

WDA-3 2008

3rd Workshop on Dependable Architectures
(extends previously held Workshop on Architectural Reliability - WAR)

In conjunction with the

41st International Symposium on Microarchitecture (MICRO-41)

Saturday, Nov. 8, 2008
Lake Como, Italy

Welcome to the 3rd Workshop on Dependable Architectures!

Current computer technology trends present to the hardware and software designer novel
opportunities to improve performance and at the same time many challenges to overcome.
One of the formidable challenges is to provide dependable operation - in terms of reliability
and availability - for a system made of unreliable components.

The combination of various developments brought dependability to prominence: soft-error
rate is projected to increase with scaling; variability due to non-deterministic placement of
dopant atoms and channel length is increasing design margins; better than worst-case design
techniques for power/performance require error detection/correction; aggressive application
of power-saving mechanisms such as clock- and Vdd-gating are increasing voltage droops;
the verification manpower budget is becoming a significant part of the design effort; oxide
breakdown and electromigration are decreasing processor lifetimes.

New research frontiers are therefore open for exploration that will lead to the discovery and
development of dependable architectures, this includes research at all design levels: circuit,
architecture, compiler, OS and network. This workshop aims to become a forum for academia
and industry to discuss and present ideas and recent developments in the design and
evaluation of dependable architectures both software and hardware.

We like to thank the authors for submitting their work at WDA-3 and the program committee
members for providing on-time detail reviews. Finally, we like to recognize Costas
Kourougiannis for handling the workshop’s web-page.

November 8, 2008

Co-Organizers

Yiannakis Sazeides, University of Cyprus
Osman Unsal, Barcelona Supercomputing Center
Oguz Ergin, TOBB University of Economic and Technology

Program Committee

Todd Austin, University of Michigan
David Brooks, Harvard University
Veerle Desmet, Ghent University
Oguz Ergin, TOBB University of Economic and Technology
Babak Falsafi, EPFL
C. Mani Krishna, UMass, Amherst
Shubu Mukherjee, Intel
Onur Mutlu, Microsoft
Jude Rivers, IBM
Yiannakis Sazeides, University of Cyprus
Osman Unsal, Barcelona Supercomputing Center
Xavi Vera, Intel
David Kaeli, Northeastern University

WDA-3 Program

8:30-9:30 Opening Session

• Welcome and Outline

• Keynote, Babak Falsafi, EPFL

9:30-10:00 Session I

• Reducing Fault Detection Latencies in Virtually-Lockstepped Systems

Casey Jeffery and Renato J. O. Figueiredo (University of Florida)

10.00-10.30 Break

10.30-12.00 Session II

• Automatic Adjustment of System Performance to Mitigate Device Aging via a Co-

designed Virtual Machine
Omer Khan and Sandip Kundu (University of Massachusetts Amherst)

• Exploiting Value Prediction for Fault Tolerance

Xuanhua Li and Donald Yeung (University of Maryland)

• Multicore Power Management: Ensuring Robustness via Early-Stage Formal Verification

Anita Lungu (Duke), Pradip Bose (IBM), Dan Sorin (Duke), Steven German (IBM), and
Geert Janssen (IBM)

• Concluding Remarks

KEYNOTE

What to do with 100 Billion potentially misbehaving transistors on a chip

Babak Falsafi
Professor of CS, EPFL

Adjunct Professor of ECE & CS, Carnegie Mellon

The demand for computer system performance continues to grow to keep pace with our daily
needs and to enable solutions to previously infeasible computing problems. Advances in
semiconductor fabrication along with architectural and circuit innovation have helped
computer system designers to accommodate this increase in performance demand since the
emergence of microprocessors in the 70's. As a result, microprocessor vendors today market
high-end products with roughly two billion transistors per chip offering unprecedented
computational performance and capabilities. Unfortunately, while technology roadmap
projections forecast the continued increase in the number of transistors per chip well into the
next decade, there are fundamental sources of hardware and software bottleneck in sight that
may impede the way to design and performance scalability of computer systems.

In this talk, I will present a few of these fundamental challenges and potential research
directions in computer system designs to harness performance from future hundred-billion
transistor chips and beyond.

Bio:

Babak Falsafi is a Professor in the School of Computer and Communication Sciences at
EPFL, and an Adjunct Professor of Electrical and Computer Engineering and Computer
Science at Carnegie Mellon. He is the Microarchitecture thrust leader for the FCRP Center for
Circuit and System Solutions and directs the Parallel Systems Architecture Laboratory
(PARSA) at EPFL. His research targets architectural support for parallel programming,
resilient systems, architectures to break the memory wall, and analytic and simulation tools
for computer system performance evaluation. In 1999, he showed in collaboration with T. N.
Vijaykumar for the first time that multiprocessors need not support relaxed memory
consistency models to achieve high performance. He is a recipient of an NSF CAREER award
in 2000, IBM Faculty Partnership Awards between 2001 and 2004, and an Alfred P. Sloan
Research Fellowship in 2004. He is a senior member of IEEE and ACM.

Reducing Fault Detection Latencies in Virtually-Lockstepped Systems

Casey Jeffery and Renato J. O. Figueiredo
Advanced Computing and Information System Lab

University of Florida, Gainesville, FL, USA
cjeffery@ufl.edu – renato@acis.ufl.edu

ABSTRACT
The relentless pace of transistor scaling has brought
with it an increasing need for fault tolerance
capabilities in logic devices. A common technique for
providing this is processor replication in a fully-
lockstepped fashion. This paper presents a
hypervisor-based replication implementation, which
can be applied to commodity hardware to allow for
virtually-lockstepped system operation. It offers the
benefits of full replication ranging from error
detection through simple duplex execution to error
correction through triplex execution, and can be
extended to support Byzantine fault tolerance (BFT).

Virtualization hardware support is used to
minimize replication overhead and processor state
fingerprinting is employed to reduce the fault
detection latency. The fingerprinting facilitates the
detection of errors before they are recorded to a
checkpointed state, which allows for recovery to a
known-good state prior to a crash. The benchmarks
considered indicate a performance overhead in the
range of 2% to 5% with a non-optimized
implementation, and fault injection trials show that
fault detection latency can be reduced between 43%
and 98% for the prototype considered.

1. INTRODUCTION
A major challenge that has emerged in the

pursuit to fabricate ever smaller and faster
transistors into increasingly complex chip designs is
the ability to maintain a very high level of processor
reliability. It is a concern in all modern semi-
conductor process technologies and continues to
become more so as Moore’s Law leads scaling of
devices down to only tens of nanometers and allows
designers to incorporate many billions of transistors
into a single chip.

There are a number of factors that contribute to
the challenge. First, the devices are becoming
increasingly susceptible to transient faults, which are
caused by radiation events and electromagnetic
interference. The soft error rates of combinational
logic are fast approaching the levels at which
protection was necessary in memory devices [24]

and are expected to induce a higher failure rate than
all other means of failure combined if not countered
by fault-tolerance techniques [2].

In addition to soft errors, there continues to be
an increase in the degree of static and dynamic
transistor variability and much higher rates of
transistor performance degradation and wear-out [4,
26]. The increases to chip complexity are also
expected to limit the validation possible during post-
fabrication testing [13]. This will result in marginal
hardware being produced that must be maintained
in the field by fault tolerance mechanisms.

Unlike memory devices, which can typically be
protected from faults in a straightforward fashion by
incorporating redundant information in the form of
parity or error correction coding, logic devices have
proven much more difficult to protect. The most
common approach taken is to replicate the entire
device, as doing so allows for comparisons to be
made between replicas. The replication can be done
at a micro-architectural level, such as the pipeline of
the processor [11, 18, 19], at the system level
through full machine duplication [3, 29], or
somewhere in between [17]. It may be done in a
software-transparent fashion with specialized
hardware, through software-only approaches, or by
incorporating a combination of both hardware and
software support [1, 11, 19].

The goal of this paper is to explore a low-
overhead, hypervisor-based replication that reduces
fault detection latency by comparing a hashed
“fingerprint” of the virtual CPU state at regular
intervals. Specifically, the latency being considered is
the period of time from when a fault is introduced in
the system until it is discovered, if ever. If the fault is
manifested as an erroneous value in a register, it is
often discovered much later when the system
crashes or hangs, but it may also be masked or lead
to silent data corruption (SDC). The benefit of the
early detection afforded by the fingerprint
comparisons is that a rollback can be done to a
checkpoint of a known good state prior to the error.

The prototype is based on the KVM virtual
machine monitor [15], which takes advantage of
commonly-available hardware support to improve

mailto:cjeffery@ufl.edu
mailto:renato@acis.ufl.edu

system performance and fault detection capabilities.
The benefit of this approach over previous work is
that it is inexpensive to deploy and maintains high
performance and simplicity by exploiting hardware
support present in practically all modern processors
ranging from low-power netbooks to enterprise-
level servers. The benchmarks considered in this
paper indicate that this is a viable option with an
overhead on the order of 5%, while the fault
injection experiments indicate that processor state
fingerprinting can significantly reduce fault detection
latency.

2. REPLICATION & VIRTUAL LOCKSTEP
There is a long history in the enterprise server

space of providing fault tolerance through lockstep-
based replication. Lockstepped execution ensures
that all replicas begin in the same state, receive the
same, deterministic inputs, and progress through the
same state transitions. Any divergences can be
detected by differences in processor state or in the
output from the chip.

A varying degree of lockstep is possible, ranging
from cycle-level lockstep in which all cores execute
exactly the same stream of execution to systems in
which a single core actively executes the code and
sends updates to one or more passive replicas that
can take over if a failure is detected. These
enterprise-class systems are highly specialized and
very costly to deploy. They require customized
hardware and possibly a layer of middleware for
managing the replication [3, 29].

Virtual lockstep is a term given to systems that
do not necessarily execute in full lockstep directly on
the hardware. Instead, a virtualization layer in
interposed to act as a middleware for coordination
of the lockstepped operation without the need for
specialized underlying hardware.

2.1. Virtualization Technology
A hypervisor, also referred to as a virtual

machine monitor (VMM), sits logically between the
hardware and the operating system. It facilitates
system virtualization by allowing a software-only
implementation of a machine to be seen as real
hardware by the operating system running on it. By
offering this additional layer of abstraction, the
virtual hardware interface offers a simplified view of
hardware that is amenable to deterministic
execution, and therefore to virtual lockstep
operation.

Although the concept of virtualization was
originally developed over forty years ago, the wide-

spread use of virtual machines only started to take
hold within the last decade. In that time, the
capabilities of system virtualization have expanded
significantly, including the introduction of hardware
support by all major processor manufacturers.
Practically all modern computing platforms support
virtualization to some degree and most offer a high
level of hardware support.

The hardware support specifically considered in
this paper is the Intel Virtualization Technology (VT-
x) [27]. It provides for a new mode of operation
termed VMX root mode. This new mode was
designed to overcome challenges in software-only
virtualization such as ring aliasing, address-space
compression, and non-faulting access to privileged
processor state. It does this by running (resuming) an
operating system (the guest) in VMX non-root mode
and transitioning control (exiting) back to the VMM
(the host) in VMX root mode whenever necessary.
The guest can then use all four ring levels, is
guaranteed to exit to the host on all privileged
instructions, and the processor changes the linear
address space whenever control is transferred
between the guest and the host.

A portion of the state of the host and the guest
is maintained in a page of memory called a Virtual
Machine Control Structure (VMCS), which is set up
with a physical address mapping known to the VMM
and passed to the processor whenever a guest is
resumed. This structure stores the segment, control,
instruction pointer, stack pointer, and flag registers.
Control fields are also present to define the types of
operations for which the VMM has requested
control. There is some virtual processor state, such
as the remaining general purpose registers, that are
not contained in the VMCS and must be saved and
restored manually by the VMM software.

2.2. Related Work in Virtual Lockstep
The first work in the area of virtual lockstep

operation made use of a custom hypervisor designed
to run on the HP PA-RISC Unix system [5]. This
implementation made use of a software-only VMM,
which ran single primary and backup nodes in a
leader/follower configuration synchronized on
epoch boundaries.

An epoch, defined by the instruction retirement
counters, provides a means of injecting interrupt
vectors at the same deterministic position in both
the primary and backup. The primary executes one
epoch ahead of the backup and has the task of
choosing values for all nondeterministic events, such
as the reading of the timestamp counter or input

from an I/O operation, as well as buffering of
external interrupts for delivery at the end of the
epochs.

In the event that the primary crashes, the
backup will detect the missing heartbeat signal,
which is triggered by the expiration of a timer, and
take over beginning at the start of the epoch in
which the primary crashed. It may repeat disk or
network operations that the primary completed
before crashing, but it is assumed that the network
or storage drivers are capable of handling these
repeat requests.

One key limitation of this model is the necessity
of fail-stop behavior in the primary. In other words,
the only failure of the primary for which the backup
is capable of detecting and recovering from is a
system crash or similar event which causes the
heartbeat signal to not be received. It is possible that
the error was caused by a latent fault that occurred
many epochs prior and did not result in an
immediate crash. The fault may have also been in
state that was transferred to the backup, in which
case the backup will proceed to reproduce the crash.

A more recent proposal for a virtually
lockstepped system is based on the Xen hypervisor
[20]. In this model, a new network/voting (NV)
domain is defined, which has the logic for the
replication and communication of the dom0 (host)
and domU (guest) domains. This model is based on
replicating at a much higher level, however. The
replicas provide network-based services and must be
consistent only from the point of view of a network
client, which gives flexibility in the underlying
hardware and software at the cost of limited scope.

Another approach to providing benefits similar
to virtual lockstep is the use of rapid checkpointing.
In contrast to lockstepped execution, a backup
replica in a checkpoint-based system does not
actively re-execute code. Instead, the primary
records a full snapshot of the current state of the
processor and memory and sends it to the backup,
which allows it to pick up where a primary left off in
case of failure. An example of this is given in [8],
where the Xen hypervisor is again used. In this
model, the backup receives system checkpoints from
the primary at a rate as high as once every 25ms.
The primary is able to buffer I/O until the end of an
epoch, at which time it is committed to both the
primary and backup.

The rapid checkpoint model has a simpler
implementation than a virtually lockstepped system,
and is also much easier to apply to multiprocessor
guests. These benefits come at the cost of the actual

execution not being replicated. That is, if a fault is
present in the primary that causes an incorrect value
to be computed, the value will be transferred to the
backup and not regenerated. The checkpointing of
faulty state was found to happen with high
probability in [7]. This limits the fault model to
immediate fail-stop behavior of the primary.

3. FAULT DETECTION
As indicated in the previous section, it is

preferable to not just detect an error when a system
crashes, but detect when the fault that caused it
occurs. This gives the system an opportunity to take
the steps necessary to avoid a crash. To do this, it is
necessary to track the state of the processor and not
just monitor the signals that leave the chip. This
requirement is due to the latency in the
manifestation of errors at the outputs of the
processor. For example, a register that is struck by a
particle and has a bit flipped will likely not be
immediately accessed. It may even be written back
to memory and read in again much later. By the time
the error becomes software-visible, it is unlikely that
a recovery is possible.

3.1. Processor State Fingerprinting
One way to ensure that an error is detected as

soon as possible is to execute all replicas in virtual
lockstep and compare the full state of the processor
on a regular basis. It is very expensive in terms of
bandwidth and power consumption to make such
extensive comparisons, however. An optimization is
to hash the processor state into a unique fingerprint
and make a comparison based on that single value.
This is much faster, and if an appropriate hash is
used, collisions can be kept to a minimum and the
accuracy of the fault detection can be maintained.

There is a wide range of hashing algorithms that
can be applied to the data representing the
processor state varying in complexity from simply
adding the registers together to applying a complex
cryptographic hash like SHA-2.

It is not possible to tell from the fingerprint
exactly which parts of the processor state have
diverged since that information is lost in the hashing
process. It is sufficient, if intermittent checkpoints
are taken, to trigger a roll back to the last known
good checkpoint and resume execution.

3.2. Related Work in Fingerprinting
Fingerprints have been used to reduce fault

detection latency on enterprise-class server systems
[10, 25]. In this work, a dual-modular redundant
server with cores lockstepped at the hardware level

is enhanced to maintain a hash representative of the
history of execution. Information about instruction
commits are hashed using a cyclic redundancy code
(CRC). It is observed that error detection latency can
be improved considerably at a small cost in terms of
compute and bandwidth resources, although the
cost of developing such specialized capabilities in the
processor pipeline is quite significant.

4. FAULT-TOLERANT SYSTEM MODEL
The model presented in this paper is a virtually

lockstepped system described in detail in [14]. The
goal of the model is to be directly applicable to a
variety of systems, ranging from simple dual-core
platforms to future networks on chip (NoCs) with
hundreds of cores on a single die. This is
accomplished by allowing a primary instance of a
hypervisor to be coupled with an arbitrary number
of backup replicas, each instantiated on a separate
machine or logical partition.

Figure 1. System with many-to-one protection level.

An example is shown in Figure 1 where a single

backup can be dynamically tied to one of the guests
running on the primary VMM when the underlying
hardware for the guest is detected to be faulty. The
other extreme is shown in Figure 2, where there are
three backup replicas for a single primary instance,
which is necessary to support BFT [6].

Figure 2. System with one-to-many protection level.

4.1. Replication Coverage
The main goal of the model is to protect the

processor from single-event upsets. It is assumed
that the main memory, storage, and network devices
can be replicated through other means, such as
memory sparing, RAID, or network adapter teaming,
respectively. For this reason, these devices are left
outside the sphere of replication.

4.2. Fault Injection Model
The behavior of the system in response to faults

is simulated by altering the state of the virtual
processor to model bit flips. This can be done easily
since the VMM has complete control over the state
of the guest. The injection is done in a manner
similar to that presented in [16], where the Xen
hypervisor is used as a fault injection vehicle for a
Linux guest. That work looked at only four registers,
but defined a method of categorizing the types of
errors seen and recorded the latency of the error in
terms of machine cycles.

4.3. Error Detection
Errors are detected by comparing a hashed

fingerprint of the virtual processor state at regular
intervals. This is different from the fingerprinting
approach taken in [10, 25]. Rather than hashing
information about retired instructions, the
virtualization hardware is utilized by hashing the
information stored in the VMCS.

The main reason for this choice is that it takes
advantage of a well-defined, hardware-accessible
structure, which allows for the hardware to be
trivially optimized, reducing the hashing overhead.
For example, the microcode could be updated to do
the hashing, or a specialized or idle processing core
could be used to hash the memory region.

State comparisons are made on execution
boundaries determined by exits from the guest to
the VMM. The rate of comparison can be adjusted to
trade off performance for reduced detection latency
and higher detection accuracy.

5. PROTOTYPE DETAILS
The prototype that has been developed is based

on the KVM hypervisor. For the purposes of this
paper, it has been implemented only on the Intel x86
architecture with support for uniprocessor guests,
since it is significantly more complex to support
multi-processor deterministic execution and the
performance overhead is not yet practical [9]. All
replication logic is incorporated into the userspace
portion of the hypervisor, along with a small amount
of support code in the kernel module.

CPU 1

MEM 1

CPU 2

MEM 2

CPU 3

MEM 3

Main VMM
Replica

VMM

OS 1 OS 2 OS 3 OS #
R

Main Partition

CPU 4

MEM 4

Replica

Partition

Replica

VMM

OS 1
c

CPU 4

MEM 4

Replica 3

Partition

Replica

VMM

OS 1
b

CPU 3

MEM 3

Replica 2

Partition

Replica

VMM

OS 1
a

CPU 2

MEM 2

Replica 1

Partition

Main

VMM

OS 1

CPU 1

MEM 1

Main

Partition

5.1. Hypervisor Overview
The KVM hypervisor has been integrated into

the mainline Linux kernel since version 2.6.20 and
has recently been ported to support most major
architectures, including x86, IA64, and PowerPC. It
uses the QEMU emulator for virtual device models,
and so runs in the context of a Linux process, which
makes it trivial to start multiple instances and to tie
them to specific processing cores. The hard disk
image provided to each instance can be backed by a
file-based disk image (qcow2), which is easily
replicated and supports checkpoint snapshots. Inter-
replica communication in the prototype is done
through a buffer allocated in shared memory, which
is sufficient for duplex and triplex configurations. An
extension to BFT is possible if a decentralized, group
coordination and communication protocol is applied.

5.2. Virtual Lockstep Details
In order to run replicas in lockstep, it is

necessary to remove all nondeterminism from the
system [22]. This includes synchronous sources such
as instructions that access the timestamp counter or
read in data from an I/O port, as well as
asynchronous sources, such as external interrupts.
Direct memory access (DMA) replication has not yet
been implemented, but it must be dealt with as a
combination of both cases (i.e., an I/O instruction
that occurs asynchronously). This is an optimization
left as future work.

The replicas are synchronized based on the
number of deterministic exits that occur to VM-root
mode. That is, each time a VM exit occurs at a point
in the execution that is guaranteed to be
deterministic, a counter is incremented and the
hypervisor is given the opportunity to inject
asynchronous events, such as virtual interrupts. This
ensures that the asynchronous events occur
deterministically and at the same point in all
replicas. In the prototype, lightweight exits (those
handled entirely in the kernel) are not counted.

The data from the synchronous, non-
deterministic instructions, which include those that
do string or value I/O operations, memory-mapped
I/O, or read the timestamp counter, are copied into
a structure and stored into a circular broadcast
buffer with a flag indicating the type of operation.
The buffer is shared among all hypervisors in a
typical producer/consumer fashion. The primary
stores the items and signals the backup(s) when an
item is available. When a backup gets to the same
synchronous instruction, it retrieves the information
stored in the buffer and verifies the flag matches the

type of operation it expects. It then either overrides
the input it received or verifies the output it
produced, depending on the direction of the event.
It is possible in this way to detect errors at the I/O
level, but as described earlier, it is desirable to
detect them even sooner.

The asynchronous, nondeterministic events (i.e.,
external interrupts) are captured by the primary and
placed into a second shared buffer. Their delivery
into the primary is delayed until the first VM entry
following a deterministic exit for which the guest is
ready to accept the interrupt. If both of the
requirements are met, the event is injected and its
details are recorded in the shared buffer. The backup
replicas peek at this buffer to determine the point at
which they must inject the next event, which is
defined by the deterministic exit count. When a
replica arrives at the target position, the event is
removed from the buffer and injected. It is assured
that the event will be deliverable, unless a fault has
occurred, since the state of the system is identical to
the primary.

One of the sources of nondeterminism seen in
the KVM hypervisor is in memory paging. It appears
to be due to different paging behavior of the file-
backed guest hard disk images. To skirt this problem,
the replicas are run in a ramdisk, which means that
the virtual hard disks are placed entirely in memory
so that access to a physical hard disk, and the
subsequent page faults, are not required. This
limitation does not affect the main goals of assessing
the benefit of early fault detection, and resolving it is
left as a future optimization.

A second potential issue is that by synchronizing
only on deterministic exits from the guest, it is
possible for the guest to never exit deterministically
and consequently make no forward progress. For the
purposes of this paper, the benchmarks executed
have a steady rate of deterministic exits and avoid
the problem. This limitation can be averted by
ensuring a minimum rate of deterministic exits by
generating interrupts with the performance
counters, for example.

5.3. Fingerprinting Details
The error detection capabilities of the system

are enhanced by verifying the state of the virtual
processor at the deterministic execution boundaries.
This means that ideally, faults are detected at the
first deterministic exit after they are introduced, as
long as they affect one or more of the fields in the
VMCS.

The fingerprints are generated using a simple
multiplicative hashing algorithm defined in [23] and
added by the primary to each item placed in the
shared buffers. This allows the backup to easily
compare its state to that of the primary while doing
the standard checks against the buffer entry.

It is possible to enhance the error detection
capabilities further by including additional state into
the fingerprint calculation. For example, it would be
desirable to have the general purpose registers
included, even though they are not part of the
VMCS. This is certainly possible, but it precludes the
optimization of directly using a hardware-only
approach to generating the fingerprints (at least
without a microcode or hardware extension).

6. EVALUATION AND BENCHMARKS
The prototype of the proposed model is

evaluated along multiple vectors. First, the
performance overhead of the virtual lockstep
implementation is assessed. The fault injection
capabilities are then considered, and finally the fault
detection latency is evaluated.

6.1. Test Platform
The test platform includes an Intel Xeon X3360,

which is a 2.93GHz quad-core processor with
support for the latest VT-x hardware extensions. The
system has 4GB of main memory with 2GB reserved
for use in hosting a single primary and backup. The
hypervisor is a modified version of KVM-33 that is
run on a 32-bit Ubuntu 7.04 installation. The guest
image is a 32-bit Slackware 10.2 installation with
default kernel settings and 128MB of main memory.

6.2. Benchmarks
The benchmarks considered for this paper is are

Linux kernel compilations. These were chosen
because they offer high levels of both processor and
I/O activity. For the purposes of overhead
estimation, both a relatively small kernel (2.4.31)
and a larger kernel (2.6.20) are considered. The 2.4
kernel is the default for the Slackware 10.2 guest
and the 2.6.20 kernel is from the public Linux kernel
servers. They are compiled in the guest with gcc
3.3.6 and default configuration options.

6.3. Virtual Lockstep Overhead
The overhead of virtual lockstepped execution

comes from a number of sources. There is the cost
of the primary recording the values for all
nondeterministic events and the backup then
retrieving them and making the necessary
comparisons. There is also the cost of delaying

interrupt delivery to occur at deterministic
boundaries, and finally, there is the cost of the
primary stalling when it runs too far ahead and fills
the buffer or similarly when the buffer is empty and
the backup must stall. Because the hypervisors are
pinned to processing cores, there is a relatively small
slack that accumulates between them so the final
issue can be handled using reasonably sized buffers.

The overhead attributed to the replication is
estimated by comparing the performance of a
virtually lockstepped execution to an identical
instance that is virtualized but not replicated. The
results are shown in Table 1 and indicate a very
reasonable overhead of approximately 2%-5%. The
times are an average of ten trials and were tracked
using VMCALL instructions, which allow the guest to
call back into host. The guest executes the VMCALL
immediately before and after the compilation and
the host reads the platform timestamp counter and
calculates the difference.

These numbers will vary significantly depending
on the platform on which it is run, and it is expected
that running the guests on a hard disk will add to the
overhead. There are also workloads that will exhibit
a larger performance hit, but this initial analysis
indicates that it will likely be a tolerable hit and that
virtual lockstep can be made practical given the
benefits it provides.

Table 1: Overhead of Linux kernel compile for virtual
lockstep compared to virtualization only

Primary Virtualized Lockstepped Overhead

Linux 2.4.31 128.5s 135.1s 5.1%

Linux 2.6.20 255.3s 258.8s 1.4%

Backup

Linux 2.4.31 128.5s 135.6s 5.5%

Linux 2.6.20 255.3s 259.2s 1.5%

6.4. Fault Injection
As mentioned previously, there are benefits to

using a virtual machine as a platform for fault
injection experiments. First, it has direct access to
the system registers, as well as the guest stack,
interrupt descriptor table, and memory. This makes
fault injection as simple as altering bits of state and
resuming the guest execution.

From the very large space of possible fault
targets, a few key registers have been chosen and
are listed in Table 2. They were selected to align well
with similar work [12, 16, 28], as well as to give
reasonable coverage of both registers that are
stored in the VMCS and those that are not.

A fault is modeled by flipping a bit, which is
done by xor-ing a 1 to the target bit. All faults are
injected into the backup replica of a duplex system.
This allows for direct comparison of the processor
state and output to the primary to detect the effects
of the fault. The two bit positions targeted were
chosen somewhat arbitrarily as bit 4 and bit 16. The
main reasoning was to flip one near the lower
portion of the register so that the affected value will
move only a small amount (e.g., two to 16
instructions in the case of RIP) and to flip a higher
order bit so as to cause a more significant change for
cases when the value is treated as a number.

Table 2: Registers considered for fault injection

Register In VMCS? Description

RIP Y Instruction pointer

RSP Y Stack pointer

RAX N Accumulator

RCX N Counter

RBP N Base pointer

RSI N Data (Source)

CS_B Y Code segment (Base)

6.5. Fault Detection
Faults are injected during a compilation of the

Linux 2.4.31 kernel, and the time of the injection is
varied randomly. The compilation is run for 10,000
deterministic VM exits plus a random number of
additional deterministic VM exits from 0 to 2

16
,

which is generated by /dev/random in the host Linux
kernel. After injection, the guest is run for at least
50,000 additional deterministic VM exits, which is on
the order of the runtime considered in [16, 21].

The first set of data considered are whether the
guest fails or continues to run to completion. This is
broken down by failure mode in Figure 3. A crash
means that a guest fails, dumps failure information,
and stops executing, while a hang means that the
guest ends up in a state in which no forward
progress is made but it doesn’t stop.

It is notable that faults in RAX and RCX rarely
cause the system to crash. Only a fault in the high bit
of RAX causes a significant failure rate. This also
holds true for RBP and RSI, which are the other
registers not saved in the VMCS. In general, it is
observed that faults in registers that are not part of
the VMCS caused a much lower failure rate than
those that are. This isn’t surprising since the point of
the VMCS is to automatically store the state of the
most critical registers in the CPU.

Figure 3. % of failures by register [faulty bit position].

It may be that data are silently corrupted (SDC)

in the cases where no crash occurs and work is in
progress to verify this. It is straightforward to detect
some forms of SDC in the kernel compile benchmark
considered by retrieving the generated binaries and
comparing them to known-good copies. It is more
difficult, however, to determine if latent errors have
been introduced into the running kernel of the guest
machine.

To detect the errors resulting from the fault
injections, guest state fingerprints are generated and
compared on every deterministic exit. The
fingerprints are derived by hashing most of the fields
in the VMCS. The CR3 and TSC Offset are excluded
from the hash since they are expected to differ.
Registers for unused features such as SMM are also
excluded. The Interrupt Error Code is not included
since it is updated only on exits for interrupts that
would deliver an error code to the stack and may be
stale otherwise. The final two fields not part of the
hash are Access Rights for FS and GS registers. The
descriptor privilege level of these fields is not
consistent on all exits.

It is extremely unlikely that a fault introduced
into a system register will cause an immediate crash
or hang. There is generally a period of time from
when a fault is injected until the system fails, and for
the purposes of this paper, this is considered the
base fault detection latency. The improved fault
detection latency is the time from when the same
fault is injected until it is detected in a fingerprint
comparison. The benefit of the improved detection
latency is that it is typically much shorter and
improves the probability of successful rollback and
recovery.

The data presented in Figure 4 demonstrate that
the fingerprint-based model is capable of detecting
errors within only a few exits, whereas there are
often dozens or hundreds of exits before the system
finally crashes. The average reduction across all

0%

20%

40%

60%

80%

100%

C
S_B

 [4]

R
A

X
 [4]

R
B

P
 [4]

R
C

X
 [4

]

R
IP

 [4]

R
SI [4

]

R
SP

 [4]

C
S_B

 [16]

R
A

X
 [16]

R
B

P
 [16]

R
C

X
 [1

6
]

R
IP

 [16]

R
SI [16]

R
SP

 [1
6

]

No Crash Crash Hang

registers except RSP is 97% and is as high as 98% for
RIP. It is notable that a fault in the high bit of RSP
does cause the system to crash much earlier than
the other fault targets considered, but the faults are
still detected in the fingerprint comparisons 43%
earlier, on average.

6.6. Fingerprinting Optimizations
The final breakdown of the data is focused on

finding ways of optimizing the performance of the
fingerprinting approach. Specifically, the size of all
fields of the VMCS that have been considered in the
hash is only 396 bytes, which is quite small, but
hashing the data does have a performance cost that
should be minimized. The most obvious optimization
is to exclude VMCS fields that are unlikely to play a
part in detecting a fault in the system.

Figures 5 and 6 break down the fields of the
VMCS in which differences were detected for the
fault targets considered. These are the fields
affected only on the first exit after which a
difference is detected, and there are a surprising
few. Additional fields often become corrupted on
subsequent exits before the guest crashes, but are
not included.

The small subset of VMCS fields consists of 44 or
60 bytes on 32- or 64-bit host systems, respectively,
and represents the minimal set of fields that need to
be included in the fingerprint to provide equivalent
detection coverage to including all fields for the fault
model considered in this paper. We believe that this
subset will expand very little as data are gathered for
additional workloads. It is possible to optimize even
more since there are a number of fields that always
appear to occur together or in addition to other
fields. For example, every time a fault is detected in
FS Selector, GS Selector is also faulty.

Figure 4. Average time to error detection using
fingerprints versus time to guest crash measured in
terms of deterministic exits from fault injection.

Figure 5. VMCS fields first affected by fault in bit 4 of
registers.

Figure 6. VMCS fields first affected by fault in bit 16
of registers.

7. CONCLUSION AND FUTURE WORK
In the near future, it will be essential to apply

new techniques to computing systems to ensure
reliable operation. The goal of this paper is to
present a virtual lockstep implementation that is
software based, yet capable of using hardware
features for enhanced performance and fault
detection capabilities. The result is a system that has
a low performance overhead and significantly
reduces the time to detection of faults that occur in
the processor.

This work also indicates that it may be beneficial
to extend the virtualization hardware capabilities to
support fingerprinting and state comparison. Our
current implementation uses a hash of a subset of
the processor state as a basis for fault detection; this
provides limited detection coverage as faults that
occur between VM exits may not manifest in
changes to the VMCS state. Nonetheless, our
approach can accommodate additional fault
detection coverage if provided by hardware, without
significant changes to the framework.

For instance, detection can take into account
the history of instructions between VM exits if

0

20

40

60

80

100

120

RIP [4] RSP [4] CSB [4] RIP [16] RSP [16] CSB [16]

A
ve

ra
ge

 D
e

te
rm

in
is

ti
c

Ex
it

s

Time to Detection Time to Crash Detection Benefit

0%

20%

40%

60%

80%

100%

CS_B [4] RBP [4] RIP [4] RSI [4] RSP [4]

CR0_READ_SHADOW CS_BASE EXCEPTION_BITMAP

EXIT_QUALIFICATION FS_SELECTOR GS_SELECTOR

INTERRUPTIBILITY_INFO RFLAGS ENTRY_EXCEP_ERR_CODE

ENTRY_INTR_INFO_FIELD EXIT_INST_LEN EXIT_REASON

0%

20%

40%

60%

80%

100%

CS_B [16] RBP [16] RIP [16] RSI [16] RSP [16]

CR0_READ_SHADOW CS_BASE EXCEPTION_BITMAP

EXIT_QUALIFICATION FS_SELECTOR GS_SELECTOR

INTERRUPTIBILITY_INFO RFLAGS ENTRY_EXCEP_ERR_CODE

ENTRY_INTR_INFO_FIELD EXIT_INST_LEN EXIT_REASON

hardware is enhanced in a manner similar to what is
described in [10, 25], as well as by including more
registers than are currently in the VMCS and
performing hashing using optimized hardware. By
making these capabilities available to the hypervisor,
fault detection and checkpoint rollback at VM exit
boundaries can be done reliably.

References
[1] T. M. Austin, “DIVA: a reliable substrate for deep

submicron microarchitecture design,” in Proc. of
32

nd
 Annu. Int. Symp. on Microarchitecture, pp.

196-207, Nov. 1999.
[2] R. C. Baumann, “Radiation-induced soft errors in

advanced semiconductor technologies,” IEEE
Trans. on Device and Materials Reliability, vol. 5,
no. 3, pp. 305-316, Sep. 2005.

[3] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R.
Jardine, J. Klecka, and J. Smullen, “NonStop®
Advanced Architecture,” in Proc. of the Int. Conf.
on Dependable Systems and Networks, Jun.
2005.

[4] S. Borkar, “Designing Reliable Systems from
Unreliable Components: The Challenges of
Transistor Variability and Degradation,” IEEE
Micro, vol. 25, no. 6, pp. 10-16, Dec. 2005.

[5] T. C. Bressoud and F. B. Schneider, “Hypervisor-
based fault-tolerance,” ACM Trans. on Computer
Systems, vol. 14, no. 1, pp. 80-107, Feb. 1996.

[6] M. Castro and B. Liskov, “Practical Byzantine
fault tolerance,” in Proc. of the 3

rd
 Symp. on

Operating System Design and Implementation,
Feb. 1999.

[7] S. Chandra and P. M. Chen, “The Impact of
Recovery Mechanisms on the Likelihood of
Saving Corrupted State,” in Proc. of the 13

th
 Int.

Symp. on Software Reliability Engineering, Nov.
2002.

[8] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N.
Hutchinson, and A. Warfield, “Remus: High
Availability via Asynchronous Virtual Machine
Replication,” in Proc. of the 5

th
 USENIX Symp. On

Networked Systems Design and Implementation,
Apr. 2008.

[9] G. W. Dunlap, D. G. Lucchetti, P. M. Chen, and
M. A. Fetterman, “Execution Replay for
Multiprocessor Virtual Machines,” in Proc. of the
Int. Conf. on Virtual Execution Environments,
Mar. 2008.

[10] B. T. Gold, J. Kim, J. C. Smolens, E. S. Chung, V.
Liaskovitis, E. Nurvitadhi, B. Falsafi, J. C. Hoe,
and A. G. Nowatzyk, “TRUSS: a reliable, scalable

server architecture,” IEEE Micro, vol. 25, no. 6,
pp. 51-58, Dec. 2005.

[11] M. A. Gomaa, C. Scarbrough, T. N. Vijaykumar,
and I. Pomeranz, “Transient-fault recovery for
chip multiprocessors,” IEEE Micro, vol. 23, no. 6,
pp. 76-83, Nov. 2003.

[12] W. Gu, Z. Kalbarczyk, and R. K. Iyer, “Error
Sensitivity of the Linux Kernel Executing on
PowerPC G4 and Pentium 4 Processors,” in Proc.
of the Int. Conf. on Dependable Systems and
Networks, July 2004.

[13] International Technology Roadmap for
Semiconductors, 2007 ed. Austin, TX:
Semiconductor Industry Association,
International SEMATECH, 2007.

[14] C. M. Jeffery and R. J. O. Figueiredo, “Towards
Byzantine Fault Tolerance in Many-core
Computing Platforms,” in Proc. of 13

th
 Pacific

Rim Int. Symp. On Dependable Computing, Dec.
2007.

[15] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A.
Liguori, “kvm: the Linux Virtual Machine
Monitor,” in Proc. of the 9

th
 Ottawa Linux Symp.,

Jun. 2007.
[16] M. Le, A. Gallagher, and Y. Tamir, “Challenges

and Opportunities with Fault Injection in
Virtualized Systems,” in Proc. of the 1

st
 Int.

Workshop on Virtualization Performance:
Analysis, Characterization, and Tools, Apr. 2008.

[17] M. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve,
V. S. Adve, and Y. Zhou, “Understanding the
Propagation of Hard Errors to Software and
Implications for Resilient System Design,” in
Proc. of the 13

th
 Int. Conf. on Arch. Support for

Programming Languages and Operating
Systems, Mar. 2008.

[18] C. McNairy and R. Bhatia, “Montecito: A Dual-
Core, Dual-Threaded Itanium Processor,” IEEE
Micro, vol. 25, no. 2, pp. 10-20, Apr. 2005.

[19] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt,
“Detailed Design and Evaluation of Redundant
Multithreading Alternatives,” in Proc. of the 29

th

Int. Symp. On Computer Architecture, May 2002.
[20] H. P. Reiser and R. Kapitza, “Hypervisor-based

Efficient Proactive Recovery,” in Proc. of the 26
th

IEEE Symp. On Reliable Distributed Systems, Oct.
2007.

[21] G. P. Saggese, A. Vetteth, Z. Kalbarczyk, and R.
Iyer, “Microprocessor Sensitivity to Failures:
Control vs. Execution and Combinational vs.
Sequential Logic,” in Proc. of the Int. Conf. on
Dependable Systems and Networks, Jun. 2005.

[22] F. B. Schneider, “Implementing fault-tolerant
services using the state machine approach: a
tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299-319, Dec. 1990.

[23] R. Sedgewick, Algorithms in C. Boston, MA:
Addison-Wesley, 1997.

[24] P. Shivakumar, M. Kistler, S. W. Keckler, D.
Burger, and L. Alvisi, “Modeling the Effect of
Technology Trends on the Soft Error Rate of
Combinational Logic,” in Proc. of the Int. Conf.
on Dependable Systems and Networks, May
2002.

[25] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C.
Hoe, and A. G. Nowatzyk, “Fingerprinting:
Bounding Soft-Error-Detection Latency and
Bandwidth,” IEEE Micro, vol. 24, no. 6, pp. 22-
29, Nov. 2004.

[26] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers,
“The Impact of Technology Scaling on Lifetime
Reliability,” in Proc. of the Int. Conf. on
Dependable Systems and Networks, Jul. 2004.

[27] R. Uhlig et al., “Intel Virtualization Technology,”
IEEE Computer, vol. 38, no. 5, pp. 48-56, May
2005.

[28] N. J. Wang and S. J. Patel, “ReStore: Symptom-
based Soft Error Detection in Microprocessors,”
IEEE Transactions on Dependable and Secure
Computing, vol. 3, no. 3, pp. 188-201, Sep. 2006.

[29] S. Webber and J. Beirne, “The Stratus
Architecture,” in Proc. of the 21

st
 Int. Symp. on

Fault-Tolerant Computing, Jun. 1991.

Automatic Adjustment of System Performance to Mitigate Device Aging
via a Co-designed Virtual Machine

Omer Khan and Sandip Kundu

Department of Electrical and Computer Engineering
University of Massachusetts Amherst

Amherst, MA 01002
{okhan, kundu}@ecs.umass.edu

Abstract
As semiconductor manufacturing enters advanced
nanometer design paradigm, aging and device wear-out
related degradation is becoming a major concern.
Negative Bias Temperature Instability (NBTI) is one of
the main sources of device lifetime degradation. The
severity of such degradation depends on the operation
history of a chip in the field, including such
characteristics as temperature and workloads. In this
paper, we propose a system level reliability management
scheme where a chip dynamically adjusts its own
operating frequency and supply voltage over time as the
device ages. Major benefits of the proposed approach are
(i) increased performance due to reduced frequency
guard banding in the factory and (ii) continuous field
adjustments that take environmental operating conditions
such as actual room temperature and the power supply
tolerance into account. The greatest challenge in
implementing such a scheme is to perform calibration
without a tester. Much of this work is performed by a
hypervisor like software with very little hardware
assistance. This keeps both the hardware overhead and
the system complexity low. This paper describes the entire
system architecture including hardware and software
components. Our simulation data indicates that under
aggressive wear-out conditions, scheduling interval of
days or weeks is sufficient to reconfigure and keep the
system operational, thus the run time overhead for such
adjustments is of no consequence at all.

1. Introduction
The likelihood of device wear-out is a growing problem
for advanced nanometer technology. International
Technology Roadmap for Semiconductors (ITRS) states
that “the development of semiconductor technology in the
next 7 years will bring a broad set of reliability challenges
at a pace that has not been seen in the last 30 years” [1].
The relentless pursuit of smaller geometries is
approaching a point where technology limitations are
pushing designs toward tighter constraints and expensive
margins, elevating concerns about device availability and

reliability [2]. The potential for these failures1 decreases
the expected lifetime of the processor, creating a lifetime
reliability problem.

Processor lifetimes are traditionally managed through a
combination of quality control in manufacturing and
conservative design parameters that reduce stress on a
processor (e.g., running at a lower clock frequency and
voltage to avoid high temperatures). Processors are
typically designed with a mean-time-to-failure of 30
years, which assures few if any units will fail during 11
years of “expected consumer use” assumed by
manufacturers [3]. Scaling trends make quality control to
meet this reliability goal more expensive while
conservative designs negatively impact performance.

Device aging has had a significant impact on transistor
performance. Increased current density and temperature
leads to faster degradation of transistors over time due to
oxide wear out and hot-carrier degradation effects. Until
90nm technology, the degradation was small enough to be
concealed by an upfront design margin in the product
specification. But as the technology approaches 45nm and
below, the worst case degradation is expected to become
too large to be taken as an upfront design margin [2].

Product life acceleration with burn-in test is becoming
less meaningful as well. To quote ITRS [1], “Two trends
are forcing a dramatic change in the approach and
methods for assuring product reliability. First, the gap
between normal operating and accelerated test conditions
is continuing to narrow, reducing the acceleration factors.
Second, increased device complexity is making it
impossible or prohibitively expensive to exercise or
stimulate the product to obtain sufficient fault coverage in
accelerated life tests. As a result, the efficiency and even

1 Wear-out related failures, or intrinsic hard faults are distinct
from extrinsic hard faults, which are permanent faults that result
from manufacturing defects and are already present when a
processor is tested in the factory. Thus, extrinsic hard faults are
weeded out by testing. In contrast to extrinsic hard faults, the
probability of intrinsic hard faults increases with long-term
processor utilization. This paper addresses intrinsic hard faults.

the ability to meaningfully test reliability at the product
level are rapidly diminishing.”

Negative Bias Temperature Instability (NBTI) is a major
source of device lifetime degradation [4]. NBTI affects
PMOS transistors when the voltage at the gate is negative,
causing the threshold voltage to increase. As a result both
FMAX and VMIN of the design are impacted. The FMAX is
degraded because the circuits become slower over time,
while memory structures experience an increase of their
minimum voltage (VMIN) to keep their contents.

Current practice is to use conservative frequency guard-
bands of 10-20% to account for performance loss due to
device aging [5][6]. For example, a device that clocks at
3GHz/1.1V during testing may be sold as a 2.7GHz/1.0V
part to account for expected performance loss over
product life time. This, in turn, requires designers to target
for higher frequency of operation, thus significantly
increasing power consumption [5][7].

The solution we propose avoids a large guard-band
upfront, continually adjusting frequency and voltage over
product lifetime. The main idea behind this scheme is to
enable the system to adaptively adjust the operating
frequency/voltage with minimal guard-bands to allow the
system to operate at its peak performance throughout its
life. The adjustments are transparent to the operating
system and application’s software. This fine-grain
management of device aging provides additional benefits
of workload adaptation, runtime field testing, and non-
stop system operation, which is not permissible in the
conventional FMAX or VMIN testing that requires a tester.

The rest of the paper is organized as follows. The
remainder of this section is devoted to providing some
background and related work on NBTI and its impact on
device reliability, followed by motivation for the
proposed scheme. In section 2, discuss lifetime reliability
models for processors. In section 3, we describe our
proposed reliability management architecture. Section 4
and 5 provide our experimental methodology and data
analysis. We conclude in section 6.

1.1 NBTI & Related Work
The severity of threshold voltage degradation due to
NBTI depends on the operation history of a chip in the
field: circuit parameters like operating frequency, supply
voltage and temperature variance play a role, as well as
data patterns due to variation in the workload
characteristics. The workload determines the length of
time a PMOS transistor may spend in ON state, when
most of the performance degradation happens.

We have already mentioned why burn-in is losing
effectiveness against NBTI problems [8]. Researchers
have proposed solutions to mitigate NBTI by: reducing
the amount of time the PMOS transistors observe a “0” at
their gates [9]; resorting to classical redundancy
techniques [10]; using software logging to handle crash

detection and recovery [11]; using circuit and logic
techniques to catch dynamic errors using special
sequential circuits [11][12]; using runtime adaptation of
the processor to changing application behavior, termed as
Dynamic Reliability Management (DRM) [13][14].

Although these techniques address the shortcomings of
burn-in and guard-bands, they are either applied at a
coarse-grain granularity or they require significant design
cost overhead. For example, Razor DVS [15] proposes a
technique to eliminate safety margins by running below
critical voltage and subsequently tuning the processor
voltage based on error rate. One of the main drawbacks of
this work is the upfront additional circuitry required for
Razor flip flops (RFF) and their associated power
overhead. As RFFs are used on critical paths, meeting the
chip’s timing requirements and recovering pipeline state
are challenging tasks that incur design overheads. On the
other hand, DRM’s uniform allocation provides high
performance only for some applications, those that have
high reliability slack, whereas our technique provides
higher performance for all applications during the initial
years and gracefully degrade performance as the device
ages.

T. Austin et al., [16] propose a new software-based defect
detection and diagnosis technique, which is based on
using special firmware to insert tests for diagnosis and if
needed repair through resource reconfiguration. Smolens
et al., [17] present an in-field early wear-out fault
detection scheme that relies on the Operating System to
switch between functional and scan mode to test the chip
in near-marginal conditions. Our technique uses similar
software/hardware framework to address transistor aging,
where the chip not only tests itself but also adapts to the
changing conditions.

1.2 Motivation & Vision
The main drawback of burn-in and manufacturing time guard-
bands is that they are static and expensive. Static guard-band
may not be adequate for all parts; if the guard-band is
increased, it may be excessive for other parts. This points
to a need for flexible and scalable approaches that allow
for continuous adjustments to combat degradation. The
workloads running on a hardware platform are not static,
but variable. The number of applications, their
performance and power requirements, and the usage
models vary based on the user demands and
environmental conditions. Therefore, continuous
adjustment of frequency/voltage seems natural.

We propose a system level architecture that is based on
virtualization of device aging management.
Virtualization, in this context, is a software process with
some hardware collateral that helps finding the optimal
frequency. The proposed virtual framework provides
architects with a layer of software that resides in memory
concealed from all conventional software, thus isolating
the functions of the implementation-specific device aging

management features from the user and the operating
system. The main idea is to expose the details of lower
level hardware specific components to special software.
This software provides flexible management capabilities
of sensing, testing, and adapting the system over its
lifetime. In an effort to address the drawbacks of
conventional approaches discussed earlier, the proposed
scheme has the following objectives:

Flexibility and Scalability: The layers of abstraction that
exist between the hardware and software should hide
intricate details that are necessary to manage
frequency/voltage of the system efficiently and insulate
OS. This will allow hardware to evolve freely.

Low Cost: Frequency calibration without a tester will
require some hardware collateral. This should be kept at
bare minimum and should not impact power and
performance of a processor.

Maximized Performance with non-stop management:
Benefits from frequency adjustments will be greatest
when the frequency decrements are small and adjustment
is continuous.

Self and Field Testing: Proposed scheme allows the
hardware to be its own instrument and enables self test
during field operation. The flexibility of software allows
the system to adapt to the changing environment and
invoke the device aging management at variable intervals.
Thus, if the device was controlling a Mars Rover, it will
continue to adjust its operating frequency and voltage
without requiring a tester attached to it.

Crash Recovery and Workload Adaptation: The proposed
management software provides checkpoint capabilities to
enable system recovery while the system tests itself.
Additionally, the real-time environment and varying
workload demands are used to optimize their effects on
the lifetime reliability.

In summary the vision of the proposed virtual framework
for device aging management is to adjust the system as
performance degrades over its lifetime, and provide a cost
effective and flexible solution that scales for future
technologies.

2. Modeling Lifetime Reliability
In this section we discuss models for lifetime reliability.
We provide a brief background on lifetime reliability
concepts. Then we discuss the failure mechanisms and
models proposed in [3]. The NBTI model and reliability
concepts form the basis of our work.

2.1 Lifetime Reliability Background
Processor lifetime can be expressed in mean-time-to-
failure (MTTF). Typical designs target a MTTF of 30
years [3]. While this value may seem long for processors,
which are typically replaced every few years, it is
important to distinguish between the expected years of

consumer use and the MTTF. The expected consumer use
for a processor is 11 years [3]; the much longer MTTF
ensures that the probability of failure during the expected
use is small and in lies the tail end of the failure
distribution. An alternative lifetime metric is failures-in-
time (FIT), or the number of failures expected per billion
hours. FIT relates to MTTF as:

 FIT = 109 / MTTF

FIT is a convenient expression compared to MTTF
because FIT values can be summed while MTTF cannot.
A MTTF of 30 years can be expressed as about 4000 FIT.

Failures can occur in several components due to several
mechanisms, as is discussed in the next subsection. These
component failures are typically related to processor
failure using the sum-of-failure-rates (SOFR) model,
which assumes the first failure of any component under
any mechanism causes the entire system to fail, that each
failure mechanism is independent, and that each
mechanism’s failure rate is constant (i.e., not a function of
time or the age of the processor). Using this model, the
FIT of the processor can be computed by summing the
FIT rates of each failure mechanism for each component.

Of course, actual failure rates are not constant, they
increase with processor age. However, time-invariant
failure models are commonly used due to their availability
and simplicity.

2.2 RAMP: Failure Mechanisms and Model
Lifetime reliability is affected by five primary wear-out
mechanisms expressed in the RAMP (Reliability Aware
Microprocessor) model proposed in [3][30]: Electro-
migration, Stress migration, Time-dependent dielectric
breakdown, Thermal cycling, and NBTI. Electro-
migration is the accumulation or depletion of interconnect
material due to long-term current flow. Stress migration is
the migration of interconnect material due to mechanical
stress caused by differing thermal expansion rates of
materials. Time-dependent dielectric breakdown is the
formation of a conductive path in the nominally insulating
gate-oxide of transistors. Thermal cycling is damage,
particularly in the processor package, from repeated
changes in temperature. Reference [30] provides a more
detailed description of the above failure mechanisms.

For each failure mechanism, RAMP provides expressions
proportional to the MTTF for each individual component.
The MTTF can be expressed as a function of temperature
– higher temperature and wider temperature swings
generally cause more failures than other parameters such
as voltage, frequency, and activity factor. The relevant
equations all take this simplified form [30]:

 MTTF = K * f (Temperature)

The proportionality constants (K) in these equations relate
to the cost of “qualifying” the processor to achieve the

desired MTTF. For a system with the same target MTTF,
a design with higher proportionality constants (K)
survives more wear and incurs more expense for
materials, testing, reliability analysis, and so on.

To relate easily-understandable architectural parameters
to reliability cost, [3] uses a “qualification temperature,”
Tqual, as a proxy for cost and these proportionality
constants. Tqual is a fixed, design-time parameter for a
processor. A design with higher Tqual implies higher
proportionality constants (i.e., K from above) and higher
reliability cost. As in [3], for a given target MTTF, the
proportionality constants (K) for a specific Tqual for each
failure mechanism are computed by assuming a constant
temperature of Tqual (using the technology’s voltage and
frequency values and worst-case activity factors for the
functions that take those parameters). RAMP uses the
proportionality constants computed for a Tqual to
determine the observed MTTF based on observed
processor temperature, voltage, frequency, and activity
factor.

In this paper we primarily focus on NBTI as it has
received a lot of recent attention. However, we note that
the proposed scheme will work equally well for several
other failure models.

3. System Reliability Manager
In this section we present the idea of a system reliability
manager in the context of protection against device
performance degradation caused by NBTI or similar
physical causes. The core requirement for this manager is
to sense the impact of power delivery, temperature and
the workload on the hardware platform, and subsequently
respond by reconfiguring the platform. The
reconfiguration is primarily confined to the adaptation of
supply voltage and/or operating frequency.

Pure hardware implementation of a reliability manager is
costly and requires a priori information about the usage of
a chip. On the other hand, pure software based approach
needs instrumentation capabilities to address the issue of
low level communication with the hardware.
Additionally, operating system based implementation
lacks flexibility due to strict interface abstractions to the
hardware platform. These constraints drive us towards
virtual management where the processor tests itself and
finds its own frequency and voltage. An integral part of
this system is crash recovery management that is built
into the virtual layer.

The viability of a system reliability manager revolves
around a cost-effective solution that can deliver self-
testing and self-recovery capabilities in a flexible and
scalable manner. In this section we describe this in detail.
Our scheme has both hardware and software components.
The hardware components are the knobs and their control
mechanisms to adapt supply voltage and/or frequency to
the changing reliability requirements [18]. The hardware

platform also provides support for processor virtualization
features like expanded isolation capabilities, and
mechanisms for smooth and quick thread context
switching capabilities [19].

The software component of our scheme is the device
aging management software than runs natively as a guest
privileged process on the hardware platform. We assume
a thin Virtual Machine Monitor (VMM) running
underneath the OS software stack, which is primarily used
to enter and exit the System Reliability Manager (SRM)
[19]. SRM software is concealed from all conventional
software including the Operating System and may share
the caching hierarchy of the platform for performance
reasons. SRM software maintains a software timer for
invocation control and crash recovery. SRM software also
provides system checkpoint capabilities to enable self-
testing capabilities without taking the system offline.
Finally, the SRM software enables carefully crafted
functional stress tests or built-in self-test control to
identify degradation at a component granularity, and
provides adjustments for sustained performance levels at
target reliability. SRM software is akin to hypervisor that
is commercially available [20].

3.1 SRM Architecture Framework
A high level system’s view of the SRM architecture is
shown in Figure 1. The SRM maintains a timer that is
setup at chip initialization and then on every subsequent
SRM exit. This timer is adjusted by the SRM to adjust its
sampling to optimize the reliability requirements. When
SRM is active, it has the highest privileged access to the
hardware platform and the knobs to control supply
voltage and operating frequency. The interface between
SRM and the hardware platform is shown in Figure 1.

Hardware

Software

OS/Applications with Abstractions

System Manager

Thin (Virtual) Layer of Software
With Knowledge of Hardware

Figure 1. System Reliability Manager’s System View

The Voltage Control Register (VCR) and the Frequency
Control Register (FCR) are adjusted to control the
hardware platform configuration. Once SRM software
completes its work to determine the actions regarding
device aging management, it exits via the VMM and
passes control back to the Operating System. As a result,
our approach delivers a hardware-software co-designed

solution that assists the hardware to dynamically adjust to
tackle the reliability concerns over the chip lifetime.

Div Inc/Dec

DIV
PLL

REFCLK

Divider
Control

PLL Control

System
CLK

Voltage
Control
Register

Frequency
Control
Register

Voltage
Regulator

Module

VID Command

Supply Voltage

System Reliability Manager

SRM
Controller

Figure 2. SRM Interface & Hardware View

3.2 SRM Software Flow
Figure 3 shows the flow diagram for the SRM software.
Instead of using a worst-case guard-band over the entire
lifetime of a design, the system starts off with the best-
case frequency and voltage setting at first boot-up by
invoking SRM. First invocation of SRM is specifically
useful to calibrate a system to its power supply and
cooling environment.

The steps for FMAX testing are as follows:

i) Upon entry to SRM, all states are check pointed to
ensure recovery from catastrophic system failure
during testing. This includes the known operating
FMAX/VMIN for system

ii) FCR is initialized to a low frequency value to set
the frequency of the system. SRM timer is setup to
enable self-recovery, and then test sequences are
initiated

iii) If the test passes, FCR value is adjusted for a higher
frequency, the timer is reset and test is rerun (back
to step ii)

iv) If the test fails, upper limit on frequency is found

v) If the system hangs, the timer interrupts. This
interrupt automatically updates FCR to the last
good value and passes control back to SRM for
system recovery

Once the FMAX is found for a given VDD, the SRM adds a
small guard-band to last until the next invocation of SRM.

It also schedules the timer for next invocation of SRM
and exits by giving control back to the OS. SRM can be
invoked during subsequent boot-ups or by request from
system administrator. This is especially helpful when
user/OS knowledge of system’s usage and load can be
used to invoke re-evaluation of the chip. Additionally,
SRM timer can be setup based on product specification or
some on-chip degradation sensing mechanism. For
example, NBTI which is shown to have a large
dependence on temperature can be analytically modeled
in the SRM software, which can use the chip’s thermal
sensors to approximate the scheduling interval for re-
evaluation. Additionally, if the system is expected to
degrade 10MHz every month, the SRM timer can also be
statically setup to re-evaluate monthly.

Similar set of steps can also be used to find VMIN for a
given frequency. The information about VMIN is critical
for correct operation of Dynamic Voltage and Frequency
Scaling (DVFS) for thermal management [21].

System Bootup Administrator Timer Expiration

Invoke SRM

Checkpoint System State for Rollback Recovery

Capture Operating Frequency

Setup SRM Timer
for Crash Recovery

SRM
TIMER

Raise Chip Frequency
(Re-lock PLLs)

Invoke Functional Stress
Threads for Chip Testing

Stress Test
Result?

PASS

FAIL

Set System Operating Frequency/Voltage (with margin)

Set SRM Timer for Next Invocation and Exit

Capture Operating Voltage

Setup SRM Timer
for Crash Recovery

Raise Chip Voltage
(Voltage Regulator)

Invoke Array BIST
for Chip Testing

Array BIST
Result?

FAIL

Test FMAX / VMINFMAX VMIN

SR
M

 N
ot

 D
on

e

Figure 3. SRM Software Flow

3.3 Self-Testing Mechanisms
A key requirement for successful reconfiguration is
complete knowledge about locations of failures and the
nature of such failures. Our architecture framework offers
low cost testing similar to the work presented in earlier
research [16][17][22][23]. Instead of relying on costly and
time consuming built-in structures our software based
scheme offers comprehensive functional testing

framework. Based on our data analysis, presented in
section 5, SRM is invoked at the granularity of weeks or
days, so our methodology can use tests that run for longer
durations (10s of ms). Figure 4 shows a flow diagram of
the major components and their interactions for FMAX
testing. First phase involves carefully crafting software
threads for the target system. In the second phase, these
tests are compiled into SRM software, where code, data
and exception handlers are setup along with routines for
final result checking. During runtime, these test sequences
are applied to the hardware platform as shown in Figure
3. Since these tests are run in the system environment
unlike [23], the tests can make explicit external memory
references.

Most of the modern designs come with lots of SRAM
arrays. Due to a standardized structure of these arrays,
built-in self-test (BIST) is commonly available on most
designs with a diverse set of test vectors. Our framework
provides a simple interface through SRM software to
invoke these BIST engines and then check their results to
determine a pass/fail for VMIN testing.

Static Timing
Analysis

Architecture
Specification

Logic
Specification

Carefully Crafted Test Sequences Simulator
Verification

Golden
Output

Setup SRM Software
(Code, Data & Exception Handler)

Hardware Platform

SRM Monitor SRM Timer

Figure 4. Functional FMAX Testing Framework

3.4 Checkpoint and Crash Recovery
The main idea presented in this paper is to push the
operating frequency and voltage to its limit, while the
chip degrades during its lifetime. A major hurdle in such
an architecture framework is that the system may crash
during testing under such extreme operating conditions.
The result of such a crash may range from incorrect
results to a total system failure where a reset may be
necessary. Our framework provides a cost-effective
software-only mechanism to revert the system back to its
pre-crash checkpoint of the system similar to SafetyNet
[24] and ReVive [25].

Whenever SRM is invoked to find the optimal operating
frequency and voltage, a system-wide checkpoint is
initiated. The checkpoint includes the state of the core
registers, memory values and coherence/communication

messages. The core registers are explicitly check-pointed,
while the memory/coherence state is logged whenever an
action (store or a transfer of ownership) might have to be
undone. Additionally, all components in the chip are
coordinated such that a consistent checkpoint is taken and
stored in the non-volatile memory. Now the SRM can
start its path finding process as shown in Figure 3.

In case the SRM is invoked due to a crash, the system
rollback process is initiated. The cores restore their
register checkpoints and the caches/memories unroll their
local logs to recover the system to the consistent global
state at the pre-crash recovery point. After the recovery,
the system resumes execution. As the SRM invocation is
done infrequently, the cost of taking a checkpoint and
rollback is negligible considering that it’s a one time cost
for each SRM invocation.

3.5 Self-Recovery Knobs
The knobs needed to adjust FMAX and VMIN at runtime are
shown in Figure 1. For operating frequency adjustment
the new frequency setting can be adjusted by re-locking
the PLL to the required setting. Additionally, the
operating voltage is adjusted by sending a command to
the voltage regulator module (VRM) to adjust the chip
voltage. The VRM subsequently returns a new supply
voltage. The SRM provides a simple interface to the
hardware platform to request changes to the operating
frequency and voltage.

4. Experimental Methodology
In this section we discuss our simulation environment.
We use SESC cycle-level MIPS simulator for developing
the SRM framework [26]. We have extended SESC to
invoke Wattch [27] and Cacti [28] power estimation tools,
and HotSpot temperature modeling tool [29]. For
evaluating processor lifetime reliability at runtime, we
integrated the RAMP model [30] in our simulator.
Although RAMP provides analytical models for five
intrinsic failure mechanisms, we only use NBTI in this
study. We model a single superscalar processor with a
floorplan containing twenty two structures. System
parameters used are shown in TABLE I .

The NBTI model used in RAMP is based on recent work
by Zafar et al. at IBM [4]. This model shows that NBTI
has a strong dependence on temperature in addition to
electric field. The temperature and average MTTF is
tracked for each structure in the processor over the entire
simulation run. Our framework assumes that the first
instance of any structure failing causes the entire
processor to fail.

200 cyclesOff-chip memory latency

152, 64ROB Size, LSQ

2M 8-way shared, 10 cyclesL2

64KB 4-way I & D, 2 cyclesL1

6, 4, 4 (out-of-order)Fetch, Issue, Retire Width

Processor Parameters

200 cyclesOff-chip memory latency

152, 64ROB Size, LSQ

2M 8-way shared, 10 cyclesL2

64KB 4-way I & D, 2 cyclesL1

6, 4, 4 (out-of-order)Fetch, Issue, Retire Width

Processor Parameters

10,000 cyclesTemperature Sampling Interval

85°CMaximum Temperature

0.5 mmDie Thickness

0.8 K/WPackage Thermal Resistance

45°CAmbient Temperature

Hotspot Parameters

10,000 cyclesTemperature Sampling Interval

85°CMaximum Temperature

0.5 mmDie Thickness

0.8 K/WPackage Thermal Resistance

45°CAmbient Temperature

Hotspot Parameters

10,000 cyclesRAMP Sampling Interval

82°CQualification Temperature per Structure

RAMP Parameters

10,000 cyclesRAMP Sampling Interval

82°CQualification Temperature per Structure

RAMP Parameters

TABLE I . System Parameters

For our analysis, we chose SPEC2000 benchmarks. The
choice of benchmark phases is primarily based on their
thermal behavior with mcf being cold, gcc, gzip, ammp
being moderate, and vortex, equake, art, bzip2 being hot.
Each benchmark is fast forwarded 2 billion instructions,
followed by HotSpot and RAMP initialization for each
structure. This ensures that the processor as well as
HotSpot and RAMP model get sufficient warm up.

We assume 65nm technology with chip wide maximum
VDD of 1.1V, and frequency of 2.0 GHz. For SRM
evaluation, we vary Vdd and frequency by 5% downward
steps up to a minimum of 0.88V and 1.6 GHz. For each
benchmark, twenty five simulations are conducted with a
pre-determined frequency/voltage setting. Each
simulation is run for 1 billion instructions and
performance evaluated based on throughput. At the end of
each simulation, average MTTF per structure is sorted for
each structure and the worst case MTTF is reported. For
analysis purposes, we use an MTTF of 1 year, while we
realize that expected consumer use for a processor is 11
years. Our results should hold for an 11 year MTTF as
well.

5. Data Analysis
Figure 5 shows the impact of varying frequency at a given
voltage setting for the hottest structure in the bzip2
benchmark. As the frequency is scaled down, the
benchmark’s performance degrades, while the
temperature falls. On the other hand, Figure 6 shows that
impact of voltage on temperature, assuming the chip
remains functional. We assume that initially the chip is
fully functional at 2.0GHz and 1.1V, which implies that
for this voltage, frequencies below 2.0GHz are allowed. If
the voltage is lowered, the maximum operating frequency
will degrade. SRM on its invocation iteratively evaluates
for the maximum possible operating frequency under a

specified operational voltage. The key question is: What
is the scheduling interval for SRM?

Figure 5. Scaling Freq. for bzip2: Thermal profile for IntReg

Figure 6. Scaling voltage for bzip2: Thermal profile for IntReg

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

VORTE
X

BZIP
2

EQUAKE
ART

GZIP
GCC

AMMP
MCF

SPEC2000 Workloads

W
or

st
 c

as
e

M
TT

F
(M

on
th

s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el

at
iv

e
Pe

rfo
rm

an
ce

MTTF Performance

Figure 7. Lifetime Reliability Tradeoffs for SRM

Figure 7 plots the performance and the worst case MTTF
for all benchmarks when simulation is run at 2GHz and
1.1V. It can be concluded from our simulations that the

performance (IPC or throughput) of a benchmark directly
impacts the worst case MTTF for the chip. How quickly
one can expect a failure to occur is dependent on the
workload. So, a mechanism that keeps track of the
performance of each live thread in the system is desirable
for tuning the scheduling algorithm for the SRM.

Figure 8 and Figure 9 show the impact of chip’s lifetime
degradation when voltage or frequency is scaled down.
The rate of change in MTTF is linear and its slope is
dependent on the type of benchmark. This data shows that
workload’s thermal and performance behavior can be
used as a metric to track the rate of change in the MTTF.

We also observe from this data that even though we
designed our system to sustain MTTF of 1 year with a

qualification temperature of 82°C for each structure, the
worst case MTTF can be better than expected. For
example, mcf benchmark has the worst case temperature
of ~80°C, which results in no expected degradation for
the 1 year period. Hence, if the system only runs under a
similar workload conditions, the SRM scheduling is not
needed for the 1 year period.

On the other hand, if vortex or similar thermally hot
workloads are being run on the system for the prescribed
period, initially a monthly re-evaluation will suffice and
once the system starts degrading and the operational
settings have to be changed, re-evaluation can be
scheduled for twice a week.

9

10

11

12

13

14

1.6
Ghz

__0
.88V

1.6
Ghz

__0
.935

V

1.6
Ghz

__0
.99V

1.6
Ghz

__1
.045

V

1.6
Ghz

__1
.1V

1.8
Ghz

__0
.88V

1.8
Ghz

__0
.935

V

1.8
Ghz

__0
.99V

1.8
Ghz

__1
.045

V

1.8
Ghz

__1
.1V

2.0
Ghz

__0
.88V

2.0
Ghz

__0
.935

V

2.0
Ghz

__0
.99V

2.0
Ghz

__1
.045

V

2.0
Ghz

__1
.1V

Varying Voltage (while keeping Frequency constant)

W
or

st
 c

as
e

M
TT

F
(M

on
th

s) VORTEX BZIP2 EQUAKE ART GZIP GCC AMMP MCF

Figure 8. Impact of varying Voltage across benchmarks

9

10

11

12

13

14

1.6
Ghz

__0
.88

V

1.7
Ghz

__
0.8

8V

1.8
Ghz

__
0.8

8V

1.9
Ghz

__0
.88V

2.0
Ghz

__
0.8

8V

1.6
Ghz

__0
.99V

1.7
Ghz

__
0.9

9V

1.8
Ghz

__0
.99V

1.9
Ghz

__
0.9

9V

2.0
Ghz

__
0.9

9V

1.6
Ghz

__
1.1

V

1.7
Ghz

__1
.1V

1.8
Ghz

__
1.1

V

1.9
Ghz

__
1.1

V

2.0
Ghz

__1
.1V

Varying Frquency (while keeping Voltage constant)

W
or

st
 c

as
e

M
TT

F
(M

on
th

s)

VORTEX BZIP2 EQUAKE ART GZIP GCC AMMP MCF

Figure 9. Impact of varying Frequency across benchmarks

y = -0.033x + 14.106

y = -0.0618x + 13.161

y = -0.0838x + 12.207

9

10

11

12

13

14

15

1.6
Ghz

__
0.8

8V

1.7
Ghz

__0
.88V

1.6
Ghz

__
0.9

35
V

1.8
Ghz

__
0.8

8V

1.7
Ghz

__0
.935

V

1.6
Ghz

__0
.99V

1.9
Ghz

__
0.8

8V

1.7
Ghz

__0
.99

V

1.8
Ghz

__
0.9

35
V

1.6
Ghz

__
1.0

45
V

2.0
Ghz

__0
.88

V

1.9
Ghz

__
0.9

35
V

1.6
Ghz

__
1.1

V

1.7
Ghz

__
1.0

45
V

1.8
Ghz

__
0.9

9V

2.0
Ghz

__0
.935

V

1.9
Ghz

__0
.99V

1.7
Ghz

__
1.1

V

1.8
Ghz

__1
.04

5V

2.0
Ghz

__0
.99V

1.9
Ghz

__
1.0

45
V

1.8
Ghz

__
1.1

V

2.0
Ghz

__1
.045

V

1.9
Ghz

__
1.1

V

2.0
Ghz

__
1.1

V

Frequency and Voltage Setting

W
or

st
 c

as
e

M
TT

F
(M

on
th

s)
VORTEX BZIP2 EQUAKE ART GZIP GCC AMMP MCF Linear (Cold) Linear (Moderate) Linear (Hot)

Figure 10. Rate of change for worst case MTTF as a function of benchmarks and operating conditions

Figure 10 shows the worst case MTTF degradation for each
benchmark under all operating conditions (sorted by
MTTF) considered in this study. The x-axis shows that all
benchmarks can achieve an MTTF of 1 year if the system
constantly operates at 1.6GHz and 0.88V, but this comes at
the cost of performance. On the other hand, if the operating
conditions are initially set to 2GHz and 1.1V, the system
can be operational for most of its lifetime. SRM can be
invoked at regular intervals to adjust the frequency
downwards and keep the system operational. Additionally,
as the system starts deteriorating, the history can be
recorded to guide the fine-grain scheduling interval for
SRM. This is not described here for the sake of brevity of
this paper.

6. Conclusions
We have presented a novel device aging management
scheme for continuous adjustment of frequency and
minimum supply voltage based on a co-designed virtual
machine. The scheme requires no tester for determining
FMAX and VMIN. Hardware collateral to implement this
scheme is minimal that includes instructions for updating
frequency and voltage control registers, which are already
found in modern processor systems. The proposed solution
allows the hardware to be its own instrument and enables
self test during field operation by guiding the system to
crash and recover during adjustment of its operating
conditions. By insulating the device aging management
from conventional software, the proposed framework
shields the system and application software from managing
low level details. The flexibility of software allows the
system to adapt to the changing environment and invokes
device aging management at appropriate intervals. The
greatest benefits of this approach are (i) device operation
near peak frequency throughout product life and (ii)
protection against failure due to insufficient lifetime guard-

band, (iii) no system downtime or change from a user
perspective.

Acknowledgments
This material is based upon work supported by the National
Science Foundation. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

We thank Michael Powell and Krishna Rangan of Intel
Corporation for their insightful discussions and feedback.
We would also like to thank David Albonesi and Paula
Petrica of Cornell University and Pradip Bose of IBM
Corporation for supporting the integration of RAMP
reliability model in our simulation framework.

References
[1] International Technology Roadmap for

Semiconductors (ITRS). Document available at
http://public/itrs.net/

[2] S.Y. Borkar, “Designing Reliable Systems from
Unreliable Components: The Challenges of Transistor
Variability and Degradation”, In IEEE Micro, Vol. 25,
Issue 6, Nov.–Dec. 2005

[3] J. Srinivasan et al., “The case for lifetime reliability-
aware microprocessors”, In Int’l Symposium on
Computer Architecture, June 2004

[4] S. Zafar et al., “ A Model for Negative Bias
Temperature Instability (NBTI) in Oxide and High K
PFETs”, In Symposia VLSI Technology and Circuits,
2004

[5] W. Abadeer, W. Ellis, “Behavior of NBTI under AC
Dynamic Circuit Conditions”, In Int’l Reliability
Physics Symposium, 2003

[6] M. Agostinelli et al., “Erratic Fluctuations of SRAM
Cache Vmin at the 90nm Process Technology Node”,
In Electron Devices Meeting (IEDM), 2005

[7] V. Reddy et al., “Impact of Negative Bias Temperature
Instability on Digital Circuit Reliability”, In Intl.
Reliability Physics Symposium, 2002

[8] S. Kundu et al., “Trends in manufacturing test methods
and their implications”, In Intl. Test Conference, pp.
679-687, 2004

[9] J. Abella et al., “Penelope: The NBTI-Aware
Processor”, In Int’l Symposium on Microarchitecture,
2007

[10] S. Mitra, E. J. McClusky, “WORD VOTER: A New
Voter Design for Triple Modular Redundancy
Systems”, In Symposium VLSI Test., 2000

[11] T. Lin et al., “Error Log Analysis: Statistical Modeling
and Heuristic Trend Analysis”, In IEEE Transactions
on Reliability, Oct. 1990

[12] A. Tiwari et al., “ReCycle: pipeline adaptation to
tolerate process variation”, In Int’l Symposium on
Computer Architecture, 2007

[13] J. Srinivasan et al., “Lifetime Reliability: Toward an
Architectural Solution”, In Int’l Symposium on
Computer Architecture, May 2005

[14] J. Srinivasan et al., “The Impact of Technology Scaling
on Lifetime Reliability”, In Intl. Conference on
Dependable Systems and Networks, 2004

[15] S. Das et al., “Razor: A self-tuning DVS processor
using delay-error detection and correction”, In
Symposium on VLSI Circuits, 2005

[16] K. Constantinides, O. Mutlu, T. Austin, V. Bertacco,
“Software-Based Online Detection of Hardware
Defects: Mechanisms, Architectural Support and
Evaluation”, In Int’l Symposium on Microarchitecture,
2007

[17] J. Smolens et al., “Detecting Emerging Wearout
Faults”, In IEEE Workshop on Silicon Errors in Logic
– System Effects, 2007

[18] J. Tschanz et al., “Adaptive frequency and biasing
techniques for tolerance to dynamic temperature-
voltage variations and aging”, In Int’l Solid State
Circuits Conference, 2007

[19] J. Smith, R. Nair, “Virtual Machines: Versatile
Platforms for Systems and Processes”, Morgan
Kaufmann Pub, 2005

[20] “IBM Systems Virtualization”, IBM Corp., Ver.2
Rel.1, 2005

[21] S. Naffziger et al., “Power and Temperature Control on
a 90nm Itanium®-Family Processor”, In Int’l Solid
State Circuits Conference, 2005

[22] Y. Li, S. Makar, S. Mitra, “CASP: Concurrent
Autonomous Chip Self-Test Using Stored Test
Patterns”, In Design, Automation and Test in Europe,
2008

[23] P. Parvathala et al., “FRITS – A Microprocessor
Functional BIST Method”, In Int’l Test Conference,
2002

[24] D. J. Sorin, et al., “SafetyNet: Improving the
Availability of Shared Memory Multiprocessors with
Global Checkpoint/Recovery”, In Int’l Symposium on
Computer Architecture, 2002

[25] M. Prvulovic et al., “ReVive: Cost-Effective
Architectural Support for Rollback Recovery in
Shared-Memory Multiprocessors”, In Int’l Symposium
on Computer Architecture, May, 2002

[26] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic,
L. Ceze, S. Sarangi, P. Sack, K. Strauss, and P.
Montesinos, “SESC Simulator”, 2005;
http://sesc.sourceforge.net

[27] D. Brooks et al., “Wattch: A framework for
architectural-level power analysis and optimizations”,
In Int’l Symposium on Computer Architecture, 2000

[28] P. Shivakumar and N. P. Jouppi, “CACTI 3.0: An
integrated cache timing, power, and area model”, WRL
Technical Report, Compaq, 2001

[29] K. Skadron et al., “HotSpot: Techniques for Modeling
Thermal Effects at the Processor-Architecture Level”,
In THERMINIC, 2002

[30] J. Srinivasan et al., “RAMP: A Model for Reliability
Aware Microprocessor Design”, IBM Research Report,
Dec. 2003

Exploiting Value Prediction for Fault Tolerance

Xuanhua Li and Donald Yeung

Department of Electrical and Computer Engineering

Institute for Advanced Computer Studies

University of Maryland at College Park

Abstract

Technology scaling has led to growing concerns
about reliability in microprocessors. Currently, fault
tolerance techniques rely on explicit redundant exe-
cution for fault detection or recovery which incurs
significant performance, power, or hardware over-
head. This paper makes the observation that value
predictability is a low-cost (albeit imperfect) form of
program redundancy that can be exploited for fault
tolerance. We propose to use the output of a value
predictor to check the correctness of predicted in-
structions, and to treat any mismatch as an indi-
cator that a fault has potentially occurred. On a
mismatch, we trigger recovery using the same hard-
ware mechanisms provided for mispeculation recov-
ery. To reduce false positives that occur due to value
mispredictions, we limit the number of instructions
that are checked in two ways. First, we character-
ize fault vulnerability at the instruction level, and
only apply value prediction to instructions that are
highly susceptible to faults. Second, we use confi-
dence estimation to quantify the predictability of in-
struction results, and apply value prediction accord-
ingly. In particular, results from instructions with
higher fault vulnerability are predicted even if they
exhibit lower confidence, while results from instruc-
tions with lower fault vulnerability are predicted only
if they exhibit higher confidence. Our experimental
results show such selective prediction significantly
improves reliability without incurring large perfor-
mance degradation.

1 Introduction

Soft errors are intermittent faults caused by cos-
mic particle strikes and radiation from packaging
materials. They do not cause permanent damage,
but still corrupt normal program execution. Tech-
nology scaling combined with lower supply voltages
make systems more vulnerable to soft errors. Hence,
soft errors have become an increasingly important

design consideration with each successive generation
of CPUs.

To enhance system reliability, existing techniques
typically introduce redundant execution–by taking
either a hardware or software approach–to detect or
recover from faults. On the hardware side, error-
detection circuitry (ECC or parity bits) can be
added to storage structures. Other hardware tech-
niques utilize additional structures such as extra
processor cores, hardware contexts, or functional
units [1, 2, 3, 4, 5] to execute redundantly in or-
der to compare results and detect faults. In con-
trast to hardware techniques, software-based tech-
niques rely on the compiler to duplicate program
code [6, 7, 8]. This software redundancy also per-
mits comparison of results at runtime, but with-
out any additional hardware cost. While differ-
ing in implementation, both hardware and software
approaches create explicit redundancy to provide
fault tolerance which incurs significant performance,
power, or hardware overhead.

Prior studies have shown that program execu-
tion itself contains a high degree of redundancy–
i.e., instruction and data streams exhibit repeata-
bility. One example of exploiting such inherent re-
dundancy is value prediction which predicts instruc-
tion results through observation of past values. By
predicting values before they are executed, data de-
pendency chains can be broken, permitting higher
performance. Unfortunately, value prediction has
had limited success in commercial CPUs due to its
relatively low prediction accuracy and high mispre-
diction penalty, the latter becoming increasingly se-
vere with deeper processor pipelines.

In this work, we employ value prediction to im-
prove system reliability. Compared to explicit re-
dundant execution techniques, the advantage of
value prediction is it exploits programs’ inherent
redundancy, thus avoiding the cost of explicitly du-
plicating hardware or program code as well as the
associated area, power, and performance overheads.
Although a value predictor itself incurs some addi-

tional hardware, we find a relatively small predictor
can effectively detect faults; hence, our approach
incurs less hardware than traditional explicit dupli-
cation techniques.

In addition to exploiting inherent program redun-
dancy, another advantage of our approach is it is
less sensitive to the negative effects of mispredic-
tion. Mispredictions are always undesirable from
the standpoint of performance since they require
flushing the pipeline. Because traditional uses of
value prediction are focused on improving perfor-
mance, such flushes undermine their bottom line.
However, in the context of fault detection/recovery,
flushes can be desirable because they reduce the
time that program instructions (particularly those
that are stalled) spend in the pipeline, thus improv-
ing architectural vulnerability. Rather than always
being undesirable, for our technique, mispredictions
represent a tradeoff between performance and re-
liability. Lastly, compared to traditional uses of
value prediction, our technique does not require as
fast value predictors. For performance-driven tech-
niques, value predictions are needed early in the
pipeline. In contrast, for fault detection/recovery,
value predictions can be delayed until the writeback
stage, where value checking occurs.

To maximize the efficacy of our technique, we fo-
cus value prediction only on those instructions that
receive the greatest benefit. In particular, we char-
acterize fault vulnerability at the instruction level,
and apply value prediction only to those instruc-
tions that are most susceptible to faults.1 An in-
struction’s fault vulnerability in a specific hardware
structure is quantified by measuring the fraction of
the structure’s total AVF (Architectural Vulnerabil-
ity Factor) that the instruction accounts for. Our
results show a small portion of instructions account
for a large fraction of system vulnerability. For ex-
ample, for the fetch buffer in our processor model,
about 3.5% of all instructions are responsible for
53.9% of the fetch buffer’s total AVF in the TWOLF
benchmark. This suggests that selectively protect-
ing a small number of instructions can greatly en-
hance the overall reliability. Because we apply value
prediction only on a small number of instructions,
the potential performance loss due to mispredictions
is also quite small.

To further reduce the impact of mispredictions,

1Identifying the most vulnerable instructions occurs late

in the pipeline. Thus for implementation with more advanced

but slower value predictor, all result-producing instructions

are eligible for prediction once they enter the pipeline, but

only those that are later identified as the most susceptible to

faults will have their results checked and update the predic-

tor.

we use an adaptive confidence estimation technique
to assess the predictability of instructions, and ap-
ply prediction accordingly. Our approach is adap-
tive because it applies prediction more or less ag-
gressively depending on each instruction’s fault vul-
nerability (which can be quantified through its la-
tency). Instructions with high fault vulnerability
are predicted even if they exhibit low confidence,
while instructions with low fault vulnerability are
predicted only if they exhibit high confidence. Our
results show that this technique achieves significant
improvements in reliability without sacrificing much
on performance.

The rest of the paper is organized as follows. Sec-
tion 2 introduces how we apply value prediction for
fault detection. We mainly discuss our study on
characterizing instructions’ vulnerability to faults,
as well as our methods for selecting instructions for
fault protection. Then, Section 3 describes our ex-
perimental methodology, and reports on the relia-
bility and performance results we achieve. Finally,
Section 4 presents related work, and Section 5 con-
cludes the paper.

2 Reducing Error Rate with Value

Prediction

This section describes how value prediction can
be used to reduce error rate. First, Section 2.1
discusses how we use value predictors to check in-
struction results. Then, Section 2.2 briefly describes
fault recovery. Finally, Section 2.3 quantifies in-
structions’ vulnerability to faults, and proposes se-
lectively predicting instructions to mitigate perfor-
mance loss.

2.1 Predictor-Based Fault Detection

To identify potential faults, we use a value pre-
dictor to predict instruction outputs. We employ
a hybrid predictor composed of one stride predic-
tor and one context predictor [9]. Prediction from
the context predictor is attempted first. If the con-
text predictor cannot make a prediction (see Sec-
tion 3.1), then the stride predictor is used instead
to produce a result. After a prediction is made,
the result is compared with the actual computation
result. The comparison is performed during the in-
struction’s writeback stage, so the predictor’s out-
put is not needed until late in the pipeline. Since
prediction can be initiated as soon as the instruction
is fetched, there is significant time for the predictor
to make its prediction, as mentioned in Section 1.

2

During each predictor comparison, the prediction
and actual instruction result will either match or
differ. If they match, two interpretations are possi-
ble. First, the predictor predicted the correct value.
In this case, no fault occurred since the instruction
also produced the same correct value. Second, the
predictor predicted the wrong value, but a fault oc-
curred such that the instruction produced the same
wrong value. This case is highly unlikely, and for all
practical purposes, will never happen. Hence, on a
match, we assume no fault has occurred, and thus,
no additional action is required.

Another possibility is the prediction and actual
instruction result differ. Again, two interpretations
are possible. First, the predictor predicted the cor-
rect value. In this case, a fault has occurred since
the instruction produced a different value. Second,
the predictor predicted the wrong value, and the in-
struction either produced a correct or wrong value
(again, we assume a misprediction and incorrect re-
sult will never match). Unfortunately, there is no
way to tell which of these has occurred, so at best
on a mismatch, we can only assume that there is
the potential for a fault. We always assume con-
servatively that a fault has occurred, and initiate
recovery by squashing the pipeline and re-executing
the squashed instructions in the hopes of correcting
the fault. During re-execution, if the instruction
produces the same result, then with high probabil-
ity the original instruction did not incur a fault.2 If
no fault occurred (the most likely case), the pipeline
flush was unnecessary, and performance is degraded.
(However, as we will see in Section 2.2, such “un-
necessary” flushes can actually improve reliability
in many cases).

To mitigate the performance degradation caused
by false positives, we use confidence estimation. In
particular, we employ the confidence estimator de-
scribed in [10]. We associate a saturating counter
with each entry in the value predictor table. A pre-
diction is made only when the corresponding satu-
rating counter is equal to or above a certain thresh-
old. If the prediction turns out to be correct (the
match case), the saturating counter is incremented
by some value. If the prediction turns out to be
incorrect (the mismatch case in which the original
and re-executed results are the same), the saturat-
ing counter is decremented by some value. Given
confidence estimation, we can tradeoff the number

2The comparison of a re-executed result with the origi-

nally executed result is not necessary on-line for our tech-

nique to work properly. In fact, our technique never knows

whether a mismatch was caused by a misprediction or an

actual fault. The main issue with re-execution is predictor

updates, which is discussed in Section 3.1.

of false positives with the number of predicted in-
structions (and hence, the fault coverage) by vary-
ing the confidence threshold. Section 3 will discuss
how we select confidence thresholds.

2.2 Fault Recovery

When an instruction’s prediction differs from its
computed value, it is possible a fault occurred be-
fore or during the instruction’s execution. To re-
cover from the fault, it is necessary to roll back the
computation prior to the fault, and re-execute. In
our work, we perform roll back simply by flushing
from the pipeline the instruction with the mismatch
as well as all subsequent instructions. Then, we re-
fetch and re-execute from the flush point. (A similar
mechanism for branch misprediction recovery can be
used for our technique).

Notice, our simple approach can only recover
faults that attack predicted instructions, or instruc-
tions that are downstream from a mispredicted in-
struction (which would flush not only the mispre-
dicted instruction, but also all subsequent instruc-
tions). If a fault attacks a non-predicted instruction
that is not flushed by an earlier mispredicted in-
struction, then even if the fault propagates to a pre-
dicted instruction later on, recovery would not roll
back the computation early enough to re-execute
the faulty instruction. However, even with this lim-
itation, we find our technique is still quite effective.

Because soft errors are rare, most recoveries are
triggered by the mispredictions of the value predic-
tor. As mentioned in Section 2.1, such false posi-
tives can degrade performance. However, they can
also improve reliability. Often times, re-executed
instructions run faster than the original instruc-
tions that were flushed (the flushed instructions can
prefetch data from memory or train the branch pre-
dictor on behalf of the re-executed instructions). As
a result, the re-executed instructions occupy the in-
struction queues for a shorter amount of time, re-
ducing their vulnerability to soft errors compared to
the original instructions. This effect is particularly
pronounced for instructions that stall for long peri-
ods of time due to cache misses. Hence, while false
positives due to mispredictions can degrade perfor-
mance, this degradation often provides a reliability
benefit in return. The next section describes how
we can best exploit this tradeoff.

2.3 Instruction Vulnerability

In order to reduce the chance of mispredictions
and unnecessary squashes, we not only apply confi-

3

dence estimation (as described in Section 2.1), but
we also limit value prediction to those instructions
that contribute the most to overall program reli-
ability. This section describes how we assess the
reliability impact of different instructions.

Recently, many computer architects have used
Architectural Vulnerability Factor (AVF) to rea-
son about hardware reliability [11]. AVF captures
the probability that a transient fault in a processor
structure will result in a visible error at a program’s
final outputs. It provides a quantitative way to es-
timate the architectural effect of fault derating. To
compute AVF, bits in a hardware structure are clas-
sified as critical for architecturally correct execution
(ACE bits), or not critical for architecturally cor-
rect execution (un-ACE bits). Only errors in ACE
bits can result in erroneous outputs. A hardware
structure’s AVF is the percentage of ACE bits that
occupy the hardware structure on average.

To identify ACE bits, instructions themselves
must first be distinguished as ACE or un-ACE. We
make the key observation that not all ACE instruc-
tions contribute equally to system reliability. In-
stead, each ACE instruction’s occupancy in hard-
ware structures determines its reliability contribu-
tion. As observed by Weaver et al. [12], the longer
instructions spend in the pipeline, the more they
are exposed to particle strikes, and hence, the more
susceptible they become to soft errors. Weaver et
al. proposed squashing instructions that incur long
delays (e.g., L2 cache misses) to minimize the occu-
pancy of ACE instructions. We extend this idea
by quantifying fault vulnerability at the instruc-
tion level, and selectively protecting the instructions
that are most susceptible to faults.

0

0.2

0.4

0.6

0.8

1

1.2

1
7
3
7

1
3
7
9

1
0
8
5

1
0
4
2

1
0
0
0

9
4
9

7
6
2

7
2
0

6
7
8

6
3
6

5
9
4

5
4
3

4
6
1

4
1
9

3
7
7

3
3
5

2
9
3

2
5
1

2
0
9

1
6
7

1
2
5

8
3

4
1

Instruction Latency (cycles) in Fetch Buffer

C
u
m

u
la

ti
v
e

A
V

F
 %

Cumulative AVF %

Cumulative Instruction Count %

0.54

0.04

0.72

0.08

Figure 1. Accumulative Percentage of AVF and
Instruction Count in Fetch Buffer on TWOLF.

Our approach is particularly effective because we
find a very small number of instructions account for
a majority of the AVF in hardware structures. Fig-
ure 1 illustrates this for the processor’s fetch buffer

when executing TWOLF, a SPEC2000 benchmark.
In Figure 1, the top curve plots the cumulative frac-
tion of overall AVF (y-axis) incurred by instructions
that occupy the fetch buffer for different latencies
(x-axis) sorted from highest latency to lowest la-
tency. The bottom curve plots the cumulative frac-
tion of dynamic instructions (y-axis) that experi-
ence the given latencies. In total, there are 1,944
static instructions that have been simulated. As
Figure 1 shows (the two datapoints marked on the
left of the graph), 53.9% of the fetch buffer’s AVF is
incurred in 3.5% of all dynamic instructions. These
instructions have large latencies–300 cycles or more.
As indicated by the other two datapoints marked
on the right side of the graph, the majority of in-
structions (about 91.8%) exhibit a latency smaller
than 40 cycles, and account for a relatively small
portion of the overall AVF (about 28.4%). We find
similar behavior occurs for the other benchmarks
as well as for the other hardware structures. Such
results show that using our value predictor to tar-
get a small number of instructions–those with very
large latencies–is sufficient to provide the majority
of fault protection. This is good news since it will
minimize the performance impact of mispredictions.

In our study, we find that even though an in-
struction may stall for a long time in one hardware
structure, it may not stall for very long in other
structures. In other words, a single instruction can
contribute differently to different structures’ vulner-
ability. Thus, an important question is how can we
select the smallest group of instructions that will
provide the largest benefit to reliability? In our
work, we measure the latency an instruction incurs
from the fetch stage to the issue stage, and use this
to determine each instructions’ contribution to re-
liability, applying value prediction only to those in-
structions that meet some minimum latency thresh-
old. Because our approach accounts for “front-end”
pipeline latency, we directly quantify the occupancy
of instructions in the fetch and issue queues, and
hence, are able to identify the instructions that con-
tribute the most to reliability in these 2 hardware
structures. This is appropriate for our work since
later on (in Section 3) we study our technique’s im-
pact on both fetch and issue queue reliability (we
also study the impact on the physical register file’s
reliability, though our latency metric does not di-
rectly quantify result occupancy in this structure).
If improving reliability in other hardware structures
is desired, it may be necessary to use a different la-
tency metric. This is an important direction for
future work.

4

Processor Parameters
Bandwidth 8-Fetch, 8-Issue, 8-Commit
Queue size 64-IFQ, 40-Int IQ, 30-FP IQ, 128-LSQ

Rename reg/ROB 128-Int, 128-FP / 256 entry
Functional unit 8-Int Add, 4-Int Mul/Div, 4-Mem Port

4-FP Add, 2-FP Mul/Div

Branch Predictor Parameters
Branch predictor Hybrid

8192-entry gshare/2048-entry Bimod
Meta table 8192 entries
BTB/RAS 2048 4-way / 64

Memory Parameters
IL1 config 64kbyte, 64byte block, 2 way, 1 cycle lat
DL1 config 64kbyte, 64byte block, 2 way, 1 cycle lat
UL2 config 1Mbyte, 64byte block, 4 way, 20 cycle lat
Mem config 300 cycle first chunk, 6 cycle inter chunk

Hybrid Value Predictor Parameters
VHT size 1024

value history depth 4
PHT size 1024

PHT counter thresh 3

Table 1. Parameter settings for the detailed ar-
chitectural model used in our experiments.

3 Experimental Evaluation

In Section 2, we showed a small number of in-
structions account for a large portion of hardware
vulnerability. We also qualitatively analyzed the
impact of pipeline flushes: flushing degrades per-
formance, but in some cases may improve program
reliability. We consider both findings in our design,
and use insights from both to drive confidence esti-
mation (which ultimately determines which instruc-
tions will be predicted).

This section studies these issues in detail. First,
we present the simulator and benchmarks used
throughout our experiments (Section 3.1). Then, we
present our experiments on applying value predic-
tion without confidence estimation. (Section 3.2).
The goal of these experiments is to show that we
can limit performance degradation by focusing the
value predictor on the portion of instructions that
impact system reliability the most. Finally, we add
confidence estimation, and show the improvements
this can provide (Section 3.3).

3.1 Simulator and Benchmarks

Throughout our experiments, we use a modified
version of the out-of-order processor model from
Simplescalar 3.0 for the PISA instruction set [13],
configured with the simulator settings listed in Ta-
ble 1. Our simulator models an out-of-order pipeline
consisting of fetch, dispatch, issue, execute, write-
back, and commit pipeline stages. Compared to the
original, our modified simulator models rename reg-
isters and issue queues separately from the Register

Update Unit (RUU). We also model a hybrid value
predictor that includes a single stride predictor and
a single context predictor, as described in [9]. The
value predictor configuration is shown in Table 1.

Our stride predictor contains a Value History Ta-
ble (VHT). For each executed instruction, the VHT
maintains a last-value field (which stores the in-
struction’s last produced value) and a stride field.
When a new instance of the instruction is executed,
the difference between the new value and the last-
value field is written into the stride field, and the
new value itself is written into the last-value field.
If the same stride value is computed twice in a row,
the predictor predicts the instruction’s next value
as the sum of the last-value and stride fields. When
a computed stride differs from the previously com-
puted stride, the predictor stops making predictions
until the stride repeats again.

Our context predictor is a 2-level value predic-
tor consisting of a VHT and a Pattern History Ta-
ble (PHT). For each executed instruction, the VHT
maintains the last history-depth number of unique
outcomes produced by the instruction (we employ a
history depth = 4). In addition, the VHT also main-
tains a bit field that encodes the pattern in which
these outcomes occurred during the last pattern-
length dynamic instances of the instruction (we em-
ploy a pattern length = 4). During prediction, the
instruction’s bit field is used to index the PHT.
Each PHT entry contains several frequency coun-
ters, one for each instruction outcome in the VHT.
The counter with the highest count indicates the
most frequent successor value given the instruction’s
current value pattern. If this maximum count is
above some threshold (we employ a threshold = 3),
then the corresponding outcome is predicted for the
instruction; otherwise, no prediction is made. Af-
ter an instruction executes and its actual outcome
is known, the corresponding PHT entry counter is
incremented by 3 while the other counters from the
same PHT entry are decremented by 1. Lastly, the
corresponding bit field in the VHT is updated to
reflect the instruction’s new outcome pattern.

For some of our experiments (e.g., Section 3.3),
we employ confidence estimation along with value
prediction. As discussed in Section 2.1, we use the
confidence estimator described in [10] which asso-
ciates a 4-bit saturating counter with each PHT en-
try. Update to all predictor structures (stride, con-
text, and confidence estimator) only occurs on pre-
dicted instructions. In our technique, many instruc-
tions are not predicted because their latencies are
short, making them less important to overall relia-
bility. These non-predicted instructions do not up-

5

Benchmark Input Instr Count IPC

300.twolf ref 109546670 0.79

176.gcc 166.i 240000000 1.42

254.gap train.in 411061781 1.65

164.gzip input.compressed 192015257 2.06

256.bzip2 input.compressed 2346534735 3.20

253.perlbmk diffmail.pl 1000000000 1.57

197.parser ref.in 1404572471 1.32

181.mcf inp.in 500000000 0.13

175.vpr test 1512992144 1.87

Table 2. Benchmarks and input datasets used
in our experiments. The last two columns re-
port instructions executed and baseline IPC for
each benchmark.

date the predictor structures. During re-execution
after a misprediction, the CPU will likely re-execute
the mispredicted instruction, and the predictor may
predict again.3 In this case, the predictor is very
likely to generate a correct prediction due to train-
ing from the misprediction. In any case, we still
update the predictor after the prediction (i.e., pre-
dictor updates do not distinguish between the first
execution of some instruction and its re-execution
after a misprediction).

In terms of timing, our simulator assumes the
stride and context predictors can always produce
a prediction by each instruction’s writeback stage.
We believe this is reasonable given the small size
of our predictor structures in Table 1. In particu-
lar, our predictors are either smaller than or equal
to the value predictors found in the existing lit-
erature for performance enhancement [10, 14, 9].
Since our technique is not as timing critical (con-
ventional value predictors must make predictions
by the issue stage), we believe there will not be
any timing-related problems–both in terms of la-
tency and bandwidth–when integrating our predic-
tors into existing CPU pipelines. On a mispredic-
tion, our simulator faithfully models the timing of
the subsequent pipeline flush as well as the cycles
needed to re-fetch and re-execute the flushed in-
structions. Our simulator also assumes a 3-cycle
penalty from when a misprediction is detected un-
til the first re-fetched instruction can enter the
pipeline.

Table 2 lists all the benchmarks used in our ex-
periments. In total, we employ 9 programs from

3With confidence estimation, this will not happen because

the original misprediction would lower the confidence value

for the re-executed instruction enough to suppress prediction

the second time around. But without confidence estimation,

prediction during re-execution can happen.

the SPEC2000 benchmark suite. All of our bench-
marks are from the integer portion of the suite; we
did not study floating-point benchmarks since our
value predictors only predict integer outcomes. In
Table 2, the column labeled “Input” specifies the in-
put dataset used for each benchmark, and the col-
umn labeled “Instr Count” reports the number of
instructions executed by each benchmark. The last
column, labeled “IPC,” reports each benchmark’s
average IPC without value prediction. The latter
represents baseline performance from which the IPC
impact of our technique is computed.

Finally, throughout our experiments, we report
both performance and reliability to investigate their
tradeoff. In particular, we measure IPC for perfor-
mance and AVF for reliability. We analyze relia-
bility for three hardware structures only–the fetch
queue, issue queue, and physical register file. Since
we use value prediction to perform fault checking
on architectural state at writeback, we can detect
faults that attack most hardware structures in the
CPU, including functional units, the reorder buffer,
etc. But our results do not quantify the added pro-
tection afforded to structures outside of the three we
analyze. Furthermore, we do not analyze reliability
for the value predictors themselves. Predictors do
not contain ACE bits; however, soft errors that at-
tack the value predictors could cause additional mis-
predictions and flushes that can impact both per-
formance and reliability. Again, our results do not
quantify these effects. Lastly, our technique incurs
additional power consumption in the value predic-
tor tables. Since we do not model power, our results
do not quantify these effects. However, we believe
the power impact will be small given the small size
of our predictors. Furthermore, given their relaxed
timing requirements, there is room for voltage scal-
ing optimizations to minimize the power impact.

3.2 Value Prediction Experiments

We first present our experiments on applying
value prediction without confidence estimation. We
evaluate the impact on both reliability and perfor-
mance when predicting all or a portion of the result-
producing instructions. We call these full and selec-
tive prediction, respectively. For selective predic-
tion, we predict instructions based on their latency
measured from the fetch stage to the issue stage.
Since we do not know if an instruction should be
predicted when we fetch it, we initiate prediction
for all result-producing instructions upon fetch, but
only perform fault checking and predictor updates
for those instructions that meet the latency thresh-

6

twolf gcc gap gzip bzip2 perl parser mcf vpr

1. 12283990 32105002 43971177 6637540 70107090 69058496 130089349 21126931 240467394

2. 4323690 18770890 20481573 1973416 12948479 24132481 53091620 8499490 98006932

3. 717996 430799 4417390 100555 21505023 9639124 1611219 353809 12920875

4. 986816 96830 996890 382 3960326 2124938 2446684 7411123 74132

Table 3. Number of mispredictions for the 1. “Total,” 2. “lat <5,” 3. “15 <=lat<20,” and 4. “lat >=100”
datapoints from Figure 2 for all our benchmarks.

olds when they arrive at the writeback stage.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

total lat<5
5<=lat<8

8<=lat<10

10<=lat<15

15<=lat<20

20<=lat<30

30<=lat<50

50<=lat<100
lat>=100

D
is
tr

ib
u
ti
o
n
 R

a
te

 (
x
1
0
0
%

)

Result-Producing Instructions
Predicted Instructions
Correctly Predicted Instructions
Mispredicted Instructions

Figure 2. Fraction of instructions that are
result-producing as well as the fraction of pre-
dicted, correctly predicted, and mispredicted
instructions across different latency ranges
over all 9 spec2000 integer benchmarks.

Figure 2 reports the number of result-producing
instructions, first across all instructions (labeled
“total”) and then for different latency ranges, as a
fraction of all executed instructions. The figure also
reports the fraction of instructions from each cate-
gory (“total” and the different latency ranges) that
are predicted, predicted correctly, and mispredicted.
(Note, the fraction of predicted instructions–and
hence, the sum of the fraction of correctly pre-
dicted and mispredicted instructions–is not 1.0 be-
cause the predictor is unable to make predictions
for some instructions, as described in Section 3.1).
Every datapoint in Figure 2 represents an average
across all the benchmarks listed in Table 2. Fig-
ure 2 shows result-producing instructions account
for 81.4% of all instructions. In particular, instruc-
tions with a latency less than 5 cycles (from fetch
to issue) account for 32.1% of all instructions, or
41.4% of result-producing instructions. Moreover,
these short-latency instructions exhibit relatively
good prediction rates–63.7% on average. In con-
trast, instructions with greater than 5-cycle latency
have slightly lower prediction rates–around 40% to
50%. However, given that long-latency instructions

contribute the most to fault vulnerability, it is still
worthwhile to check their values via prediction.

As our results will show, the mispredictions in
Figure 2 (which represent false positives in our
technique) lead to performance degradation because
they initiate pipeline squashes. Table 3 reports the
number of such performance-degrading mispredic-
tions for all our benchmarks. In particular, the rows
in Table 3 numbered 1 through 4 report mispredic-
tions for the “Total,” “lat<5,” “15<=lat<20,” and
“lat>=100” datapoints, respectively, from Figure 2.
As Table 3 shows, the number of mispredictions,
and hence the amount of performance degradation,
generally reduces for selective prediction of longer
latency instructions.

Next, we study the impact of value prediction on
actual program reliability and performance. Fig-
ure 3 reports the percent AVF reduction (i.e., reli-
ability improvement) with value prediction in three
hardware structures compared to no value predic-
tion averaged across our 9 SPEC2000 integer bench-
marks. In particular, the curves labeled “issue
queue,” “fetch buffer,” and “physical register file”
report the AVF reductions for the issue queue, fetch
buffer, and physical register file, respectively. Also,
the datapoints labeled “pred all” report the AVF re-
duction assuming full prediction, while the remain-
ing datapoints report the AVF reduction with selec-
tive prediction based on instruction latency (e.g.,
“pred lat ≥ 15” performs prediction only for in-
structions with at least 15-cycle latency between the
fetch and issue stages).

Figure 3 shows prediction-based fault protection
can be very effective at improving reliability (i.e.,
reducing AVF). The AVF for the fetch queue, is-
sue queue, and register file is reduced by as much
as 96.0%, 89.8%, and 59.0%, respectively (under
full prediction) compared to no prediction. This is
due to both correct and incorrect predictions. On
a correct prediction, the value of the predicted in-
struction is checked, so the instruction is no longer
vulnerable, and hence, does not contribute to the
AVF of the structures it occupies. On a mispre-
diction, the pipeline is flushed. As discussed in

7

Section 2.2, re-execution after flushing is typically
faster than the original execution, thus reducing
the occupancy of ACE instructions in the hardware
structures. Both combine to provide the AVF im-
provements shown in Figure 3.

0

20

40

60

80

100

120

pred all pred

lat>=5

pred

lat>=8

pred

lat>=10

pred

lat>=15

pred

lat>=20

pred

lat>=30

pred

lat>=50

pred

lat>=100

P
er
ce
n
t
A
V
F
 R
ed
u
ct
io
n

issue queue

fetch buffer
physical register file

IPC

Figure 3. Percent AVF reduction in 3 hardware
structures averaged across 9 SPEC2000 inte-
ger benchmarks by applying value prediction
to instructions with varying latencies. The
curve labeled “IPC” reports the percent IPC re-
duction for the same. All reductions are com-
puted relative to no value prediction.

Unfortunately, these reliability improvements
come at the expense of performance. In Figure 3,
the curve labeled “IPC” reports the percent IPC
reduction (i.e., performance degradation) for the
same experiments. This curve shows IPC can de-
grade significantly due to the penalty incurred by
mispredictions, particularly when a large number of
instructions are predicted. Under full prediction,
IPC reduces by 55.1% compared to no prediction.
But the performance impact lessens as fewer in-
structions are predicted (moving towards the right
side of Figure 3). For example, when only predict-
ing instructions with latency greater than or equal
to 30 cycles, the performance impact is less than
3.8%. Of course, reliability improvement is not as
great when predicting fewer instructions. But it can
still be significant–we achieve a 74.9%, 39.2%, and
9.3% reduction in AVF for the fetch queue, issue
queue, and register file, respectively at ≥ 30-cycle
latency.

In general, Figure 3 shows there exists a trade-
off between reliability and performance. The more
instructions we predict, the larger the improvement
in reliability, but also the larger the degradation
in performance. We find a good strategy is to fo-
cus the value predictor on long-latency instructions
(e.g., instructions with ≥ 30-cycle latency). This
is because the longer the instruction latency, the

smaller the impact mispredictions will have on per-
formance. Furthermore, the longer the instruction
latency, the more critical the instructions are from
a reliability standpoint.

3.3 Confidence Estimation

Confidence estimation can be used to reduce the
number of performance-degrading mispredictions.
To investigate the potential benefits of this ap-
proach, we added a confidence estimator to our
value predictor. Figure 4 reports the fraction of
predicted, correctly predicted, and mispredicted in-
structions for all instructions, labeled “total,” and
for instructions with different latency ranges. (The
format for Figure 4 is almost identical to Figure 2,
except there is no “Result-Producing Instructions”
curve since it would be the same). Compared to no
confidence estimation, our value predictor achieves
fewer correct predictions with confidence estima-
tion. The reduction ranges between 10% and 15%.
This is because the confidence estimator prevents
predicting the less predictable instructions. As a re-
sult, the fraction of mispredicted instructions goes
down to almost 0 across all latency ranges. As Fig-
ure 4 shows, our confidence estimator is quite effec-
tive at reducing mispredictions with only a modest
dip in the number of correct predictions.

0

0.1

0.2

0.3

0.4

0.5

0.6

total lat<5 5<=l
at<8

8<=l
at<1

0

10<=
lat<1

5

15<=
lat<2

0

20<=
lat<3

0

30<=
lat<5

0

50<=
lat<1

00
lat>=

100

D
is
tr
ib
u
ti
o
n
 R
a
te
 (
x
1
0
0
%
)

Predicted Instructions

Correctly Predicted Instructions

Mispredicted Instructions

Figure 4. Fraction of predicted, correctly pre-
dicted, and mispredicted instructions–with
confidence estimation–across different latency
ranges over all 9 spec2000 integer bench-
marks.

Table 4 reports the actual number of mispredic-
tions with confidence estimation for all our bench-
marks. (The format for Table 4 is identical to the
format used in Table 3). Compared to Table 3, Ta-
ble 4 shows the number of mispredictions with con-
fidence estimation is indeed dramatically reduced
relative to no confidence estimation.

8

twolf gcc gap gzip bzip2 perl parser mcf vpr

1. 861000 840153 2206916 328586 12479900 4512412 7806876 2712208 800670

2. 219590 545557 1036604 176886 2786259 1498557 4007555 691834 637547

3. 145622 10486 78163 4943 6583023 720734 172598 18595 14652

4. 82034 2158 10958 5 46766 388546 129277 1620071 263

Table 4. Number of mispredictions for the 1. “Total,” 2. “lat <5,” 3. “15 <=lat<20,” and 4. “lat >=100”
datapoints from Figure 4 for all our benchmarks.

0

10

20

30

40

50

60

pred all pred

lat>=5

pred

lat>=8

pred

lat>=10

pred

lat>=15

pred

lat>=20

pred

lat>=30

pred

lat>=50

pred

lat>=100

P
er
ce
n
t
A
V
F
 R
ed
u
ct
io
n

issue queue

fetch buffer

physical register file

IPC

Figure 5. Percent AVF reduction in 3 hardware
structures averaged across 9 SPEC2000 inte-
ger benchmarks by applying value prediction
and confidence estimation to instructions with
varying latencies. The curve labeled “IPC” re-
ports the percent IPC reduction for the same.
All reductions are computed relative to no
value prediction.

Figure 5 shows the impact of confidence estima-
tion on the AVF of our three hardware structures,
as well as on IPC. (This figure uses the exact same
format as Figure 3). In Figure 5, we see IPC never
degrades more than 4% compared to no prediction,
even when performing full prediction. These re-
sults show confidence estimation is indeed effective
at mitigating performance degradation. Unfortu-
nately, with confidence estimation, the reliability
improvement is not as significant as before. In par-
ticular, under full prediction, the AVF for the fetch
queue, issue queue, and register file is reduced by at
most 49.3%, 29.0%, and 29.0%, respectively; under
selective prediction with baseline latency of 30 cy-
cles, the AVF for the fetch queue, issue queue, and
register file is reduced by about 23.6%, 10.3%, and
4.6%, respectively. The lower reliability improve-
ments compared to Figure 3 are due to the fact that
confidence estimation suppresses prediction of many
instructions, reducing the coverage achieved by the
value predictor.

Thus far, we have applied confidence estimation

uniformly across all instructions–i.e., we use a sin-
gle confidence threshold to determine whether any
particular instruction should be predicted or not.
However, predicting all instructions using a uniform
confidence level may not be the best policy since
instructions do not contribute equally to reliabil-
ity nor to performance impact. In particular, for
longer latency instructions which contribute more to
overall reliability and incur less performance degra-
dation during mispredictions, it may be better to
perform value prediction more aggressively. Con-
versely, for shorter latency instructions which con-
tribute less to overall reliability and incur more per-
formance degradation during mispredictions, it may
be better to perform value prediction less aggres-
sively. This suggests an adaptive confidence estima-
tion technique has the potential to more effectively
tradeoff reliability and performance.

We modify our confidence estimation scheme to
adapt the confidence threshold based on each in-
struction’s latency. In particular, we employ three
different threshold levels, similar to what is pro-
posed in [10]. (The thresholds for low, medium,
and high confidence are 3, 7, and 15, respectively
for a saturating value of 15). We use the lowest
confidence threshold for instructions that incur a
latency equal to or larger than 4 times the baseline
latency; we use the medium confidence threshold for
instructions that incur a latency equal to or larger
than 2 times the baseline latency but smaller than
4 times the baseline latency; and we use the high-
est confidence threshold for instructions that incur a
latency equal to or larger than the baseline latency
but smaller than 2 times the baseline latency. Here,
the baseline latency is the minimum instruction la-
tency that is considered for prediction as given by
latency-based selective prediction. (For example, if
we only predict instructions with latency 5 cycles
or larger, then the low, medium, and high thresh-
olds are applied to instructions with latency in the
ranges ≥ 20 cycles, 10-19 cycles, and 5-9 cycles, re-
spectively).

Figure 6 shows the impact of adaptive confidence
estimation on the AVF of our three hardware struc-

9

0

10

20

30

40

50

60

70

80

90

100

pred all pred

lat>=5

pred

lat>=8

pred

lat>=10

pred

lat>=15

pred

lat>=20

pred

lat>=30

pred

lat>=50

pred

lat>=100

P
er
ce
n
t
A
V
F
 R
ed
u
ct
io
n

issue queue

fetch buffer

physical register file

IPC

Figure 6. Percent AVF reduction in 3 hard-
ware structures averaged across 9 SPEC2000
integer benchmarks by applying value pre-
diction and adaptive confidence estimation
to instructions with varying latencies. Con-
fidence threshold used for each prediction
(high, medium or low) varies according to the
instruction’s latency. The curve labeled “IPC”
reports the percent IPC reduction for the same.
All reductions are computed relative to no
value prediction.

tures, as well as on IPC. (This figure uses the exact
same format as Figures 3 and 5). As suggested by
the above discussion, in these experiments we com-
bine latency-based selective prediction with adap-
tive confidence estimation. In other words, we only
consider for prediction those instructions that meet
the latency threshold given along the X-axis of Fig-
ure 6, and for a given candidate instruction, we only
predict it if its saturating counter meets the corre-
sponding confidence threshold for its latency. As
Figure 6 shows, adaptive confidence estimation in-
curs a relatively small performance degradation sim-
ilar to the baseline confidence estimation technique
shown in Figure 5. A particularly small perfor-
mance degradation, about 5.4%, is achieved when
limiting prediction to instructions with a latency of
at least 8 cycles or larger. However, adaptive con-
fidence estimation achieves a much better reliabil-
ity improvement (AVF reduction) than the baseline
confidence estimation, and approaches the reliabil-
ity improvement achieved by value prediction with-
out confidence estimation shown in Figure 3. For
example, under selective prediction with baseline
latency of 30 cycles, the AVF for the fetch queue,
issue queue, and register file is reduced by about
63.3%, 28.3%, and 8.1%, respectively, while the
performance is only degraded about 1.3%. Thus,
by more aggressively predicting only the longer la-
tency instructions, adaptive confidence estimation

can cover the most critical instructions for reliabil-
ity without sacrificing too much on performance.

4 Related Work

This work is related to several areas of research in
fault tolerance. The first area includes studies which
exploit explicit redundancy–by duplicating program
execution either in hardware [1, 2, 3, 4, 5] or soft-
ware [6, 7, 8]–to detect or recover from faults. In
contrast, we study value prediction to explore the
redundancy inherent in programs. Our technique
avoids the overhead from explicitly duplicating com-
putation for fault detection. However, value predic-
tion cannot achieve 100% correctness, thus it can-
not ensure failure-free execution while explicit du-
plication can. Our goal is to reduce the fault rate
in a more cost-effective way, which is still mean-
ingful for most systems that do not require failure-
free execution. In addition, our technique considers
fault vulnerability at the instruction level which is
ignored by most existing techniques. By quanti-
fying instruction’s vulnerability, we selectively pro-
tect instructions that are most susceptible to faults,
thus reducing the impact of mispredictions while
still maintaining acceptable reliability.

In the area of exploiting inherent program redun-
dancy, the work most related to ours is [15]. Racu-
nas et al make use of value perturbation to prevent
possible faults. Their technique tries to identify the
valid value space of an instruction, which is done
by tracking the instruction’s past results. Future
outputs that are not within the recorded valid value
space are considered as potentially corrupted. Com-
pared to value perturbation, value prediction tries
to predict an instruction’s result exactly. Outputs
that are not equal to predicted values are considered
as potentially corrupted. Compared to detecting
value perturbations, value prediction can be more
precise in finding discrepancies. For example, an in-
struction’s past value space may be so big that cor-
rupted values may still fall in the valid value space,
and hence, cannot be detected.

Our technique is also related to the area of par-
tial fault protection. Recently, some studies [12, 16]
propose that traditional full-coverage fault-tolerant
techniques are only necessary for highly-reliable and
specialized systems, while for most other systems,
techniques which tradeoff performance and relia-
bility are more desirable. For example, Weaver
et al [12] try to reduce error rate by flushing the
pipeline on L2 misses. Gomaa et al [16] propose a
partial-redundancy technique which selectively em-
ploys redundant thread or instruction-reuse buffer

10

for fault detection. The triggering of their redun-
dancy technique is determined by program perfor-
mance. Compared to their work, we exploit pro-
gram’s inherent redundancy for detecting possible
faults. In addition, by characterizing instruction
vulnerability, we selectively protect the most fault-
susceptible instructions to achieve better coverage.

5 Conclusion

This paper investigates applying value prediction
for improving fault tolerance. We make the obser-
vation that value predictability is a low-cost (albeit
imperfect) form of program redundancy. To exploit
this observation, we propose to use the output of a
value predictor to check the correctness of predicted
instructions, and to treat any mismatch as an indi-
cator that a fault has potentially occurred. On a
mismatch, we trigger recovery using the same hard-
ware mechanisms provided for mispeculation recov-
ery. To reduce the misprediction rate, we charac-
terize fault vulnerability at the instruction level and
only apply value prediction to instructions that are
highly susceptible to faults (i.e., those with long la-
tency). We also employ confidence estimation, and
adapt the confidence estimator’s threshold on a per-
instruction basis tuned to the instruction’s latency.
Instructions with higher latency are predicted more
aggressively, while instructions with lower latency
are predicted less aggressively. Our results show
significant gains in reliability with very small per-
formance degradation are possible using our tech-
nique.

6 Acknowledgements

This research was supported in part by NSF
CAREER Award #CCR-0093110, and in part by
the Defense Advanced Research Projects Agency
(DARPA) through the Department of the In-
terior National Business Center under grant
#NBCH104009. The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies or endorsement, either expressed or
implied, of the Defense Advanced Research Projects
Agency (DARPA) or the U.S. Government.

References

[1] R. W. Horst, R. L. Harris, and R. L. Jardine, “Multiple in-
struction issue in the NonStop Cyclone processor,” in Proc.
of the 17th Int’l Symp. on Computer Architecture, May
1990.

[2] Y. Yeh, “Triple-triple redundant 777 primary flight com-
puter,” in Proc. of the 1996 IEEE Aerospace Applications
Conference, Feb. 1996.

[3] S. K. Reinhardt and S. S. Mukherjee, “Transient Fault De-
tection via Simultaneous Multithreading,” in Proc. of the
27th Annual Int’l Symp. on Computer Architecture, June
2000.

[4] J. Ray, J. C. Hoe, and B. Falsafi, “Dual use of super-
scalar datapath for transient-fault detection and recovery,”
in Proc. of the 34th annual IEEE/ACM Int’l Symp. on
Microarchitecture, Dec. 2001.

[5] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed
design and evaluation of redundant multithreading alterna-
tives,” in Proc. of the 29th annual Int’l Symp. on Com-
puter Architecture, May 2002.

[6] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow
checking by software signatures,” in IEEE Transactions on
Reliability, March 2002.

[7] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error detection
by duplicated instructions in super-scalar processors,” in
IEEE Transactions on Reliability, March 2002.

[8] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I.
Aug., “SWIFT: Software implemented fault tolerance,” in
Proc. of the 3rd Int’l Symp. on Code Generation and Op-
timization, March 2005.

[9] K. Wang and M. Franklin, “Highly accurate data value pre-
diction using hybrid predictors,” in Proc. of the 13th an-
nual IEEE/ACM Int’l Symp. on Microarchitecture, Dec
1997.

[10] B. Calder, G. Reinman, and D. Tullsen, “Selective Value
Prediction,” in Proc. of the 26th Annual Int’l Symp. on
Computer Architecture, May 1999.

[11] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt,
and T. Austin, “A Systematic Methodology to Compute the
Architectural Vulnerability Factor for a High-Performance
Microprocessor,” in Proc. of the 36th annual IEEE/ACM
Int’l Symp. on Microarchitecture, Dec. 2003.

[12] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Rein-
hardt, “Techniques to reduce the soft error rate of a high-
performance microprocessor,” in Proc. of the 31st Annual
Int’l Symp. on Computer Architecture, June 2004.

[13] D. Burger, T. Austin, and S. Bennett, “Evaluating future
microprocessors: the simplescalar tool set,” Tech. Rep. CS-
TR-1996-1308, Univ. of Wisconsin - Madison, July 1996.

[14] B. Goeman, H. Vandierendonck, and K. de Bosschere, “Dif-
ferential FCM: Increasing Value Prediction Accuracy by Im-
proving Table Usage Efficiency,” in Proc. of the 7th Annual
International Symp. on High-Performance Computer Ar-
chitecture, 2001.

[15] P. Racunas, K. Constantinides, S. Manne, and S. S.
Mukherjee, “Perturbation-Based Fault Screening,” in Proc.
of the 2007 IEEE 13th Int’l Symp. on High Performance
Computer Architecture, Feb 2007.

[16] M. Gomaa and T. N. Vijaykumar, “Opportunistic
Transient-Fault Detection,” in Proc. of the 32nd Annual
Int’l Symp. on Computer Architecture, June 2005.

11

Multicore Power Management: Ensuring Robustness
via Early-Stage Formal Verification

Anita Lungu1, Pradip Bose2, Daniel J. Sorin3, Steven German2, and Geert Janssen2

1Dept. of Computer Science 2IBM T.J. Watson Research Center 3Dept. of ECE
Duke University Duke University

anita@cs.duke.edu {pbose,sgerman,geert}@us.ibm.com sorin@ee.duke.edu
Abstract
Power management is important for multicore

architectures. One important challenge for multicore
DPM schemes is verifying that they are both safe (can-
not lead to power or thermal catastrophes) and efficient
(achieve as much performance as possible without
exceeding power constraints). The verification difficulty
varies among designs, depending, for example, on the
particular power management mechanisms utilized and
the algorithms used to adjust them. However, verifica-
tion effort is often not considered in the early stages of
DPM scheme design, leading to proposals that can be
extremely difficult to verify.

To address this problem, we propose using formal
verification (with probabilistic model checking) of a
high-level, early-stage model of the DPM scheme. Using
the model checker, we estimate the required verification
effort, providing insight on how certain design parame-
ters impact this effort. Furthermore, we supplement the
verifiability results with high-level estimates of power
consumption and performance, which allow us to per-
form a trade-off analysis between power, performance,
and verification. We show that this trade-off analysis
uncovers design points that are better than those that
consider only power and performance.

1. Introduction
The prevalence of multicore architectures coupled

with demands for low power systems motivate the
development and evaluation of efficient power manage-
ment solutions targeted specifically at multicores. Power
is managed for several reasons, including to: improve
power-efficiency, avoid power spikes, increase battery
life, reduce the cost of providing power to the chip, and
manage temperature. In this work, we investigate
dynamic power management (DPM) schemes that can
cap the peak power usage of a multicore. Providing a
DPM scheme that caps the peak power can reduce sys-
tem cost by decreasing the cooling and packaging
requirements, or it can relax the power constraints
placed on other system components.

One critical aspect in the development of a new
DPM scheme is its verification. There are three proper-
ties that we wish to verify. First, we want to verify that
the DPM scheme is safe. A DPM scheme can be unsafe,
for example, if it allows the power usage to often exceed
the allocated budget, or if it allows a core to be assigned
a voltage or frequency outside of the desired range. Sec-
ond, we wish to verify that the DPM scheme is efficient
in achieving as much performance as possible while not
exceeding power constraints or violating priority rules
for provisioning power. A buggy DPM scheme might
sacrifice more performance than expected. Third, we
want to verify that the DPM scheme is functionally cor-
rect, such that the same results are obtained with and
without the DPM scheme. In this paper, we consider
verification of the first two features. As a concrete
example of the importance of DPM verification, con-
cerns over Intel’s Foxton DPM scheme [16] led to it
being disabled in the first Montecito chips [4].1

The current industrial workflow in the development
of a new DPM scheme is illustrated in the unshaded por-
tion of Figure 1. At an early stage, the focus is restricted
to maximizing the efficiency of the DPM scheme, with
limited consideration of its verification. Later, the
scheme is implemented in detailed, low-level simula-
tors, and verification2 primarily checks whether the
scheme achieves its efficiency goals.

The problem with this current workflow is that it is
prone to missing bugs. First, simulation is by definition
incomplete as a verification solution, because only the
states that are reached in a particular simulation path are
ascertained to be bug-free. Second, if verification feasi-
bility is not considered at design time, the reachable
state space of the resulting DPM scheme can be enor-
mous, which is problematic. Workflows often have goals
for achieving minimum coverage, so having more states

1. Intel has not officially stated whether the concerns were
over safety, efficiency, or functionality bugs.

2. Using a simulator to “verify” a design is sometimes
referred to as “validation” instead of verification.

requires more simulation cycles. If no coverage goal is
specified, having more states increases the probability
that undiscovered bugs remain in the design and
decreases confidence in DPM correctness.

To address the above concerns, we propose the
introduction of an additional, early step in the develop-
ment of a new DPM scheme. We illustrate this added
step in the shaded portion of Figure 1. This additional
step creates, at an early design stage, a high-level model
of the proposed power management policy which is then
verified for efficiency and safety using probabilistic
model checking, an exhaustive formal verification
method. By performing a high-level verification early in
the development process, we identify problems when
they are easier to solve. A high-level model is also much
easier to develop and modify than a detailed simulator,
so we can quickly explore numerous designs.

With the use of the model checker, we estimate the
effort required to verify the DPM scheme (measured as
number of reachable states and transitions) enabling a
better understanding of the impact on verification effort
of scaling certain design parameters. Furthermore, we
supplement the verifiability results with a high-level
estimate of power consumption and performance, which
enables us to perform a trade-off analysis between
reaching power, performance, and verification goals.

Model checking does not eliminate the need to later
simulate a detailed implementation of the DPM scheme,
but it can catch bugs early and help the simulation reach
desired state coverage goals.

Our main contributions are the following:
•We propose the use of verification effort as an addi-

tional metric to be considered, together with perfor-
mance, in the early stages of DPM scheme design.
•We investigate and compare the effort necessary to

verify different DPM algorithms as a function of the
available mechanisms for adjusting power usage.
•We evaluate the trade-offs between verification

effort, efficiency, and safety of the DPM schemes
mentioned above.
The rest of this paper is organized as follows. In

Section 2, we discuss related work. In Section 3, we
present the type of DPM scheme we investigate and its
parameters of interest. In Section 4, we explain our
experimental methodology. In Section 5, we present our
results, and we conclude in Section 6.

2. Background and Related Work
Power management is an important issue and thus

there has been a significant amount of prior work in this
area. In this section we first present multicore-specific
power management schemes (Section 2.1). We then dis-
cuss prior work in power management verification
(Section 2.2). Lastly, we discuss verification-aware
design in general (Section 2.3).

2.1 Multicore Power Management
The most straightforward way to manage power in a

multicore chip is to simply apply well-known single-
core techniques to every core. However, Isci et al. [5]
observed that such “local” (per-core) management was
potentially inefficient because it could not take advan-
tage of peak power averaging effects that occur across
multiple cores. They introduce global schemes in which
a single, centralized, “global” controller determines the
power budget and settings (e.g., voltage and frequency)
for every core. Sharkey et al. [18] provide a more
detailed evaluation of these global schemes in terms of
their efficiency. Sartori and Kumar [17] present a proac-
tive scheme for managing peak power in multicore
chips. They observe that distributed algorithms can be
used to select the power level allocation for cores and
that they would be more scalable than algorithms based
on having a centralized global controller. However, no
multicore DPM scheme has been analyzed to determine
its verification effort and to trade-off verifiability against
other design goals.

2.2 Verifying Power Management Schemes
There has been a limited amount of prior work in

verifying DPM schemes. One representative piece of
Figure 1. Workflow for Development of New DPM
Scheme. Shaded portions indicate proposed additions.

DPM scheme specification

Verification
Scalability?

Detailed Power/Performance Simulation

Found Bug?

Sufficient
Coverage?

DONE

no

no

High-Level Formal Model

Successful
Verification?

cu
rr

en
t a

pp
ro

ac
h

no

no

yes

yes

yes

yes

work by Shukla and Gupta [20] uses the SMV model
checker [12] to verify a DPM scheme. We are interested
in DPM for multicores, whereas their focus is on solu-
tions for unicore systems. Furthermore, we use model
checking to estimate verification effort and verify a set
of correctness properties, while they use it to stress the
optimality bounds of the DPM scheme by constructing a
worst case task trace. Dubost et al. [3] present a high-
level argument for specifying power management
schemes in the Esterel language, which facilitates using
a model checker to verify the designs. They do not dis-
cuss any specific DPM scheme or verification.

One interesting approach to DPM verification is the
use of probabilistic model checking. With a traditional
model checker, such as Murphi [2], one can prove abso-
lute invariants. For example, one can prove that the
power never exceeds a 50W power budget. However,
with DPM, it may be tolerable that a 40W “soft power
budget” is occasionally exceeded if that happens infre-
quently. Two recent research papers [15, 7] have used
the PRISM probabilistic model checker [6] to analyze
DPM schemes. They target unicore systems and use
PRISM to find optimal power management policies for
given task arrival distributions and constraints on
expected wait queue size. In contrast, we are interested
in analyzing the trade-off between verifiability and other
metrics for multicore schemes.

2.3 Verification-Aware Design
Lungu and Sorin [8] quantified the effort required to

formally verify parts of microprocessors. Martin [9] and
Marty et al. [10] discussed the verification effort
required for different cache coherence protocols. Our
work differs from this prior work by focusing on power
management schemes.

3. DPM Design Space Exploration
A wide variety of DPM solutions have been pro-

posed in response to different requirements. In this sec-
tion we describe the particular type of solution we
analyze and its design parameters.

3.1 High Level View of DPM Design Space
We target DPM schemes that can cap the peak

power usage of a multicore chip by using dynamic volt-

age and frequency scaling (DVFS). Figure 2 depicts the
system we consider. The overall goal of the global DPM
controller is to maintain the power usage of the system
below the budget target set by a user (which could be the
OS) with a minimum performance penalty. We use the
expression “power budget” in a manner similar to prior
work [5, 18]. The budget is the desirable power con-
sumption level for the chip (shown in Figure 3). The
budget differs from the Maximum Power for the chip, in
that the budget is a somewhat soft limit. Exceeding the
hard Maximum Power limit could lead to a thermal
emergency and even burn the chip. However, exceeding
the power budget occasionally, while still keeping the
power below Maximum Power, can be tolerated. Budget
overshoots cause the policy’s goal to be temporarily
unmet, but they cause no thermal emergencies. Recently
developed DPM schemes also allow temporary budget
overshoots [5, 18].

To keep the chip under its budget, the global con-
troller periodically monitors the power usage of all cores
and actuates their voltages and frequencies such that the
total power consumption is maintained below the speci-
fied budget. We consider two actuation intervals: one for
changing both voltage and frequency and one for chang-
ing only the frequency.

Figure 3 illustrates the power consumption of the
chip over time. The Max Power horizontal line repre-
sents the maximum power the chip can consume given
the worst case activity factors of all cores. The Budget
line represents the constraint imposed on the power use
of the chip. The global controller uses this power budget
value as the target for its feedback mechanism. In set-
ting the voltage and frequency levels, the global control-
ler makes the prediction that the cores will maintain
their current activity factors for the next interval. When
this is a misprediction, the actual power use can tempo-
rarily overshoot, as shown in Figure 3 at the times
marked with stars. On the next actuation point the con-
troller tries again to bring the power use below budget.

3.2 Design Goals and Parameters
Of the multiple design goals that such a DPM

scheme can target, we investigate efficiency (reducing
the performance hit induced by decreasing core fre-

Figure 2. DPM Scheme with Global Controller Figure 3. DPM Scheme Power Utilization

quency through DVFS), safety (decreasing time and
power spent over budget) and verifiability (decreasing
required verification effort).

To reach these goals, designers can make decisions
on many parameters. We consider here only a subset of
them to keep our analysis tractable. Specifically, we
compare a heterogeneous policy, which allows the con-
troller to assign different voltage and frequencies across
the cores, to a homogeneous policy, where the same
voltage and frequency is set for all cores. For both poli-
cies, we analyze the design space along 3 parameters:
number of voltage levels (VL) into which the voltage
range is split, number of frequency levels (FL) that can
be allocated for a given voltage level, and number of
cores assigned to a single DPM controller. Figure 4
illustrates this cores per controller (CPC) design param-
eter. If we consider a 6-core chip, a DPM solution might
use a single controller assigned to all chips (the outer
boundary), or 2 controllers each monitoring 3 cores (the
two horizontal groupings), or 3 controllers each super-
vising 2 cores (the three vertical groups).

3.3 Motivating Early Formal Analysis
Designers certainly have some intuitive a priori

understanding of how choosing different design points
in the above parameter space affects their goals. For
example, one might expect that a heterogeneous solu-
tion with more CPC will outperform a solution with
fewer CPC, because the peak power use of more cores
should be decreased due to averaging effects. But what
is the quantitative gain in performance when going from
2 CPC to 3 CPC, for example? Is that performance gain
worth the impact on verification effort? How does the
safety of the solution change in response to CPC? Do
the answers vary between homogeneous and heteroge-
neous policies? In addition to questions about CPC,
designers want to answer similar questions about other
parameters, such as VL and FL, and possible interac-
tions between parameters. Will a change in VL impact
design goals differently depending on the value of CPC?

These are the type of questions to which we seek
answers via performing the proposed early stage formal
analysis. These answers enable designers to make more
informed decisions, and we show concrete examples of
these benefits in Section 5.

4. Methodology for Formal Analysis
We begin this section with our motivation for using

probabilistic model checking to verify the analyzed
DPM schemes and a brief overview on this method.

Then we provide details on the particular methodology
we use to conduct our experiments.

4.1 Probabilistic Model Checking
We use probabilistic model checking with PRISM

[6] to explore the design space of our DPM schemes and
analyze trade-offs between efficiency, safety, and verifi-
ability.

Using a model checker allows us to quantify the
verification effort for a system. We chose a model
checking tool over a simulator because a model checker
is a complete verification solution which traverses the
entire reachable state space of a design in ascertaining
correctness. In contrast, a simulator is incomplete
because it touches only a limited subset of all reachable
states. We obtain a better verifiability measure for a
design when we can exercise its entire reachable state
space and all state transitions. The choice of probabilis-
tic model checking over traditional, non-probabilistic
model checking was motivated by characteristics of the
problem we want to verify. For the verification of a
DPM scheme we are not only interested whether a
power overshoot can happen, but also how often this is
expected to happen under typical conditions. These
types of correctness characteristics depend on the
changing activity factor of the workloads, which can be
captured in a probabilistic framework.

The inputs to the probabilistic model checker are:
the state elements of the system, the probabilistic transi-
tion rules (a description of how the behavior can change
from one state to the next), and the correctness proper-
ties (the requirements which, if met, assure the system’s
correctness). In addition, it is possible to evaluate the
expected values of certain quantities in the system, such
as power and performance, by associating rewards with
system states. Rewards are similar to tokens, in that the
states that satisfy a certain condition are assigned
tokens. It is not our goal to use model checking for a
better estimate of power usage and performance impact;
rather, we use the rewards to obtain high-level measures
of power and performance and analyze their trade-off
with verifiability. Based on the probabilistic state
machine description, the model checking tool traverses
the entire reachable state space of the design and verifies
whether the correctness properties are met. When
rewards are specified it also calculates their expected
values over a certain bounded number of system transi-
tions.

4.2 DPM Model Construction
For our DPM scheme, the state elements are: the

current voltage, frequency, and activity factor of each
core and an incrementing counter triggering when the
global controller should actuate both voltages and fre-
quencies as opposed to only frequencies.

Figure 4. Possible Assignments
of Cores to Controllers

The probabilistic transition rules specify how the
activity factor changes for the cores and how the volt-
ages and frequencies change in response to controller
actuations. We approximate each core’s activity factor
using its instructions per cycle (IPC), because IPC is
strongly correlated with the activity factor and it is easy
to obtain. This correlation is not perfect, but obtaining
the exact activity factor would require a low-level
implementation that is unlikely to exist early in the
design cycle. To make our analysis tractable with
PRISM, we quantize the IPC values into four distinct
ranges, and we choose the mean IPC of a range to repre-
sent the activity factor of a core in that range.

We obtain the transition probabilities using Turan-
dot [13], a detailed, cycle-accurate simulation model.
The microprocessor’s configuration is shown in Table 1.
For benchmarks, we chose six SPEC 2000 benchmarks,
shown in Table 2, that have very different behavior, both
in terms of their average activity factor and in how much
their activity factor changes over time. The appropriate
SimPoint [19] intervals for these benchmarks were
traced using Aria [14]. For each benchmark, the simula-
tor produces the average IPC for each time quantum of
100µs (400,000 cycles at 4GHz). The sampling period
of 100µs reflects the safe specification parameter of the
power manager, in terms of the longest duration of
allowable power spikes. Given that chip-level thermal
time constants are in the range of milliseconds or tens of
milliseconds [1], 100µs is a very safe, conservative set-
ting of this parameter.

We wish to point out that we obtain the benchmark
IPC values from a simulation of a single-core processor,
rather than from a simulation of a multicore processor.
The intuitive reason for this decision is that PRISM will
inherently construct all possible combinations of IPCs

and IPC transitions for all cores running the bench-
marks.3 Moreover, it is not obvious that we even could
simulate every possible combination, since it is
extremely difficult to compel the simulated system into
each combination of core states.

4.3 DPM Scheme Properties
We verify the behavior of the system against a set of

correctness properties that must be true in every state.
We also specify a set of reward structures that enable us
to quantify performance, power use, and safety.
Correctness properties. The correctness properties we
consider for our DPM scheme are:
•No deadlock state can ever be reached.
•The voltages and frequencies for all cores are

always maintained within a pre-specified range.
•There is no mismatch between the voltage and fre-

quency assigned to a core (e.g., we never match a
very high frequency with a very low voltage).

Reward structures. We use rewards to keep track of
power, performance, and the states in which the system
is over budget. PRISM computes the expected rewards
over a bounded interval, and we set the bound to 1000
transitions in our experiments.

4.4 Quantifying Performance, Power, Safety,
and Verifiability

We now describe the models and metrics we use to
quantify performance, power, safety, and verifiability
for our early stage formal analysis.
Performance. In our model, the performance of a core
is a linear function of its frequency, f. That is, if we
increase f by X%, then the performance is also improved
by X%. This is an approximation, because the perfor-
mance benefit of a large increase in f is limited by the
unchanged memory performance. Nevertheless, for a
high-level model that is considering small adjustments
in f, we think this assumption is reasonable.

Our model considers the latency required to transi-
tion between voltage levels, and it assumes that a core
functions at its lowest frequency during a voltage transi-
tion (1µs per 10mV). The latency of transitioning
between frequency levels is much shorter—on the order
of one or two processor cycles [11]—because it can be
done with on-chip digital PLL mechanisms. This
latency is orders of magnitude shorter than a 100µs
actuation interval, and thus we do not model it.

Table 1. Microprocessor Configuration

Feature Description

pipeline width 4 decode/issue/commit

ROB/LSQ sizes 150 entries / 32 entries

branch pred. 2 level, 3 16K-entry BHTs

functional units 4 FXU, 4 FPU, 1 BR

L1I cache 64KB, 2-way, 16B blocks, 1cycle

L1D cache 64KB, 2-way, 16B blocks, 1cycle

L2 cache 1MB, 8-way, 64B blocks, 9 cycles

memory 100 cycles

Table 2. Benchmarks

Low Ave IPC High Ave IPC

Stable IPC mcf eon, crafty

Variable IPC art, parser bzip2

3. One caveat is that a simulation of a multicore chip might (a)
exhibit transitions that are never exhibited by a single-core
chip, or (b) never exhibit transitions that are exhibited by a sin-
gle-core chip. These scenarios, although unlikely, could result
from contention for resources that occurs in multicore chips.

Power. In our model, the power consumption of a core
is a function of the core’s frequency (f), voltage (V), and
activity factor (A). We model both active and leakage
power, with active power consumption formulated using
the usual ~f*A*V2 dependence equation. The leakage
power is modeled approximately as a cubic function of
V, as this has been found to capture the behavior quite
well for the particular supply and threshold voltage
ranges appropriate for current CMOS technologies
(65nm or 45nm). The power model used is admittedly
abstract, but deemed to be good enough for the DVFS-
driven power management policies considered in this
paper (as in Isci et al. [5] or Sharkey et al. [18]).
Safety. We consider two safety metrics: the percentage
of time the system is expected to be over budget, and the
percentage of power used over budget.
Verifiability. We consider two metrics for quantifying
verification effort. The first is the total number of reach-
able states of the design. The second is the number of
possible transitions between states.

Because we use a simulator to generate the state
transition probabilities, our performance and safety
results are a function of the benchmark suite, because
they depend on rewards computation. The verifiability
results are also a function of benchmark suite as the
number of reachable states and transitions depends on
the changing behavior of the applications. For bench-
marks with radically different behavior, these results
might be different. We state this perhaps obvious char-
acteristic of our work—after all, benchmark dependence
is common in microarchitectural studies—because it
differs from traditional (non-probabilistic) model check-
ing. Note that the correctness properties mentioned in
Section 4.3 are proved correct independent of the bench-
mark suite.

5. Experimental Evaluation
We now detail the two specific DPM schemes we

modeled for our analysis and their design parameters.

Then we describe the performance, safety, and verifi-
ability trade-offs we find in this design space.

5.1 Scope of Analysis
We analyze heterogeneous and homogeneous DPM

schemes. For the heterogeneous schemes, the controller
uses a priority based greedy algorithm for distributing
the power budget. It allocates the largest voltage that fits
in the power budget for the first core (while provisioning
enough power to run the rest of the cores at lowest volt-
age) then allocates the largest possible voltage for the
second core and so on. This heterogeneous policy is
very similar to current state-of-the-art DVFS policies,
such as the “Priority” scheme analyzed by Isci et al. [5].
For homogeneous schemes, the controller allocates the
single greatest voltage level that keeps the chip below
the power budget, assuming all cores maintain their cur-
rent activity factors. This homogeneous policy is very
similar to the “Chip-Wide DVFS” scheme proposed by
Isci et al. [5].

All of our DPM schemes use two actuation inter-
vals: a 500µs one to change both voltage and frequency
of cores (the frequency is set to the highest value permit-
ted for the voltage level selected) and a 100µs one to
change only the frequency. We vary the voltage range
from 1.05V to 0.78V and we scale the frequencies lin-
early with the voltage from 4.2GHz to 3.15GHz.

When analyzing the impact of increasing VL, we
maintain the same voltage range and divide it into more
levels (from 2 to 6 in our experiments). When varying
FL, we divide the frequency range corresponding to a
particular voltage level into more values (from 1 to 5).
We also vary CPC from 1 to 3. Note that this is different
from comparing a 1-core chip to a chip with 2 or 3
cores; we consider a chip with the same number of
cores, 6 for example, which has 6, 3 or 2 controllers.We
do not model a 6-core system with a single controller
(having CPC of 6) because the associated state explo-
sion makes the verification through model checking

Figure 5. Impact of Number of
Voltage Levels (VL)

a) b) c)

d) e)

impractical and our results show little overall perfor-
mance improvement beyond 3 CPC.

In our analysis, the global controller uses the power
model described in Section 4.4 to estimate the power
use of the system (a function of activity factor, voltage
and frequency). The global controller predicts that the
cores will maintain their current activity factor during
the next interval.

We perform a range of experiments setting the
power budget to 25, 40, 50, 70 and 100% of the maxi-
mum power the chip can consume (corresponding to a 4
IPC activity factor across all cores). The results we
present are averaged across the different budget levels
and benchmarks.

5.2 Impact of Number of Voltage Levels
The first design parameter we explore is VL. We

consider a heterogeneous scheme and fix FL to 2 for
clarity (the results were similar for the other FL values).
Figure 5(a) shows the impact of VL on performance
with respect to a chip without DPM. Figure 5(b,c) show
safety, and Figure 5(d,e) show verifiability. We notice a
strong interaction between VL and CPC; on many of our
metrics of interest, the impact of increasing VL varied
across different levels of CPC. Hence we present data
for CPC=1, 2 and 3 on the same graph.

We notice several interesting phenomena. First, in
terms of performance, the trend corroborates our intu-
ition that increasing VL benefits performance. However,
we notice a saturation around VL=5 and performance
remains almost flat afterwards. Prior work [17] pro-
posed using VL=10 in an experimental setup that used
4 cores, simulating various SPLASH benhmarks. Our
results, albeit in a different setup, suggest that such a
large value of VL offers little marginal benefit.

The impact of CPC on performance also matches
our intuition in that we achieve better performance by
increasing CPC. In fact the CPC=1 solution lags behind
the CPC=2 and CPC=3 solutions at all voltage levels.

However, the difference between the CPC=2 and
CPC=3 solutions is minimal. They differ somewhat for
low values of VL (2 or 3) but after that point there is
very little difference in performance. The intuition is
that the presence of 2 cores with activity factors that dif-
fer achieves a good enough average effect on the aggre-
gate peak power to make throttling unnecessary. In prior
work [5], the authors foresaw the motivation and need
for centralization of the multicore power management
problem. In this work we have seen that centralization is
indeed better than local per-core control, but clustering
of cores per controller beyond two may not yield addi-
tional performance. This insight is an important addi-
tional input to future architectural design of multicore
power management protocols.

In terms of safety, the percentage power spent over
budget is minimal, ranging from 0.1% to < 0.5% of the
power usage of a solution without DVFS. The percent-
age of intervals spent over budget varies from ~0.5% to
~9%. An increase in CPC allows the controller to make
more aggressive decisions in matching the power budget
resulting in more mispredictions. The same can be said
about increasing VL. Whether the amount of time spent
over budget is deemed tolerable or not depends on the
particular constraints of the application. However, con-
sidering the tiny percentage of power spent over budget,
we conclude that VL does not greatly impact safety.

Given only the performance and safety analysis of
the design space, one might conclude that the greatest
difference can be noticed when going from CPC=1 to
CPC=2 and that there is a minimal difference between
CPC=2 and CPC=3. However, if we add verifiability to
the picture, the conclusion changes dramatically. The
verification effort, measured both in number of reach-
able states and transitions, increases dramatically with
CPC. We see a strong interaction between CPC and VL
in terms of verifiability effects. For both the CPC=1 and
CPC=2 solutions, the verification effort does not

Figure 6. Impact of Number of
Frequency Levels per Voltage
Level (FL)

a) b) c)

d) e)

increase significantly with VL, unlike the case for the
CPC=3 solution.

In conclusion, the performance improvement gained
from going from CPC=2 to CPC=3 is insignificant (par-
ticularly for larger VL) while the increase in verification
effort is extremely large. Our data suggest that the better
design solution consists of having multiple controllers
each assigned to a small number of cores (2) which can
be set to 4-5 voltage levels as opposed to a design with a
large CPC at low VL.

5.3 Impact of Number of Frequency Levels
The second design parameter we address is FL, the

number of frequency levels that can be set for a given
voltage level. Our hypothesis was that the 100µs actua-
tion of the controller can take advantage of the increased
frequency granularity and better track the power budget
between consecutive voltage actuations.

Figure 6 shows our results when we consider a het-
erogeneous policy and fix VL=3 for performance with
respect to a chip without DPM (a), safety (b, c) and ver-
ifiability (d, e). Our results indeed show a slight
improvement in safety due to the increased flexibility in
frequency levels. However, this improvement is minimal
and accomplished with a performance penalty. The rea-
son is that the frequency decrease is a lot less efficient in
decreasing the overall power usage than the voltage. The
impact of FL on verification, however, is very large both
in reachable states and transitions. We conclude that the
frequency knob should be used only when the safety
margins of being over budget are tight, because a signif-
icant cost in verifiability will be paid. Also, FL=2 seems
to suffice for getting most of the safety benefit. Our con-
clusion is specific to the type of system we analyzed,
where it is possible to set both voltage and frequency of
individual cores at different levels. For this case, using
many frequency levels for one voltage level does not
seem to represent a good design alternative from a veri-
fiability, performance, and safety trade-off. For the class
of systems that allocate the same voltage across all
cores, the impact of frequency levels is likely to be more
beneficial.

5.4 Impact of Using a Homogeneous Policy
We now explore the impact of choosing a homoge-

neous policy. We wish to discover whether homogeneity
helps or hurts our pursuit of better design points.
Figure 7 shows the results for a homogeneous policy
when we vary VL. We notice a slight decrease in perfor-
mance for an increase in CPC. This result is due to the
fact that the homogeneous policy is more restrictive and
all cores assigned to the controller are throttled to a sin-
gle voltage level to match the budget. Second, the per-
formance impact of increasing VL is more significant
compared to the heterogeneous case. The safety is
improved for the homogeneous solution as the percent-
age of intervals spent over budget decreases signifi-
cantly.

6. Conclusions
Power management is important for multicore pro-

cessors, and DPM scheme designers would like to have
confidence that their schemes are both safe and efficient.
We have shown the insight that can be gained by using
formal methods—in this case, probabilistic model
checking—to analyze high-level descriptions of DPM
schemes. We have used PRISM to determine the effort
required to verify DPM schemes, and we have compared
these schemes with respect to their efficiency.

One conclusion we draw from this work is that glo-
bal schemes (i.e., CPC>1) offer significant benefits in
performance due to the ability to balance power across
more cores. However, we must be careful to avoid scal-
ing them to more cores than necessary. Linear increases
in CPC cause exponential increases in the size of the
reachable state space. Thus it is important to find the
system configuration where both the verification is trac-
table and we obtain the majority of the benefits of a glo-
bal solution. Our data shows that much of the benefit is
achieved at just CPC=2; increasing CPC further pro-
vides little additional performance gain. In terms of
safety, we found no significant difference between per-
centage energy spent over budget as a function of CPC,
but a larger value of CPC resulted in the system spend-
ing more time over budget. Thus we recommend designs

a) b) c)

Figure 7. Impact of Homogeneous Policy

in which chips are divided into small clusters of cores,
where each cluster uses a global control scheme.

A second conclusion is that the use of fine-grained
frequency tuning is likely not worth its costs for systems
where it is possible to set both voltage and frequency of
individual cores at different levels. The results show that
having a large FL has an extremely large impact on veri-
fication effort. It is not clear that its modest safety bene-
fits justify these verification costs.

Acknowledgments

This work was initiated as a 2007 summer internship
project at IBM T. J. Watson Research Center. The work
at IBM was supported in part by the Defense Advanced
Research Projects Agency under its Agreement No.
HR0011-07-9-0002. At Duke University this research
was supported by the National Science Foundation
under Grants CCF-0444516 and CCF-0811920. We
thank Alvy Lebeck and Costi Pistol for helpful discus-
sions about this work.

References
[1] J. Choi et al. Thermal-aware Task Scheduling at the

System Software Level. In Proc. of the Int’l Symposium
on Low Power Electronics and Design, Aug. 2007.

[2] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang.
Protocol Verification as a Hardware Design Aid. In 1992
IEEE Int’l Conference on Computer Design: VLSI in
Computers and Processors, pages 522–525, 1992.

[3] G. Dubost, S. Granier, and G. Berry. An Esterel-Based
Formal Specification Methodology for Power Manager
Development. Presented at the SAME Forum, Oct. 2007.

[4] D. Dunn. Intel Delays Montecito in Roadmap Shakeup.
EE Times, October 24 2005.

[5] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and
M. Martonosi. An Analysis of Efficient Multi-Core
Global Power Management Policies: Maximizing
Performance for a Given Power Budget. In Proc. of the
39th Annual IEEE/ACM Int’l Symposium on
Microarchitecture, Dec. 2006.

[6] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 2.0:
A Tool for Probabilistic Model Checking. In Proc. of the
1st Int’l Conference on Quantitative Evaluation of
Systems, pages 322–323, Sept. 2004.

[7] M. Kwiatkowska, G. Norman, and D. Parker.
Probabilistic Model Checking and Power-Aware
Computing. In Proc. of the 7th Int’l Workshop on
Performability Modeling of Computer and
Communication Systems, pages 6–9, Sept. 2005.

[8] A. Lungu and D. J. Sorin. Verification-Aware
Microprocessor Design. In Proc. of the Int’l Conference
on Parallel Architectures and Compilation Techniques,
pages 83–93, Sept. 2007.

[9] M. M. K. Martin. Formal Verification and its Impact on
the Snooping versus Directory Protocol Debate. In Proc.
of the Int’l Conference on Computer Design, Oct. 2005.

[10] M. R. Marty et al. Improving Multiple-CMP Systems
Using Token Coherence. In Proc. of the Eleventh Int’l
Symposium on High-Performance Computer
Architecture, pages 328–339, Feb. 2005.

[11] R. McGowen et al. Power and Temperature Control on a
90-nm Itanium Family Processor. IEEE Journal of Solid-
State Circuits, 41(1):229–237, Jan. 2006.

[12] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[13] M. Moudgill, P. Bose, and J. H. Moreno. Validation of
Turandot, a Fast Processor Model for Microarchitecture
Exploration. In Proc. of the IEEE Int’l Performance,
Computing and Communications Conference, pages 451–
457, Feb. 1999.

[14] M. Moudgill, J.-D. Wellman, and J. H. Moreno.
Environment for PowerPC Microarchitecture
Exploration. IEEE Micro, 19(3):15–25, May/June 1999.

[15] G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla.
Using Probabilistic Model Checking for Dynamic Power
Management. Formal Aspects of Computing, 17(2):160–
176, Aug. 2005.

[16] C. Poirier, R. McGowen, C. Bostak, and S. Naffziger.
Power and Temperature Control on a 90nm Itanium-
family Processor. In Proc. of the IEEE Int’l Solid-State
Circuits Conference, Feb. 2005.

[17] J. Sartori and R. Kumar. Proactive Peak Power
Management for Many-Core Architectures. Technical
Report CRHC-07-04, UIUC CRHC, Oct. 2007.

[18] J. Sharkey, A. Buyuktosunoglu, and P. Bose. Evaluating
Design Tradeoffs in On-Chip Power Management for
CMPs. In Proc. of the Int’l Symposium on Low Power
Electronics and Design, Aug. 2007.

[19] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically Characterizing Large Scale Program
Behavior. In Proc. of the Tenth Int’l Conference on
Architectural Support for Programming Languages and
Operating Systems, Oct. 2002.

[20] S. Shukla and R. K. Gupta. A Model Checking Approach
to Evaluating System Level Dynamic Power Management
Policies for Embedded Systems. In Proc. of the High-
Level Design Validation and Test Workshop, pages 53–
57, 2001.

	WDA08-cover.pdf
	jeffery.pdf
	khan.pdf
	li.pdf
	lungu.pdf
	Abstract
	1. Introduction
	Figure 1. Workflow for Development of New DPM Scheme. Shaded portions indicate proposed additions.

	2. Background and Related Work
	2.1 Multicore Power Management
	Figure 2. DPM Scheme with Global Controller

	2.2 Verifying Power Management Schemes
	2.3 Verification-Aware Design

	3. DPM Design Space Exploration
	3.1 High Level View of DPM Design Space
	Figure 3. DPM Scheme Power Utilization

	3.2 Design Goals and Parameters
	3.3 Motivating Early Formal Analysis
	Figure 4. Possible Assignments of Cores to Controllers

	4. Methodology for Formal Analysis
	4.1 Probabilistic Model Checking
	4.2 DPM Model Construction
	Table 1. Microprocessor Configuration
	Table 2. Benchmarks

	4.3 DPM Scheme Properties
	4.4 Quantifying Performance, Power, Safety, and Verifiability
	Performance
	Power
	Figure 5. Impact of Number of Voltage Levels (VL)

	5. Experimental Evaluation
	5.1 Scope of Analysis
	5.2 Impact of Number of Voltage Levels
	Figure 6. Impact of Number of Frequency Levels per Voltage Level (FL)

	5.3 Impact of Number of Frequency Levels
	5.4 Impact of Using a Homogeneous Policy

	6. Conclusions
	Figure 7. Impact of Homogeneous Policy

	Acknowledgments
	References

	Multicore Power Management: Ensuring Robustness via Early-Stage Formal Verification
	Anita Lungu1, Pradip Bose2, Daniel J. Sorin3, Steven German2, and Geert Janssen2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

