

design consideration with each successive generation
of CPUs.

To enhance system reliability, existing techniques
typically introduce redundant execution–by taking
either a hardware or software approach–to detect or
recover from faults. On the hardware side, error-
detection circuitry (ECC or parity bits) can be
added to storage structures. Other hardware tech-
niques utilize additional structures such as extra
processor cores, hardware contexts, or functional
units [1, 2, 3, 4, 5] to execute redundantly in or-
der to compare results and detect faults. In con-
trast to hardware techniques, software-based tech-
niques rely on the compiler to duplicate program
code [6, 7, 8]. This software redundancy also per-
mits comparison of results at runtime, but with-
out any additional hardware cost. While differ-
ing in implementation, both hardware and software
approaches create explicit redundancy to provide
fault tolerance which incurs significant performance,
power, or hardware overhead.

Prior studies have shown that program execu-
tion itself contains a high degree of redundancy–
i.e., instruction and data streams exhibit repeata-
bility. One example of exploiting such inherent re-
dundancy is value prediction which predicts instruc-
tion results through observation of past values. By
predicting values before they are executed, data de-
pendency chains can be broken, permitting higher
performance. Unfortunately, value prediction has
had limited success in commercial CPUs due to its
relatively low prediction accuracy and high mispre-
diction penalty, the latter becoming increasingly se-
vere with deeper processor pipelines.

In this work, we employ value prediction to im-
prove system reliability. Compared to explicit re-
dundant execution techniques, the advantage of
value prediction is it exploits programs’ inherent
redundancy, thus avoiding the cost of explicitly du-
plicating hardware or program code as well as the
associated area, power, and performance overheads.
Although a value predictor itself incurs some addi-



tional hardware, we find a relatively small predictor
can effectively detect faults; hence, our approach
incurs less hardware than traditional explicit dupli-
cation techniques.

In addition to exploiting inherent program redun-
dancy, another advantage of our approach is it is
less sensitive to the negative effects of mispredic-
tion. Mispredictions are always undesirable from
the standpoint of performance since they require
flushing the pipeline. Because traditional uses of
value prediction are focused on improving perfor-
mance, such flushes undermine their bottom line.
However, in the context of fault detection/recovery,
flushes can be desirable because they reduce the
time that program instructions (particularly those
that are stalled) spend in the pipeline, thus improv-
ing architectural vulnerability. Rather than always
being undesirable, for our technique, mispredictions
represent a tradeoff between performance and re-
liability. Lastly, compared to traditional uses of
value prediction, our technique does not require as
fast value predictors. For performance-driven tech-
niques, value predictions are needed early in the
pipeline. In contrast, for fault detection/recovery,
value predictions can be delayed until the writeback
stage, where value checking occurs.

To maximize the efficacy of our technique, we fo-
cus value prediction only on those instructions that
receive the greatest benefit. In particular, we char-
acterize fault vulnerability at the instruction level,
and apply value prediction only to those instruc-
tions that are most susceptible to faults.1 An in-
struction’s fault vulnerability in a specific hardware
structure is quantified by measuring the fraction of
the structure’s total AVF (Architectural Vulnerabil-
ity Factor) that the instruction accounts for. Our
results show a small portion of instructions account
for a large fraction of system vulnerability. For ex-
ample, for the fetch buffer in our processor model,
about 3.5% of all instructions are responsible for
53.9% of the fetch buffer’s total AVF in the TWOLF
benchmark. This suggests that selectively protect-
ing a small number of instructions can greatly en-
hance the overall reliability. Because we apply value
prediction only on a small number of instructions,
the potential performance loss due to mispredictions
is also quite small.

To further reduce the impact of mispredictions,

1Identifying the most vulnerable instructions occurs late

in the pipeline. Thus for implementation with more advanced

but slower value predictor, all result-producing instructions

are eligible for prediction once they enter the pipeline, but

only those that are later identified as the most susceptible to

faults will have their results checked and update the predic-

tor.

we use an adaptive confidence estimation technique
to assess the predictability of instructions, and ap-
ply prediction accordingly. Our approach is adap-
tive because it applies prediction more or less ag-
gressively depending on each instruction’s fault vul-
nerability (which can be quantified through its la-
tency). Instructions with high fault vulnerability
are predicted even if they exhibit low confidence,
while instructions with low fault vulnerability are
predicted only if they exhibit high confidence. Our
results show that this technique achieves significant
improvements in reliability without sacrificing much
on performance.

The rest of the paper is organized as follows. Sec-
tion 2 introduces how we apply value prediction for
fault detection. We mainly discuss our study on
characterizing instructions’ vulnerability to faults,
as well as our methods for selecting instructions for
fault protection. Then, Section 3 describes our ex-
perimental methodology, and reports on the relia-
bility and performance results we achieve. Finally,
Section 4 presents related work, and Section 5 con-
cludes the paper.

2 Reducing Error Rate with Value

Prediction

This section describes how value prediction can
be used to reduce error rate. First, Section 2.1
discusses how we use value predictors to check in-
struction results. Then, Section 2.2 briefly describes
fault recovery. Finally, Section 2.3 quantifies in-
structions’ vulnerability to faults, and proposes se-
lectively predicting instructions to mitigate perfor-
mance loss.

2.1 Predictor-Based Fault Detection

To identify potential faults, we use a value pre-
dictor to predict instruction outputs. We employ
a hybrid predictor composed of one stride predic-
tor and one context predictor [9]. Prediction from
the context predictor is attempted first. If the con-
text predictor cannot make a prediction (see Sec-
tion 3.1), then the stride predictor is used instead
to produce a result. After a prediction is made,
the result is compared with the actual computation
result. The comparison is performed during the in-
struction’s writeback stage, so the predictor’s out-
put is not needed until late in the pipeline. Since
prediction can be initiated as soon as the instruction
is fetched, there is significant time for the predictor
to make its prediction, as mentioned in Section 1.
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During each predictor comparison, the prediction
and actual instruction result will either match or
differ. If they match, two interpretations are possi-
ble. First, the predictor predicted the correct value.
In this case, no fault occurred since the instruction
also produced the same correct value. Second, the
predictor predicted the wrong value, but a fault oc-
curred such that the instruction produced the same
wrong value. This case is highly unlikely, and for all
practical purposes, will never happen. Hence, on a
match, we assume no fault has occurred, and thus,
no additional action is required.

Another possibility is the prediction and actual
instruction result differ. Again, two interpretations
are possible. First, the predictor predicted the cor-
rect value. In this case, a fault has occurred since
the instruction produced a different value. Second,
the predictor predicted the wrong value, and the in-
struction either produced a correct or wrong value
(again, we assume a misprediction and incorrect re-
sult will never match). Unfortunately, there is no
way to tell which of these has occurred, so at best
on a mismatch, we can only assume that there is
the potential for a fault. We always assume con-
servatively that a fault has occurred, and initiate
recovery by squashing the pipeline and re-executing
the squashed instructions in the hopes of correcting
the fault. During re-execution, if the instruction
produces the same result, then with high probabil-
ity the original instruction did not incur a fault.2 If
no fault occurred (the most likely case), the pipeline
flush was unnecessary, and performance is degraded.
(However, as we will see in Section 2.2, such “un-
necessary” flushes can actually improve reliability
in many cases).

To mitigate the performance degradation caused
by false positives, we use confidence estimation. In
particular, we employ the confidence estimator de-
scribed in [10]. We associate a saturating counter
with each entry in the value predictor table. A pre-
diction is made only when the corresponding satu-
rating counter is equal to or above a certain thresh-
old. If the prediction turns out to be correct (the
match case), the saturating counter is incremented
by some value. If the prediction turns out to be
incorrect (the mismatch case in which the original
and re-executed results are the same), the saturat-
ing counter is decremented by some value. Given
confidence estimation, we can tradeoff the number

2The comparison of a re-executed result with the origi-

nally executed result is not necessary on-line for our tech-

nique to work properly. In fact, our technique never knows

whether a mismatch was caused by a misprediction or an

actual fault. The main issue with re-execution is predictor

updates, which is discussed in Section 3.1.

of false positives with the number of predicted in-
structions (and hence, the fault coverage) by vary-
ing the confidence threshold. Section 3 will discuss
how we select confidence thresholds.

2.2 Fault Recovery

When an instruction’s prediction differs from its
computed value, it is possible a fault occurred be-
fore or during the instruction’s execution. To re-
cover from the fault, it is necessary to roll back the
computation prior to the fault, and re-execute. In
our work, we perform roll back simply by flushing
from the pipeline the instruction with the mismatch
as well as all subsequent instructions. Then, we re-
fetch and re-execute from the flush point. (A similar
mechanism for branch misprediction recovery can be
used for our technique).

Notice, our simple approach can only recover
faults that attack predicted instructions, or instruc-
tions that are downstream from a mispredicted in-
struction (which would flush not only the mispre-
dicted instruction, but also all subsequent instruc-
tions). If a fault attacks a non-predicted instruction
that is not flushed by an earlier mispredicted in-
struction, then even if the fault propagates to a pre-
dicted instruction later on, recovery would not roll
back the computation early enough to re-execute
the faulty instruction. However, even with this lim-
itation, we find our technique is still quite effective.

Because soft errors are rare, most recoveries are
triggered by the mispredictions of the value predic-
tor. As mentioned in Section 2.1, such false posi-
tives can degrade performance. However, they can
also improve reliability. Often times, re-executed
instructions run faster than the original instruc-
tions that were flushed (the flushed instructions can
prefetch data from memory or train the branch pre-
dictor on behalf of the re-executed instructions). As
a result, the re-executed instructions occupy the in-
struction queues for a shorter amount of time, re-
ducing their vulnerability to soft errors compared to
the original instructions. This effect is particularly
pronounced for instructions that stall for long peri-
ods of time due to cache misses. Hence, while false
positives due to mispredictions can degrade perfor-
mance, this degradation often provides a reliability
benefit in return. The next section describes how
we can best exploit this tradeoff.

2.3 Instruction Vulnerability

In order to reduce the chance of mispredictions
and unnecessary squashes, we not only apply confi-
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dence estimation (as described in Section 2.1), but
we also limit value prediction to those instructions
that contribute the most to overall program reli-
ability. This section describes how we assess the
reliability impact of different instructions.

Recently, many computer architects have used
Architectural Vulnerability Factor (AVF) to rea-
son about hardware reliability [11]. AVF captures
the probability that a transient fault in a processor
structure will result in a visible error at a program’s
final outputs. It provides a quantitative way to es-
timate the architectural effect of fault derating. To
compute AVF, bits in a hardware structure are clas-
sified as critical for architecturally correct execution
(ACE bits), or not critical for architecturally cor-
rect execution (un-ACE bits). Only errors in ACE
bits can result in erroneous outputs. A hardware
structure’s AVF is the percentage of ACE bits that
occupy the hardware structure on average.

To identify ACE bits, instructions themselves
must first be distinguished as ACE or un-ACE. We
make the key observation that not all ACE instruc-
tions contribute equally to system reliability. In-
stead, each ACE instruction’s occupancy in hard-
ware structures determines its reliability contribu-
tion. As observed by Weaver et al. [12], the longer
instructions spend in the pipeline, the more they
are exposed to particle strikes, and hence, the more
susceptible they become to soft errors. Weaver et
al. proposed squashing instructions that incur long
delays (e.g., L2 cache misses) to minimize the occu-
pancy of ACE instructions. We extend this idea
by quantifying fault vulnerability at the instruc-
tion level, and selectively protecting the instructions
that are most susceptible to faults.

0

0.2

0.4

0.6

0.8

1

1.2

1
7
3
7

1
3
7
9

1
0
8
5

1
0
4
2

1
0
0
0

9
4
9

7
6
2

7
2
0

6
7
8

6
3
6

5
9
4

5
4
3

4
6
1

4
1
9

3
7
7

3
3
5

2
9
3

2
5
1

2
0
9

1
6
7

1
2
5

8
3

4
1

Instruction Latency (cycles) in Fetch Buffer

C
u
m

u
la

ti
v
e 

A
V

F
 %

Cumulative AVF %

Cumulative Instruction Count %

0.54

0.04

0.72

0.08

Figure 1. Accumulative Percentage of AVF and
Instruction Count in Fetch Buffer on TWOLF.

Our approach is particularly effective because we
find a very small number of instructions account for
a majority of the AVF in hardware structures. Fig-
ure 1 illustrates this for the processor’s fetch buffer

when executing TWOLF, a SPEC2000 benchmark.
In Figure 1, the top curve plots the cumulative frac-
tion of overall AVF (y-axis) incurred by instructions
that occupy the fetch buffer for different latencies
(x-axis) sorted from highest latency to lowest la-
tency. The bottom curve plots the cumulative frac-
tion of dynamic instructions (y-axis) that experi-
ence the given latencies. In total, there are 1,944
static instructions that have been simulated. As
Figure 1 shows (the two datapoints marked on the
left of the graph), 53.9% of the fetch buffer’s AVF is
incurred in 3.5% of all dynamic instructions. These
instructions have large latencies–300 cycles or more.
As indicated by the other two datapoints marked
on the right side of the graph, the majority of in-
structions (about 91.8%) exhibit a latency smaller
than 40 cycles, and account for a relatively small
portion of the overall AVF (about 28.4%). We find
similar behavior occurs for the other benchmarks
as well as for the other hardware structures. Such
results show that using our value predictor to tar-
get a small number of instructions–those with very
large latencies–is sufficient to provide the majority
of fault protection. This is good news since it will
minimize the performance impact of mispredictions.

In our study, we find that even though an in-
struction may stall for a long time in one hardware
structure, it may not stall for very long in other
structures. In other words, a single instruction can
contribute differently to different structures’ vulner-
ability. Thus, an important question is how can we
select the smallest group of instructions that will
provide the largest benefit to reliability? In our
work, we measure the latency an instruction incurs
from the fetch stage to the issue stage, and use this
to determine each instructions’ contribution to re-
liability, applying value prediction only to those in-
structions that meet some minimum latency thresh-
old. Because our approach accounts for “front-end”
pipeline latency, we directly quantify the occupancy
of instructions in the fetch and issue queues, and
hence, are able to identify the instructions that con-
tribute the most to reliability in these 2 hardware
structures. This is appropriate for our work since
later on (in Section 3) we study our technique’s im-
pact on both fetch and issue queue reliability (we
also study the impact on the physical register file’s
reliability, though our latency metric does not di-
rectly quantify result occupancy in this structure).
If improving reliability in other hardware structures
is desired, it may be necessary to use a different la-
tency metric. This is an important direction for
future work.
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Processor Parameters
Bandwidth 8-Fetch, 8-Issue, 8-Commit
Queue size 64-IFQ, 40-Int IQ, 30-FP IQ, 128-LSQ

Rename reg/ROB 128-Int, 128-FP / 256 entry
Functional unit 8-Int Add, 4-Int Mul/Div, 4-Mem Port

4-FP Add, 2-FP Mul/Div

Branch Predictor Parameters
Branch predictor Hybrid

8192-entry gshare/2048-entry Bimod
Meta table 8192 entries
BTB/RAS 2048 4-way / 64

Memory Parameters
IL1 config 64kbyte, 64byte block, 2 way, 1 cycle lat
DL1 config 64kbyte, 64byte block, 2 way, 1 cycle lat
UL2 config 1Mbyte, 64byte block, 4 way, 20 cycle lat
Mem config 300 cycle first chunk, 6 cycle inter chunk

Hybrid Value Predictor Parameters
VHT size 1024

value history depth 4
PHT size 1024

PHT counter thresh 3

Table 1. Parameter settings for the detailed ar-
chitectural model used in our experiments.

3 Experimental Evaluation

In Section 2, we showed a small number of in-
structions account for a large portion of hardware
vulnerability. We also qualitatively analyzed the
impact of pipeline flushes: flushing degrades per-
formance, but in some cases may improve program
reliability. We consider both findings in our design,
and use insights from both to drive confidence esti-
mation (which ultimately determines which instruc-
tions will be predicted).

This section studies these issues in detail. First,
we present the simulator and benchmarks used
throughout our experiments (Section 3.1). Then, we
present our experiments on applying value predic-
tion without confidence estimation. (Section 3.2).
The goal of these experiments is to show that we
can limit performance degradation by focusing the
value predictor on the portion of instructions that
impact system reliability the most. Finally, we add
confidence estimation, and show the improvements
this can provide (Section 3.3).

3.1 Simulator and Benchmarks

Throughout our experiments, we use a modified
version of the out-of-order processor model from
Simplescalar 3.0 for the PISA instruction set [13],
configured with the simulator settings listed in Ta-
ble 1. Our simulator models an out-of-order pipeline
consisting of fetch, dispatch, issue, execute, write-
back, and commit pipeline stages. Compared to the
original, our modified simulator models rename reg-
isters and issue queues separately from the Register

Update Unit (RUU). We also model a hybrid value
predictor that includes a single stride predictor and
a single context predictor, as described in [9]. The
value predictor configuration is shown in Table 1.

Our stride predictor contains a Value History Ta-
ble (VHT). For each executed instruction, the VHT
maintains a last-value field (which stores the in-
struction’s last produced value) and a stride field.
When a new instance of the instruction is executed,
the difference between the new value and the last-
value field is written into the stride field, and the
new value itself is written into the last-value field.
If the same stride value is computed twice in a row,
the predictor predicts the instruction’s next value
as the sum of the last-value and stride fields. When
a computed stride differs from the previously com-
puted stride, the predictor stops making predictions
until the stride repeats again.

Our context predictor is a 2-level value predic-
tor consisting of a VHT and a Pattern History Ta-
ble (PHT). For each executed instruction, the VHT
maintains the last history-depth number of unique
outcomes produced by the instruction (we employ a
history depth = 4). In addition, the VHT also main-
tains a bit field that encodes the pattern in which
these outcomes occurred during the last pattern-
length dynamic instances of the instruction (we em-
ploy a pattern length = 4). During prediction, the
instruction’s bit field is used to index the PHT.
Each PHT entry contains several frequency coun-
ters, one for each instruction outcome in the VHT.
The counter with the highest count indicates the
most frequent successor value given the instruction’s
current value pattern. If this maximum count is
above some threshold (we employ a threshold = 3),
then the corresponding outcome is predicted for the
instruction; otherwise, no prediction is made. Af-
ter an instruction executes and its actual outcome
is known, the corresponding PHT entry counter is
incremented by 3 while the other counters from the
same PHT entry are decremented by 1. Lastly, the
corresponding bit field in the VHT is updated to
reflect the instruction’s new outcome pattern.

For some of our experiments (e.g., Section 3.3),
we employ confidence estimation along with value
prediction. As discussed in Section 2.1, we use the
confidence estimator described in [10] which asso-
ciates a 4-bit saturating counter with each PHT en-
try. Update to all predictor structures (stride, con-
text, and confidence estimator) only occurs on pre-
dicted instructions. In our technique, many instruc-
tions are not predicted because their latencies are
short, making them less important to overall relia-
bility. These non-predicted instructions do not up-
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Benchmark Input Instr Count IPC

300.twolf ref 109546670 0.79

176.gcc 166.i 240000000 1.42

254.gap train.in 411061781 1.65

164.gzip input.compressed 192015257 2.06

256.bzip2 input.compressed 2346534735 3.20

253.perlbmk diffmail.pl 1000000000 1.57

197.parser ref.in 1404572471 1.32

181.mcf inp.in 500000000 0.13

175.vpr test 1512992144 1.87

Table 2. Benchmarks and input datasets used
in our experiments. The last two columns re-
port instructions executed and baseline IPC for
each benchmark.

date the predictor structures. During re-execution
after a misprediction, the CPU will likely re-execute
the mispredicted instruction, and the predictor may
predict again.3 In this case, the predictor is very
likely to generate a correct prediction due to train-
ing from the misprediction. In any case, we still
update the predictor after the prediction (i.e., pre-
dictor updates do not distinguish between the first
execution of some instruction and its re-execution
after a misprediction).

In terms of timing, our simulator assumes the
stride and context predictors can always produce
a prediction by each instruction’s writeback stage.
We believe this is reasonable given the small size
of our predictor structures in Table 1. In particu-
lar, our predictors are either smaller than or equal
to the value predictors found in the existing lit-
erature for performance enhancement [10, 14, 9].
Since our technique is not as timing critical (con-
ventional value predictors must make predictions
by the issue stage), we believe there will not be
any timing-related problems–both in terms of la-
tency and bandwidth–when integrating our predic-
tors into existing CPU pipelines. On a mispredic-
tion, our simulator faithfully models the timing of
the subsequent pipeline flush as well as the cycles
needed to re-fetch and re-execute the flushed in-
structions. Our simulator also assumes a 3-cycle
penalty from when a misprediction is detected un-
til the first re-fetched instruction can enter the
pipeline.

Table 2 lists all the benchmarks used in our ex-
periments. In total, we employ 9 programs from

3With confidence estimation, this will not happen because

the original misprediction would lower the confidence value

for the re-executed instruction enough to suppress prediction

the second time around. But without confidence estimation,

prediction during re-execution can happen.

the SPEC2000 benchmark suite. All of our bench-
marks are from the integer portion of the suite; we
did not study floating-point benchmarks since our
value predictors only predict integer outcomes. In
Table 2, the column labeled “Input” specifies the in-
put dataset used for each benchmark, and the col-
umn labeled “Instr Count” reports the number of
instructions executed by each benchmark. The last
column, labeled “IPC,” reports each benchmark’s
average IPC without value prediction. The latter
represents baseline performance from which the IPC
impact of our technique is computed.

Finally, throughout our experiments, we report
both performance and reliability to investigate their
tradeoff. In particular, we measure IPC for perfor-
mance and AVF for reliability. We analyze relia-
bility for three hardware structures only–the fetch
queue, issue queue, and physical register file. Since
we use value prediction to perform fault checking
on architectural state at writeback, we can detect
faults that attack most hardware structures in the
CPU, including functional units, the reorder buffer,
etc. But our results do not quantify the added pro-
tection afforded to structures outside of the three we
analyze. Furthermore, we do not analyze reliability
for the value predictors themselves. Predictors do
not contain ACE bits; however, soft errors that at-
tack the value predictors could cause additional mis-
predictions and flushes that can impact both per-
formance and reliability. Again, our results do not
quantify these effects. Lastly, our technique incurs
additional power consumption in the value predic-
tor tables. Since we do not model power, our results
do not quantify these effects. However, we believe
the power impact will be small given the small size
of our predictors. Furthermore, given their relaxed
timing requirements, there is room for voltage scal-
ing optimizations to minimize the power impact.

3.2 Value Prediction Experiments

We first present our experiments on applying
value prediction without confidence estimation. We
evaluate the impact on both reliability and perfor-
mance when predicting all or a portion of the result-
producing instructions. We call these full and selec-
tive prediction, respectively. For selective predic-
tion, we predict instructions based on their latency
measured from the fetch stage to the issue stage.
Since we do not know if an instruction should be
predicted when we fetch it, we initiate prediction
for all result-producing instructions upon fetch, but
only perform fault checking and predictor updates
for those instructions that meet the latency thresh-
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twolf gcc gap gzip bzip2 perl parser mcf vpr

1. 12283990 32105002 43971177 6637540 70107090 69058496 130089349 21126931 240467394

2. 4323690 18770890 20481573 1973416 12948479 24132481 53091620 8499490 98006932

3. 717996 430799 4417390 100555 21505023 9639124 1611219 353809 12920875

4. 986816 96830 996890 382 3960326 2124938 2446684 7411123 74132

Table 3. Number of mispredictions for the 1. “Total,” 2. “lat <5,” 3. “15 <=lat<20,” and 4. “lat >=100”
datapoints from Figure 2 for all our benchmarks.

olds when they arrive at the writeback stage.
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Figure 2. Fraction of instructions that are
result-producing as well as the fraction of pre-
dicted, correctly predicted, and mispredicted
instructions across different latency ranges
over all 9 spec2000 integer benchmarks.

Figure 2 reports the number of result-producing
instructions, first across all instructions (labeled
“total”) and then for different latency ranges, as a
fraction of all executed instructions. The figure also
reports the fraction of instructions from each cate-
gory (“total” and the different latency ranges) that
are predicted, predicted correctly, and mispredicted.
(Note, the fraction of predicted instructions–and
hence, the sum of the fraction of correctly pre-
dicted and mispredicted instructions–is not 1.0 be-
cause the predictor is unable to make predictions
for some instructions, as described in Section 3.1).
Every datapoint in Figure 2 represents an average
across all the benchmarks listed in Table 2. Fig-
ure 2 shows result-producing instructions account
for 81.4% of all instructions. In particular, instruc-
tions with a latency less than 5 cycles (from fetch
to issue) account for 32.1% of all instructions, or
41.4% of result-producing instructions. Moreover,
these short-latency instructions exhibit relatively
good prediction rates–63.7% on average. In con-
trast, instructions with greater than 5-cycle latency
have slightly lower prediction rates–around 40% to
50%. However, given that long-latency instructions

contribute the most to fault vulnerability, it is still
worthwhile to check their values via prediction.

As our results will show, the mispredictions in
Figure 2 (which represent false positives in our
technique) lead to performance degradation because
they initiate pipeline squashes. Table 3 reports the
number of such performance-degrading mispredic-
tions for all our benchmarks. In particular, the rows
in Table 3 numbered 1 through 4 report mispredic-
tions for the “Total,” “lat<5,” “15<=lat<20,” and
“lat>=100” datapoints, respectively, from Figure 2.
As Table 3 shows, the number of mispredictions,
and hence the amount of performance degradation,
generally reduces for selective prediction of longer
latency instructions.

Next, we study the impact of value prediction on
actual program reliability and performance. Fig-
ure 3 reports the percent AVF reduction (i.e., reli-
ability improvement) with value prediction in three
hardware structures compared to no value predic-
tion averaged across our 9 SPEC2000 integer bench-
marks. In particular, the curves labeled “issue
queue,” “fetch buffer,” and “physical register file”
report the AVF reductions for the issue queue, fetch
buffer, and physical register file, respectively. Also,
the datapoints labeled “pred all” report the AVF re-
duction assuming full prediction, while the remain-
ing datapoints report the AVF reduction with selec-
tive prediction based on instruction latency (e.g.,
“pred lat ≥ 15” performs prediction only for in-
structions with at least 15-cycle latency between the
fetch and issue stages).

Figure 3 shows prediction-based fault protection
can be very effective at improving reliability (i.e.,
reducing AVF). The AVF for the fetch queue, is-
sue queue, and register file is reduced by as much
as 96.0%, 89.8%, and 59.0%, respectively (under
full prediction) compared to no prediction. This is
due to both correct and incorrect predictions. On
a correct prediction, the value of the predicted in-
struction is checked, so the instruction is no longer
vulnerable, and hence, does not contribute to the
AVF of the structures it occupies. On a mispre-
diction, the pipeline is flushed. As discussed in
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Section 2.2, re-execution after flushing is typically
faster than the original execution, thus reducing
the occupancy of ACE instructions in the hardware
structures. Both combine to provide the AVF im-
provements shown in Figure 3.
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Figure 3. Percent AVF reduction in 3 hardware
structures averaged across 9 SPEC2000 inte-
ger benchmarks by applying value prediction
to instructions with varying latencies. The
curve labeled “IPC” reports the percent IPC re-
duction for the same. All reductions are com-
puted relative to no value prediction.

Unfortunately, these reliability improvements
come at the expense of performance. In Figure 3,
the curve labeled “IPC” reports the percent IPC
reduction (i.e., performance degradation) for the
same experiments. This curve shows IPC can de-
grade significantly due to the penalty incurred by
mispredictions, particularly when a large number of
instructions are predicted. Under full prediction,
IPC reduces by 55.1% compared to no prediction.
But the performance impact lessens as fewer in-
structions are predicted (moving towards the right
side of Figure 3). For example, when only predict-
ing instructions with latency greater than or equal
to 30 cycles, the performance impact is less than
3.8%. Of course, reliability improvement is not as
great when predicting fewer instructions. But it can
still be significant–we achieve a 74.9%, 39.2%, and
9.3% reduction in AVF for the fetch queue, issue
queue, and register file, respectively at ≥ 30-cycle
latency.

In general, Figure 3 shows there exists a trade-
off between reliability and performance. The more
instructions we predict, the larger the improvement
in reliability, but also the larger the degradation
in performance. We find a good strategy is to fo-
cus the value predictor on long-latency instructions
(e.g., instructions with ≥ 30-cycle latency). This
is because the longer the instruction latency, the

smaller the impact mispredictions will have on per-
formance. Furthermore, the longer the instruction
latency, the more critical the instructions are from
a reliability standpoint.

3.3 Confidence Estimation

Confidence estimation can be used to reduce the
number of performance-degrading mispredictions.
To investigate the potential benefits of this ap-
proach, we added a confidence estimator to our
value predictor. Figure 4 reports the fraction of
predicted, correctly predicted, and mispredicted in-
structions for all instructions, labeled “total,” and
for instructions with different latency ranges. (The
format for Figure 4 is almost identical to Figure 2,
except there is no “Result-Producing Instructions”
curve since it would be the same). Compared to no
confidence estimation, our value predictor achieves
fewer correct predictions with confidence estima-
tion. The reduction ranges between 10% and 15%.
This is because the confidence estimator prevents
predicting the less predictable instructions. As a re-
sult, the fraction of mispredicted instructions goes
down to almost 0 across all latency ranges. As Fig-
ure 4 shows, our confidence estimator is quite effec-
tive at reducing mispredictions with only a modest
dip in the number of correct predictions.
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Figure 4. Fraction of predicted, correctly pre-
dicted, and mispredicted instructions–with
confidence estimation–across different latency
ranges over all 9 spec2000 integer bench-
marks.

Table 4 reports the actual number of mispredic-
tions with confidence estimation for all our bench-
marks. (The format for Table 4 is identical to the
format used in Table 3). Compared to Table 3, Ta-
ble 4 shows the number of mispredictions with con-
fidence estimation is indeed dramatically reduced
relative to no confidence estimation.

8



twolf gcc gap gzip bzip2 perl parser mcf vpr

1. 861000 840153 2206916 328586 12479900 4512412 7806876 2712208 800670

2. 219590 545557 1036604 176886 2786259 1498557 4007555 691834 637547

3. 145622 10486 78163 4943 6583023 720734 172598 18595 14652

4. 82034 2158 10958 5 46766 388546 129277 1620071 263

Table 4. Number of mispredictions for the 1. “Total,” 2. “lat <5,” 3. “15 <=lat<20,” and 4. “lat >=100”
datapoints from Figure 4 for all our benchmarks.
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Figure 5. Percent AVF reduction in 3 hardware
structures averaged across 9 SPEC2000 inte-
ger benchmarks by applying value prediction
and confidence estimation to instructions with
varying latencies. The curve labeled “IPC” re-
ports the percent IPC reduction for the same.
All reductions are computed relative to no
value prediction.

Figure 5 shows the impact of confidence estima-
tion on the AVF of our three hardware structures,
as well as on IPC. (This figure uses the exact same
format as Figure 3). In Figure 5, we see IPC never
degrades more than 4% compared to no prediction,
even when performing full prediction. These re-
sults show confidence estimation is indeed effective
at mitigating performance degradation. Unfortu-
nately, with confidence estimation, the reliability
improvement is not as significant as before. In par-
ticular, under full prediction, the AVF for the fetch
queue, issue queue, and register file is reduced by at
most 49.3%, 29.0%, and 29.0%, respectively; under
selective prediction with baseline latency of 30 cy-
cles, the AVF for the fetch queue, issue queue, and
register file is reduced by about 23.6%, 10.3%, and
4.6%, respectively. The lower reliability improve-
ments compared to Figure 3 are due to the fact that
confidence estimation suppresses prediction of many
instructions, reducing the coverage achieved by the
value predictor.

Thus far, we have applied confidence estimation

uniformly across all instructions–i.e., we use a sin-
gle confidence threshold to determine whether any
particular instruction should be predicted or not.
However, predicting all instructions using a uniform
confidence level may not be the best policy since
instructions do not contribute equally to reliabil-
ity nor to performance impact. In particular, for
longer latency instructions which contribute more to
overall reliability and incur less performance degra-
dation during mispredictions, it may be better to
perform value prediction more aggressively. Con-
versely, for shorter latency instructions which con-
tribute less to overall reliability and incur more per-
formance degradation during mispredictions, it may
be better to perform value prediction less aggres-
sively. This suggests an adaptive confidence estima-
tion technique has the potential to more effectively
tradeoff reliability and performance.

We modify our confidence estimation scheme to
adapt the confidence threshold based on each in-
struction’s latency. In particular, we employ three
different threshold levels, similar to what is pro-
posed in [10]. (The thresholds for low, medium,
and high confidence are 3, 7, and 15, respectively
for a saturating value of 15). We use the lowest
confidence threshold for instructions that incur a
latency equal to or larger than 4 times the baseline
latency; we use the medium confidence threshold for
instructions that incur a latency equal to or larger
than 2 times the baseline latency but smaller than
4 times the baseline latency; and we use the high-
est confidence threshold for instructions that incur a
latency equal to or larger than the baseline latency
but smaller than 2 times the baseline latency. Here,
the baseline latency is the minimum instruction la-
tency that is considered for prediction as given by
latency-based selective prediction. (For example, if
we only predict instructions with latency 5 cycles
or larger, then the low, medium, and high thresh-
olds are applied to instructions with latency in the
ranges ≥ 20 cycles, 10-19 cycles, and 5-9 cycles, re-
spectively).

Figure 6 shows the impact of adaptive confidence
estimation on the AVF of our three hardware struc-
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Figure 6. Percent AVF reduction in 3 hard-
ware structures averaged across 9 SPEC2000
integer benchmarks by applying value pre-
diction and adaptive confidence estimation
to instructions with varying latencies. Con-
fidence threshold used for each prediction
(high, medium or low) varies according to the
instruction’s latency. The curve labeled “IPC”
reports the percent IPC reduction for the same.
All reductions are computed relative to no
value prediction.

tures, as well as on IPC. (This figure uses the exact
same format as Figures 3 and 5). As suggested by
the above discussion, in these experiments we com-
bine latency-based selective prediction with adap-
tive confidence estimation. In other words, we only
consider for prediction those instructions that meet
the latency threshold given along the X-axis of Fig-
ure 6, and for a given candidate instruction, we only
predict it if its saturating counter meets the corre-
sponding confidence threshold for its latency. As
Figure 6 shows, adaptive confidence estimation in-
curs a relatively small performance degradation sim-
ilar to the baseline confidence estimation technique
shown in Figure 5. A particularly small perfor-
mance degradation, about 5.4%, is achieved when
limiting prediction to instructions with a latency of
at least 8 cycles or larger. However, adaptive con-
fidence estimation achieves a much better reliabil-
ity improvement (AVF reduction) than the baseline
confidence estimation, and approaches the reliabil-
ity improvement achieved by value prediction with-
out confidence estimation shown in Figure 3. For
example, under selective prediction with baseline
latency of 30 cycles, the AVF for the fetch queue,
issue queue, and register file is reduced by about
63.3%, 28.3%, and 8.1%, respectively, while the
performance is only degraded about 1.3%. Thus,
by more aggressively predicting only the longer la-
tency instructions, adaptive confidence estimation

can cover the most critical instructions for reliabil-
ity without sacrificing too much on performance.

4 Related Work

This work is related to several areas of research in
fault tolerance. The first area includes studies which
exploit explicit redundancy–by duplicating program
execution either in hardware [1, 2, 3, 4, 5] or soft-
ware [6, 7, 8]–to detect or recover from faults. In
contrast, we study value prediction to explore the
redundancy inherent in programs. Our technique
avoids the overhead from explicitly duplicating com-
putation for fault detection. However, value predic-
tion cannot achieve 100% correctness, thus it can-
not ensure failure-free execution while explicit du-
plication can. Our goal is to reduce the fault rate
in a more cost-effective way, which is still mean-
ingful for most systems that do not require failure-
free execution. In addition, our technique considers
fault vulnerability at the instruction level which is
ignored by most existing techniques. By quanti-
fying instruction’s vulnerability, we selectively pro-
tect instructions that are most susceptible to faults,
thus reducing the impact of mispredictions while
still maintaining acceptable reliability.

In the area of exploiting inherent program redun-
dancy, the work most related to ours is [15]. Racu-
nas et al make use of value perturbation to prevent
possible faults. Their technique tries to identify the
valid value space of an instruction, which is done
by tracking the instruction’s past results. Future
outputs that are not within the recorded valid value
space are considered as potentially corrupted. Com-
pared to value perturbation, value prediction tries
to predict an instruction’s result exactly. Outputs
that are not equal to predicted values are considered
as potentially corrupted. Compared to detecting
value perturbations, value prediction can be more
precise in finding discrepancies. For example, an in-
struction’s past value space may be so big that cor-
rupted values may still fall in the valid value space,
and hence, cannot be detected.

Our technique is also related to the area of par-
tial fault protection. Recently, some studies [12, 16]
propose that traditional full-coverage fault-tolerant
techniques are only necessary for highly-reliable and
specialized systems, while for most other systems,
techniques which tradeoff performance and relia-
bility are more desirable. For example, Weaver
et al [12] try to reduce error rate by flushing the
pipeline on L2 misses. Gomaa et al [16] propose a
partial-redundancy technique which selectively em-
ploys redundant thread or instruction-reuse buffer
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for fault detection. The triggering of their redun-
dancy technique is determined by program perfor-
mance. Compared to their work, we exploit pro-
gram’s inherent redundancy for detecting possible
faults. In addition, by characterizing instruction
vulnerability, we selectively protect the most fault-
susceptible instructions to achieve better coverage.

5 Conclusion

This paper investigates applying value prediction
for improving fault tolerance. We make the obser-
vation that value predictability is a low-cost (albeit
imperfect) form of program redundancy. To exploit
this observation, we propose to use the output of a
value predictor to check the correctness of predicted
instructions, and to treat any mismatch as an indi-
cator that a fault has potentially occurred. On a
mismatch, we trigger recovery using the same hard-
ware mechanisms provided for mispeculation recov-
ery. To reduce the misprediction rate, we charac-
terize fault vulnerability at the instruction level and
only apply value prediction to instructions that are
highly susceptible to faults (i.e., those with long la-
tency). We also employ confidence estimation, and
adapt the confidence estimator’s threshold on a per-
instruction basis tuned to the instruction’s latency.
Instructions with higher latency are predicted more
aggressively, while instructions with lower latency
are predicted less aggressively. Our results show
significant gains in reliability with very small per-
formance degradation are possible using our tech-
nique.
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Abstract
Power management is important for multicore 

architectures. One important challenge for multicore 
DPM schemes is verifying that they are both safe (can-
not lead to power or thermal catastrophes) and efficient 
(achieve as much performance as possible without 
exceeding power constraints). The verification difficulty 
varies among designs, depending, for example, on the 
particular power management mechanisms utilized and 
the algorithms used to adjust them. However, verifica-
tion effort is often not considered in the early stages of 
DPM scheme design, leading to proposals that can be 
extremely difficult to verify. 

To address this problem, we propose using formal 
verification (with probabilistic model checking) of a 
high-level, early-stage model of the DPM scheme. Using 
the model checker, we estimate the required verification 
effort, providing insight on how certain design parame-
ters impact this effort. Furthermore, we supplement the 
verifiability results with high-level estimates of power 
consumption and performance, which allow us to per-
form a trade-off analysis between power, performance, 
and verification. We show that this trade-off analysis 
uncovers design points that are better than those that 
consider only power and performance. 

1.  Introduction
The prevalence of multicore architectures coupled 

with demands for low power systems motivate the 
development and evaluation of efficient power manage-
ment solutions targeted specifically at multicores. Power 
is managed for several reasons, including to: improve 
power-efficiency, avoid power spikes, increase battery 
life, reduce the cost of providing power to the chip, and 
manage temperature. In this work, we investigate 
dynamic power management (DPM) schemes that can 
cap the peak power usage of a multicore. Providing a 
DPM scheme that caps the peak power can reduce sys-
tem cost by decreasing the cooling and packaging 
requirements, or it can relax the power constraints 
placed on other system components. 

One critical aspect in the development of a new 
DPM scheme is its verification. There are three proper-
ties that we wish to verify. First, we want to verify that 
the DPM scheme is safe. A DPM scheme can be unsafe, 
for example, if it allows the power usage to often exceed 
the allocated budget, or if it allows a core to be assigned 
a voltage or frequency outside of the desired range. Sec-
ond, we wish to verify that the DPM scheme is efficient
in achieving as much performance as possible while not 
exceeding power constraints or violating priority rules 
for provisioning power. A buggy DPM scheme might 
sacrifice more performance than expected. Third, we 
want to verify that the DPM scheme is functionally cor-
rect, such that the same results are obtained with and 
without the DPM scheme. In this paper, we consider 
verification of the first two features. As a concrete 
example of the importance of DPM verification, con-
cerns over Intel’s Foxton DPM scheme [16] led to it 
being disabled in the first Montecito chips [4].1

The current industrial workflow in the development 
of a new DPM scheme is illustrated in the unshaded por-
tion of Figure 1. At an early stage, the focus is restricted 
to maximizing the efficiency of the DPM scheme, with 
limited consideration of its verification. Later, the 
scheme is implemented in detailed, low-level simula-
tors, and verification2 primarily checks whether the 
scheme achieves its efficiency goals. 

The problem with this current workflow is that it is 
prone to missing bugs. First, simulation is by definition 
incomplete as a verification solution, because only the 
states that are reached in a particular simulation path are 
ascertained to be bug-free. Second, if verification feasi-
bility is not considered at design time, the reachable 
state space of the resulting DPM scheme can be enor-
mous, which is problematic. Workflows often have goals 
for achieving minimum coverage, so having more states 

1.  Intel has not officially stated whether the concerns were 
over safety, efficiency, or functionality bugs.

2.  Using a simulator to “verify” a design is sometimes 
referred to as “validation” instead of verification. 



requires more simulation cycles. If no coverage goal is 
specified, having more states increases the probability 
that undiscovered bugs remain in the design and 
decreases confidence in DPM correctness.

To address the above concerns, we propose the 
introduction of an additional, early step in the develop-
ment of a new DPM scheme. We illustrate this added 
step in the shaded portion of Figure 1. This additional 
step creates, at an early design stage, a high-level model 
of the proposed power management policy which is then 
verified for efficiency and safety using probabilistic 
model checking, an exhaustive formal verification 
method. By performing a high-level verification early in 
the development process, we identify problems when 
they are easier to solve. A high-level model is also much 
easier to develop and modify than a detailed simulator, 
so we can quickly explore numerous designs. 

With the use of the model checker, we estimate the 
effort required to verify the DPM scheme (measured as 
number of reachable states and transitions) enabling a 
better understanding of the impact on verification effort 
of scaling certain design parameters. Furthermore, we 
supplement the verifiability results with a high-level 
estimate of power consumption and performance, which 
enables us to perform a trade-off analysis between 
reaching power, performance, and verification goals. 

Model checking does not eliminate the need to later 
simulate a detailed implementation of the DPM scheme, 
but it can catch bugs early and help the simulation reach 
desired state coverage goals. 

Our main contributions are the following: 
•We propose the use of verification effort as an addi-

tional metric to be considered, together with perfor-
mance, in the early stages of DPM scheme design.
•We investigate and compare the effort necessary to 

verify different DPM algorithms as a function of the 
available mechanisms for adjusting power usage. 
•We evaluate the trade-offs between verification 

effort, efficiency, and safety of the DPM schemes 
mentioned above. 
The rest of this paper is organized as follows. In 

Section 2, we discuss related work. In Section 3, we 
present the type of DPM scheme we investigate and its 
parameters of interest. In Section 4, we explain our 
experimental methodology. In Section 5, we present our 
results, and we conclude in Section 6.

2.  Background and Related Work
Power management is an important issue and thus 

there has been a significant amount of prior work in this 
area. In this section we first present multicore-specific 
power management schemes (Section 2.1). We then dis-
cuss prior work in power management verification 
(Section 2.2). Lastly, we discuss verification-aware 
design in general (Section 2.3). 

2.1  Multicore Power Management
The most straightforward way to manage power in a 

multicore chip is to simply apply well-known single-
core techniques to every core. However, Isci et al. [5] 
observed that such “local” (per-core) management was 
potentially inefficient because it could not take advan-
tage of peak power averaging effects that occur across 
multiple cores. They introduce global schemes in which 
a single, centralized, “global” controller determines the 
power budget and settings (e.g., voltage and frequency) 
for every core. Sharkey et al. [18] provide a more 
detailed evaluation of these global schemes in terms of 
their efficiency. Sartori and Kumar [17] present a proac-
tive scheme for managing peak power in multicore 
chips. They observe that distributed algorithms can be 
used to select the power level allocation for cores and 
that they would be more scalable than algorithms based 
on having a centralized global controller. However, no 
multicore DPM scheme has been analyzed to determine 
its verification effort and to trade-off verifiability against 
other design goals. 

2.2  Verifying Power Management Schemes
There has been a limited amount of prior work in 

verifying DPM schemes. One representative piece of 
Figure 1. Workflow for Development of New DPM 
Scheme. Shaded portions indicate proposed additions.
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work by Shukla and Gupta [20] uses the SMV model 
checker [12] to verify a DPM scheme. We are interested 
in DPM for multicores, whereas their focus is on solu-
tions for unicore systems. Furthermore, we use model 
checking to estimate verification effort and verify a set 
of correctness properties, while they use it to stress the 
optimality bounds of the DPM scheme by constructing a 
worst case task trace. Dubost et al. [3] present a high-
level argument for specifying power management 
schemes in the Esterel language, which facilitates using 
a model checker to verify the designs. They do not dis-
cuss any specific DPM scheme or verification.

One interesting approach to DPM verification is the 
use of probabilistic model checking. With a traditional 
model checker, such as Murphi [2], one can prove abso-
lute invariants. For example, one can prove that the 
power never exceeds a 50W power budget. However, 
with DPM, it may be tolerable that a 40W “soft power 
budget” is occasionally exceeded if that happens infre-
quently. Two recent research papers [15, 7] have used 
the PRISM probabilistic model checker [6] to analyze 
DPM schemes. They target unicore systems and use 
PRISM to find optimal power management policies for 
given task arrival distributions and constraints on 
expected wait queue size. In contrast, we are interested 
in analyzing the trade-off between verifiability and other 
metrics for multicore schemes. 

2.3  Verification-Aware Design
Lungu and Sorin [8] quantified the effort required to 

formally verify parts of microprocessors. Martin [9] and 
Marty et al. [10] discussed the verification effort 
required for different cache coherence protocols. Our 
work differs from this prior work by focusing on power 
management schemes.

3.  DPM Design Space Exploration
A wide variety of DPM solutions have been pro-

posed in response to different requirements. In this sec-
tion we describe the particular type of solution we 
analyze and its design parameters. 

3.1  High Level View of DPM Design Space
We target DPM schemes that can cap the peak 

power usage of a multicore chip by using dynamic volt-

age and frequency scaling (DVFS). Figure 2 depicts the 
system we consider. The overall goal of the global DPM 
controller is to maintain the power usage of the system 
below the budget target set by a user (which could be the 
OS) with a minimum performance penalty. We use the 
expression “power budget” in a manner similar to prior 
work [5, 18]. The budget is the desirable power con-
sumption level for the chip (shown in Figure 3). The 
budget differs from the Maximum Power for the chip, in 
that the budget is a somewhat soft limit. Exceeding the 
hard Maximum Power limit could lead to a thermal 
emergency and even burn the chip. However, exceeding 
the power budget occasionally, while still keeping the 
power below Maximum Power, can be tolerated. Budget 
overshoots cause the policy’s goal to be temporarily 
unmet, but they cause no thermal emergencies. Recently 
developed DPM schemes also allow temporary budget 
overshoots [5, 18].

To keep the chip under its budget, the global con-
troller periodically monitors the power usage of all cores 
and actuates their voltages and frequencies such that the 
total power consumption is maintained below the speci-
fied budget. We consider two actuation intervals: one for 
changing both voltage and frequency and one for chang-
ing only the frequency. 

Figure 3 illustrates the power consumption of the 
chip over time. The Max Power horizontal line repre-
sents the maximum power the chip can consume given 
the worst case activity factors of all cores. The Budget 
line represents the constraint imposed on the power use 
of the chip. The global controller uses this power budget 
value as the target for its feedback mechanism. In set-
ting the voltage and frequency levels, the global control-
ler makes the prediction that the cores will maintain 
their current activity factors for the next interval. When 
this is a misprediction, the actual power use can tempo-
rarily overshoot, as shown in Figure 3 at the times 
marked with stars. On the next actuation point the con-
troller tries again to bring the power use below budget. 

3.2  Design Goals and Parameters
Of the multiple design goals that such a DPM 

scheme can target, we investigate efficiency (reducing 
the performance hit induced by decreasing core fre-

Figure 2. DPM Scheme with Global Controller Figure 3. DPM Scheme Power Utilization



quency through DVFS), safety (decreasing time and 
power spent over budget) and verifiability (decreasing 
required verification effort). 

To reach these goals, designers can make decisions 
on many parameters. We consider here only a subset of 
them to keep our analysis tractable. Specifically, we 
compare a heterogeneous policy, which allows the con-
troller to assign different voltage and frequencies across 
the cores, to a homogeneous policy, where the same 
voltage and frequency is set for all cores. For both poli-
cies, we analyze the design space along 3 parameters: 
number of voltage levels (VL) into which the voltage 
range is split, number of frequency levels (FL) that can 
be allocated for a given voltage level, and number of 
cores assigned to a single DPM controller. Figure 4
illustrates this cores per controller (CPC) design param-
eter. If we consider a 6-core chip, a DPM solution might 
use a single controller assigned to all chips (the outer 
boundary), or 2 controllers each monitoring 3 cores (the 
two horizontal groupings), or 3 controllers each super-
vising 2 cores (the three vertical groups).

3.3  Motivating Early Formal Analysis 
Designers certainly have some intuitive a priori

understanding of how choosing different design points 
in the above parameter space affects their goals. For 
example, one might expect that a heterogeneous solu-
tion with more CPC will outperform a solution with 
fewer CPC, because the peak power use of more cores 
should be decreased due to averaging effects. But what 
is the quantitative gain in performance when going from 
2 CPC to 3 CPC, for example? Is that performance gain 
worth the impact on verification effort? How does the 
safety of the solution change in response to CPC? Do 
the answers vary between homogeneous and heteroge-
neous policies? In addition to questions about CPC, 
designers want to answer similar questions about other 
parameters, such as VL and FL, and possible interac-
tions between parameters. Will a change in VL impact 
design goals differently depending on the value of CPC? 

These are the type of questions to which we seek 
answers via performing the proposed early stage formal 
analysis. These answers enable designers to make more 
informed decisions, and we show concrete examples of 
these benefits in Section 5.

4.  Methodology for Formal Analysis
We begin this section with our motivation for using 

probabilistic model checking to verify the analyzed 
DPM schemes and a brief overview on this method. 

Then we provide details on the particular methodology 
we use to conduct our experiments. 

4.1  Probabilistic Model Checking 
We use probabilistic model checking with PRISM 

[6] to explore the design space of our DPM schemes and 
analyze trade-offs between efficiency, safety, and verifi-
ability. 

Using a model checker allows us to quantify the 
verification effort for a system. We chose a model 
checking tool over a simulator because a model checker 
is a complete verification solution which traverses the 
entire reachable state space of a design in ascertaining 
correctness. In contrast, a simulator is incomplete 
because it touches only a limited subset of all reachable 
states. We obtain a better verifiability measure for a 
design when we can exercise its entire reachable state 
space and all state transitions. The choice of probabilis-
tic model checking over traditional, non-probabilistic 
model checking was motivated by characteristics of the 
problem we want to verify. For the verification of a 
DPM scheme we are not only interested whether a 
power overshoot can happen, but also how often this is 
expected to happen under typical conditions. These 
types of correctness characteristics depend on the 
changing activity factor of the workloads, which can be 
captured in a probabilistic framework. 

The inputs to the probabilistic model checker are: 
the state elements of the system, the probabilistic transi-
tion rules (a description of how the behavior can change 
from one state to the next), and the correctness proper-
ties (the requirements which, if met, assure the system’s 
correctness). In addition, it is possible to evaluate the 
expected values of certain quantities in the system, such 
as power and performance, by associating rewards with 
system states. Rewards are similar to tokens, in that the 
states that satisfy a certain condition are assigned 
tokens. It is not our goal to use model checking for a 
better estimate of power usage and performance impact; 
rather, we use the rewards to obtain high-level measures 
of power and performance and analyze their trade-off 
with verifiability. Based on the probabilistic state 
machine description, the model checking tool traverses 
the entire reachable state space of the design and verifies 
whether the correctness properties are met. When 
rewards are specified it also calculates their expected 
values over a certain bounded number of system transi-
tions. 

4.2  DPM Model Construction
For our DPM scheme, the state elements are: the 

current voltage, frequency, and activity factor of each 
core and an incrementing counter triggering when the 
global controller should actuate both voltages and fre-
quencies as opposed to only frequencies. 

Figure 4. Possible Assignments 
of Cores to Controllers



The probabilistic transition rules specify how the 
activity factor changes for the cores and how the volt-
ages and frequencies change in response to controller 
actuations. We approximate each core’s activity factor 
using its instructions per cycle (IPC), because IPC is 
strongly correlated with the activity factor and it is easy 
to obtain. This correlation is not perfect, but obtaining 
the exact activity factor would require a low-level 
implementation that is unlikely to exist early in the 
design cycle. To make our analysis tractable with 
PRISM, we quantize the IPC values into four distinct 
ranges, and we choose the mean IPC of a range to repre-
sent the activity factor of a core in that range. 

We obtain the transition probabilities using Turan-
dot [13], a detailed, cycle-accurate simulation model. 
The microprocessor’s configuration is shown in Table 1. 
For benchmarks, we chose six SPEC 2000 benchmarks, 
shown in Table 2, that have very different behavior, both 
in terms of their average activity factor and in how much 
their activity factor changes over time. The appropriate 
SimPoint [19] intervals for these benchmarks were 
traced using Aria [14]. For each benchmark, the simula-
tor produces the average IPC for each time quantum of 
100µs (400,000 cycles at 4GHz). The sampling period 
of 100µs reflects the safe specification parameter of the 
power manager, in terms of the longest duration of 
allowable power spikes. Given that chip-level thermal 
time constants are in the range of milliseconds or tens of 
milliseconds [1], 100µs is a very safe, conservative set-
ting of this parameter. 

We wish to point out that we obtain the benchmark 
IPC values from a simulation of a single-core processor, 
rather than from a simulation of a multicore processor. 
The intuitive reason for this decision is that PRISM will 
inherently construct all possible combinations of IPCs 

and IPC transitions for all cores running the bench-
marks.3 Moreover, it is not obvious that we even could
simulate every possible combination, since it is 
extremely difficult to compel the simulated system into 
each combination of core states.

4.3  DPM Scheme Properties
We verify the behavior of the system against a set of 

correctness properties that must be true in every state. 
We also specify a set of reward structures that enable us 
to quantify performance, power use, and safety. 
Correctness properties. The correctness properties we 
consider for our DPM scheme are: 
•No deadlock state can ever be reached.
•The voltages and frequencies for all cores are 

always maintained within a pre-specified range. 
•There is no mismatch between the voltage and fre-

quency assigned to a core (e.g., we never match a 
very high frequency with a very low voltage).

Reward structures. We use rewards to keep track of 
power, performance, and the states in which the system 
is over budget. PRISM computes the expected rewards 
over a bounded interval, and we set the bound to 1000 
transitions in our experiments. 

4.4  Quantifying Performance, Power, Safety, 
and Verifiability

We now describe the models and metrics we use to 
quantify performance, power, safety, and verifiability 
for our early stage formal analysis. 
Performance. In our model, the performance of a core 
is a linear function of its frequency, f. That is, if we 
increase f by X%, then the performance is also improved 
by X%. This is an approximation, because the perfor-
mance benefit of a large increase in f is limited by the 
unchanged memory performance. Nevertheless, for a 
high-level model that is considering small adjustments 
in f, we think this assumption is reasonable.

Our model considers the latency required to transi-
tion between voltage levels, and it assumes that a core 
functions at its lowest frequency during a voltage transi-
tion (1µs per 10mV). The latency of transitioning 
between frequency levels is much shorter—on the order 
of one or two processor cycles [11]—because it can be 
done with on-chip digital PLL mechanisms. This 
latency is orders of magnitude shorter than a 100µs 
actuation interval, and thus we do not model it.

Table 1. Microprocessor Configuration

Feature Description

pipeline width 4 decode/issue/commit

ROB/LSQ sizes 150 entries / 32 entries

branch pred. 2 level, 3 16K-entry BHTs

functional units 4 FXU, 4 FPU, 1 BR

L1I cache 64KB, 2-way, 16B blocks, 1cycle

L1D cache 64KB, 2-way, 16B blocks, 1cycle

L2 cache 1MB, 8-way, 64B blocks, 9 cycles

memory 100 cycles

Table 2. Benchmarks

Low Ave IPC High Ave IPC

Stable IPC mcf eon, crafty

Variable IPC art, parser bzip2

3.  One caveat is that a simulation of a multicore chip might (a) 
exhibit transitions that are never exhibited by a single-core 
chip, or (b) never exhibit transitions that are exhibited by a sin-
gle-core chip. These scenarios, although unlikely, could result 
from contention for resources that occurs in multicore chips.



Power. In our model, the power consumption of a core 
is a function of the core’s frequency (f), voltage (V), and 
activity factor (A). We model both active and leakage 
power, with active power consumption formulated using 
the usual ~f*A*V2 dependence equation. The leakage 
power is modeled approximately as a cubic function of 
V, as this has been found to capture the behavior quite 
well for the particular supply and threshold voltage 
ranges appropriate for current CMOS technologies 
(65nm or 45nm). The power model used is admittedly 
abstract, but deemed to be good enough for the DVFS-
driven power management policies considered in this 
paper (as in Isci et al. [5] or Sharkey et al. [18]). 
Safety. We consider two safety metrics: the percentage 
of time the system is expected to be over budget, and the 
percentage of power used over budget. 
Verifiability. We consider two metrics for quantifying 
verification effort. The first is the total number of reach-
able states of the design. The second is the number of 
possible transitions between states. 

Because we use a simulator to generate the state 
transition probabilities, our performance and safety 
results are a function of the benchmark suite, because 
they depend on rewards computation. The verifiability 
results are also a function of benchmark suite as the 
number of reachable states and transitions depends on 
the changing behavior of the applications. For bench-
marks with radically different behavior, these results 
might be different. We state this perhaps obvious char-
acteristic of our work—after all, benchmark dependence 
is common in microarchitectural studies—because it 
differs from traditional (non-probabilistic) model check-
ing. Note that the correctness properties mentioned in 
Section 4.3 are proved correct independent of the bench-
mark suite.

5.  Experimental Evaluation
We now detail the two specific DPM schemes we 

modeled for our analysis and their design parameters. 

Then we describe the performance, safety, and verifi-
ability trade-offs we find in this design space.

5.1  Scope of Analysis 
We analyze heterogeneous and homogeneous DPM 

schemes. For the heterogeneous schemes, the controller 
uses a priority based greedy algorithm for distributing 
the power budget. It allocates the largest voltage that fits 
in the power budget for the first core (while provisioning 
enough power to run the rest of the cores at lowest volt-
age) then allocates the largest possible voltage for the 
second core and so on. This heterogeneous policy is 
very similar to current state-of-the-art DVFS policies, 
such as the “Priority” scheme analyzed by Isci et al. [5]. 
For homogeneous schemes, the controller allocates the 
single greatest voltage level that keeps the chip below 
the power budget, assuming all cores maintain their cur-
rent activity factors. This homogeneous policy is very 
similar to the “Chip-Wide DVFS” scheme proposed by 
Isci et al. [5]. 

All of our DPM schemes use two actuation inter-
vals: a 500µs one to change both voltage and frequency 
of cores (the frequency is set to the highest value permit-
ted for the voltage level selected) and a 100µs one to 
change only the frequency. We vary the voltage range 
from 1.05V to 0.78V and we scale the frequencies lin-
early with the voltage from 4.2GHz to 3.15GHz. 

When analyzing the impact of increasing VL, we 
maintain the same voltage range and divide it into more 
levels (from 2 to 6 in our experiments). When varying 
FL, we divide the frequency range corresponding to a 
particular voltage level into more values (from 1 to 5). 
We also vary CPC from 1 to 3. Note that this is different 
from comparing a 1-core chip to a chip with 2 or 3 
cores; we consider a chip with the same number of 
cores, 6 for example, which has 6, 3 or 2 controllers.We 
do not model a 6-core system with a single controller 
(having CPC of 6) because the associated state explo-
sion makes the verification through model checking 

Figure 5. Impact of Number of 
Voltage Levels (VL)

a) b) c)

d) e)



impractical and our results show little overall perfor-
mance improvement beyond 3 CPC.

In our analysis, the global controller uses the power 
model described in Section 4.4 to estimate the power 
use of the system (a function of activity factor, voltage 
and frequency). The global controller predicts that the 
cores will maintain their current activity factor during 
the next interval. 

We perform a range of experiments setting the 
power budget to 25, 40, 50, 70 and 100% of the maxi-
mum power the chip can consume (corresponding to a 4 
IPC activity factor across all cores). The results we 
present are averaged across the different budget levels 
and benchmarks.

5.2  Impact of Number of Voltage Levels
The first design parameter we explore is VL. We 

consider a heterogeneous scheme and fix FL to 2 for 
clarity (the results were similar for the other FL values). 
Figure 5(a) shows the impact of VL on performance 
with respect to a chip without DPM. Figure 5(b,c) show 
safety, and Figure 5(d,e) show verifiability. We notice a 
strong interaction between VL and CPC; on many of our 
metrics of interest, the impact of increasing VL varied 
across different levels of CPC. Hence we present data 
for CPC=1, 2 and 3 on the same graph. 

We notice several interesting phenomena. First, in 
terms of performance, the trend corroborates our intu-
ition that increasing VL benefits performance. However, 
we notice a saturation around VL=5 and performance 
remains almost flat afterwards. Prior work [17] pro-
posed using VL=10 in an  experimental setup that used 
4 cores, simulating various SPLASH benhmarks. Our 
results, albeit in a different setup, suggest that such a 
large value of VL offers little marginal benefit.

The impact of CPC on performance also matches 
our intuition in that we achieve better performance by 
increasing CPC. In fact the CPC=1 solution lags behind 
the CPC=2 and CPC=3 solutions at all voltage levels. 

However, the difference between the CPC=2 and 
CPC=3 solutions is minimal. They differ somewhat for 
low values of VL (2 or 3) but after that point there is 
very little difference in performance. The intuition is 
that the presence of 2 cores with activity factors that dif-
fer achieves a good enough average effect on the aggre-
gate peak power to make throttling unnecessary. In prior 
work [5], the authors foresaw the motivation and need 
for centralization of the multicore power management 
problem. In this work we have seen that centralization is 
indeed better than local per-core control, but clustering 
of cores per controller beyond two may not yield addi-
tional performance. This insight is an important addi-
tional input to future architectural design of multicore 
power management protocols. 

In terms of safety, the percentage power spent over 
budget is minimal, ranging from 0.1% to < 0.5% of the 
power usage of a solution without DVFS. The percent-
age of intervals spent over budget varies from ~0.5% to 
~9%. An increase in CPC allows the controller to make 
more aggressive decisions in matching the power budget 
resulting in more mispredictions. The same can be said 
about increasing VL. Whether the amount of time spent 
over budget is deemed tolerable or not depends on the 
particular constraints of the application. However, con-
sidering the tiny percentage of power spent over budget, 
we conclude that VL does not greatly impact safety. 

Given only the performance and safety analysis of 
the design space, one might conclude that the greatest 
difference can be noticed when going from CPC=1 to 
CPC=2 and that there is a minimal difference between 
CPC=2 and CPC=3. However, if we add verifiability to 
the picture, the conclusion changes dramatically. The 
verification effort, measured both in number of reach-
able states and transitions, increases dramatically with 
CPC. We see a strong interaction between CPC and VL 
in terms of verifiability effects. For both the CPC=1 and 
CPC=2 solutions, the verification effort does not 

Figure 6. Impact of Number of 
Frequency Levels per Voltage 
Level (FL)
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increase significantly with VL, unlike the case for the 
CPC=3 solution. 

In conclusion, the performance improvement gained 
from going from CPC=2 to CPC=3 is insignificant (par-
ticularly for larger VL) while the increase in verification 
effort is extremely large. Our data suggest that the better 
design solution consists of having multiple controllers 
each assigned to a small number of cores (2) which can 
be set to 4-5 voltage levels as opposed to a design with a 
large CPC at low VL. 

5.3  Impact of Number of Frequency Levels
The second design parameter we address is FL, the 

number of frequency levels that can be set for a given 
voltage level. Our hypothesis was that the 100µs actua-
tion of the controller can take advantage of the increased 
frequency granularity and better track the power budget 
between consecutive voltage actuations. 

Figure 6 shows our results when we consider a het-
erogeneous policy and fix VL=3 for performance with 
respect to a chip without DPM (a), safety (b, c) and ver-
ifiability (d, e). Our results indeed show a slight 
improvement in safety due to the increased flexibility in 
frequency levels. However, this improvement is minimal 
and accomplished with a performance penalty. The rea-
son is that the frequency decrease is a lot less efficient in 
decreasing the overall power usage than the voltage. The 
impact of FL on verification, however, is very large both 
in reachable states and transitions. We conclude that the 
frequency knob should be used only when the safety 
margins of being over budget are tight, because a signif-
icant cost in verifiability will be paid. Also, FL=2 seems 
to suffice for getting most of the safety benefit. Our con-
clusion is specific to the type of system we analyzed, 
where it is possible to set both voltage and frequency of 
individual cores at different levels. For this case, using 
many frequency levels for one voltage level does not 
seem to represent a good design alternative from a veri-
fiability, performance, and safety trade-off. For the class 
of systems that allocate the same voltage across all 
cores, the impact of frequency levels is likely to be more 
beneficial.

5.4  Impact of Using a Homogeneous Policy
We now explore the impact of choosing a homoge-

neous policy. We wish to discover whether homogeneity 
helps or hurts our pursuit of better design points. 
Figure 7 shows the results for a homogeneous policy 
when we vary VL. We notice a slight decrease in perfor-
mance for an increase in CPC. This result is due to the 
fact that the homogeneous policy is more restrictive and 
all cores assigned to the controller are throttled to a sin-
gle voltage level to match the budget. Second, the per-
formance impact of increasing VL is more significant 
compared to the heterogeneous case. The safety is 
improved for the homogeneous solution as the percent-
age of intervals spent over budget decreases signifi-
cantly. 

6.  Conclusions
Power management is important for multicore pro-

cessors, and DPM scheme designers would like to have 
confidence that their schemes are both safe and efficient. 
We have shown the insight that can be gained by using 
formal methods—in this case, probabilistic model 
checking—to analyze high-level descriptions of DPM 
schemes. We have used PRISM to determine the effort 
required to verify DPM schemes, and we have compared 
these schemes with respect to their efficiency. 

One conclusion we draw from this work is that glo-
bal schemes (i.e., CPC>1) offer significant benefits in 
performance due to the ability to balance power across 
more cores. However, we must be careful to avoid scal-
ing them to more cores than necessary. Linear increases 
in CPC cause exponential increases in the size of the 
reachable state space. Thus it is important to find the 
system configuration where both the verification is trac-
table and we obtain the majority of the benefits of a glo-
bal solution. Our data shows that much of the benefit is 
achieved at just CPC=2; increasing CPC further pro-
vides little additional performance gain. In terms of 
safety, we found no significant difference between per-
centage energy spent over budget as a function of CPC, 
but a larger value of CPC resulted in the system spend-
ing more time over budget. Thus we recommend designs 

a) b) c)

Figure 7. Impact of Homogeneous Policy 



in which chips are divided into small clusters of cores, 
where each cluster uses a global control scheme.

A second conclusion is that the use of fine-grained 
frequency tuning is likely not worth its costs for systems 
where it is possible to set both voltage and frequency of 
individual cores at different levels. The results show that 
having a large FL has an extremely large impact on veri-
fication effort. It is not clear that its modest safety bene-
fits justify these verification costs.
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