

Shuffler: Modeling with Interchangeable Parts

Alla Sheffer (joint work with Vladislav Kraevoy & Dan Julius)

Motivation - Easy creation of 3D Content

 Currently 3D modeling requires a lot of time & expertise

Observations:

 Practical modeling limited to small set of classes

 Models have intuitive breakdown into interchangeable parts

Can create rich & detailed models by shuffling parts

• n models with m parts $\rightarrow n^m$ new models

Modeling System

Shuffler Modeling System

- Fast & Trivial to use
 - Mouse click based
 - No geometric input from user
 - No user parameters

Under the hood...

I. Meaningful Segmentation

II. Component Correspondence

III. Shuffling: alignment & blending

Details at www.cs.ubc.ca/~vlady/shuffler/shuffler.htm

Mean-Value (Pyramid) Coordinates for Mesh Editing

Vladislav Kraevoy & Alla Sheffer To appear in IJSM

Motivation – Model Editing

- Simple control mechanism
- Intuitive results
 - "Optimal" rotation
 - Not restricted to convex combination of anchor rotations

Motivation - Motion Reconstruction

No normal information

University of British Columbia

Other Local Shape Representations

- Linear
 - Triangle based [Yu et al. 04, Zayer et al. 05,...]
 - Vertex (Laplacian) based [Alexa 01, Sorkine et al. 04, Lipman et al. 04, Lipman et al. 05]
 - Require normal info to obtain rotational deformation
 - Rotational component combination of anchor rotations
- Non-linear [Sheffer & Kraevoy 04,Kraevoy & Sheffer 06, Botsch 06]
 - No normal requirement

Local Coordinate Frame (per vertex)

- Define local coordinate frame
 - invariant under rigid transformations
- Use vertex normal [Kraevoy & Sheffer'04]
 - Circular dependency
 - Depends on current vertex position
 - Stability issues

Laplacian Normal Calculation

Use Laplacian normal [Kraevoy & Sheffer'06]
Area averaged normal of local Laplacian mesh

- Provides closed form solution
- Allows efficient (hierarchical) solution

Encoding

Tangential component

Normal component - h_i

$$w_{ij} = \frac{\tan(\alpha_{j_{k+1}}/2) + \tan(\alpha_{j_k}/2)}{l_i}$$

[Floater03]

Decoding

$$v_i' = \sum_{(i,j)\in E} w_{ij} v_j'$$

Normal component

$$v_i = v_i' + h_i n_i$$

Explicit formulation

 v'_i – position in the tangential plane

$$v_i = F_i(V) = v_i' + h_i n_i = \sum_{(i,j) \in E} w_{ij} (v_j - (d_i + v_j \cdot n_i) n_i) + h_i n_i$$

$$v_i' - \text{neighbor projection}$$

offset above the tangential plane

Properties

- Reconstruction (everywhere)
- Invariance under rigid transformations
- Shape preservation

Global Reconstruction

Least squares minimization problem

$$\arg \min G(V) = \frac{1}{2} \sum_{v_i \in V} (v_i - F_i(V))^2$$

- For editing add positional vertex constraints
- Solve
 - Global
 - Local
 - Gauss-Newton iterations
 - closed form –have analytic derivatives

Multiresolution

Examples - Deformation

Results

<u>Movie</u>

Comparison

Summary

- Novel local coordinate representation
- Advantages
 - Shape preservation No shearing artifacts
 - Closed form formulation
 - Invariant under rigid transformations
 - Does not require anchor normals
 - Rotations not restricted to convex hull of anchor rotations

Summary

- Applications
 - Deformation/Blending/Morphing
 - Motion from MoCap
- Multiresolution
 - Interactive performance
- Future
 - Material awareness
 - see [Julius, Popa and Sheffer, SMI 2006]
 - Realistic muscle movement (noise)

Thank you

Any questions?

