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Abstract. Argumentation has been acknowledged as a powerful mecha-
nism for automated decision making. In this context several recent works
have studied the problem of accommodating preference information in
argumentation. The majority of these studies rely on Dung’s abstract
argumentation framework and its underlying acceptability semantics.

In this paper we show that Dung’s acceptability semantics, when applied
to a preference-based argumentation framework for decision making pur-
poses, may lead to counter intuitive results, as it does not take appropri-
ately into account the preference information. To remedy this we propose
a new acceptability semantics, called super-stable extension semantics,
and present some of its properties. Moreover, we show that argumenta-
tion can be understood as a multiple criteria decision problem, making
in this way results from decision theory applicable to argumentation.

1 Introduction

In many decision making situations we are confronted with a set of alternatives
or options each of which has its own advantages that can be expressed as dif-
ferent arguments supporting that alternative. For instance, in a car purchase
scenario, one argument that supports small cars is that they have low running
cost, while another argument that favors big cars is that they have better safety
features. The final decision is usually based upon the preferences one has over
the arguments, or more generally how arguments relate to each other.

It is therefore not surprising that during the last years, argumentation has
been acknowledged as a powerful mechanism for automating the decision making
process of autonomous agents. Several recent works (see e.g. [1–5]) have empha-
sized the role of agents’ preferences in the evaluation of their arguments within
a particular class of argumentation frameworks called preference-based argumen-
tation frameworks. The majority of these frameworks are using the acceptability
semantics of the Dung’s abstract argumentation framework [6].



In [7], it was shown that preference-based argumentation under the stable
extension semantics is essentially a method for making decisions that are sup-
ported by ”good” or ”strong” arguments. Roughly speaking, a set of arguments
E is a stable extension if every argument of E is strictly preferred to any other
argument that is not included in E.

In this work we show that the stable extensions semantics of Dung’s frame-
work when applied to decision making may lead to counterintuitive results and
therefore fail to deliver the correct conclusions.

More precisely, we show that stable extensions consider as equally good two
sets of arguments (and therefore the options they support), although for every
argument of the second set, the first set contains a more preferred argument.
One may understand that in this case the agent could randomly select an option
that is supported either by an argument from the first or the second set and
this could be a wrong decision if these arguments support incorrect conclusions.
This problem relates to a similar problem identified independently by Horty in
[8] in the context of the use of argumentation for defeasible reasoning. For this
reason we propose a new semantics called super-stable extension which allows to
fix this problem.

Finally, in this paper we show the correspondence between argumentation
and multi-criteria decision making. Then we emphasize that an aggregation
method like regime [9] can be an alternative approach for defining a ranking
on the set of arguments supporting the options and consequently on the options
themselves.

2 Basics of argumentation

Argumentation is a reasoning model based on the following main steps: i) con-
structing arguments and counter-arguments, ii) defining the strengths of those
arguments, and iii) defining the justified conclusions. Argumentation systems are
built around an underlying logical language and an associated notion of logical
consequence, defining the notion of argument. The argument construction is a
monotonic process: new knowledge cannot rule out an argument but only gives
rise to new arguments which may interact with the first argument. Arguments
may be conflicting for different reasons.

Definition 1 (Argumentation system [6]) An argumentation system is a
pair T = (A, R). A is a set of arguments and R ⊆ A × A is an attack relation.
We say that an argument a attacks an argument b iff (a, b) ∈ R.

Among all the arguments, it is important to know which arguments to keep
for inferring conclusions. In [6], different acceptability semantics were proposed.
The basic idea behind these semantics is the following: for a rational agent, an
argument ai is acceptable if he can defend ai against all attacks. All the argu-
ments acceptable for a rational agent will be gathered in a so-called extension.
An extension must satisfy a consistency requirement and must defend all its
elements.



Definition 2 (Conflict-free, Defence [6]) Let B ⊆ A, and ai ∈ A.

– B is conflict-free iff ∄ ai, aj ∈ B s.t. (ai, aj) ∈ R.
– B defends ai iff ∀ aj ∈ A, if (aj , ai) ∈ R, then ∃ ak ∈ B s.t. (ak, aj) ∈ R.

The main semantics introduced by Dung are summarized in the following defi-
nition.

Definition 3 (Acceptability semantics [6]) Let B be a conflict-free set of
arguments.

– B is admissible iff it defends any argument in B.
– B is a preferred extension iff it is a maximal (w.r.t ⊆) admissible extension.
– B is a stable extension iff it is a preferred extension that attacks any argu-

ment in A\B.

Example 1 Let T = (A, R) be an argumentation theory where A = {α1, α2, α3, α4}
is the set of the arguments and R = {(a1, a2), (a2, a1), (a1, a4), (a2, a3)} is the set
of attacks. This argumentation theory has two stable extensions E1 = {α1, α3}
and E2 = {α2, α4}

3 Preference-based Argumentation Framework:

Properties and Limitations

In [10] the basic argumentation framework of Dung was extended into preference-
based argumentation theory (PBAT). The framework was further developed and
studied in [7]. The basic idea of a PBAT is to consider two binary relations
between arguments:

1. A conflict relation, denoted by C, that is based on the logical links between
arguments.

2. A preference relation, denoted by �, that captures the idea that some argu-
ments are stronger than others. Indeed, for two arguments a, b ∈ A, a � b
means that a is at least as good as b. The relation � is assumed to be a
partial pre-order (that is reflexive and transitive). The relation ≻ denotes
the corresponding strict relation. That is, a ≻ b iff a � b and b 6� a.

The two relations are combined into a unique attack relation, denoted by
R, and the Dung’s semantics are applied on the resulting framework. In what
follows, we focus on a particular class of PBATs, presented in [7], where the
conflict relation C is irreflexive and symmetric.

Definition 4 (Preference-based Argumentation Theory (PBAT)) ([3]) Given
an irreflexive and symmetric conflict relation C and a preference relation � on a
set of arguments A, a preference-based argumentation theory (PBAT) on A is
an argumentation system T = (A,R), where (a, b) ∈ R iff (a, b) ∈ C and b 6≻ a.



It follows directly from the definition that if (a, b) ∈ C and a � b and b 6�
a, then (a, b) ∈ R. Moreover, if (a, b) ∈ C and a, b are either indifferent or
incompatible in �, then (a, b) ∈ R and (b, a) ∈ R. Also note that if (a, b) ∈ C,
then either (a, b) ∈ R or (b, a) ∈ R. Finally, if (a, b) ∈ R and (b, a) /∈ R, then
a ≻ b.

The following example illustrates some features of PBATs.

Example 2 Let A = {a, b, c, d} be a set of arguments, and C the conflict relation
on A defined as C = {(a, b), (b, a), (b, c), (c, b), (c, d), (d, c)}. Moreover, let the
preference relation � contain transitive closure of the set of pairs a � b, b �
c, c � d, and d � c. The corresponding PBAT is T = (A,R), where R =
{(a, b), (b, c), (c, d), (d, c)}. Theory T has two stable extensions, E1 = {a, c} and
E2 = {a, d}.

In [3] the impact of the preference relation on an argumentation system was
studied. After defining a relation � on the powerset 2A of the arguments of a
PBAT T = (A,R), it was shown that the stable extensions of T correspond to
the most preferred elements of 2A wrt this relation.

Definition 5 ([3]) Let T = (A,R) be a PBAT built on an underlying pre-order
�. If A1, A2 ∈ 2A, with A1 6= A2, then A1 � A2 iff one of following holds:

– A1 ⊃ A2

– for all a, b such that a ∈ A1 \ A2 and b ∈ A2 \ A1, it holds that a ≻ b

The exact correspondence between the relation � and stable extensions is as
follows.

Theorem 1 ([3]) Let T = (A,R) be a PBAT built on an underlying pre-order �
and a conflict relation C. E is a stable extension of T iff there are no arguments
a, b ∈ E s.t. (a, b) ∈ C, and for all A ∈ 2A such that A � E, there are a1, a2 ∈ A
such that (a1, a2) ∈ C.

The example below illustrates the link between � and stable extensions.

Example 3 Let T = (A,R) be a PBAT with A = {a, b, c} and R composed
from the conflict relation C = {(a, b), (b, a)(a, c), (c, a)} and preference relation
that contains the pairs a ≻ b and a ≻ c, and marks all other pairs of arguments
as indifferent. The relation � on 2A induced by � contains the pairs {a}�{b, c},
{a}�{b}, {a}�{c}. Since the sets {a, b, c}, {a, b}, {a, c} are ruled out by C, the
set E = {a} is the stable extension of T .

One feature of the � relation is that it may not be transitive. Consider for
instance the theory of the previous example, and observe that {a, b}�{b, c}�{c}.
However, it is not the case that {a, b} � {c}.

The second important observation, which is the main focus of this work,
relates to the conclusions sanctioned by preference-based argumentation under
the stable model semantics. The following example, borrowed from [8], shows
clearly that these results can be counterintuitive even in simple cases.
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Fig. 1. The preference relation induced on sets of arguments.

Example 4 The story of the example is about conclusions that can been drawn
regarding the financial situation of a person based on arguments built on infor-
mation about her occupation and residence. Let’s suppose that lawyers are, in
general, considered to be wealthy, but a certain subclass, the pubic defenders, are
considered not to be. Consider now an area in Paris -say, Passy - containing
a large number of expensive private homes along with a much smaller number
of middle-income rental properties. Thus the residents of Passy can be generally
considered to be wealthy although the renters, are considered to not to be. Assume
that Ann is a public defender (PDa), and therefore a lawyers (La), who rents
in Passy (Ra), and is therefore a resident of Passy (Pa).

If we assume that Wa represents the proposition that Ann is wealthy, the
arguments that can be generated in an underlying propositional language from the
above story are a1 = {PDa, PDa −→ La, La −→ Wa}, a2 = {PDa, PDa −→
¬Wa} a3 = {Ra, Ra −→ Pa, Pa −→ Wa}, a4 = {Ra, Ra −→ ¬Wa}.

From the above arguments we generate the PBAT T=(A,R), where A =
{a1, a2, a3, a4}. The attack relation R is composed from the conflict relation
C = {(a1, a2), (a2, a1), (a1, a4), (a4, a1), (a3, a2), (a2, a3), (a3, a4), (a4, a3)}, and
the preference relation � that is defined as a2 ≻ a1 and a4 ≻ a3, whereas all
other pairs of arguments are incomparable.

Theory T has two extensions, namely E1 = {a1, a3} and E2 = {a2, a4}.
The first extension supports the conclusion that Ann is wealthy, whereas the
the second that she is not. Intuitively however one would conclude that Ann is
not wealthy. In other words we could argue that the second extension is more
preferred than the first, as for every argument of the first it contains a more
preferred argument.

The relation � on the subset of A with two elements is depicted in figure
3. Note again that � is not transitive. Indeed, it holds that {a2, a4} � {a2, a3}
and {a2, a3}� {a1, a3}, but {a2, a4} 6 �{a1, a3}. Although, a2 ≻ a1 and a4 ≻ a3,
the stable model semantics does not render {a2, a4} better than {a1, a3}, because
a2 6≻ a3 and a4 6≻ a1.

The main purpose of this work is to provide a preliminary study of the
problem of the conclusions sanctioned by the state-of-the-art argumentation,
and identify possible solutions by borrowing ideas from decision theory.



4 Preference-based Argumentation revisited

As we noted in section 3, the stable model semantics can lead to counter-intuitive
results. To remedy the situation we present a new semantics for preference-
based argumentation called super-stable extensions semantics. The main idea
is to only accept conclusions drawn under the stable model semantics from a
PBAT T that correspond to the conclusions that are sanctioned by some other
PBAT T ′ which is obtained from T by removing incomparability. Therefore,
the new semantics may differ from the standard stable model semantics only
on theories with incomparability. As we will discuss in the next section theories
without incomparability always sanction the correct conclusion under the stable
extension semantics.

Before we proceed to the definition of the new semantics, we recall some
useful concepts. A relation � on a set S is total if for all a, b ∈ S with a 6= b,
a � b or b � a. A strict total order on a set S is an asymmetric (hence irreflexive),
transitive and total relation on S. The notion of an extension of a relation is
used in decision theory and economics eg. ([11], [12])

Definition 6 A binary relation �E on S is an extension of a pre-order � on
S if �E is a pre-order on S such that �E⊇� and for all a, b ∈ S if a ≻ b then
a ≻E b. An extension of a pre-order � that is complete (ie., for all a, b ∈ S,
a � b or b � a) is called ordering extension of �.

Hansson [11] has shown that every pre-order has an ordering extension. More-
over, Donaldson and Weymark [12] proved that a pre-order is the intersection of
its ordering extensions.

Definition 7 A strict total order ≻s on a set S is a strict ordering of a total
pre-order � if for all a, b ∈ S if a ≻ b then a ≻s b.
A strict total order is a strict ordering of a pre-order if it is a strict ordering of
one of its ordering extensions.

The following definition extends the notions of ordering extension and strict
ordering to the case of PBATs.

Definition 8 Let T = (A,R) be a PBAT on an underlying pre-order � and
a conflict relation C. The PBAT To = (A,Ro), on an underlying relation �o

and the conflict relation C, is a ordering completion of T if �o is an ordering
extension of �. The PBAT Ts = (A,Rs), on an underlying relation ≻s and the
conflict relation C, is a strict projection of T if ≻s is a strict ordering of �.

The following result that relates the stable extensions of a PBAT and the
stable extensions of its ordering completions and strict projections is easily prov-
able.

Proposition 1 Let T be a PBAT, To one of its ordering completions, and Ts

one of its strict projections. If Eo is a stable extension of To, then it is also a
stable extension of T . Moreover, if Es is a stable extension of Ts, then it is also
a stable extension of T .



However, it is not the case that a stable extension of T is a stable extension of
some To built on a pre-order ≻o that is an ordering extension of �. Consider for
instance again the theory of example 4, and its stable extension E1 = {a1, a3}.
To see that there is no PBAT To which is an ordering completion of T and has
E1 as a stable extension, observe that for E1 to be a stable extension it must be
the case that a1 � a4 and a3 � a2. However, together with a2 ≻ a1 these would
mean that a3 � a4, which is impossible given that a4 ≻ a3.

We now proceed with the definition of the new semantics for preference-
based argumentation. As noted earlier, the basic idea is to only accept a set of
arguments as an extension of a PBAT T if this set is a stable extension of an
ordering completion of T . More formally the concept is defined as follows.

Definition 9 Let T = (A,R) be a PBAT built on an underlying pre-order �
and conflict relation C. A stable extension E of T is a super-stable extension of
T if it is the stable extension of an ordering extension of T .

By the results of [11] we know that every pre-order has an ordering extension.
Therefore, every PBAT has an ordering completion which is itself a PBAT. From
[7], we know that every PBAT has a stable extension. By combining these two
results we obtain the following property for super-stable extensions.

Proposition 2 Every PBAT has a super-stable extension.

5 Theories without incomparability

If a PBAT T contains no incomparability, T is an ordering completion of itself.
Therefore, any stable extension of T is by definition a super-stable extension
of T . In this section we prove that for this class of theories a correspondence
holds between their stable extensions and the stable extensions of their strict
projections.

For a PBAT without incomparability, T = (A,R), we define the level of
argument a ∈ A, denoted by l(a), recursively as follows

– l(a) = 1 for all a such that there is no b ∈ A s.t. b ≻ a
– l(a) = k for all a such that for all a′ ∈ A s.t. a′ ≻ a it holds that l(a′) < k,

and ∃a′′ ∈ A s.t. a′ ≻ a and l(a′) = k − 1

The following lemma relates the level of arguments with relation ≻ and will
be used in the proof of the main result of this section (proposition 3 below).

Lemma 1. Let T = (A,R) be a PBAT without incomparability on an underlying
pre-order �. For every a, b ∈ A, l(a) < l(b) iff a ≻ b.

Proof. The property that for every a, b ∈ A if a ≻ b then l(a) < l(b), follows
directly from the definition of the level of an argument. We prove now that if
l(a) < l(b) then a ≻ b. Assume a, b ∈ A with l(a) < l(b). Clearly it can not be
the case b ≻ a, because then l(b) < l(a). Assume that a � b and b � a, and



l(b) = m (hence, l(a) < m). Then, there must be c ∈ A s.t l(c) = m − 1 and
c ≻ b. Therefore, it must be the case that c ≻ a, and hence l(a) ≥ m. But this
contradicts l(a) < m. Therefore it holds that a ≻ b. ⊓⊔

A direct consequence of the previous lemma is that l(a) ≤ l(b) iff a � b. Also
note that since a super-stable extension of a PBAT T = (A,R) is also a stable
extension of T , it holds that for all a 6∈ E there exist b ∈ E such that (b, a) ∈ R.
From the above we conclude that for all a 6∈ E there exist b ∈ E such that
(a, b) ∈ C and l(b) ≤ l(a). Note the above property does not hold in general for
theories that contain incomparability.

Proposition 3 Let T be a PBAT without incomparability. Every stable exten-
sion of T is a stable extension of some strict projection of T .

Proof. We prove the claim by defining a strict projection of T , Ts = (A,Rs), for

which E is a stable extension. Let ≻E+

s be a strict projection on the arguments

of E. Similarly, let ≻E−

s be a strict projection on the arguments of A\E. Finally,

let ≻E+,−

s be the binary relation on (E × (A\E)) ∪ ((A \E)×E) such that for
any pair of arguments a ∈ E and b 6∈ E

– if l(a) > l(b) then b ≻E+,−

s a

– if l(a) ≤ l(b) then a ≻E+,−

s b

where l(a) is the level of argument a in theory T . Define ≻s=≻E+

s ∪ ≻E−

s

∪ ≻E+,−

s .
We first show that ≻s is strict total order. It is easy to verify that ≻s is asym-
metric and total by construction. We show that ≻s is transitive. Let a, b, c ∈ A,
such that a ≻s b and b ≻s c. We need to show that a ≻s c. We proceed by case
analysis. For the case where a, b, c ∈ E or a, b, c ∈ A \ E, transitivity follows by
construction.
Assume now that a ∈ E and b, c 6∈ E. Then, by construction, l(a) ≤ l(b). More-
over, since b ≻s c, by lemma 1, it must be the case l(b) < l(c). Hence, l(a) < l(c),
which, again by lemma 1, means that a ≻s c. The case where a ∈ E, b 6∈ E,
c ∈ E is similar.
Now suppose that a, b ∈ E, and c 6∈ E. Since a ≻s b, by lemma 1, we obtain
that l(a) < l(b). Moreover, by construction, it must hold that l(b) ≤ l(c). Hence,
l(a) < l(c), and therefore a ≻s c.
The remaining cases where a 6∈ E can be proved analogously.

Finally, we prove that E is a stable extension of Ts = (A,Rs). First note
that E is conflict free. Now assume that a 6∈ E and define D(a) = {b|b ∈ E and
(b, a) ∈ R}. Since E is a stable extension, it must be D(a) 6= ∅. Let b ∈ D(a),
and assume that (b, a) 6∈ Rs. By construction, it must hold that l(a) < l(b),
which by lemma 1 implies a ≻ b. This however contradicts b ∈ D(a). Therefore,
(b, a) ∈ Rs, which means that E is a stable extension of Ts. ⊓⊔

By combining the definition of a super-stable extension with proposition 3
we obtain the following strong property regarding the super-stable extensions of
theories without incomparability.



Proposition 4 Every super-stable extension of a PBAT T that contains no
incomparability is a stable extension of some strict projection of T .

6 A multi-criteria view of PBAT

In the previous sections we investigated how standard argumentation semantics
can be extended to accommodate preference information on the arguments. In
this section we change our perspective and explore a more direct link between
argumentation and decision theory. More specifically, we interpret arguments as
criteria and regard preferences as information on the relative importance of these
criteria. Under this perspective argumentation can be understood as Multiple
Criteria Decision Problem (MCDP). We start our analysis with a definition of
the problem that leaves out some of its aspects that are not directly relevant to
our purposes.

Definition 10 A Multiple Criteria Decision Problem (MCDP) is a triple P =
(A, K,�) where

– A = {a1, . . . , an} is the set of attributes.
A set of values is associated with each attribute, denoted by v(a1), . . . , v(an)

– K = {≫a1
, . . . ,≫an

} is the set of criteria. A criterion ≫ai
is a pre-order

associated with the values of an attribute ai

– � is pre-order on the criteria

An alternative l wrt to a MCDP P = (A, K,�) is any l ∈ v(a1) × . . . × v(an).
We denote the set of alternatives by LP .

In certain situations, a solution to a MCDP is a ranking relation � on the
set of alternatives L, ie. � ⊂ L×L. Usually a solution to a MCDP has to satisfy
certain properties [13].

The following definition shows that argumentation can be transformed in a
meaningful way into a MCDP.

Definition 11 Given a PBAT T = (A,R), where A = {a1, . . . , an}, we define
its corresponding MCDP MT = (AT , KT ,�T ) as follows:

– AT = A, with v(ai) = {a+

i , a−

i }, for each ai ∈ AT .
– KT = {≫1, . . . ,≫n}, where ≫i, for 1 ≤ i ≤ n, is defined as the preference

a+

i ≫i a−

i .
– �T =�

The following is an example of a translation of a specific PBAT into a MCDP.

Example 5 Consider the PBAT T = (A,R), where A = {a1, a2, a3}, and the
underlying preference relation � defined as: a1 ≻ a2, a1 ≻ a3, a2 � a3, a3 � a2.
The corresponding MCDP is defined as MT = (AT , KT ,�T ), where:



– AT = {a1, a2, a3}, with v(a1) = {a+
1 , a−

1 }, v(a2) = {a+
2 , a−

2 }, v(a3) =
{a+

3 , a−

3 }.
– KT = {≫1,≫2,≫3}, with a+

1 ≫1 a−

1 , a+
2 ≫2 a−

2 , a+
3 ≫3 a−

3 .
– �T =�

Several methods have been proposed in the literature, the applicability of
which in many cases depends on the features of the MCDP at hand. Among the
methods for tackling MCDPs that appear in the literature and are applicable to
the case we consider, it seems that the Regime method [9] is the closest to the
spirit of the stable extensions semantics. Here we discuss a simplified version of
the method as it appears in [14].

The Regime method works as follows. For any two alternatives Ai, Aj , let
K+ be the set of criteria according to which Ai is better than Aj , and K− be
the set of criteria according to which Aj is better than Ai. Regime ranks Ai

better than Aj , denoted by Ai �t
R Aj , if K+ 6= ∅ and there is an injective map

from K− to K+ by which each criterion in K− is mapped to a more important
criterion in K+. The set of optimal alternatives is then {Ao : ∀i¬(Ai �t

R Ao)}.
We can easily define a preference order on the sets of arguments of a PBAT

that captures the Regime method. To do this we associate to any set of arguments
A, an alternative At = {a+|a ∈ A} ∪ {a−|a 6∈ A}.

Definition 12 Let T = (A,R) be a PBAT and MT = (AT , KT ,�T ) its corre-
sponding MCDP. For any A1, A2 ⊆ 2A, it holds that A1 �R A2 if At

1 �t
R At

2.

We can now define the notion of a regime extension of a PBAT by charac-
terizing it in a way similar to the stable extensions.

Definition 13 A set of arguments E is a regime extension of a PBAT T =
(A,R) if there are no arguments a, b ∈ E s.t. (a, b) ∈ C, and for all E′ ∈ 2A

such that E′ �R E, there are a1, a2 ∈ E′ such that (a1, a2) ∈ C.

We now apply the previous definition to the story of 4, and observe that it
yields the correct result.

Example 6 Consider again the theory T of example 4. The corresponding MCDP
MT = (AT , KT ,�T ) can be defined as outlined above. Consider the two sets of
arguments E1 = {a1, a3} and E2 = {a2, a4} of T which correspond to the alter-
natives Et

1 = {a+
1 , a−

2 , a+
3 , a−

4 } and Et
2 = {a−

1 , a+
2 , a−

3 , a+
4 }. For the comparison

Et
2�

t
REt

1 we have that K+ = {a2, a4}, K− = {a1, a3}, and the mapping a1 → a2,
a3 → a4. For the comparison Et

1 �t
R Et

2 we have that K+ = {a1, a3} K− =
{a2, a4}, but there is no suitable mapping. Therefore we conclude E2 �R E1.
Moreover, E2 is a regime extension of T .

7 Conclusion and Future Work

In this paper we pointed out that Dung’s stable extensions semantics when
applied in preference-based argumentation frameworks for decision making pur-
poses lead to counter-intuitive conclusions. A similar problem was also identified



by Horty in [8]. This mainly holds for argumentation theories where the pref-
erence relation used for defining the relative strength of individual arguments
contains incomparability. To resolve this problem we proposed a new acceptabil-
ity semantics called super-stable extensions which allows to capture the conclu-
sions corresponding to the good decisions and to avoid the counter intuitive ones
which could correspond to bad decisions. Moreover, we showed that preference-
based argumentation can be understood as a multiple-criteria decision problem
allowing to that way the exploration of the application of theoretical results of
the decision theory in argumentation. Therefore, this work can been seen as an
attempt to bring new ideas from decision theory to argumentation.

Our future work concerns the definition of a binary relation �SS on the sets
of arguments of a PBAT that will be proved exactly the preference relation that
is induced by the super-stable extensions semantics and to prove the correspon-
dence between both. This will be the equivalent result of the one we proved in
[7] between the preference � and the stable extensions.
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