


Motivation and Introduction 
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Reliability of Grids 

3 

  Grids like EGEE offer sufficient capacity for even 
most challenging large-scale computational 
experiments 

  However, Grids have notoriously low reliability: 
  Data processing challenges of the WISDOM project 

(2005) have shown that only 32% (FlexX) and 57% 
(Autodock) of the jobs completed with "OK" status 

  A nine-month long study found that only 48% of jobs 
submitted in South-Eastern-Europe completed 
successfully (*) 

(*) Analyzing the Workload of the South-East Federation of the EGEE. G. DaCosta, 
M.D. Dikaiakos, S. Orlando. Proceedings MASCOTS 2007. 

     Harvesting Large-Scale Grids for Software Resources, A. Katsifodimos, G. Pallis, 
M. D. Dikaiakos, Proceedings of CCGrid 2009. 



Detecting and Managing Failures 
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  Detecting and managing failures is an important step 
to make Grids reliable  

  This is an extremely complex task that relies on  
  over-provisioning of resources 
  ad-hoc monitoring  
  Sys.admin & user intervention   

  Unique characteristics of Grids make it difficult to use 
ideas from cluster computing, Internet systems, and 
software systems 



Why is Detecting Failures in Grids Hard? 
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  Lack of central administration makes it difficult to 
access the remote sites in order to monitor failures 

  Heterogeneity and legacy impede integration of 
failure feedback mechanisms in the application logic 

  Huge system size make it difficult to acquire and 
analyze failure feedback data at a fine granularity 

  It is more efficient to identify the overall state of the 
system and to exclude potentially unreliable sites 
than to identify reasons for individual failures 

Failure Management in Grids: The Case of the EGEE Infrastructure. 
K. Neocleous, M.D. Dikaiakos, P. Fragopoulou and E.P. Markatos, Parallel 
Processing Letters, Vol. 17, Issue 4, World Scientific, pp 391-410, December 
2007 



Short-Term Prediction of Site Failures 
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  In our approach we predict queue (site) failures on 
short-term time scale by deploying (off-the-shelf) 
machine learning algorithms 

Grid sites (queues) 



Exploiting Generic Feedback Sources 
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  Instead of using application-specific feedback data, 
we exploit a set of generic feedback sources 
  representative low-level measurements (SmokePing) 
  websites, e.g. Grid Statistics (GStat) 
  functional tests and benchmarks 

  Such predictions can be used for deciding where to 
submit new jobs and help operators to take 
preventive measures 



Previous Work   
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  In previous work – the FailRank system – we have 
used linear models of monitoring data  
  they continuously ranked K sites with the highest potential 

to failure 
  In this study we apply individual models per queue 

and a more sophisticated approach, including 
  statistical selection of most meaningful sources 
  non-linear classification algorithms from machine learning 

"Metadata Ranking and Pruning for Failure Detection in Grids", D. Zeinalipour-Yazti, H. 
Papadakis, C. Georgiou, M.D. Dikaiakos, Parallel Processing Letters, Special Issue on Grid 
Architectural Issues: Scalability, Dependability, Adaptability,Sept. 2008. 
"Identifying Failures in Grids through Monitoring and Ranking." Demetrios Zeinalipour-
Yazti, Kyriakos Neocleous, Chryssis Georgiou, and Marios D. Dikaiakos, in the Proceedings of 
the Seventh IEEE International Symposium on Networking Computing and Applications, NCA 
2008. 
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FailRank Architecture 

 FailShot Matrix (FSM): A Snapshot of all failure-
related parameters at a given timestamp. 

 Top-K Ranking Module: Efficiently finds the K 
sites with the highest potential to feature a failure 
by utilizing FSM. 

 Data Exploration Tools: Offline tools used for 
exploratory data analysis, learning and prediction 
by utilizing FSM. 



Focus on Prediction Accuracy 
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  We focus on several essential questions related to 
prediction accuracy: 
  How many sources are necessary for high prediction accuracy? 
  Which of the sources yield the highest predictive information? 
  How accurately can we predict the failure of a given Grid site X 

minutes ahead of time? 

  Evaluation on a 30-day trace from 197 EGEE queues 
shows that prediction accuracy is highly dependent on:  
  the selected queue 
  the type of failure 
  the preprocessing and  
  the choice of input variables 



Data and Modeling 
Methodology 
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Input Data and FailBase Repository 
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  Our study uses data from our FailBase Repository  
  characterizes the EGEE Grid in respect to failures 

between 16/3/2007 and 17/4/2007  
  maintains information for 2,565 Computing Element (CE) 

queues (sites accepting computing jobs) 
  For our study we use  a subset of 197 queues with 

most types of monitoring data 
  For each queue data is a 

sequence of pairs 
(timestamp, attribute vector)  
  Each attribute vector consists 

of 40 measurements from to 
various sensors and tests 

  Sampled every 1 minute 
Exemplary attribute (RTT) over time 



Types of Input Data 
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  A. Information Index Queries (BDII): 11 attributes 
from LDAP queries 
  e.g. number of free CPUs; max. number of running and 

waiting jobs  
  B. Grid Statistics (GStat): processed data from the 

monitoring web site of Academia Sinica 
  e.g. geographical region of site; available storage space 

  C. Network Statistics (SmokePing): Data of the gPing 
database from ICS-FORTH 
  average round-trip-time (RTT);  the packet loss rate 

  D. Service Availability Monitoring (SAM): 14 attributes 
derived from raw html published by the CE sites 
  e.g. the version number of the middleware; results of various 

replica manager tests; results from test job submissions 



Predictive Models 
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  Our prediction methods are model-based 
  A model in this sense is a function f mapping vectors of 

sensor values to an output (queue healthy (0) or not (1) ) 
  We use as models classification algorithms   

  Classifiers "learn" the relationship between input data and 
the output (“class value”) based on historical examples 

  They are well-established in data mining and have been 
perfected over time 

  We deploy several common classifiers 
  C4.5 (decision tree), AdaBoost, Naive Bayes, LS 



Learning the Model 

•  To predict, we need to learn the relationship between inputs (A, 
B) @"now" and the value of our model f @(now + T) 

•  First stage (training, model fitting): 

•  Supply training data consisting of triples [A@x, B@x, f@(x
+T)]  sampled at different times x 

•  Then learn a function which captures this relation 

•  Second stage (prediction): supply (A,B) and compute f @(x+T)]  

Metric A  Metric B f  

Example 1 60 1000 [30-33] 

… … … … 

Example k 1.4 106 [3-6] 

Unknown Sample 30 50000 ? 

} 1. fit model 

2. predict ← 
15 

@ = "at time" 



Classifiers Explained Visually 

•  Assume that you have two metrics, and want to use 
them for predicting some (discrete) value - a class 
•  Interpret inputs as coordinates of points in the plane 

•  Then training data = multicolored points in R2 
•  color corresponds to a class (here: healthy or no) 

•  Training: finding a suitable 
subdivision of the plane 
•  model = a compact 

representation of a colored 
subdivision 

•  Prediction: given a new 
sample, find its color = class 

•  We have 40 metrics instead 
of 2 (R40), but same idea 

in
pu

t B
 

input A region of the 
class "green" 

 region of the 
class "pink" 
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Attribute Selection 
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  Initially, we do not know which of the 40 metrics (= 
attributes) contain most predictive information 

  Keeping all create some serious problems 
  Overfitting 
  Inefficiency: memory "explodes" at training phase 
  We don't learn which metrics are really relevant  

  Therefore we use attribute selection 
  Learn and evaluate "probe models" on training data 

with various subsets of attributes 
  Then use attribute sets with lowest errors 
  For specialists: we use forward or backward branch-

and-bound selection with C4.5 (decision tree)  



Evaluation Metrics   
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 To quantify prediction errors we use  
  Recall = probability that a (randomly selected) failure is 

indeed predicted 
  Precision = probability that a (randomly selected) 

failure prediction indicated a true failure 
 These metrics are then averaged over all 197 

queues for most diagrams 



Model Updates 

training test 
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  Models are periodically updated to ensure 
adaptability to profile changes 
  How? Train model on the orange part and test on the 

blue part, then advance by the blue part etc. 

  The used values are: 
  training interval: 15 days (21600 of 1-minute samples) 
  update interval = test interval = 10 days (14400 

samples) 
  why? – will be shown later 



Experimental Results 
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Identifying Failure Indicators 
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  Unfortunately, we do not have any additional data 
whether jobs on a site have failed or not 

  As a substitute, we used as failure indicators two 
metrics from the Service Availability Monitoring 
(SAM) measurements (group D): 
  sam-js: a test that submits a simple job for execution to 

the Grid and then seeks to retrieve that job’s output from 
the UI 

  sam-rgma: R-GMA makes all Grid monitoring data appear 
like one large DB; this test insert a tuple and run a query 
for that tuple 

  Values (0/1) of each of these 2 metrics are assumed 
to mean "queue failed" or "queue healthy"  



Why sam-js and sam-rgma? 
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  First: we computed averaged 
recall / precision for all 14 SAM 
(group D) attributes 

  This eliminated only two of them   

  We then looked per attribute at: 
  standard deviation - more 

changes = more information 
  failure ratio = (#all samples 

indicating a failure) / (# all 
samples) 

  low FR = not enough "bad 
cases" to train a predictor 

  From the remainder ones we 
selected these 2 by importance 
of representing failures 



Data Characteristics 
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  A. Is there a relationship between 
failure ratio (FR) and accuracy? 
  FR = (#all samples indicating 

a failure) / (# all samples) 
  Plot: recall of sam-js (bars) sorted 

by FR or sam-js (line) 
  No! => Models are "non-trivial" 

  B. What are the failure patterns 
in our data? 

  Typically, the failure state does 
not change frequently (long 
"runs" of failures / non-failures 

  Prediction errors occur 
frequently right after the change 
of failure state 

true  
failures 

predicted 
failures 

errors 



Are Individual Models (per Queue) Useful? 
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  We have created separate model (trained classifier) per queue 
  This is a lot of effort – is it useful? 
  It turns out that prediction accuracy varies hugely between queues! 
  Lessons: 

re
ca

ll 
of

 s
am

-js
 

queue index – 0 to 196 

  "Aggregated models" of reliability 
(i.e. one model for many queues) 
can be severely inappropriate 

  Scheduling decisions should 
take into account confidence of 
the model per queue 
  How likely is to predict a 

failure for this queue? 
  If confidence is low, increase 

redundancy / overprovision 
for this queue preemptively 



lead time (in minutes)    1          4           16        60      4*60  

Lead Time vs. Accuracy 
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  How much into future can we predict? 
  we set the lead time to 15 minutes 
  lead times of 1-8 minutes were slightly more accurate 

  but not very useful – might not give enough time to react 
  lead times above 30 minutes yielded larger errors 

Averaged recall & 
precision for sam-js 



Most Relevant Types of Input Metrics 
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 Which of the input types (A, B, C, D) provide most 
predictive information? 

  We tested all input combinations A, B,.., AB, AC,…, ABCD 
  Group D (SAM = functional tests) is most relevant 

  In fact, groups A, B, C do not carry any additional information 

Averaged recall &  
precision for sam-js 

  A B AB C AC BC ABC  D           ...       BCD.all Group combination 



2          4         8         16       25  

Training Data Size 
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 How much training data (# samples) is needed 
for accurate models? 

  In general, the less the better 
  Higher adaptability to changes, less "waiting time" until first results 

  But too little data 
decreases  accuracy 

  Training interval of 15 
days turned out optimal 

  Test interval = Model 
update interval was 
irrelevant 

Averaged recall & precision   
vs. training time (days) 



Classifier Type & Attribute Selection 
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  Are some classifiers more accurate than others? 
  Except for the least sophisticated algorithm (LS = linear 

perceptron, a hyperplane in Rd) accuracy is comparable 
  How much attribute selection matters 

  Mixed results: for LS & Naïve Bayes improvement, for 
C4.5 (decision tree) deterioration 

Averaged recall for sam-js 
(no selection / 
 with attribute selection) 

C4.5        LS       St.   AdaBoost  NB 



Conclusions 
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  Short-term prediction of failures in Grid queues can yield 
high accuracy (precision / recall) 

  However, this accuracy varies hugely among queues 
  Individual queue modeling is essential 

  Some metrics (like Service Availability Monitoring (SAM)) 
are more informative than all others together 
  Consider this for "economical" metric collection 

  Sophisticated classification algorithms yield comparable 
accuracy  

Future work 
  Direct comparison with FailRank (linear models) 
  Scheduling strategies with consideration of model 

confidence 



Additional Slides 
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Why is Detecting Failures in Grids Hard? 
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  Lack of central administration makes it difficult to 
access the remote sites in order to monitor failures 

  Heterogeneity and legacy impede integration of 
failure feedback mechanisms in the application logic 

  Huge system size make it difficult to acquire and 
analyze failure feedback data at a fine granularity 

  It is more efficient to identify the overall state of the 
system and to exclude potentially unreliable sites 
than to identify reasons for individual failures 



Exploiting Generic Feedback Sources 
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  Instead of using application-specific feedback data, 
we exploit a set of generic feedback sources 
  representative low-level measurements (SmokePing) 
  websites, e.g. Grid Statistics (GStat) 
  functional tests and benchmarks 

  Such predictions can be used for deciding where to 
submit new jobs and help operators to take 
preventive measures 



Classifiers Explained Visually 

•  Assume that you have two metrics, and want to use 
them for predicting some (discrete) value - a class 
•  Interpret inputs as coordinates of points in the plane 

•  Then training data = multicolored points in R2 
•  color corresponds to a class (here: healthy or no) 

•  Training: finding a suitable 
subdivision of the plane 
•  model = a compact 

representation of a colored 
subdivision 

•  Prediction: given a new 
sample, find its color = class 

•  We have 40 metrics instead 
of 2 (R40), but same idea 
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input A region of the 
class "green" 

 region of the 
class "pink" 
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Attribute Selection 
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  Initially, we do not know which of the 40 metrics (= 
attributes) contain most predictive information 

  Keeping all create some serious problems 
  Overfitting 
  Inefficiency: memory "explodes" at training phase 
  We don't learn which metrics are really relevant  

  Therefore we use attribute selection 
  Learn and evaluate "probe models" on training data 

with various subsets of attributes 
  Then use attribute sets with lowest errors 
  For specialists: we use forward or backward branch-

and-bound selection with C4.5 (decision tree)  
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Training Data Size 
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 How much training data (# samples) is needed 
for accurate models? 

  In general, the less the better 
  Higher adaptability to changes, less "waiting time" until first results 

  But too little data 
decreases  accuracy 

  Training interval of 15 
days turned out optimal 

  Test interval = Model 
update interval was 
irrelevant 

Averaged recall & precision   
vs. training time (days) 


