

Motivation and Introduction

2

Reliability of Grids

3

  Grids like EGEE offer sufficient capacity for even
most challenging large-scale computational
experiments

  However, Grids have notoriously low reliability:
  Data processing challenges of the WISDOM project

(2005) have shown that only 32% (FlexX) and 57%
(Autodock) of the jobs completed with "OK" status

  A nine-month long study found that only 48% of jobs
submitted in South-Eastern-Europe completed
successfully (*)

(*) Analyzing the Workload of the South-East Federation of the EGEE. G. DaCosta,
M.D. Dikaiakos, S. Orlando. Proceedings MASCOTS 2007.

 Harvesting Large-Scale Grids for Software Resources, A. Katsifodimos, G. Pallis,
M. D. Dikaiakos, Proceedings of CCGrid 2009.

Detecting and Managing Failures

4

  Detecting and managing failures is an important step
to make Grids reliable

  This is an extremely complex task that relies on
  over-provisioning of resources
  ad-hoc monitoring
  Sys.admin & user intervention

  Unique characteristics of Grids make it difficult to use
ideas from cluster computing, Internet systems, and
software systems

Why is Detecting Failures in Grids Hard?

5

  Lack of central administration makes it difficult to
access the remote sites in order to monitor failures

  Heterogeneity and legacy impede integration of
failure feedback mechanisms in the application logic

  Huge system size make it difficult to acquire and
analyze failure feedback data at a fine granularity

  It is more efficient to identify the overall state of the
system and to exclude potentially unreliable sites
than to identify reasons for individual failures

Failure Management in Grids: The Case of the EGEE Infrastructure.
K. Neocleous, M.D. Dikaiakos, P. Fragopoulou and E.P. Markatos, Parallel
Processing Letters, Vol. 17, Issue 4, World Scientific, pp 391-410, December
2007

Short-Term Prediction of Site Failures

6

  In our approach we predict queue (site) failures on
short-term time scale by deploying (off-the-shelf)
machine learning algorithms

Grid sites (queues)

Exploiting Generic Feedback Sources

7

  Instead of using application-specific feedback data,
we exploit a set of generic feedback sources
  representative low-level measurements (SmokePing)
  websites, e.g. Grid Statistics (GStat)
  functional tests and benchmarks

  Such predictions can be used for deciding where to
submit new jobs and help operators to take
preventive measures

Previous Work

8

  In previous work – the FailRank system – we have
used linear models of monitoring data
  they continuously ranked K sites with the highest potential

to failure
  In this study we apply individual models per queue

and a more sophisticated approach, including
  statistical selection of most meaningful sources
  non-linear classification algorithms from machine learning

"Metadata Ranking and Pruning for Failure Detection in Grids", D. Zeinalipour-Yazti, H.
Papadakis, C. Georgiou, M.D. Dikaiakos, Parallel Processing Letters, Special Issue on Grid
Architectural Issues: Scalability, Dependability, Adaptability,Sept. 2008.
"Identifying Failures in Grids through Monitoring and Ranking." Demetrios Zeinalipour-
Yazti, Kyriakos Neocleous, Chryssis Georgiou, and Marios D. Dikaiakos, in the Proceedings of
the Seventh IEEE International Symposium on Networking Computing and Applications, NCA
2008.

9

FailRank Architecture

 FailShot Matrix (FSM): A Snapshot of all failure-
related parameters at a given timestamp.

 Top-K Ranking Module: Efficiently finds the K
sites with the highest potential to feature a failure
by utilizing FSM.

 Data Exploration Tools: Offline tools used for
exploratory data analysis, learning and prediction
by utilizing FSM.

Focus on Prediction Accuracy

10

  We focus on several essential questions related to
prediction accuracy:
  How many sources are necessary for high prediction accuracy?
  Which of the sources yield the highest predictive information?
  How accurately can we predict the failure of a given Grid site X

minutes ahead of time?

  Evaluation on a 30-day trace from 197 EGEE queues
shows that prediction accuracy is highly dependent on:
  the selected queue
  the type of failure
  the preprocessing and
  the choice of input variables

Data and Modeling
Methodology

11

Input Data and FailBase Repository

12

  Our study uses data from our FailBase Repository
  characterizes the EGEE Grid in respect to failures

between 16/3/2007 and 17/4/2007
  maintains information for 2,565 Computing Element (CE)

queues (sites accepting computing jobs)
  For our study we use a subset of 197 queues with

most types of monitoring data
  For each queue data is a

sequence of pairs
(timestamp, attribute vector)
  Each attribute vector consists

of 40 measurements from to
various sensors and tests

  Sampled every 1 minute
Exemplary attribute (RTT) over time

Types of Input Data

13

  A. Information Index Queries (BDII): 11 attributes
from LDAP queries
  e.g. number of free CPUs; max. number of running and

waiting jobs
  B. Grid Statistics (GStat): processed data from the

monitoring web site of Academia Sinica
  e.g. geographical region of site; available storage space

  C. Network Statistics (SmokePing): Data of the gPing
database from ICS-FORTH
  average round-trip-time (RTT); the packet loss rate

  D. Service Availability Monitoring (SAM): 14 attributes
derived from raw html published by the CE sites
  e.g. the version number of the middleware; results of various

replica manager tests; results from test job submissions

Predictive Models

14

  Our prediction methods are model-based
  A model in this sense is a function f mapping vectors of

sensor values to an output (queue healthy (0) or not (1))
  We use as models classification algorithms

  Classifiers "learn" the relationship between input data and
the output (“class value”) based on historical examples

  They are well-established in data mining and have been
perfected over time

  We deploy several common classifiers
  C4.5 (decision tree), AdaBoost, Naive Bayes, LS

Learning the Model

•  To predict, we need to learn the relationship between inputs (A,
B) @"now" and the value of our model f @(now + T)

•  First stage (training, model fitting):

•  Supply training data consisting of triples [A@x, B@x, f@(x
+T)] sampled at different times x

•  Then learn a function which captures this relation

•  Second stage (prediction): supply (A,B) and compute f @(x+T)]

Metric A Metric B f

Example 1 60 1000 [30-33]

… … … …

Example k 1.4 106 [3-6]

Unknown Sample 30 50000 ?

} 1. fit model

2. predict ←
15

@ = "at time"

Classifiers Explained Visually

•  Assume that you have two metrics, and want to use
them for predicting some (discrete) value - a class
•  Interpret inputs as coordinates of points in the plane

•  Then training data = multicolored points in R2
•  color corresponds to a class (here: healthy or no)

•  Training: finding a suitable
subdivision of the plane
•  model = a compact

representation of a colored
subdivision

•  Prediction: given a new
sample, find its color = class

•  We have 40 metrics instead
of 2 (R40), but same idea

in
pu

t B

input A region of the
class "green"

 region of the
class "pink"

16

Attribute Selection

17

  Initially, we do not know which of the 40 metrics (=
attributes) contain most predictive information

  Keeping all create some serious problems
  Overfitting
  Inefficiency: memory "explodes" at training phase
  We don't learn which metrics are really relevant

  Therefore we use attribute selection
  Learn and evaluate "probe models" on training data

with various subsets of attributes
  Then use attribute sets with lowest errors
  For specialists: we use forward or backward branch-

and-bound selection with C4.5 (decision tree)

Evaluation Metrics

18

 To quantify prediction errors we use
  Recall = probability that a (randomly selected) failure is

indeed predicted
  Precision = probability that a (randomly selected)

failure prediction indicated a true failure
 These metrics are then averaged over all 197

queues for most diagrams

Model Updates

training test

19

  Models are periodically updated to ensure
adaptability to profile changes
  How? Train model on the orange part and test on the

blue part, then advance by the blue part etc.

  The used values are:
  training interval: 15 days (21600 of 1-minute samples)
  update interval = test interval = 10 days (14400

samples)
  why? – will be shown later

Experimental Results

20

Identifying Failure Indicators

21

  Unfortunately, we do not have any additional data
whether jobs on a site have failed or not

  As a substitute, we used as failure indicators two
metrics from the Service Availability Monitoring
(SAM) measurements (group D):
  sam-js: a test that submits a simple job for execution to

the Grid and then seeks to retrieve that job’s output from
the UI

  sam-rgma: R-GMA makes all Grid monitoring data appear
like one large DB; this test insert a tuple and run a query
for that tuple

  Values (0/1) of each of these 2 metrics are assumed
to mean "queue failed" or "queue healthy"

Why sam-js and sam-rgma?

22

  First: we computed averaged
recall / precision for all 14 SAM
(group D) attributes

  This eliminated only two of them

  We then looked per attribute at:
  standard deviation - more

changes = more information
  failure ratio = (#all samples

indicating a failure) / (# all
samples)

  low FR = not enough "bad
cases" to train a predictor

  From the remainder ones we
selected these 2 by importance
of representing failures

Data Characteristics

23

  A. Is there a relationship between
failure ratio (FR) and accuracy?
  FR = (#all samples indicating

a failure) / (# all samples)
  Plot: recall of sam-js (bars) sorted

by FR or sam-js (line)
  No! => Models are "non-trivial"

  B. What are the failure patterns
in our data?

  Typically, the failure state does
not change frequently (long
"runs" of failures / non-failures

  Prediction errors occur
frequently right after the change
of failure state

true
failures

predicted
failures

errors

Are Individual Models (per Queue) Useful?

24

  We have created separate model (trained classifier) per queue
  This is a lot of effort – is it useful?
  It turns out that prediction accuracy varies hugely between queues!
  Lessons:

re
ca

ll
of

 s
am

-js

queue index – 0 to 196

  "Aggregated models" of reliability
(i.e. one model for many queues)
can be severely inappropriate

  Scheduling decisions should
take into account confidence of
the model per queue
  How likely is to predict a

failure for this queue?
  If confidence is low, increase

redundancy / overprovision
for this queue preemptively

lead time (in minutes) 1 4 16 60 4*60

Lead Time vs. Accuracy

25

  How much into future can we predict?
  we set the lead time to 15 minutes
  lead times of 1-8 minutes were slightly more accurate

  but not very useful – might not give enough time to react
  lead times above 30 minutes yielded larger errors

Averaged recall &
precision for sam-js

Most Relevant Types of Input Metrics

26

 Which of the input types (A, B, C, D) provide most
predictive information?

  We tested all input combinations A, B,.., AB, AC,…, ABCD
  Group D (SAM = functional tests) is most relevant

  In fact, groups A, B, C do not carry any additional information

Averaged recall &
precision for sam-js

 A B AB C AC BC ABC D ... BCD.all Group combination

2 4 8 16 25

Training Data Size

27

 How much training data (# samples) is needed
for accurate models?

  In general, the less the better
  Higher adaptability to changes, less "waiting time" until first results

  But too little data
decreases accuracy

  Training interval of 15
days turned out optimal

  Test interval = Model
update interval was
irrelevant

Averaged recall & precision
vs. training time (days)

Classifier Type & Attribute Selection

28

  Are some classifiers more accurate than others?
  Except for the least sophisticated algorithm (LS = linear

perceptron, a hyperplane in Rd) accuracy is comparable
  How much attribute selection matters

  Mixed results: for LS & Naïve Bayes improvement, for
C4.5 (decision tree) deterioration

Averaged recall for sam-js
(no selection /
 with attribute selection)

C4.5 LS St. AdaBoost NB

Conclusions

29

  Short-term prediction of failures in Grid queues can yield
high accuracy (precision / recall)

  However, this accuracy varies hugely among queues
  Individual queue modeling is essential

  Some metrics (like Service Availability Monitoring (SAM))
are more informative than all others together
  Consider this for "economical" metric collection

  Sophisticated classification algorithms yield comparable
accuracy

Future work
  Direct comparison with FailRank (linear models)
  Scheduling strategies with consideration of model

confidence

Additional Slides

30

Why is Detecting Failures in Grids Hard?

31

  Lack of central administration makes it difficult to
access the remote sites in order to monitor failures

  Heterogeneity and legacy impede integration of
failure feedback mechanisms in the application logic

  Huge system size make it difficult to acquire and
analyze failure feedback data at a fine granularity

  It is more efficient to identify the overall state of the
system and to exclude potentially unreliable sites
than to identify reasons for individual failures

Exploiting Generic Feedback Sources

32

  Instead of using application-specific feedback data,
we exploit a set of generic feedback sources
  representative low-level measurements (SmokePing)
  websites, e.g. Grid Statistics (GStat)
  functional tests and benchmarks

  Such predictions can be used for deciding where to
submit new jobs and help operators to take
preventive measures

Classifiers Explained Visually

•  Assume that you have two metrics, and want to use
them for predicting some (discrete) value - a class
•  Interpret inputs as coordinates of points in the plane

•  Then training data = multicolored points in R2
•  color corresponds to a class (here: healthy or no)

•  Training: finding a suitable
subdivision of the plane
•  model = a compact

representation of a colored
subdivision

•  Prediction: given a new
sample, find its color = class

•  We have 40 metrics instead
of 2 (R40), but same idea

in
pu

t B

input A region of the
class "green"

 region of the
class "pink"

33

Attribute Selection

34

  Initially, we do not know which of the 40 metrics (=
attributes) contain most predictive information

  Keeping all create some serious problems
  Overfitting
  Inefficiency: memory "explodes" at training phase
  We don't learn which metrics are really relevant

  Therefore we use attribute selection
  Learn and evaluate "probe models" on training data

with various subsets of attributes
  Then use attribute sets with lowest errors
  For specialists: we use forward or backward branch-

and-bound selection with C4.5 (decision tree)

2 4 8 16 25

Training Data Size

35

 How much training data (# samples) is needed
for accurate models?

  In general, the less the better
  Higher adaptability to changes, less "waiting time" until first results

  But too little data
decreases accuracy

  Training interval of 15
days turned out optimal

  Test interval = Model
update interval was
irrelevant

Averaged recall & precision
vs. training time (days)

