Improving the Dependability of Grids via Short-Term Failure Predictions

Artur Andrzejak, Demetrios Zeinalipour-Yazti, Marios D. Dikaiakos

Motivation and Introduction

Reliability of Grids

- Grids like EGEE offer sufficient capacity for even most challenging large-scale computational experiments
- However, Grids have notoriously <u>low</u> reliability:
 - Data processing challenges of the WISDOM project (2005) have shown that only 32% (FlexX) and 57% (Autodock) of the jobs completed with "OK" status
 - A nine-month long study found that only 48% of jobs submitted in South-Eastern-Europe completed successfully (*)

 (*) Analyzing the Workload of the South-East Federation of the EGEE. G. DaCosta, M.D. Dikaiakos, S. Orlando. *Proceedings <u>MASCOTS 2007</u>*.
 Harvesting Large-Scale Grids for Software Resources, A. Katsifodimos, G. Pallis, M. D. Dikaiakos, *Proceedings of <u>CCGrid 2009</u>*.

Detecting and Managing Failures

- Detecting and managing failures is an important step to make Grids reliable
- This is an extremely complex task that relies on
 - over-provisioning of resources
 - ad-hoc monitoring
 - Sys.admin & user intervention
- Unique characteristics of Grids make it difficult to use ideas from cluster computing, Internet systems, and software systems

Why is Detecting Failures in Grids Hard?

- Lack of central administration makes it difficult to access the remote sites in order to monitor failures
- Heterogeneity and legacy impede integration of failure feedback mechanisms in the application logic
- Huge system size make it difficult to acquire and analyze failure feedback data at a fine granularity
- It is more efficient to identify the overall state of the system and to exclude potentially unreliable sites than to identify reasons for individual failures
- Failure Management in Grids: The Case of the EGEE Infrastructure. K. Neocleous, M.D. Dikaiakos, P. Fragopoulou and E.P. Markatos, <u>Parallel</u> <u>Processing Letters</u>, Vol. 17, Issue 4, World Scientific, pp 391-410, December 2007

Short-Term Prediction of Site Failures

In our approach we predict queue (site) failures on short-term time scale by deploying (off-the-shelf) machine learning algorithms

Exploiting Generic Feedback Sources

- Instead of using application-specific feedback data, we exploit a set of generic feedback sources
 - representative low-level measurements (SmokePing)
 - websites, e.g. Grid Statistics (GStat)
 - functional tests and benchmarks
- Such predictions can be used for deciding where to submit new jobs and help operators to take preventive measures

Previous Work

- In previous work the FailRank system we have used linear models of monitoring data
 - they continuously ranked K sites with the highest potential to failure
- In this study we apply individual models per queue and a more sophisticated approach, including
 - statistical selection of most meaningful sources
 - non-linear classification algorithms from machine learning

"Metadata Ranking and Pruning for Failure Detection in Grids", D. Zeinalipour-Yazti, H. Papadakis, C. Georgiou, M.D. Dikaiakos, *Parallel Processing Letters*, *Special Issue on Grid Architectural Issues: Scalability, Dependability, Adaptability*, Sept. 2008. "Identifying Failures in Grids through Monitoring and Ranking." Demetrios Zeinalipour-Yazti, Kyriakos Neocleous, Chryssis Georgiou, and Marios D. Dikaiakos, in the *Proceedings of the Seventh IEEE International Symposium on Networking Computing and Applications*, *NCA 2008*.

FailRank Architecture

- FailShot Matrix (FSM): A Snapshot of all failurerelated parameters at a given timestamp.
- Top-K Ranking Module: Efficiently finds the K sites with the highest potential to feature a failure by utilizing FSM.
- Data Exploration Tools: Offline tools used for exploratory data analysis, learning and prediction by utilizing FSM.

Focus on Prediction Accuracy

- We focus on several essential questions related to prediction accuracy:
 - How many sources are necessary for high prediction accuracy?
 - Which of the sources yield the highest predictive information?
 - How accurately can we predict the failure of a given Grid site X minutes ahead of time?
- Evaluation on a 30-day trace from 197 EGEE queues shows that prediction accuracy is highly dependent on:
 - the selected queue
 - the type of failure
 - the preprocessing and
 - the choice of input variables

Data and Modeling Methodology

Input Data and FailBase Repository

- Our study uses data from our FailBase Repository
 - characterizes the EGEE Grid in respect to failures between 16/3/2007 and 17/4/2007
 - maintains information for 2,565 Computing Element (CE) queues (sites accepting computing jobs)
- For our study we use a subset of 197 queues with most types of monitoring data
 Round Trip Time
 CE-queue: cell kallisto, hellasgrid, grobmanager
- For each queue data is a sequence of pairs (timestamp, attribute vector)
 - Each attribute vector consists of 40 measurements from to various sensors and tests
 - Sampled every 1 minute

Exemplary attribute (RTT) over time

Types of Input Data

- A. Information Index Queries (BDII): 11 attributes from LDAP queries
 - e.g. number of free CPUs; max. number of running and waiting jobs
- B. Grid Statistics (GStat): processed data from the monitoring web site of Academia Sinica
 - e.g. geographical region of site; available storage space
- C. Network Statistics (SmokePing): Data of the gPing database from ICS-FORTH
 - average round-trip-time (RTT); the packet loss rate
- D. Service Availability Monitoring (SAM): 14 attributes derived from raw html published by the CE sites
 - e.g. the version number of the middleware; results of various replica manager tests; results from test job submissions

Predictive Models

Our prediction methods are model-based

- A model in this sense is a function f mapping vectors of sensor values to an output (queue healthy (0) or not (1))
- We use as models classification algorithms
 - Classifiers "learn" the relationship between input data and the output ("class value") based on historical examples
 - They are well-established in data mining and have been perfected over time
- We deploy several common classifiers
 - C4.5 (decision tree), AdaBoost, Naive Bayes, LS

Learning the Model

- To predict, we need to learn the relationship between inputs (A, B) @"now" and the value of our model f @(now + T)
- First stage (training, model fitting):
 - Supply training data consisting of triples [A@x, B@x, f@(x +T)] sampled at different times x

@ = "at time"

- Then learn a function which captures this relation
- Second stage (prediction): supply (A,B) and compute f @(x+T)]

	Metric A	Metric B	f	
Example 1	60	1000	[30-33]	
				1. fit model
Example k	1.4	106	[3-6]	J
Unknown Sample	30	50000	?	← 2. predict

Classifiers Explained Visually

- Assume that you have two metrics, and want to use them for predicting some (discrete) value a class
 - Interpret inputs as coordinates of points in the plane
- Then training data = multicolored points in R²
 - color corresponds to a class (here: healthy or no)
- Training: finding a suitable subdivision of the plane
 - model = a compact representation of a colored subdivision
- Prediction: given a new sample, find its color = class
- We have 40 metrics instead of 2 (R⁴⁰), but same idea

Attribute Selection

- Initially, we do not know which of the 40 metrics (= attributes) contain most predictive information
- Keeping all create some serious problems
 - Overfitting
 - Inefficiency: memory "explodes" at training phase
 - We don't learn which metrics are really relevant
- Therefore we use attribute selection
 - Learn and evaluate "probe models" on training data with various subsets of attributes
 - Then use attribute sets with lowest errors
 - For specialists: we use forward or backward branchand-bound selection with C4.5 (decision tree)

Evaluation Metrics

- To quantify prediction errors we use
 - Recall = probability that a (randomly selected) failure is indeed predicted
 - Precision = probability that a (randomly selected) failure prediction indicated a true failure
- These metrics are then averaged over all 197 queues for most diagrams

Model Updates

- Models are periodically updated to ensure adaptability to profile changes
 - How? Train model on the orange part and test on the blue part, then advance by the blue part etc.

- The used values are:
 - training interval: 15 days (21600 of 1-minute samples)
 - update interval = test interval = 10 days (14400 samples)
 - why? will be shown later

Experimental Results

Identifying Failure Indicators

- Unfortunately, we do not have any additional data whether jobs on a site have failed or not
- As a substitute, we used as failure indicators two metrics from the Service Availability Monitoring (SAM) measurements (group D):
 - sam-js: a test that submits a simple job for execution to the Grid and then seeks to retrieve that job's output from the UI
 - sam-rgma: R-GMA makes all Grid monitoring data appear like one large DB; this test insert a tuple and run a query for that tuple
- Values (0/1) of each of these 2 metrics are assumed to mean "queue failed" or "queue healthy"

Why sam-js and sam-rgma?

- First: we computed averaged recall / precision for all 14 SAM (group D) attributes
- This eliminated only two of them
- We then looked *per attribute* at:
 - standard deviation more changes = more information
 - failure ratio = (#all samples indicating a failure) / (# all samples)
 - Iow FR = not enough "bad cases" to train a predictor
- From the remainder ones we selected these 2 by importance of representing failures

Data Characteristics

- A. Is there a relationship between failure ratio (FR) and accuracy?
 - FR = (#all samples indicating a failure) / (# all samples)
- Plot: recall of sam-js (bars) sorted by FR or sam-js (line)
- No! => Models are "non-trivial"
- B. What are the failure patterns in our data?
- Typically, the failure state does not change frequently (long "runs" of failures / non-failures
- Prediction errors occur frequently right after the change of failure state

Are Individual Models (per Queue) Useful?

- We have created separate model (trained classifier) per queue
- This is a lot of effort is it useful?
- It turns out that prediction accuracy varies hugely between queues!
- Lessons:
 - "Aggregated models" of reliability (i.e. one model for many queues) can be severely inappropriate
 - Scheduling decisions should take into account confidence of the model <u>per queue</u>
 - How likely is to predict a failure for <u>this</u> queue?
 - If confidence is low, increase redundancy / overprovision for this queue preemptively

Lead Time vs. Accuracy

How much into future can we predict?

- we set the lead time to 15 minutes
- lead times of 1-8 minutes were slightly more accurate
 - but not very useful might not give enough time to react
- lead times above 30 minutes yielded larger errors

Most Relevant Types of Input Metrics

- Which of the input types (A, B, C, D) provide most predictive information?
- ▶ We tested all input combinations A, B,.., AB, AC,..., ABCD
- Group D (SAM = functional tests) is most relevant
 - In fact, groups A, B, C do not carry any additional information

Training Data Size

- How much training data (# samples) is needed for accurate models?
- In general, the less the better
 - Higher adaptability to changes, less "waiting time" until first results

Classifier Type & Attribute Selection

Are some classifiers more accurate than others?

- Except for the least sophisticated algorithm (LS = linear perceptron, a hyperplane in R^d) accuracy is comparable
- How much attribute selection matters
 - Mixed results: for LS & Naïve Bayes improvement, for C4.5 (decision tree) deterioration

Conclusions

- Short-term prediction of failures in Grid queues can yield high accuracy (precision / recall)
- However, this accuracy varies hugely among queues
 - Individual queue modeling is essential
- Some metrics (like Service Availability Monitoring (SAM)) are more informative than all others together
 - Consider this for "economical" metric collection
- Sophisticated classification algorithms yield comparable accuracy

Future work

- Direct comparison with FailRank (linear models)
- Scheduling strategies with consideration of model confidence

Additional Slides

Why is Detecting Failures in Grids Hard?

- Lack of central administration makes it difficult to access the remote sites in order to monitor failures
- Heterogeneity and legacy impede integration of failure feedback mechanisms in the application logic
- Huge system size make it difficult to acquire and analyze failure feedback data at a fine granularity
- It is more efficient to identify the overall state of the system and to exclude potentially unreliable sites than to identify reasons for individual failures

Exploiting Generic Feedback Sources

- Instead of using application-specific feedback data, we exploit a set of generic feedback sources
 - representative low-level measurements (SmokePing)
 - websites, e.g. Grid Statistics (GStat)
 - functional tests and benchmarks
- Such predictions can be used for deciding where to submit new jobs and help operators to take preventive measures

Classifiers Explained Visually

- Assume that you have two metrics, and want to use them for predicting some (discrete) value a class
 - Interpret inputs as coordinates of points in the plane
- Then training data = multicolored points in R²
 - color corresponds to a class (here: healthy or no)
- Training: finding a suitable subdivision of the plane
 - model = a compact representation of a colored subdivision
- Prediction: given a new sample, find its color = class
- We have 40 metrics instead of 2 (R⁴⁰), but same idea

Attribute Selection

- Initially, we do not know which of the 40 metrics (= attributes) contain most predictive information
- Keeping all create some serious problems
 - Overfitting
 - Inefficiency: memory "explodes" at training phase
 - We don't learn which metrics are really relevant
- Therefore we use attribute selection
 - Learn and evaluate "probe models" on training data with various subsets of attributes
 - Then use attribute sets with lowest errors
 - For specialists: we use forward or backward branchand-bound selection with C4.5 (decision tree)

Training Data Size

- How much training data (# samples) is needed for accurate models?
- In general, the less the better
 - Higher adaptability to changes, less "waiting time" until first results

