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Abstract

We introduce a new class of succinct games, called weighted boolean formula games. Here,
each player has a set of boolean formulas he wants to get satisfied. The boolean formulas of
all players involve a ground set of boolean variables, and every player controls some of these
variables. The payoff of a player is the weighted sum of the values of his boolean formulas. For these
games, we consider pure Nash equilibria [42] and their well-studied refinement of payoff-dominant
equilibria [30], where every player is no worse-off than in any other pure Nash equilibrium. We
study both structural and complexity properties for both decision and search problems with respect
to the two concepts:

• We consider a subclass of weighted boolean formula games, called mutual weighted boolean
formula games, which make a natural mutuality assumption on the payoffs of distinct players.
We present a very simple exact potential for mutual weighted boolean formula games. We
also prove that each weighted, linear-affine (network) congestion game with player-specific
constants is polynomial, sound Nash-Harsanyi-Selten homomorphic to a mutual weighted
boolean formula game. In a general way, we prove that each weighted, linear-affine (net-
work) congestion game with player-specific coefficients and constants is polynomial, sound
Nash-Harasanyi-Selten homomorphic to a weighted boolean formula game. These homomor-
phisms indicate some of the richness of the new class.

• We present a comprehensive collection of high intractability results. These results show that
the computational complexity of decision (and search) problems for both payoff-dominant
and pure Nash equilibria in weighted boolean formula games depends in a crucial way on five
parameters: (i) the number of players; (ii) the number of variables per player; (iii) the number
of boolean formulas per player; (iv) the weights in the payoff functions (whether identical or
non-identical), and (v) the syntax of the boolean formulas. (For example, we prove that
deciding the existence of a payoff-dominant equilibrium is ΘP

3 -complete even if weights are
identical and there are only four players.) Our completeness results show that decision (and
search) problems for payoff-dominant equilibria are considerably harder than for pure Nash
equilibria (unless the polynomial hierarchy collapses).

Due to the space constraints, some technical proofs are shifted to the Appendix.
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1 Introduction

Motivation and Framework. Deciding the existence of and finding Nash equilibria [42] for a strategic game
are among the most important problems studied in Algorithmic Game Theory today – see, for instance, [2, 12, 14,
16, 17, 18, 19, 20, 22, 23, 24, 27, 28, 48]. When the players’ strategy spaces and payoffs are presented explicitly,
there is a straightforward polynomial time algorithm to decide the existence of and compute a pure Nash
equilibrium. More interesting are the cases where the strategy spaces and the payoffs are presented in a succinct
way. Interesting examples of succinct games include (unweighted) congestion games [47], where the payoffs are
represented by payoff functions, and their even more succinct subclass of network congestion games where, in
addition, strategy spaces are described succinctly by a graph. The complexity of Nash equilibria for succinct
games has been studied very intensively in the last few years – see, e.g., [2, 17, 19, 20, 22, 24, 26, 34, 37, 38, 48].

We introduce weighted boolean formula games, abbreviated as WBFG, as an adequate and very general form
of succinct games (Definition 2.3). The idea is that each player controls a set of boolean variables; different
players control disjoint sets of variables. A strategy of a player is a truth assignment to his boolean variables.
Each player targets a set of constraints expressed by boolean formulas, which he wants to get satisfied; naturally,
his formulas depend also on variables of other players.∗ For each formula, there is an (integer) weight, which
expresses the relative priority of the constraint (for the player). The payoff for a player is the weighted sum of
his satisfied constraints. In an unweighted boolean formula game, abbreviated as UWBFG, all weights are 1.

Even though the definition of a WBFG is very simple, any problem in which variables and weighted con-
straints are distributed among autonomous agents can be formalized as a weighted boolean formula game.
Consider, for example, an economic setting in which a principal motivates a team of strategic agents (or sched-
ulers), each coming with a set of (heterogeneous) tasks; Each agent seeks to honor a set of contracts signed with
the principal; however, each contract may involve tasks owned by mulptiple players. For each contract, the agent
is incentivized via a payment conditioned on the scheduling of all tasks involved in the contract; naturally, each
agent tries to maximize his total payment. This setting generalizes the popular model of (weighted) congestion
games [40, 47], since it allows payments (or costs) to depend on combinations of scheduled tasks in an arbitrary
way. It is straightforward to formalize this practical example using players, boolean variables, constraints and
weights for schedulers, tasks, contracts and payments, respectively.

We shall especially consider a subclass of WBFG, called mutual weighted boolean formula games and abbre-
viated as MWBFG; these add a natural mutuality assumption on the constraints targeted by different players.
In more detail, it is assumed that whenever some function of a player involves a boolean variable of a second
player, then the same function is a constraint for the second player with the same weight as well. Mutuality is
motivated by real multi-agent systems, where a constraint involving several attributes typically concerns (in a
uniform way) all agents featuring them.

In a (pure) Nash equilibrium [42], no player can increase his payoff by changing the values of his variables.
In a payoff-dominant equilibrium [30], every player is no-worse-off than in any other Nash equilibrium; so, this
is stable outcome that payoff-dominates all other stable outcomes. Payoff-dominance is a well-know refinement
of Nash equilibrium that has been studied extensively in Game Theory. Games admitting payoff-dominance
have been intuitively called games of common interests (cf. [4]); Colman and Bacharach [15, Section 1] mention
the abstract classes of unanimity games [33] and matching games [5] as the simplest exemplars of them. We
shall study the structure and complexity of both payoff-dominant and pure Nash equilibria in WBFGs.

State-of-the-Art. In the Artificial Intelligence literature, (game-like) situations involving agents controlling
the values of certain subsets of boolean variables are not uncommon (cf. [11]). Yakoo et al. introduced Dis-
tributed Constraint Satisfaction Problems (DCSP) [55], where agents can trade boolean variables in an auction
environment in order to satisfy a certain set of propositional formulas which are distributed among the agents;
agents are not strategic, and there are no weights attached to the formulas. Instead, DCSP seek to develop
asynchronous and concurrent, distributed algorithms converging to a consistent combination of agent actions.
Studied in the literature have been three formalisms of succinct games similar to (but different than) WBFGs:

• (Boolean) Circuit games: Those were introduced by Schoenebeck and Vadhan [48]. In a circuit game,
players still control disjoint sets of variables, but each player’s payoff is given by a single boolean circuit
and there are no weights. Note that a WBFG can be encoded as a circuit game since our utility functions
(given by some boolean formulas and weights) can be evaluated by a single boolean circuit. Hence, WBFG
make a very restricted subclass of circuit games. Boolean circuit games are the special case of circuit
games where each player controls a single boolean variable.

Recall that the best-known upper bound for the formula size L(f) of a Boolean function f in terms of
its (boolean) circuit size C(f) is L(f) = O(2C(f)) [35, 45]. (In fact, the straightforward depth-preserving

∗A boolean formula is the special case of a (boolean) circuit where every boolean gate has fan-out one; so, a boolean
formula is a circuit whose underlying graph is a tree.
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conversion of a boolean circuit into an equivalent formula may potentially blow up the size exponentially
since pieces of the circuit must be repeated.)† So, there is no known polynomial time transformation of
a circuit game into a boolean formula game where each player has a single (equivalent) formula. It is
nevertheless possible to transform a boolean circuit into a polynomial size set of boolean clauses; this
requires introducing of new (polynomially many) boolean variables which express the correctness of the
computations by the individual gates. Hence, there is a polynomial time transformation of a circuit game
into a boolean formula game where each player has a polynomial number of clauses. Nevertheless, we aim
at WBFGs where the number of boolean formulas (in particular, clauses) per player is a (small) constant.

• Turing machine games: Álvarez et al. [2] study three different levels (forms) of succinct representations of
strategic games. In the implicit form, payoff functions are represented by a deterministic Turing Machine
(dtm) computing the payoffs, and strategies are described succinctly. In the general form, payoff functions
are represented by a dtm and strategy spaces are listed explicitly. For each form, there are two cases: in
the non-uniform case, the payoff functions are represented by a tuple 〈M, 1t〉, where M is a dtm and t is a
natural number bounding its computation time; in the uniform case, the payoff functions are represented
by a (polynomial time) dtm M . Álvarez et al. [2] present completeness results on the decision problem
for pure Nash equilibria. Their proofs are based on a simple construction of a gadget game [2, Section
2]. It is straightforward to see that the payoff functions of the gadget game may be expressed as an
instance of a WBFG with r = 5. Recall the folklore facts that Turing machine computations with t steps
can be encoded as a boolean circuit of size O(t2), and that boolean circuits can be evaluated by Turing
machines in polynomial time (cf. [6]). Hence, Turing machine games in implicit form and circuit games
are equivalent. It follows from our previous discussion on the relation of WBFG to circuit games that
there holds an identical relation of WBFG to Turing machine games in implicit form.

In the explicit form, payoffs are explicitly listed. The decision problem for pure Nash equilibria in Turing
machine games in explicit form is P-complete [2, Theorem 3]. However, it is not possible to obtain from a
succinctly represented WBFG such an explicit form in polynomial time. To emphasize, we are interested
in WBFG that represent exponentially large strategy spaces with succinct size (i.e., the size of formulas).

• Boolean games: Those were introduced by Harrenstein et al. [29] in the context of a logical consequence
relation defined in terms of Nash equilibrium; they were further extended and studied in [8, 9, 10, 21] from
a computational point of view. The formulation of boolean games by Bonzon et al. in [10] is very similar
to WBFG: each player still wishes to satisfy a particular set of boolean formulas, but the preferences of
each player over his formulas were not defined by means of additional weights attached to the formulas
(but on the basis of logical strength).

The problem of singling out some “best” Nash equilibrium is probably as old as the concept of Nash equilibrium
itself [42]. The corresponding stream of game-theoretic research is called equilibrium selection (cf. [30]). To
address this problem, some refinement of the concept is employed, which provides some criterion to discard
implausible and to select plausible when a game exhibits multiple Nash equilibria. Besides payoff-dominance,
there are several, well-studied refinements of pure Nash equilibria, such as dominating equilibrium, Pareto-
optimality, risk-dominance [30], social-welfare maximization and strong equilibrium [3]. Due to their strength,
such refinements are usually unlikely to exist. For example, to the best of our knowledge, the only pragmatic
class of strategic games for which the well-studied Pareto-optimal equilibria are always guaranteed to exist are
certain, very special two-person exchange models [13], which model an exchange economy with just two traders!

Concurrent Work. Independently and concurrently to our work, Biló [7] introduced and studied satisfiability
games; these are almost identical to our MWBFG, except that associated with each player i is some integer li ≥ 1
such that his strategy set is contained in {0, 1}li , while it is equal to {0, 1}li in WBFG;‡ however, this difference
is not essential in general. Their restricted subclass of unconstrained satisfiability problems [7] coincides with
the class of MWBFG. Studied by Biló [7] are also the so called satisfiability games with player-specific payoffs;
these correspond to WBFG with the additional semi-mutuality assumption: whenever some function of a player
involves a variable of another player, then the same function is a constraint for the different player as well, but
with a possibly different weight.

Summary of Results and Significance. We present two types of results. First, we identify structural

properties for both WBFG and its rich subclass of MWBFG. Second, we present a comprehensive collection of
complexity results about payoff-dominant and pure Nash equilibria. More specifically, we investigate how the
complexity of their decision and search problems depends on five natural parameters: (i) the number of players

†Nevertheless, the largest shown difference between formula size and boolean circuit size is only L(f) = Ω(n2 lg−1 n)
and C(f) = 2n + o(n), where f is the storage access function for indirect addressing [46].

‡For both, it can be assumed, without loss of generality, that all numbers li, i ∈ [n], are equal, since one can always
“pad” with extra variables that do not enter the formulas.
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m; (ii) the (maximum) number of variables per player k; (iii) the (maximum) number of boolean formulas r
weight-summed into each payoff function; (iv) the weights for the payoff functions (that is, whether weighted or
unweighted), and (v) the syntax of the boolean formulas. Each of the parameters m, k, and r can be chosen
to be fixed as a specific natural number or can be chosen to be not fixed. We discover that the choice of these
parameters may have a crucial impact on complexity. In all cases, corresponding results for the search problem
follow from those for the decision problem. (We have not considered search problems for mixed Nash equilibria.)

Structural results: MWBFG is an exact potential game [41] (Theorem 3.1); so, the decision problem about pure
Nash equilibria for these games is trivial and the search problem is in PLS [32]. We next consider the relation
between (mutual) WBFGs and another class of succinct games, namely weighted, linear-affine congestion games
with player-specific (coefficients and) constants [38]. We prove that every weighted, linear-affine congestion game
with player-specific coefficients and constants is polynomial, sound monomorphic to a WBFG (Theorem 3.3).
In particular, this implies that every weighted, linear-affine congestion game with player-specific constants is
polynomial, sound monomorphic to a MWBFG (Corollary 3.5). We also prove that the same hold for weighted,
linear-affine network congestion games with player-specific constants (Theorem 3.6 and 3.7). We warn the reader
that although a network congestion game is a congestion game, these results do not follow from Theorem 3.3.
This is so since a network of size n can succinctly describe a strategy space of size 2n; hence, transforming
a network congestion game into a congestion game may incur an exponential blow-up of the instance, and
the obvious reduction does not work. Since the search problem for pure Nash equilibria is PLS-complete for
weighted, asymmetric network congestion games (with player-specific constants) [38, Theorem 5], Corollary 3.7
implies that the search problem for pure Nash equilibria in MWBFG is also PLS-complete (Corollary 3.8).

Complexity results for payoff-dominant equilibria (Theorem 4.2): We present the first complexity results about
payoff-dominant equilibria. We first consider the case where m is not fixed and k ≥ 1 is fixed. For unweighted
formulas with r ≥ 1 fixed or not fixed, the problem is ΘP

2 -complete (Case (2)); for weighted formulas with r

not fixed, the problem is ∆P
2 -complete (Case (1)). We next consider the case where k is not fixed and m ≥ 4

is fixed or not fixed. For unweighted formulas with r not fixed, the problem is ΘP
3 -complete (Case (4)); for

weighted formulas with r not fixed, the problem is ∆P
3 -complete (Case (3)). These complexity results about

payoff-dominant equilibria in WBFG indicate that allowing an arbitrary number of variables per player has a
stronger impact on their complexity than allowing an arbitrary number of players. The decision problem for
payoff-dominant equilibria with a non-fixed number of players, established complete for ΘP

2 in Theorem 4.2
(Case (2)), is one of the very rare, truly natural complete problems for ΘP

2 ; in fact, we feel that it seconds the
problem of Dodgson Election for Lewis Carroll’s 1876 Voting System, established ΘP

2 -complete in [31]. Even
more, we feel that the decision problem for payoff-dominant equilibria with a non-fixed number of variables of
player, established ΘP

3 -complete in Theorem 4.2 (Case (4)), is the first truly natural complete problem for ΘP
3 .

Complexity results for pure Nash equilibria (Theorem 5.2): We first consider the case where m is not fixed and
k ≥ 1 is fixed. For (weighted) formulas with r ≥ 1 fixed or not fixed, the problem is NP-complete (Case (1));
for (weighted) clauses with r ≥ 2 fixed or not fixed, the problem is NP-complete (Case (2)); for (weighted)
clauses with r = 1, it is in P (Case (3)). We next consider the case that k is not fixed and m ≥ 2 is fixed or
not fixed. For (weighted) formulas with r ≥ 1 fixed or not fixed, the problem is ΣP

2 -complete (Case (4)).

Related Work and Comparison. Since WBFG have a restricted structure, our completeness proofs (for

decision problems about pure Nash equilibria) have required more detailed arguments than the ones in [2, 48].

• (Boolean) Circuit games: Recall that boolean formula games form a restricted subclass of boolean circuit
games. Observe also that all upper bounds established in this paper for boolean formula games are
obviously also valid for circuit games. It is shown [48, Theorem 6.1] that the decision problem in two-
player circuit games is ΣP

2 -complete; this follows trivially from Theorem 5.2 (Case (4)). Furthermore,
it is shown [48, Theorem 6.2] that the decision problem in boolean circuit games is NP-complete; this
follows trivially from Theorem 5.2 (Case (1)).

• Turing machine games: Álvarez et al. [2] prove that the problem is NP-complete for strategic games in
general form for both the non-uniform [2, Theorem 2] and the uniform [2, Theorem 5] cases. Specifically,
it follows from either [2, Theorem 2] or [2, Theorem 5] that if m is not fixed, then the problem for
(weighted) boolean formulas is NP-complete when k ≥ 1 is fixed and r ≥ 5 is fixed or not fixed. This
implied result is weaker than Theorem 5.2. (Case (1)). Furthermore, Álvarez et al. [2] prove that the
problem is ΣP

2 -complete for strategic games in implicit form for both the non-uniform [2, Theorem 1 and
Corollary 1] and the uniform [2, Theorem 4] cases. Specifically, it follows from [2, Corollary 1] that if k is
not fixed, then the problem for (weighted) boolean formulas is ΣP

2 -complete when m ≥ 3 is fixed or not
fixed and r ≥ 5 is fixed or not fixed. This implied result is incomparable to Theorem 5.2 (Case (4)).

• Boolean games: Bonzon et al. [10, Proposition 5] had independently proved a stronger version of Case (4)
in Theorem 5.2 (which holds for m ≥ 3 fixed or not fixed) with m ≥ 2 (fixed or not fixed); furthermore,
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their result applies to zero-sum (two-player) games. Bonzon et al. [10, Proposition 6] prove that in the
case where k is not fixed, the decision problem for boolean formula games with m ≥ 2 fixed or not fixed
is NP-complete when the formula of each player is in DNF (that is, it is a disjuction of conjunctions
of literals). This provides an interesting complement to Theorem 5.2 (Case (2)), which establishes a
NP-completeness for formulas with a different restriction.

• Satisfiability games: In his concurrent work, Biló [7] considers restricted satisfiability games, where the
strategy set of each player is the set of strategies in which the player is allowed to set to 1 one and only
one of his variables. It is proved [7, Theorem 3] that the class of restricted satisfiability games with
player specific payoffs where all functions are conjunctive encompasses all strategic games. Furthermore,
Biló [7, Theorem 1] proves that every satisfiability game is an unweighted congestion game. Since every
unweighted congestion game is (isomorphic to) an exact potential game and vice versa [41, 47], this result
is equivalent to Theorem 3.1. However, Theorem 3.1 provides an exact potential for a MWBFG, which
is very simple and intuitive, and it may have further applications. Indeed, this exact potential provided
in Theorem 3.1 is explicitly represented with size polynomial in the size of the game. In contrast, the
isomorphic potential game constructed from an unweighted congestion game in [41, 51] has exponential
size since its resource set is the strategy space of the unweighted congestion game; hence, its exact
potential needs also exponential size for its explicit representation.

Some completeness results for pure Nash equilibria in other classes of succinct games have been shown for
graphical games in [19, 23, 34], and for weighted (network) congestion games [40] and local-effect games [37]
in [20]. The impact of the precise form of bounded rationality (e.g., number of available strategies, size of
influence neighborhood, symmetries, etc.) on the complexity of pure Nash equilibria for general games has been
investigated in [12, 23, 28].

2 Background and Framework

Notation and Preliminaries. For a set S, denote as P(S) the power set of S; denote as |S| the cardinality
of S. For an integer n ≥ 1, denote as [n] = {1, . . . , n}. Denote as ≥cw the component-wise ordering relation on
vectors. Denote as ≥le the lexicographic ordering relation on boolean vectors. We shall sometimes abbreviate
lexicographically maximum as lmax. For a boolean vector x, |x| denotes the natural number with binary
representation x.

A strategic game (or game for short) is a triple Γ = 〈m, (Si)i∈[m], (ui)i∈[m]〉, where m is the number of
players, Si is the strategy space of player i ∈ [m], and ui : S1× . . .×Sm → R is the payoff function of player
i ∈ [m]. The game Γ is finite if all strategy spaces are finite; all games considered in this paper will be assumed
to be finite. For the game Γ, denote S = S1 × . . . × Sm. To demonstrate reference to Γ, we shall sometimes
write S(Γ) for Γ. A profile is a tuple of strategies s = 〈s1, . . . , sm〉, one for each player; denote as s−i the
partial profile resulting from eliminating the strategy of player i from s. Given a profile s, a player i ∈ [m] and
a strategy t ∈ Si, denote as (s−i, t) = 〈s1, . . . , si−1, t, si+1, . . . , sm〉; so, (s−i, t) results by substituting in the
profile s the strategy si of player i with t. Associated in the natural way with a profile s is the payoff vector.

A profile s ∈ S is a (pure) Nash equilibrium [42] for the game Γ if for each player i ∈ [m], for each
strategy t ∈ Si, ui(s) ≥ ui(s−i, t). Denote as NE(Γ) the set of Nash equilibria of Γ. A (pure) Nash equilibrium s
is called a payoff-dominant equilibrium for Γ if for each (pure) Nash equilibrium s′, for each player i ∈ [m],
ui(s) ≥ ui(s

′). Denote as PD(Γ) the set of payoff-dominant equilibria for Γ. To compare, a (pure) Nash
equilibrium s for Γ is Pareto-optimal for Γ if for each (pure) Nash equilibrium s′, there is a player i ∈ [m]
such that ui(s) ≥ ui(s

′). Clearly, a payoff-dominant equilibrium is Pareto-optimal (but not vice versa).

Maps. Consider two strategic games Γ = 〈m, (Si)i∈[m], (ui)i∈[m]〉 and Γ′ = 〈m, (S′
i)i∈[m], (u

′
i)i∈[m]〉 with the

same number of players. A player map (or player bijection) π : [m] → [m] identifies player i ∈ [m] for Γ with
player π(i) ∈ [m] for Γ′. An action map is an m-tuple of action bijections φ = (φi)i∈[m] such that each φi is a

bijection φi : Si → S′
π(i); so, the bijection φi identifies action si ∈ Si with action φi(si) ∈ S′

π(i). A bijection

pair from Γ to Γ′ is a pair 〈π,φ〉 of a player map and an action map. The map 〈π,φ〉 maps profiles from S to
profiles in S′ in the natural way; that is, for a profile s ∈ S, 〈π,φ〉(s) = s′ where for each i ∈ [m], s′

π(i) = φi(si).

A Harsanyi-Selten isomorphism [30] (from Γ to Γ′) is a map 〈π,φ〉 such that for each player i ∈ [m], there
are constants γi > 0 and δi such that for each profile s ∈ S, uπ(i)(〈π,φ〉(s)) = γi ui(s) + δi; then, say that Γ
is Harsanyi-Selten isomorphic to Γ′. Defined earlier by Nash [42], a strong isomorphism is the special
case of a Harsanyi-Selten isomorphism where for each player i ∈ [m], δi = 0. We shall use a relaxation of
the Harsanyi-Selten isomorphism which we call a Harsanyi-Selten monomorphism ; there, the action map
is relaxed to be an m-tuple of action injections (which need not be surjective), and the bijection pair 〈π,φ〉
becomes a monomorphism.
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For our purposes, we shall consider an extension of the Harsanyi-Selten monomorphism (from games) to
classes of games, which takes computation into account. Consider two classes of strategic games C and C′. Say
that the class C is Harsanyi-Selten monomorphic to the class C′ if every game Γ ∈ C is Harsanyi-Selten
monomorphic to some game Γ′ ∈ C′, which can be computed from Γ via a map λ : C → C′. (For each particular
game Γ ∈ C, λ and 〈π,φ〉 induce together a corresponding map, denoted as λ ◦ 〈π,φ〉 by abuse of notation,
which maps each profile s ∈ S(Γ) to the profile 〈π,φ〉(s) ∈ S(λ(Γ)); denote as λ ◦ 〈π,φ〉(S(Γ)) the resulting
set of images of profiles in S(Γ).) Say that the class C is polynomial Harsanyi-Selten monomorphic to
the class C′ if (i) C is Harsanyi-Selten monomorphic to C′, (ii) the map λ : C → C is polynomial time, and (iii)
for each pair of a game Γ ∈ C and its image λ(Γ) ∈ C′, the map 〈π,φ〉 can be computed in polynomial time.
Clearly, a Harsanyi-Selten isomorphism from Γ to Γ′ induces a bijection from NE(Γ) to NE(Γ′); a Harsanyi-Selten
monomorphism from Γ to Γ′ induces an injection from NE(Γ) to NE(Γ′). We now define:

Definition 2.1 (Polynomial Sound Monomorphism) A polynomial sound monomorphism from
C to C′ is a triple 〈λ, 〈π,φ〉, ψ〉 where:

(1) The class C is polynomial Harsanyi-Selten monomorphic to the class C′ via the map λ : C → C′ and
the (Harsanyi-Selten) monomorphism 〈π,φ〉.

(2) For each game Γ ∈ C, ψΓ is a function ψΓ : NE(λ((Γ))) → NE(Γ); that is, ψΓ maps a Nash equilibrium
for the game λ(Γ) ∈ C′ to a Nash equilibrium for Γ. Then, ψ :=

⋃

Γ∈C ψΓ, Furthermore, ψ is a
polynomial time map.

(3) (Soundness Condition) For each game Γ ∈ C, NE(λ(Γ)) ⊆ λ ◦ 〈π,φ〉(S(Γ)); that is, a Nash equilibrium
for the image game λ(Γ) is necessarily the image (under λ ◦ 〈π,φ〉) of some profile of Γ.

Note that Condition (3) requires that that for any game Γ ∈ C, the Harsanyi-Selten monomorphism 〈π,φ〉 from
Γ to Γ′ (from Condition (1)) induces indeed a bijection from NE(Γ) to NE(Γ′). Definition 2.1 extends a recent
definition of Nash homomorphism due to Abbott et al. [1] (cf. [27]):

Definition 2.2 A Nash homomorphism [1] from C to C′ is a pair 〈λ, ψ〉 where:

(1)
′

The map λ : C → C′ is a homomorphism.

(2)
′

For each game Γ ∈ C, ψΓ is a function ψΓ : NE(λ(Γ)) → NE(Γ); that is, ψΓ maps a Nash equilibrium
for the game λ(Γ) ∈ C′ to a Nash equilibrium for Γ. Then, ψ :=

⋃

Γ∈C ψΓ. Furthermore, ψ is a
polynomial time map.

The extension (Definition 2.1) imposes (i) the requirement that the class C be polynomial Harsanyi-Selten
monomorphic to the class C′ – note that (1)’ only requires that C be homomorphic to C′, and (ii) Condition (3).

Potential Games and Congestion Games. Fix a positive vector b = 〈b1, . . . , bn〉. Then, a b-potential

for the game Γ is a function Φ : S → R such that for each profile s ∈ S, for each player i ∈ [m] and strategy
s′i ∈ Si, ui(s−i, s

′
i) − ui(s) = bi(Φ(s−i, s

′
i) − Φ(s)). A vector potential game is a game that admits a w-

potential for some (non-negative) vector w. A finite vector potential game has a pure Nash equilibrium [41],
which is a local maximizer of the vector potential. An exact potential game (or potential game for short)
is a b-potential game for some constant vector b; such a b-potential is called an exact potential (or potential
for short).. Note that if a game Γ is Harsanyi-Selten monomorphic to a (vector) potential game Γ′, then Γ is a
vector potential game; hence, to prove that a game is vector potential, it suffices to provide a Harsanyi-Selten
monomorphism (from it) to a (vector) potential game.

A weighted, linear-affine congestion game with player-specific constants [38] is a game Γ =
〈m, (Si)i∈[m], (ui)i∈[m]〉 such that: (1) There is an integer k ≥ 2 such that for each player i ∈ [m], Si ⊆

P({1, 2, . . . , k}). (Equivalently, Si ⊆ {0, 1}k.) (2) There exist families of integers (βe)e∈[k] with βe ≥ 0 (the

coefficients), (γie)i∈[m],e∈[k] with γie ≥ 0 (the constants), and (wi)i∈[m] with wi ≥ 1 (the weights) such that

for each profile s = 〈s1, . . . , sm〉, for each player i ∈ [m], ui(s) = −
∑

e∈si

(

βe ·
∑

j∈[m]|e∈sj
wj + γie

)

. Denote

as WLACGwPSC the class of weighted, linear-affine congestion games with player-specific constants. Clearly,
WLACGwPSC contains the class of weighted, linear-affine congestion games [25] where the constants (γe)e∈[k]

are no more player-specific; it is also contained in the class WLACGwPSC2 of weighted, linear-affine congestion
games with player-specific coefficients and constants [26], which, in turn, is contained in the general class of
weighted congestion games with player-specific payoff functions [40]. It is known that WLACGwPSC admit a
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vector potential and a pure Nash equilibrium [38, Theorem 6 and Corollary 7]; in contrast, WLACGwPSC2 do
not necessarily admit a pure Nash equilibrium [26, Theorem 2].

Weighted Boolean Formula Games. We are now ready for our main definition.

Definition 2.3 (Weighted Boolean Formula Game) Fix a triple of integers m ≥ 2, k ≥ 1 and r ≥
1. A game Γ = 〈m, (Si)i∈[m], (ui)i∈[m]〉, is called a weighted (m, k, r)-boolean formula game (or

weighted boolean formula game for short) if (1) for each player i ∈ [m], Si = {0, 1}k and (2) there is
a set Fi = {(f, α) | f is a (km)-ary boolean formula and α ∈ N} with |Fi| ≤ r such that for each profile
〈s1, . . . , sm〉 ∈ S, ui(s1, . . . , sm) =

∑

(f,α)∈Fi
α · f(s1, . . . , sm).

We also write Γ = 〈m, k, r, (Fi)i∈[m]〉. Denote F =
⋃

i∈[m] Fi. We use WBFG as an abbreviation for a

weighted boolean formula game. An (m, k, r)-boolean formula game is the special case of a weighted (m, k, r)-
boolean formula game Γ = 〈m, k, r, (Fi)i∈[m]〉 such that for each pair (f, α) ∈ F , α = 1. A (weighted) (m, k, r)-
boolean clause game is the special case of a (weighted) (m, k, r)-boolean formula game Γ = 〈m, k, r, (Fi)i∈[m]〉
such that for each pair (f, α) ∈ F , f is a clause. We now formulate a restricted class of WBFGs.

Definition 2.4 A weighted boolean formula game Γ = 〈m, k, r, (Fi)i∈[m]〉, is called mutual if the following
holds: For each pair (f, α) ∈ F , if f depends on a variable of player i ∈ [m], then (f, α) ∈ Fi.

So, in a mutual weighted boolean formula game, for each pair (f, α) ∈ Fi, if (f, α) depends on a variable xl

with l 6= m, then (f, α) ∈ Fl as well. A mutual weighted boolean formula game will be denoted as MWBFG.

Decision and Search Problems. Let m ∈ {2, 3, . . . }, k ∈ {1, 2, . . . } and r ∈ {1, 2, . . . }. We formulate and
study the following decision problems regarding payoff-dominant and pure Nash equilibria:

PROBLEM: PROBLEM: GIVEN:

WBF-PDd(m, k, r) WBF-NASHd(m, k, r) A weighted (m, k, r)-boolean formula game Γ.
BF-PDd(m, k, r) BF-NASHd(m, k, r) An (m, k, r)-boolean formula game Γ.
WBC-PDd(m, k, r) WBC-NASHd(m, k, r) A weighted (m, k, r)-boolean clause game Γ.
BC-PDd(m, k, r) BC-NASHd(m, k, r) An (m, k, r)-boolean clause game Γ.

QUESTION: QUESTION:
Is PD(Γ) 6= ∅? Is NASH(Γ) 6= ∅?

We shall consider corresponding search problems WBF-PD-NASHs(m, k, r), BF-PD-NASHs(m, k, r), WBC-PD-
NASHs(m, k, r), BC-PD-NASHs(m, k, r) and WBF-NASHs(m, k, r), BF-NASHs(m, k, r), WBC-NASHs(m, k, r),
BC-NASHs(m, k, r). We shall often consider the case where some of the parameters m, k, and r are not
restricted to a fixed value. In this case, such a parameter gets the value ∗. For example, for k ∈ {1, 2, . . . } and
r ∈ {1, 2, . . . }, we define BF-NASHd(∗, k, r) =

⋃

m≥2 BF-NASHd(m, k, r). Denote as MWBF-NASHs(∗, ∗, ∗) the
search problem for pure Nash equilibria in MWBFG when none of the parameters m, k and r are fixed.

Complexity Theory. We assume some basic familiarity of the reader with the central complexity classes as

articulated, for example, in the textbook of Papadimitriou [43]. Specifically, we shall treat P, polynomial local
search PLS [32], NP, the polynomial hierarchy PH [39, 49] and PSPACE . In particular, we will encounter

∆P
2 = PNP , ΣP

2 = NPNP and ∆P
3 = PNPNP

; the bounded query classes ΘP
2 = PNP[log n] [44] (the class of all

languages that can be decided via parallel access to NP) and ΘP
3 = PΣP

2
[log n] = PNPNP [log n] [53] (the class

of all languages that can be decided via parallel access to ΣP
2 ) at the (initial) intermediate levels of PH; the

function classes FP, FNP and FΣP
2 , of all function problems associated with languages in P, NP and ΣP

2 ,
respectively. (Clearly, NP ⊆ ΘP

2 ⊆ ∆P
2 ⊆ ΣP

2 ⊆ ΘP
3 ⊆ ∆P

3 .)

We recall some prominent decision problems (in the form of their underlying languages), which we shall use
in our later reductions: In what follows, H is a propositional formula; each of x and y is a vector of n boolean
variables; C is a boolean clause.

SAT = {H(x) | ∃a ∈ {0, 1}n(H(a) = 1)}

CNFSAT = {H(x) | H(x) has conjunctive normal form and ∃a ∈ {0, 1}n(H(a) = 1)}

Σ2-QBF = {H(x,y) | ∃a ∈ {0, 1}n∀b ∈ {0, 1}n(H(a,b) = 1)}

∆2-QBF = {H(x) | the lexmax a with (H(a) = 1) has an = 1}

Θ2-QBF = {〈H(x), 1m〉 | the lmax a with (H(a) = 1) & |a| ≤ m has an = 1}

∆3-QBF = {H(x,y) | the lmax a with ∀b ∈ {0, 1}k (H(a,b) = 1) has an = 1}

Θ3-QBF = {〈H(x), 1m〉 | the lmax a with ∀b ∈ {0, 1}k (H(a,b) = 1) and |a| ≤ m has an = 1}
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SAT and CNFSAT are the prototypical NP-complete problems. Σ2-QBF was shown ΣP
2 -complete by Stock-

meyer [49] and Wrathall [54]. ∆2-QBF was shown ∆P
2 -complete by Krentel [36] and Wagner [52]. Θ2-QBF was

shown ΘP
2 -complete by Wagner [52], and similarly, Θ3-QBF is ΘP

3 -complete. It is an easy consequence of results
by Vollmer and Wagner [50] that ∆3-QBF is ∆P

3 -complete. Consider a restricted subclass Σ2-RQBF of Σ2-QBF
to the domain R = {H(x,y) | ∀a ∈ {0, 1}n∃b ∈ {0, 1}n(H(a,b) = 1)} thus,

Σ2-RQBF = {H(x,y) ∈ R | ∃a ∈ {0, 1}n∀b ∈ {0, 1}n(H(a,b) = 1)} ;

So, Σ2-RQBF is the restriction of Σ2-QBF to all formulas H(x,y) such that ∀a ∈ {0, 1}n∃b ∈ {0, 1}n(H(a,b) =
1). It is straightforward to prove that Σ2-RQBF is ΣP

2 -complete. (See Appendix.) Similarly, we consider
restricted subclasses

∆3-RQBF = {H(x,y) ∈ R | the lmax a with ∀b ∈ {0, 1}k (H(a,b) = 1) has an = 1}

Θ3-RQBF = {〈H(x), 1m〉 ∈ R × {1m} | the lmax a with ∀b ∈ {0, 1}k (H(a,b) = 1) & |a| ≤ m has an = 1}

of ∆3-QBF and Θ3-QBF, respectively. It is again straightforward to prove that ∆3-RQBF is ∆P
3 -complete and

Θ3-RQBF is ΘP
3 -complete.

3 Structure

We prove:

Theorem 3.1 (MWBFG is Exact Potential) Consider the MWBFG Γ = 〈m, k, r, (Fi)i∈[m]〉. Then, the func-

tion Φ : ({0, 1}k)m → R with Φ(s) =
∑

〈f,α〉∈F α · f(s) is an exact potential for Γ.

Proof: Consider an arbitrary profile s ∈ S and a strategy ti ∈ {0, 1}k of player i ∈ [m]. Then,

Φ(s−i, ti) − Φ(s)

=
∑

〈f,α〉∈F

α · f(s−i, ti) −
∑

〈f,α〉∈F

α · f(s)

=
∑

〈f,α〉∈Fi

α · f(s−i, ti) +
∑

〈f,α〉∈F\Fi

α · f(s−i, ti) −
∑

〈f,α〉∈Fi

α · f(s) −
∑

〈f,α〉∈F\Fi

α · f(s)

=
∑

〈f,α〉∈Fi

α · f(s−i, ti) −
∑

〈f,α〉∈Fi

α · f(s) +
∑

〈f,α〉∈F\Fi

α · (f(s−i, ti) − f(s)) .

Since Γ is a mutual weighted boolean formula game, it follows that for each pair 〈f, α〉 ∈ F \ Fi, f(s1, . . . , sm)
does not depend on si; hence, for each pair 〈f, α〉 ∈ F \ Fi, f(s−i, ti) = f(s). Hence,

Φ(s−i, ti) − Φ(s) =
∑

〈f,α〉∈Fi

α · f(s−i, ti) −
∑

〈f,α〉∈Fi

α · f(s) = ui(s−i, ti) − ui(s) ;

hence, Φ is an exact potential for Γ, as needed.

An inspection to the proof reveals that the assumption that player variables and formulas are boolean is not
essential: mutuality alone suffices for the existence of an exact potential. Theorem 3.1 implies:

Corollary 3.2 (1) Every MWBFG has a pure Nash equilibrium; (2) MWBF-NASHd(∗, ∗, ∗) ∈ PLS.

We now prove:

Theorem 3.3 The class of weighted, linear-affine congestion games with player-specific coefficients and con-
stants is polynomial, sound monomorphic to the class of weighted boolean formula games.

In the proof, we will identify a set t ⊆ {1, . . . , k} with the characteristic vector 〈χt(1), . . . , χt(k)〉, where χt is
the characteristic function for t: for each e ∈ [k], χt(e) = 1 if e ∈ t and 0 otherwise. For a boolean variable x,
set xχt(e) = x if χt(e) = 1 and x otherwise.

Proof: Here is a polynomial, sound monomorphism 〈λ, 〈π,φ〉, ψ〉. from WLACGwPSC2 to WBFG. We first
define the action of λ on any WLACGwPSC2 Γ = 〈m, (Si)i∈[m], (ui)i∈[m]〉, with Si ⊆ {0, 1}k for each i ∈ [m].
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Each player i ∈ [n] has variables xi = 〈xi1, . . . , xik〉; so, S′
i = {0, 1}k. The set Fi consists of:

Boolean formula Weight

For each resource e ∈ [k]: fie(x1, . . . , xm) = xie αie = δie · wi

For each player j ∈ [m] fije(x1, . . . , xm) = xie

∨
xje αije = βie · wi · wj

and resource e ∈ [k]:

For each strategy t ∈ Si fit(x1, . . . , xm) =
∧

e∈[k] x
χt(e)
ie αit = wi ·

∑

e∈[k]

(

βie ·
∑

j∈[m] wj + δie

)

+ 1

(so, t ⊆ {1, . . . , k}):

Set π and φ to be the identity maps, respectively. Furthermore, set ψΓ to be the identity map; so, ψΓ maps
a Nash equilibrium s′ (for Γ′) to itself. We now show Conditions (1), (2) and (3) in Definition 2.1. Clearly,
both maps λ and 〈π,φ〉 are polynomial. Furthermore, since for each player i ∈ [m], Si ⊆ S′

i, the map 〈π,φ〉
is a homomorphism. For Condition (1), we proceed to show that 〈π,φ〉 is Harsanyi-Selten. Fix any profile
s′ = 〈s′1, . . . , s

′
m〉 (for Γ′), where for each player i ∈ [m], si = 〈s′i1, . . . , s

′
ik〉. (Note that it need not be the case

that s′ is a profile for Γ.) Note that for each player i ∈ [m],

uπ(i)(s
′) = u′i(s

′)

=
∑

e∈[k]

αie · fie(s
′) +

∑

j∈[m]

∑

e∈[k]

αije · fije(s
′) +

∑

t∈Si

αit · fit(s
′)

=
∑

e∈[k]

αie · (1 − fie(s′))

︸ ︷︷ ︸

Σ1(s′)

+
∑

j∈[m]

∑

e∈[k]

αije · (1 − fije(s′))

︸ ︷︷ ︸

Σ2(s′)

+
∑

t∈Si

αit · fit(s
′)

︸ ︷︷ ︸

Σ3(s′)

.

• For Σ1(s
′), note that

Σ1(s
′) =

∑

e∈[k]

δie · wi · (1 − s′ie) =
∑

e∈[k]

δie · wi −
∑

e∈[k]

δie · wi · s
′
ie = wi

∑

e∈[k]

δie − wi

∑

e∈s′
i

δie .

• For Σ2(s
′), note that

Σ2(s
′) =

∑

j∈[m]

∑

e∈[k]

βie · wi · wj −
∑

j∈[m]

∑

e∈[k]

βie · wi · wj

(

(sie

∧

sje

)

.

Note that s′ie
∧
s′je = 1 if and only if e ∈ s′i and e ∈ s′j . Hence,

Σ2(s
′) = wi

∑

j∈[m]

∑

e∈[k]

βie · wj − wi ·
∑

e∈s′
i

∑

j|e∈s′
j

βie · wj .

Hence,

Σ1(s
′) + Σ2(s

′) = wi

∑

e∈[k]

δie − wi

∑

e∈s′
i

δie + wi

∑

j∈[m]

∑

e∈[k]

βie · wj − wi ·
∑

e∈s′
i

∑

j|e∈s′
j

βie · wj

= wi

∑

e∈[k]



βie ·
∑

j∈[m]

wj + δie



 − wi

∑

e∈s′
i



βie ·
∑

j|e∈s′
j

wj + δie



 .

• For Σ3(s
′), note that

Σ3(s
′) =

∑

t∈Si



wi ·
∑

e∈[k]



βie ·
∑

j∈[m]

wj + δie



 + 1



 ·
∧

e∈[k]

s
χt(e)
ie

=



wi ·
∑

e∈[k]



βie ·
∑

j∈[m]

wj + δie



 + 1



 ·
∑

t∈Si

∧

e∈[k]

(s′ie)
χt(e) .

We observe that for each t ∈ Si,
∧

e∈[k](s
′
ie)

χt(e) = 1 if and only if (e ∈ si if and only if e ∈ t) if and only

if s′i = t. Thus,
∑

t∈Si

∧

e∈[k](s
′
ie)

χt(e) =
∑

t∈Si
(s′i = t), where (s′i = t) = 1 if and only if s′i = t. Since

∑

t∈Si
(s′i = t) = χSi

(s′i), it follows that

Σ3(s
′) =



wi ·
∑

e∈[k]



βie ·
∑

j∈[m]

wj + δie



 + 1



 · χSi
(s′i) .
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We continue to prove:

Lemma 3.4 The map 〈π,φ〉 is Harsanyi-Selten. and sound.

Lemma 3.4 completes the proof of Condition (1) and establishes Condition (3). To prove Condition (2), note
that Lemma 3.4 implies that the map 〈π,φ〉 induces a Harsanyi-Selten bijection from NE(Γ) to NE(Γ′). Since
both π and φ are identity, this bijection is also identity as well as its inverse. So, the identity map is a bijection
from NE(Γ′) to NE(Γ). Since ΨΓ is this identity map, Condition (2) follows. The proof that 〈λ, 〈π,φ〉, ψ〉 is a
polynomial, sound Nash-Harsanyi-Selten homomorphism is now complete.

An inspection to the proof of Theorem 3.3 reveals that if we had player-independent coefficients (βe)e∈[k] (as

opposed to player-specific coefficients (βie)i∈[m],e∈[k]) in the original game Γ, the resulting WBFG λ(Γ) would
be mutual. Hence, Theorem 3.3 immediately implies:

Corollary 3.5 The class of weighted, linear-affine congestion games with player-specific constants is polyno-
mial, sound monomorphic to the class of mutual weighted boolean formula games.

We continue to prove:

Theorem 3.6 The class of weighted, linear-affine network congestion games with player-specific coefficients
and constants is polynomial, sound monomorphic to the class of weighted boolean formula games.

The proof of Theorem 3.6 follows the same structure as the proof of Theorem 3.3. The only difference in the
construction is that for each player i ∈ [m], for each strategy t ∈ Si, we replace the formula fit(x1, . . . , xm) =
∧

e∈[k] x
χt(e)
ie (which describes the strategy t of player i) by another (polynomial size) formula that describes

the admissible paths for player i in the network (from his source to his destination). Besides a (single) simple
path from source to destination, this formula may yield a collection of cycles that are disjoint from the single
path and mutually disjoint as well. However, these cases cannot correspond to Nash equilibria since the payoff
of player i can be increased by eliminating these disjoint cycles. We omit further proof details. Similar to
Corollary 3.5, we obtain:

Corollary 3.7 The class of weighted, linear-affine network congestion games with player-specific constants is
polynomial, sound monomorphic to the class of mutual weighted boolean formula games.

Since the search problem for pure Nash equilibria in weighted, asymmetric network congestion games with
player-specific constants is PLS-complete [38, Theorem 5], Corollary 3.1 and Corollary 3.7 immediately imply:

Corollary 3.8 MWBF-NASHd(∗, ∗, ∗) is PLS-complete.

By Theorem 3.1, Corollary 3.7 immediately implies a known result from Mavronicolas et al. [38]: Every
weighted, linear-affine congestion game with player-specific constants has a vector potential.

4 Payoff-Dominant Equilibria

We show:

Theorem 4.1 (Upper Complexity Bounds for Payoff-Dominant Equilibria). Let m ∈ {2, 3, . . .}, k ∈
{1, 2, . . .} and r ∈ {1, 2, . . . , ∗}. Then: (1) WBF-PDd(m, k, r) ∈ P. (2) BF-PDd(∗, k, r) ∈ ΘP

2 . (3) WBF-
PDd(∗, k, r) ∈ ∆P

2 . (4) BF-PDd(∗, ∗, r) ∈ ΘP
3 . (5) WBF-PDd(∗, ∗, r) ∈ ∆P

3 .

We now show:

Theorem 4.2 (Completeness Results for Payoff-Dominant Equilibria) We have:
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(1) WBF-PDd(∗, k, ∗) is ∆P
2 -complete for k ∈ {1, 2, . . .}.

(2) BF-PDd(∗, k, r) is ΘP
2 -complete for k ∈ {1, 2, . . .} and r ∈ {1, 2, . . . , ∗}.

(3) WBF-PDd(m, ∗, ∗) is ∆P
3 -complete for m ∈ {4, 5, . . . , ∗}.

(4) BF-PDd(m, ∗, ∗) is ΘP
3 -complete for m ∈ {4, 5, . . . , ∗}.

Proof: We consider each case separately:

(1) It suffices to prove that WBF-PDd(∗, 1, ∗) is ∆P
2 -complete. Membership in ∆P

2 follows from Theorem 4.1
(case (3)). To show ∆P

2 -hardness, we establish that ∆2-QBF ≤P
m WBF-PDd(∗, 1, ∗).

Consider a propositional formula H(x) with x = 〈x1, . . . , xn〉. Assume, without loss of generality, that
H(0n−11,b) = 1 for all vectors b ∈ {0, 1}n. Construct a weighted (n + 4, 1, n)- boolean formula game
ΓH as follows, where z = 〈z1, z2, z3, z4〉:

Player Variable Boolean formulas Weights

i ∈ [n] xi fi(x, z) = 0 αi = 1
n+ 1 z1 fn+1(x, z) = H(x)

∨
(z1 ⊕ z2) αn+1 = 1

n+ 2 z2 fn+1(x, z) = H(x)
∨

(z1 ⊕ z2 ⊕ 1) αn+2 = 1
n+ 3 z3 fn+3,i(x, z) = xi, i ∈ [n] αn+3,i = 2n−i, i ∈ [n]
n+ 4 z4 fn+4(x, z) = xn αn+3 = 1

We use a and b to denote vectors of values for the boolean variables in x and z, respectively. We remark
that the payoffs of all players i ∈ [n] are constant; the payoffs of players n+ 3 and n+ 4 are independent
of their strategies. Hence, neither players i ∈ [n] nor players n + 3 and n + 4 matter for a pure Nash
equilibrium. Now the proof is completed by showing:

Lemma 4.3 1. Assume that H(a) = 1. Then, for all vectors b ∈ {0, 1}4, (a,b) is a Nash equilibrium
for ΓH with u(a,b) = 〈0, . . . , 0

︸ ︷︷ ︸

n

, 1, 1,
∑

i∈[n] ai · 2n−i, an〉.

2. Assume that H(a) = 0. Then, for all vectors b ∈ {0, 1}4, (a,b) is not a Nash equilibrium for ΓH .

3. H(x) ∈ ∆2-QBF if and only if ΓH has a best pure Nash equilibrium.

(2) Membership in ΘP
2 follows from Theorem 4.1 (case (2)). For the hardness, the proof follows the same

structure as for case (1). The only difference in the reduction is that player n+ 3 is replaced by players
(n+ 3, l) for l ∈ [n] with formula (|x| ≥ l). Proof details are omitted.

(3) It suffices to prove that WBF-PDd(4, ∗, ∗) is ∆P
2 -complete. For the sake of clarity, we first prove the weaker

claim that WBF-PDd(5, ∗, ∗) is ∆P
3 -complete. At the end, we will extend the claim to WBF-PDd(4, ∗, ∗).

Membership in ∆P
3 follows from Theorem 4.1 (case (5)). To prove that WBF-PDd(5, ∗, ∗) is ∆P

3 -hard, we
establish that ∆3-QBF ≤P

m WBF-PDd(5, ∗, ∗).

Consider a propositional formula H(x,y) with x = 〈x1, . . . , xk〉 and y = 〈y1, . . . , yk〉. Assume, without
loss of generality, that (i) for every vector b ∈ {0, 1}n, H(0n−11,b) = 1. Recall that we can assume,
without loss of generality, that (ii) for every vector a ∈ {0, 1}n, there is some vector b1

a
such that

H(a,b1
a
) = 1. Construct a weighted (5, n, n)-boolean formula game ΓH as follows:

Player Variables Boolean formulas Weights

1 x f1(x,y, z,v) = 0 α1 = 1
2 y f2(x,y, z,v) = H(x,y) ⊕H(x, z) α2 = 1
3 z f3(x,y, z,v) = H(x,y) ⊕H(x, z) ⊕ 1 α3 = 1
4 v1 f4i(x,y, z,v) = xi for i ∈ [n] α4i = 2n−i for i ∈ [n]
5 v2 f5(x,y, z,v) = xk α5 = 1

Now the proof is completed by showing:

Lemma 4.4 1. Consider a vector a ∈ {0, 1}n such that for all vectors b ∈ {0, 1}n, H(a,b) = 1.
Then, for every triple (b, c,d), (a,b, c,d) is a pure Nash equilibrium for ΓH with payoff vector
u(a,b, c,d) = 〈0, 0, 1,

∑

j∈[n] aj · 2n−j , an〉.

2. Consider a vector a ∈ {0, 1}n such that there is some vector b0
a
∈ {0, 1}n such that H(a,b0

a
) = 0.

Then for every triple (b, c,d) with d = 〈d1, d2〉, (a,d, c,d) is not a pure Nash equilibrium for ΓH .

3. H(x,y) ∈ ∆3-QBF if and only if ΓH has a payoff-dominant Nash equilibrium.
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To extend the claim to WBF-PDd(4, ∗, ∗), we eliminate player 5 and transfer the boolean formula f5
to player 2. Details of the proof that this modification works are omitted. Hence, WBF-PDd(4, ∗, ∗) is
∆P

3 -complete.

(4) Membership in ΘP
3 follows from Theorem 4.1 (case (4)). The hardness proof follows the same structure

as for case (3). The only difference in the reduction is that player 4 has the formulas (|x| ≥ 1), (|x| ≥
2), . . . , (|x| ≥ n). Details of the proof that this modification works are omitted.

The proof is now complete.

Open Problem 4.1 Find the complexity of WBF-PDd(∗, k, r) for k ∈ {1, 2, . . . , ∗} and r ∈ {1, 2, . . . , ∗}. Find
the complexities of BF-PDd(m, ∗, r) and BF-PDd(m, ∗, r) for m ∈ {2, 3, . . . , ∗} and r ∈ {1, 2, . . . , ∗}. Find the
complexity of BF-PDd(m, ∗, ∗) for m ∈ {2, 3}.

5 Pure Nash Equilibria

We observe:

Proposition 5.1 (Upper Bounds for Pure Nash Equilibria) Let m ∈ {2, 3, . . .}, k ∈ {1, 2, . . .} and r ∈
{1, 2, . . . , ∗}. Then:

(1) WBF-NASHd(m, k, r) ∈ P (and WBF-NASHs(m, k, r) ∈ FP).
(2) WBF-NASHd(∗, k, r) ∈ NP (and WBF-NASHs(∗, k, r) ∈ FNP).
(3) WBF-NASHd(m, ∗, r) ∈ ΣP

2 (and WBF-NASHs(m, ∗, r) ∈ FΣP
2 ).

(4) WBF-NASHd(∗, ∗, r) ∈ ΣP
2 (and WBF-NASHs(∗, ∗, r) ∈ FΣP

2 ).

We show:

Theorem 5.2 (Completeness Results for Pure Nash Equilibria) We have:

(1) For k ∈ {1, 2, . . .} and r ∈ {1, 2, . . . , ∗}, BF-NASHd(∗, k, r) is NP-complete.
(2) For k ∈ {1, 2, . . .} and r ∈ {2, 3, . . . , ∗},

BC-NASHd(∗, k, r) is NP-complete.
(3) For k ∈ {1, 2, . . . , ∗}, WBC-NASHd(∗, k, 1) ∈ P. In fact, every weighted (∗, k, 1)-boolean clause game has a

pure Nash equilibrium.
(4) For m ∈ {3, 4, . . . , ∗} and r ∈ {1, 2, . . . , ∗},

BF-NASHd(m, ∗, r) is ΣP
2 -complete

Proof: We consider each case separately:

(1) It suffices to prove that BF-NASHd(∗, 1, 1) is NP-complete (and BF-NASHs(∗, 1, 1) is FNP-complete).
Membership follows from Proposition 5.1 (case (2)). To prove that BF-NASHd(∗, 1, 1) is NP-hard, we
establish a reduction from SAT to BF-NASHd(∗, 1, 1). Consider a propositional formula H(x1, . . . , xn).
Construct a BFG ΓH = 〈n+ 2, ({0, 1})i∈[n+2], (Fi)i∈[n+2]〉 as follows:

Player Variable Boolean function

i ∈ [n] xi fi(x) = 0
n+ 1 xn+1 fn+1(x) = H(x1, . . . , xn)

∨
(xn+1 ⊕ xn+2)

n+ 2 xn+2 fn+2(x) = H(x1, . . . , xn)
∨

(xn+1 ⊕ xn+2 ⊕ 1)

We need to show that H(x1, . . . , xn) is satisfiable if and only if ΓH has a pure Nash equilibrium. To
complete the proof, we show:

Lemma 5.3 For all an+1, an+2, H(a1, . . . an) = 1 if and only if 〈a1, . . . an, an+1, an+2〉 is a pure Nash
equilibrium of ΓH .

(2) It suffices to prove that BC-NASHd(∗, 1, 2) is NP-complete (and BC-NASHs(∗, 1, 2) is FNP-complete).
Membership follows from Proposition 5.1 (case (2)). To prove that BC-NASHd(∗, 1, 2) is NP-hard, we es-
tablish a reduction from CNF-SAT to BC-NASHd(∗, 1, 2). Consider a propositional formulaH(x1, . . . , xn) =
∧

j∈[m] Cj(x1, . . . , xn) in CNF. Construct a BCG ΓH = 〈n+ 2m, 1, 2, {Cjk}j∈[n+2m],k∈[2]〉 as follows:
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Player Variable Clause Cj1(x,y, z) Clause Cj2(x,y, z)

j ∈ [n] xj 0 0
n+ j with j ∈ [m] yj Cj(x)

∨
yj

∨
zj Cj(x)

∨
yj

∨
zj

n+m+ j with j ∈ [m] zj Cj(x)
∨
yj

∨
zj Cj(x)

∨
yj

∨
zj

In the sequel, we will use vectors a, b and c to denote boolean values for the boolean variables in the
vectors x, y and z, respectively. We remark that all players j ∈ [n] do not matter for a pure Nash
equilibrium since their payoffs are constant. To complete the proof, we show:

Lemma 5.4 For all b, c, H(a) = 1 if and only if 〈a,b, c〉 is a pure Nash equilibrium for ΓH .

(3) Consider any game Γ as input to WBC-NASHd(∗, k, 1). Then, Γ has a Nash equilibrium where each player
i ∈ [m] chooses his variables xi = 〈xi1, . . . , xik〉 ∈ {0, 1}k as follows: if xij appears unnegated in his clause
function fi, then xij := 1, else xij := 0. So, WBC-NASHd(∗, k, 1) ∈ P.

(4) It suffices to prove that BF-NASHd(3, ∗, 1) is ΣP
2 -complete (and BF-NASHs(3, ∗, 1) is FΣP

2 -complete). Mem-
bership follows from Proposition 5.1 (case (3)). To prove that BF-NASHd(3, ∗, 1) is ΣP

2 -hard, we estab-
lish a reduction from Σ2-RQBF to BF-NASHd(3, ∗, 1). Consider a propositional formula H(x,y) with
x = 〈x1, . . . , xn〉 and y = 〈y1, . . . , yn〉. Construct a BFG ΓH = 〈3, n, 1, {fi}i∈[3]〉 as follows:

Player Variables Boolean formula

1 x ∈ {0, 1}n f1(x,y, z) = 0
2 y ∈ {0, 1}n f2(x,y, z) = H(x,y) ⊕H(x, z)
3 z ∈ {0, 1}n f3(x,y, z) = H(x,y) ⊕H(x, z) ⊕ 1

We need to show that H(x,y) ∈ Σ2-RQBF if and only if ΓH has a pure Nash equilibrium.§ To complete
the proof, we show:

Lemma 5.5 For all c, ∀b(H(a,b) = 1) if and only if 〈a,b, c〉 is a pure Nash equilibrium of ΓH .

The proof is now complete.

Open Problem 5.1 Find the complexities of BF-NASHd(2, ∗, r), BF-NASHd(2, ∗, r), WBF-NASHd(2, ∗, r) and
WBF-NASHd(2, ∗, r) for r ∈ {1, 2, . . . , ∗}.

Open Problem 5.2 Find the complexities of BC-NASHd(m, ∗, r), BC-NASHd(m, ∗, r), WBC-NASHd(m, ∗, r)
and WBC-NASHd(m, ∗, r) for m ∈ {2, 3, . . . , ∗} and r ∈ {1, 2, . . . , ∗}.

6 Open Problems

Our work raises far more interesting open problems than it answers; we mention a few of them here. On the
most concrete level, what is the complexity of other refinements of pure Nash equilibria (e.g., Pareto-optimal
equilibria, dominating equilibria, etc.) in WBFGs? We feel that our work opens up Pandora’s box with regard
to investigating the selection problem for (pure) Nash equilibria [30] from the point of view of computational
complexity. Our results identified natural refinements of pure Nash equilibrium (including itself) that are
complete for some of the lowest levels of PH (not exceeding the third level). Is there for any level k of PH,
some (natural) refinement of pure Nash equilibrium that is complete there (for some of ΣP

k , ∆P
k or ΠP

k )? More
ambitiously, is there some (natural) refinement of pure Nash equilibrium that is complete for PSPACE?

Theorem 3.1 determines a sufficient condition (namely, mutuality) for a WBFG to admit an exact potential;
a corresponding necessary condition is missing. Finally, Corollaries 3.5 and 3.7 identify two classes of succinct
games that are polynomially embeddable in the class of MWBFGs. Which other classes of succinct games are
so embeddable?

Acknowledgements. We would like to thank Paul Spirakis and Karsten Tiemann for many helpful discussions
and comments on earlier versions of our work.

§We warn the reader against the formula G(x,y) ≡ 0 for all x and y. Notice that in the constructed game ΓG,
f1 ≡ 0, f2 ≡ 0 and f3 ≡ 1; so, every profile is a pure Nash equilibrium for ΓG. However, this is not a contradiction, since
G 6∈ R, which implies that G is not a valid input for Σ2-RQBF (even though G 6∈ Σ2-RQBF). In fact, we used reduction
from Σ2-RQBF (as opposed to Σ2-QBF) in order to eliminate such degenerate formulas from consideration.
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Toulouse, France.

[10] E. Bonzon, M.-C. Lagasquie-Schiex, J. Lang and B. Zanuttini, “Boolean Games Revisited,” Proceedings of
the 17th European Conference on Artificial Intelligence, pp. 265–269, 2006.

[11] C. Boutilier, “Toward a Logic for Qualitative Decision Theory,” Proceedings of the 4th International Con-
ference on Principles of Knowledge Representation and Reasoning, pp. 75–86, 1994.

[12] F. Brandt, F. Fischer and M. Holzer, “Symmetries and the Complexity of Pure Nash Equilibrium,” Pro-
ceedings of the 24th International Symposium on Theoretical Aspects of Computer Science, pp. 212–223,
Vol. 4393, LNCS, Springer-Verlag, 2006.

[13] J. Case, “A Class of Games Having Pareto Optimal Nash Equilibria,” Journal of Optimization Theory and
Applications, Vol. 13, pp. 379–385, 1974.

[14] X. Chen and X. Deng, “Settling the Complexity of Two-Player Nash Equilibrium,” Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science, pp. 261–272, 2006.

[15] A. M. Colman and M. Bacharach, “Payoff Dominance and the Stackelberg Heuristic,” Theory and Decision,
Vol. 43, pp. 1–19, 1997.

[16] V. Conitzer and T. Sandholm, “Complexity Results about Nash Equilibria,” Proceedings of the 18th In-
ternational Joint Conference on Artificial Intelligence, pp. 765–771, 2003.

[17] C. Daskalakis, A. Fabrikant and C. H. Papadimitriou, “The Game World Is Flat: The Complexity of Nash
Equilibria in Succinct Games,” Proceedings of the 33rd International Colloquium on Automata, Languages
and Programming, pp. 513–524, Vol. 4051, LNCS, Springer-Verlag, 2006.

[18] C. Daskalakis, P. W. Goldberg and C. H. Papadimitriou, “The Complexity of Computing a Nash Equilib-
rium,” Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 71–78, 2006.

[19] K. Daskalakis and C. H. Papadimitriou, “The Complexity of Games on Highly Regular Graphs,” Proceed-
ings of the 13th Annual European Symposium on Algorithms, pp. 71–82, Vol. 3669, LNCS, Springer-Verlag,
2005.

[20] J. Dunkel and A. S. Schulz, “On the Complexity of Pure-Strategy Nash Equilibria in Congestion and
Local-Effect Games,” Proceedings of the 2nd International Workshop on Internet and Network Economics,
pp. 62–73, Vol. 4286, LNCS, Springer-Verlag, 2006.

13



[21] P. Dunne and W. van der Hoek, “Representation and Complexity in Boolean Games,” Proceedings of the
9th European Conference on Logics in Artificial Intelligence, pp. 347–359, Vol. 3229, LNCS, 2004.

[22] A. Fabrikant, C. H. Papadimitriou and K. Talwar, ”The Complexity of Pure Nash Equilibria,” Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, pp. 604–612, 2004.

[23] F. Fischer, M. Holzer and S. Katzenbeisser, “The Influence of Neighbourhood and Choice on the Complexity
of Finding Pure Nash Equilibria,” Information Processing Letters, Vol. 99, pp. 239–245, 2006.

[24] L. Fortnow, R. Impagliazzo, V. Kabanets and C. Umans, “On the Complexity of Succinct Zero-Sum
Games,” Proceedings of the 20th Annual IEEE Conference on Computational Complexity, pp. 323–332,
2005.

[25] D. Fotakis, S. Kontogiannis and P. Spirakis, “Selfish Unsplittable Flows,” Theoretical Computer Science,
Vol. 348, pp. 226–239, 2005.

[26] M. Gairing, B. Monien and K. Tiemann, “Routing (Un-)Splittable Flow in Games with Player-Specific
Linear Latency Functions,” Proceedings of the 33rd International Colloquium on Automata, Languages and
Programming, pp. 501–512, Vol. 4051, LNCS, Springer-Verlag, 2006.

[27] P. W. Goldberg and C. H. Papadimitriou, “Reducibility Among Equilibrium Problems,” Proceedings of the
38th Annual ACM Symposium on Theory of Computing, pp. 61–70, 2006.

[28] G. Gottlob, G. Greco and F. Scarcello, ”Pure Nash Equilibria: Hard and Easy Games,” Journal of Artificial
Intelligence Research, Vol. 24, pp. 357–406, 2005.

[29] P. Harrenstein, W. van der Hoek, J.-J. Meyer and C. Witteveen, “Boolean Games,” Proceedings of the 8th
Conference on Theoretical Aspects of Rationality and Knowledge, pp. 287–298, 2001.

[30] J. C. Harsanyi and R. Selten, A General Theory of Equilibrium Selection in Games, The MIT Press, 1988.

[31] E. Hemaspaandra, L. A. Hemaspaandra and J. Rothe, “Exact Analysis of Dodgson Elections: Lewis
Carroll’s 1876 Voting System is Complete for Parallel Access to NP,” Journal of the ACM, Vol. 44, pp.
806–825, 1997.

[32] D. S. Johnson, C. H. Papadimitriou and M. Yannakakis, “How Easy is Local Search,” Journal of Computer
and System Sciences, Vol. 37, pp. 79–100, 1988.

[33] E. Kalai and D. Samet, “Unanimity Games and Pareto Optimality,” International Journal of Game Theory,
Vol. 14, pp. 41–50, 1985.

[34] M. J. Kearns, M. L. Littman and S. P. Singh, “Graphical Models for Game Theory,” Proceedings of the
17th Conference on Uncertainty in Artificial Intelligence, pp. 253–260, 2001.

[35] V. M. Krapchenko, “Complexity of the Realization of a Linear Function in the Class of π-Circuits,”
Mathematical Notes of the Academy of Sciences USSR, Vol. 11, pp. 70–76, 1971.

[36] M. W. Krentel, “The Complexity of Optimization Problems,” Journal of Computer and System Sciences,
Vol. 36, pp. 490–509, 1988.

[37] K. Leyton-Brown and M. Tennenholtz, “Local-Effect Games,” Proceedings of the 18th International Joint
Conference on Artificial Intelligence, pp. 772–780, 2003.

[38] M. Mavronicolas, I. Milchtaich, B. Monien and K. Tiemann, “Congestion Games with Player-Specific
Constants,” Proceedings of the 32nd International Symposium on Mathematical Foundations of Computer
Science, August 2007, to appear.

[39] A. R. Meyer and L. J. Stockmeyer, “The Equivalence Problem for Regular Expressions with Squaring
Requires Exponential Time,” Proceedings of the 13th Annual IEEE Symposium on Switching and Automata
Theory, pp 125–129, October 1972.

[40] I. Milchtaich, “Congestion Games with Player-Specific Payoff Functions,” Games and Economic Behavior,
Vol. 13, pp. 111–124, 1996.

[41] D. Monderer and L. S. Shapley, “Potential Games,” Games and Economic Behavior, Vol. 14, pp. 124–143,
1996.

[42] J. F. Nash, “Non-Cooperative Games,” Annals of Mathematics, Vol. 54, pp. 286–295, 1951.

[43] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[44] C. H. Papadimitriou and S. Zachos, “Two Remarks on the Power of Counting,” Proceedings of the 6th GI
Conference on Theoretical Computer Science, pp. 269–276, Vol. 145, LNCS, Springer-Verlag, 1983.

14



[45] M. Paterson and L. G. Valiant, “Circuit Size is Nonlinear in Depth,” Theoretical Computer Science, Vol. 2,
pp. 397–400, 1976.

[46] W. Paul, “A 2.5 Lower Bound on the Combinatorial Complexity of Boolean Functions,” SIAM Journal on
Computing, Vol. 6, pp. 427–443, 1977.

[47] R. W. Rosenthal, “A Class of Games Possessing Pure Strategy Nash Equilibria,” International Journal on
Game Theory, Vol. 2, pp. 65–67, 1973.

[48] G. Schoenebeck and S. Vadhan, “The Computational Complexity of Nash Equilibria in Concisely Repre-
sented Games,” Proceedings of the 7th ACM Conference on Electronic Commerce, pp. 270–279, 2006.

[49] L. J. Stockmeyer, “The Polynomial Time Hierarchy,” Theoretical Computer Science, Vol. 3, pp. 1–22, 1977.

[50] H. Vollmer and K. W. Wagner, “Complexity Classes of Optimization Functions,” Information and Com-
putation, Vol. 120, pp. 198–218, 1995.

[51] M. Voorneveld, P. Borm, F. van Megan, S. Tijs and G. Facchini, “Congestion Games and Potentials
Reconsidered,” International Game Theory Review, Vol. 1, pp. 283–299, 1999.

[52] K. W. Wagner, “More Complicated Questions about Maxima and Minima, and Some Closures of NP,”
Theoretical Computer Science, Vol. 51, pp. 53–80, 1987.

[53] K. W. Wagner, “Bounded Query Classes,” SIAM Journal on Computing, Vol. 19, pp. 833–846, 1990.

[54] C. Wrathall, “Complete Sets and the Polynomial Time Hierarchy,” Theoretical Computer Science, Vol. 3,
pp. 23–33, 1977.

[55] M. Yokoo, E. H. Durfee, T. Ishida and K. Kuwabara, “The Distributed Constraint Satisfaction Problem:
Formalization and Algorithms,” IEEE Transactions on Knowledge and Data Engineering, Vol. 10, pp.
673–685, 1998.

15



A Proof that Σ2-RQBF is Σ
P
2 -complete

By reduction from Σ2-QBF. Given a propositional formula H(x,y), construct the propositional formula
H ′(x;u,y; v) = (H(x,y)

∧
v)

∨
v. We prove that H(x,y) ∈ Σ2-QBF if and only if H ′(x;u,y; v) ∈ Σ2-RQBF.

• Assume first that H(x,y) ∈ Σ2-QBF. So there is a0 such that for all b, H(a0,b) = 1

– Recall a0 and c0. Fix arbitrary b and d. Then, H(a0; c0,b; d) = (H(a0,b)
∧
d)

∨
d = (1

∧
d)

∨
d =

1.

– Fix arbitrary a and c. Set b := b0 (where b0 is arbitrary) and d := 1. Then, H(a; c,b0; 1) = 1.

So, H ′(x;u,y; v) ∈ Σ2-RQBF.

• Assume now that H ′(x;u,y; v) ∈ Σ2-RQBF. Then, there is some a0 and c0 such that for all b and d,
H ′(a0; c0,b; d) = 1. Set d := 1. It follows that for all b, H ′(a0; c0,b; d) = H(a0,b) = 1. This implies
that H(x,y) ∈ Σ2-QBF.

B Proof of Lemma 3.4

Consider any profile s′ ∈ S′(Γ′) such that s′ = 〈π,φ〉(s) for some profile s ∈ S(Γ). Hence, for each player
i ∈ [m], χSi

(si) = 1. Since 〈π,φ〉 is the identity map, s′ = s. It follows that for each player i ∈ [m], χSi
(s′i) = 1

as well. Hence,

u′i(〈π,φ〉s) = wi

∑

e∈[k]



βie

∑

j∈[m]

wj + δie



 − wi

∑

e∈s′
i



βie

∑

j|e∈s′
j

wj + δie



 + wi

∑

e∈[k]



βie

∑

j∈[m]

wj + δie



 + 1

= −wi

∑

e∈s′
i



βie

∑

j|e∈s′
j

wj + δie



 .+ 2wi

∑

e∈[k]



βie

∑

j∈[m]

wj + δie



 + 1

= −wi

∑

e∈s′
i



βie

∑

j|e∈sj

wj + δie



 + 2wi

∑

e∈[k]



βie

∑

j∈[m]

wj + δie



 + 1

= wi · ui(s) + 2wi

∑

e∈[k]



βie

∑

j∈[m]

wj + δie



 + 1 .

Since wi > 0, it follows that 〈π,φ〉 is Harsanyi-Selten.

We continue to prove that 〈π,φ〉 is sound. Consider any profile s′ ∈ S′(Γ′) such that there is no profile
s ∈ S(Γ) such that s′ ∈ 〈π,φ〉(s). Since π and φ are the identity maps, it follows that s′ 6∈ S(Γ). Hence, there
is a player i ∈ [m] such that s′i 6∈ Si; so, χSi

(s′i) = 0. It follows that

u′i(s
′) ≤ wi ·

∑

e∈[k]



βie ·
∑

j∈[m]

wj + δie



 .

Assume now that player i switches from strategy s′i 6∈ Si to strategy s′′i ∈ Si; thus, χSi
(s′′i ) = 1. Hence,

u′i(s
′
−i, s

′′
i ) = 2wi ·

∑

e∈[k]



βie ·
∑

j∈[m]

wj + δie



 + 1 − wi ·
∑

e∈s′′
i



βie ·
∑

j∈[m]|e∈s′
j

wj + δie





≥ 2wi ·
∑

e∈[k]



βie ·
∑

j∈[m]

wj + δie



 + 1 − wi ·
∑

e∈[k]



βie ·
∑

j∈[m]

wj + δie





= wi ·
∑

e∈[k]



βie ·
∑

j∈[m]

wj + δie



 + 1 .

Hence, u′i(s
′
−i, s

′′
i ) > u′i(s

′) and s′ is not a Nash equilibrium for Γ′. The Soundness Condition follows.
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C Proof of Lemma 4.1

Fix a weighted boolean formula game Γ = 〈m, k, r, (Fi)i∈[m]〉. Consider the following algorithm A for the
decision problem WBF-PDd(m, k, r):

1. For each player i ∈ [m], compute µi = max
s∈NE(Γ) ui(s) by a binary search using queries

of the kind:

(Q1) “Does Γ have a pure Nash equilibrium s such that ui(s) ≥ ℓ?”

2. Output the answer (YES or NO) returned to the query:

(Q2) “Does Γ have a pure Nash equilibrium s such that for each player i ∈ [m], ui(s) = µi?”

Clearly, the algorithm A uses a polynomial number of queries (of the kind (Q1) or (Q2)). We proceed to establish
upper bounds on the complexity of the algorithm A in each case:

(1) Note that if m and k are fixed, then each kind of query (Q1) and (Q2) is a P-query. Hence, WBF-
PDd(m, k, r) ∈ PP = P.

(2) Note that if k and r are fixed, then each kind of query (Q1) and (Q2) is an NP-query. Since there are no
weights, the total number of queries is O(lgm). Hence, WBF-PDd(m, k, r) ∈ PNP(lg m) = ΘP

2 .

(3) Note that if k and r are fixed, then each kind of query (Q1) and (Q2) is an NP-query. Hence, WBF-
PDd(m, k, r) ∈ PNP = ∆P

2 .

(4) Note that if r is fixed, then each kind of query (Q1) and (Q2) is a ΣP
2 -query. Since there are no weights,

the total number of queries is O(lgm). Hence, WBF-PDd(m, k, r) ∈ PΣP
2

(lg m) = ΘP
3 .

(5) Note that if r is fixed, then each kind of query (Q1) and (Q2) is a ΣP
2 -query. Hence, WBF-PDd(m, k, r) ∈

PΣP
2 = ∆P

3 .

The proof is now complete.

D Proof of Lemma 4.3.1

We only need to consider the players n+1 and n+2. Since H(a) = 1, un+1(a,b) = un+2(a,b) = 1, which cannot
be further increased. Hence, 〈a,b〉 is a Nash equilibrium for ΓH with u(a,b) = 〈0, . . . , 0

︸ ︷︷ ︸

n

, 1, 1,
∑

i∈[n] ai ·2
n−i, an〉.

E Proof of Lemma 4.3.2

Since H(a,b) = 0, u1(a,b) = b1 ⊕ b2 and u1(a,b) = b1 ⊕ b2 ⊕ 1. If b1 ⊕ b2 = 0, then player n+ 1 can increase
its payoff un+1(a,b) = 0 by flipping b1. If b1 ⊕ b2 = 1, then player n+ 2 can increase its payoff un+1(a,b) = 0
by flipping b2. Hence, (a,b) is not a Nash equilibrium.

F Proof of Lemma 4.3.3

Assume first that H(x) ∈ ∆2-QBF. Fix the lmax a ∈ {0, 1}n such that H(a) = 1. It follows that an = 1.
Lemma 4.3.1 implies that (a,b) is a Nash equilibrium for ΓH with u(a,b) = 〈0, . . . , 0

︸ ︷︷ ︸

n

, 1, 1,
∑

i∈[n] ai · 2
n−i, an〉.

We now prove that (a,b) is a payoff-dominant equilibrium for ΓH . Fix any Nash equilibrium (a′,b′) for
ΓH . By Lemma 4.3.2, H(a′) = 1. Hence, by Lemma 4.3.1, u(a,b) = 〈0, . . . , 0

︸ ︷︷ ︸

n

, 1, 1,
∑

i∈[n] a
′
i · 2

n−i, a′n〉. Since a

is lmax among all vectors a′′ ∈ {0, 1}n such that H(a′′) = 1, a ≥le a′, Hence,
∑

i∈[n] ai · 2n−i ≥
∑

i∈[n] a
′
i · 2

n−i.

Since an = 1, an ≥ a′n. It follows that (a,b) is a payoff-dominant equilibrium for ΓH .

ii



Assume now that H(x) 6∈ ∆2-QBF. Assume, by way of contradiction, that ΓH has a payoff-dominant
equilibrium. Fix the lmax a ∈ {0, 1}n such that H(a) = 1. By definition of ∆2-QBF, it follows that ak = 0. Fix
now any vector b. Lemma 4.3.1 implies that (a,b) is a Nash equilibrium for ΓH with payoff vector u(a,b) =
〈0, . . . , 0
︸ ︷︷ ︸

n

, 1, 1,
∑

i∈[n] ai · 2n−i, an〉. By Lemma 4.3.2, Lemma 4.3.1 implies that each pure Nash equilibrium has

payoff vector 〈0, . . . , 0
︸ ︷︷ ︸

n

, 1, 1, x, y〉, where x ≥ 0 and y ∈ {0, 1}. Since a is lmax, this implies that (a,b) is a

payoff-dominant equilibrium with payoff vector u(a,b) = 〈0, . . . , 0
︸ ︷︷ ︸

n

, 1, 1,
∑

i∈[n] ai · 2
n−i, 0〉.

By assumption, it follows that H(0n−11,b) = 1. Lemma 4.3 implies that (0n−11,b) is a pure Nash equilib-
rium for ΓH with payoff vector 〈0, . . . , 0

︸ ︷︷ ︸

n

, 1, 1, 1, 1〉. Since (a,b) is a payoff-dominant equilibrium, it follows that

〈0, . . . , 0
︸ ︷︷ ︸

n

, 1, 1,
∑

i∈[n] ai · 2n−i, 0〉 ≥cw 〈0, . . . , 0
︸ ︷︷ ︸

n

, 1, 1, 1, 1〉. A contradiction.

G Proof of Lemma 4.4.1

Fix any arbitrary triple (b, c,d). We examine all players:

• For player 2, fix any arbitrary strategy b′ ∈ {0, 1}n. The assumption implies that u2(a,b
′, c,d) =

f2(a,b
′, c,d) = H(a,b′) ⊕H(a, c) = 1 ⊕ 1 = 0. So, player 2 cannot unilaterally increase his payoff 0 in

(a,b, c,d).

• For player 3, fix any arbitrary strategy c′ ∈ {0, 1}n. The assumption implies that u2(a,b, c
′,d) =

f2(a,b, c
′,d) = H(a,b)⊕H(a, c′)⊕1 = 1⊕1⊕1 = 1. So, player 2 cannot unilaterally increase his payoff

1 in (a,b, c,d).

• For player 4, note that each boolean formula f4i, i ∈ [n], is independent of his strategy d1. So, player 4
cannot unilaterally increase his payoff

∑

j∈[n] aj · 2
n−j in (a,b, c,d).

• For player 5, note that the boolean formula f5 is independent of his strategy d2. So, player 5 cannot
unilaterally increase his payoff ak in (a,b, c,d).

It follows that (a,b, c,d) is a pure Nash equilibrium for ΓH with payoff vector

u(a,b, c,d) = 〈0, 0, 1,
∑

j∈[k]

aj · 2
k−j , ak〉 ,

as needed.

H Proof of Lemma 4.4.2

Fix any arbitrary triple (b, c,d). We proceed by case analysis on the pair of values H(a,b) and H(a, c).

• Assume that H(a,b) = H(a, c) = 0. Then, u2(a,b, c,d) = f2(a,b, c,d) = H(a,b)⊕H(a, c) = 0⊕0 = 0.
However, by assumption (ii), u2(a,b

1
a
, c,d) = f2(a,b

1
a
, c,d) = H(a,b1

a
)⊕H(a, c) = 1⊕0 = 1. So, player

2 can increase his payoff in (a,b, c,d) by changing his strategy b to b1
a
. Hence, 〈a,b, c,d〉 is not a pure

Nash equilibrium.

• Assume that H(a,b) = 0 and H(a, c) = 1. Then, u3(a,b, c,d) = f3(a,b, c,d) = H(a,b)⊕H(a, c)⊕ 1 =
0 ⊕ 1 ⊕ 1 = 0. However, by assumption (ii), u3(a,b,b

0
a
,d) = f3(a,b,b

0
a
,d) = H(a,b) ⊕H(a,b0

a
) ⊕ 1 =

0⊕ 0⊕ 1 = 1. So, player 3 can increase his payoff in (a,b, c,d) by changing his strategy c to b0
a
. Hence,

(a,b, c,d) is not a pure Nash equilibrium.

• Assume that H(a,b) = 1 and H(a, c) = 0. Then, u3(a,b, c,d) = f3(a,b, c,d) = H(a,b)⊕H(a, c)⊕ 1 =
1 ⊕ 0 ⊕ 1 = 0. However, by assumption (ii), u3(a,b,b

1
a
,d) = f3(a,b,b

1
a
,d) = H(a,b) ⊕H(a,b1

a
) ⊕ 1 =

1⊕ 1⊕ 1 = 1. So, player 3 can increase his payoff in (a,b, c,d) by changing his strategy c to b1
a
. Hence,

〈a,b, c,d〉 is not a pure Nash equilibrium.
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• Assume that H(a,b) = H(a, c) = 1. Then, u2(a,b, c,d) = f2(a,b, c,d) = H(a,b)⊕H(a, c) = 1⊕1 = 0.
However, by assumption (ii), u2(a,b

0
a
, c,d) = f2(a,b

0
a
, c,d) = H(a,b0

a
)⊕H(a, c) = 0⊕1 = 1. So, player

2 can increase his payoff in (a,b, c,d) by changing his strategy b to b0
a
. Hence, 〈a,b, c,d〉 is not a pure

Nash equilibrium.

The proof is now complete.

I Proof of Lemma 4.4.3

Assume first that H(x,y) ∈ ∆3-QBF. Choose the lmax a ∈ {0, 1}n such that for all vectors b ∈ {0, 1}n,
H(a,b) = 1 (By assumption (i), such a vector a exists.) By definition of ∆3-QBF, it follows that an = 1. By
Lemma 4.4.1, it follows that for every triple (b, c,d), (a,b, c,d) is a pure Nash equilibrium for ΓH with payoff
vector u(a,b, c,d) = 〈0, 0, 1,

∑

j∈[n] aj · 2
n−j , an〉.

We now prove that (a,b, c,d) is a payoff-dominant Nash equilibrium for ΓH . Consider any pure Nash equi-
librium (a′,b′, c′,d′) for ΓH . Lemma 4.4.2 implies that for all vectors b′′ ∈ {0, 1}n, H(a,b′′) = 1. Lemma 4.4.1
implies that the payoff vector for (a′,b′, c′,d′) is 〈0, 0, 1,

∑

j∈[n] a
′
j · 2

n−j , a′n〉. Since a is the lmax vector such

that for all vectors b ∈ {0, 1}n, H(a,b) = 1, it follows that
∑

j∈[n] aj · 2n−j ≥
∑

j∈[n] a
′
j · 2

n−j . Since an = 1,

an ≥ a′n. It follows that 〈0, 0, 1,
∑

j∈[n] aj · 2
n−j , an〉 ≥cw 〈0, 0, 1,

∑

j∈[n] a
′
j · 2

n−j , a′n. Since (a′,b′, c′,d′) was

chosen as an arbitrary pure Nash equilibrium, this implies that (a,b, c,d) is payoff-dominant.

Assume now that H(x,y) 6∈ ∆3-QBF. Assume, by way of contradiction, that ΓH has a payoff-dominant
Nash equilibrium. Fix the lmax a ∈ {0, 1}n such that for all vectors b ∈ {0, 1}n, H(a,b) = 1. By definition of
∆3-QBF, it follows that an = 0. Fix any triple (b, c,d). Lemma 4.4.1 implies that (a,b, c,d) is a pure Nash
equilibrium for ΓH with payoff vector 〈0, 0, 1,

∑

j∈[n] aj · 2
n−j , 0〉. By Lemma 4.4.2, Lemma 4.4.1 implies that

that all pure Nash equilibria have payoff vectors 〈0, 0, 1, x, y〉 where x ≥ 0 and y ∈ {0, 1}. Since a is lmax, this
implies that (a,b, c,d) is the best pure Nash equilibrium with payoff vector 〈0, 0, 1,

∑

j∈[n] aj · 2n−j , 0〉.

By assumption (i), it follows that H(0n−11,b) = 1. Lemma 4.4 implies that (0n−11,b, c,d) is a pure
Nash equilibrium for ΓH with payoff vector 〈0, 0, 1, 1, 1〉. Since (a,b, c,d) is the best pure Nash equilibrium,
〈0, 0, 1,

∑

j∈[n] aj · 2n−j , 0〉 ≥cw 〈0, 0, 1, 1, 1〉. A contradiction.

J Proof of Lemma 5.3

Assume first that H(a1, . . . , an) = 1. Thus, fn+1(a1, . . . , an+2) = fn+2(a1, . . . , an+2) = 1, so that no player can
improve its payoff ui(a1, . . . , an, an+1, an+2) = 1 for any an+1, an+2 ∈ {0, 1}. So, 〈a1, . . . , an, an+1, an+2〉 is a
pure Nash equilibrium for ΓH (for any an+1, an+2 ∈ {0, 1}).

Assume now that 〈a1, . . . , an, an+1, an+2〉 is a pure Nash equilibrium for ΓH . Then:

• Player n+ 1 cannot increase his payoff by switching an+1 to an+1. It follows that

H(a1, . . . , an)
∨

(an+1 ⊕ an+2) ≥ H(a1, . . . , an)
∨

(an+1 ⊕ an+2) .

Hence, either H(a1, . . . , an) = 1 or an+1 ⊕ an+2 = 1.

• Player n+ 2 cannot increase his payoff by switching an+2 to an+2. It follows that

H(a1, . . . , an)
∨

(an+1 ⊕ an+2 ⊕ 1) ≥ H(a1, . . . , an)
∨

(an+1 ⊕ an+2 ⊕ 1) .

Hence, either H(a1, . . . , an) = 1 or an+1 ⊕ an+2 ⊕ 1 = 1.

It follows that H(a1, . . . , an) = 1, and H is satisfiable.

K Proof of Lemma 5.4

Assume first that H(a) = 1. It follows that for each j ∈ [m], Cj(a) = 1. Hence, Cj1(a,b, c) = Cj2(a,b, c) = 1
for all players n+ j with 1 ≤ j ≤ 2m. So, the payoff of each player n+ j, with 1 ≤ j ≤ 2m, cannot increase by
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flipping his variable (yj or zj). It follows that 〈a,b, c〉 is a Nash equilibrium for ΓH (for any boolean vectors b
and c).

Assume now that 〈a,b, c〉 is a Nash equilibrium for ΓH . Fix any index j ∈ [m]. By definition of Nash
equilibrium:

• Player n+ j cannot increase his payoff by flipping his variable yj (from bj to bj). Hence,

(Cj(a)
∨

bj
∨

cj) + (Cj(a)
∨

bj
∨

cj) ≥ (Cj(a)
∨

bj
∨

cj) + (Cj(a)
∨

bj
∨

cj) .

• Player n+m+ j cannot increase his payoff by flipping his variable zj (from cj to cj). Hence,

(Cj(a)
∨

bj
∨

cj) + (Cj(a)
∨

bj
∨

cj) ≥ (Cj(a)
∨

bj
∨

cj) + (Cj(a)
∨

bj
∨

cj) .

The two inequalities imply that

(Cj(a)
∨

bj
∨

cj) + (Cj(a)
∨

bj
∨

cj) = (Cj(a)
∨

bj
∨

cj) + (Cj(a)
∨

bj
∨

cj) .

Denote as g(a,b, c) ∈ {0, 1, 2} this common value. We prove:

Lemma K.1 g(a,b, c) = 2.

Proof: Assume, by way of contradiction, that g(a,b, c) ∈ {0, 1}. We proceed by case analysis.

• Assume first that g(a,b, c) = 0. It follows that Cj(a)
∨
bj

∨
cJ = 0. Hence, bj = 0. This implies that

Cj(a)
∨
bj

∨
cj = 1. Hence, g(a,b, c) = 1, a contradiction.

• Assume now that g(a,b, c) = 1. We proceed by subcase analysis on the value Cj(a)
∨
bj

∨
cj ∈ {0, 1}.

– Assume first that Cj(a)
∨
bj

∨
cj = 0. This implies that bj = cj = 0. Hence, it follows that

Cj(a)
∨
bj

∨
cj = Cj(a)

∨
bj

∨
cj = 1. Hence, g(a,b, c) = Cj(a)

∨
bj

∨
cj + Cj(a)

∨
bj

∨
cj = 2. A

contradiction.

– Assume now that Cj(a)
∨
bj

∨
cj = 0. Since g(a,b, c) = (Cj(a)

∨
bj

∨
cj) + (Cj(a)

∨
bj

∨
cj) and

g(a,b, c) = 1 (by assumption), it follows that (Cj(a)
∨
bj

∨
cj) = 0. This implies that bj =

cj = 1. Hence, Cj(a)
∨
bj

∨
cj = 1 and Cj(a)

∨
bj

∨
cj = 1 Hence, g(a,b, c) = Cj(a)

∨
bj

∨
cj +

Cj(a)
∨
bj

∨
cj = 2. A contradiction.

the proof is now complete.

By definition of g, Lemma K.1 implies that Cj(a)
∨
bj

∨
cj = Cj(a)

∨
bj

∨
cj = Cj(a)

∨
bj

∨
cj = +Cj(a)

∨
bj

∨
cj =

1. It follows that Cj(a) = 1. Since j ∈ [m] was chosen arbitrarily, this implies that H(a) =
∧

j∈[m] Cj(a) = 1.

L Proof of Lemma 5.5

Assume first that for all vectors b ∈ {0, 1}k, H(a,b) = 1. Fix any such vector a ∈ {0, 1}n.

• Fix now any vector c ∈ {0, 1}n. Note that the choice of a implies that for all vectors b ∈ {0, 1}n,
f2(a,b.c) = H(a,b) ⊕H(a, c) = 0. Hence, player 2 cannot increase his payoff by changing his strategy
b.

• Fix now any vector b ∈ {0, 1}n. Note that the choice of a implies that for all vectors c ∈ {0, 1}n,
f3(a,b.c) = H(a,b) ⊕ H(a, c) ⊕ 1 = 1. Hence, player 3 cannot increase his payoff by changing his
strategy c.

Thus, 〈a,b, c〉 is a pure Nash equilibrium for the strategic game ΓH (for any arbitrary pair of vectors b, c ∈
{0, 1}n).

Assume now that 〈a,b, c〉 is a pure Nash equilibrium for the game ΓH . Then:

v



• Player 2 cannot increase his payoff by switching his strategy b to any strategy b′. Thus, for all b′ ∈ {0, 1}n,
H(a,b) ⊕H(a, c) ≥ H(a,b′) ⊕H(a, c). Two cases are now possible:

– H(a,b) ⊕H(a, c) = 1.

– H(a,b) ⊕H(a, c) = 0. This implies that for all b′ ∈ {0, 1}n, H(a,b) = H(a,b′).

• Player 3 cannot increase his payoff by switching his strategy c to any strategy c′. Thus, for all c′ ∈ {0, 1}n,
H(a,b) ⊕H(a, c) ⊕ 1 ≥ H(a,b) ⊕H(a, c′) ⊕ 1. Two cases are now possible:

– H(a,b) ⊕H(a, c)⊕ = 1.

– H(a,b) ⊕H(a, c) ⊕ 1 = 0. This implies that for all c′ ∈ {0, 1}n, H(a, c) = H(a, c′).

Since it is impossible that bothH(a,b)⊕H(a, c) andH(a,b)⊕H(a, c)⊕1 = 1, it follows that for all b′ ∈ {0, 1}n,
H(a,b) = H(a,b′). Recall that, by assumption, there is a b1

a
∈ {0, 1}n such that H(a,b1

a
) = 1. It follows that

for all b′ ∈ {0, 1}n, H(a,b′) = 1.

vi


