
Timing�Based� Distributed Computation�

Algorithms and Impossibility Results

A thesis presented

by

Marios Mavronicolas

to

The Division of Applied Sciences

in partial ful�llment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge� Massachusetts

July MCMXCII

c� ���� by Marios Mavronicolas� All rights reserved�

to my parents

�

Abstract

Real distributed systems are subject to timing uncertainties	 processes may lack a common

notion of real time� or may even have only inexact information about the amount of real time

needed for performing primitive computation steps� In this thesis� we embark on a study of

the complexity theory of such systems and present combinatorial results that determine the

inherent costs of some accomplishable tasks�

We �rst consider continuous�time models� where processes obtain timing information from

continuous
time clocks that run at the same rate as real time� but might not be initially

synchronized� Due to an uncertainty in message delay time� absolute process synchronization

is known to be impossible for such systems� We develop novel synchronization schemes

for such systems and use them for building a distributed� full caching implementation of

shared memory that supports linearizability� This implementation improves in e�ciency

over previous ones that support consistency conditions even weaker than linearizability and

supports a quantitative degradation of the less frequently occurring operation� We present

lower bound results which show that our implementation achieves e�ciency close to optimal�

We next turn to discrete�time models� where the time between any two consecutive steps

of a process is in the interval �c� �
� for some constant c such that � � c � �� We show

time separation results between asynchronous and semi�synchronous such models� de�ned

by taking c � � and c � �� respectively� Speci�cally� we use the session problem to show

that the semi
synchronous model� for which the timing uncertainty� �
c � is bounded� is strictly

more powerful than the asynchronous one under either message
passing or shared
memory

interprocess communication� We also present tight lower and upper bounds on the degree of

precision that can be achieved in the semi
synchronous model�

Our combinatorial results shed some light on the capabilities and limitations of distributed

systems subject to timing uncertainties� In particular� the main argument of this thesis is

that the goal of designing distributed algorithms so that their logical correctness is timing

independent� whereas their performance might depend on timing assumptions� will not always

be achievable	 for some tasks� the only practical solutions might be strongly timing
dependent�

�

Acknowledgements

I am profoundly indebted to my thesis adviser� Professor Harry R� Lewis� In the context

of this thesis� he has introduced me to timing
based computation and constantly provided

support and constructive criticism� In a more general context� I am grateful to him for

pointing out to me the importance of the usefulness of research in Theoretical Computer

Science to practice� and� most important� for setting up a prime example of academic attitude�

I am mostly grateful to Hagit Attiya for teaching me so much about distributed computing

in such a short time� for directing me to the right questions and problems� for her friendship

and her constant interest for and concern with my work and progress� It is to her that I owe

most of my understanding of the whole �eld�

Thanks to all three members of my thesis committee� Professors Harry R� Lewis and

Petros Maragos� and Dr� Maurice Herlihy from DEC CRL� Special thanks to Petros for his

friendship and to Maurice for inventing linearizability and extremely insightful comments�

Warm thanks are due to people who made direct contributions to this thesis� Parts of

the results have been obtained jointly with Hagit Attiya and Dan Roth� I have also bene�ted

from discussions �both physical and electronic� with Nancy Lynch� Yishay Mansour� Isaac

Saias and Jennifer Welch� A series of motivating papers by Hagit Attiya and Nancy Lynch

on timing
based distributed computation provided valuable and in�uential inspiration�

I owe deep appreciation for the tuition� advice and guidance that I received from Professors

John E� Diamessis and John G� Fikioris during my early steps at National Technical University

of Athens� They both have constantly been concerned with my academic evolution and

progress� I also appreciate the tuition of Professors Donald G� M� Anderson and Michael O�

Rabin at Harvard� and Alok Aggarwal and Gian
Carlo Rota at MIT� Part of my research was

supported by ONR contract N�����
��
J
���� through Professor Michael O� Rabin�

Thanks to all my friends who made my years in graduate school a wonderful and enriching

experience� Maria Karayiorgou and Joseph Gogos deserve all my love for their friendship� I

have been very fortunate to have the constant support and love of my entire family� Special

thanks to my parents whom this thesis is dedicated to�

Contents

� Introduction �

��� Motivation�Overview �

��� The Power of Synchronization ��

��� Semi
Synchrony versus Asynchrony ��

����� Networks ��

����� Shared Memory ��

��� Semi
Synchrony versus Real Time ��

� System Models ��

��� Continuous
Time Model ��

��� Discrete
Time Models ��

����� The System Model ��

����� The Session Problem ��

����� The Tick Synchronization Problem ��

� Timing�Based� Linearizable Read�Write Objects �	

��� Perfect Clocks ��

��� Imperfect Clocks	 Upper Bounds ��

����� A Synchronization Strategy ��

����� First Implementation ��

����� Second Implementation ��

�

CONTENTS �

��� Imperfect Clocks	 Lower Bounds ��

����� Lower Bounds on jRj� jW j ��

����� Lower Bound on jRj ��

� Semi�Synchrony versus Asynchrony 	�

��� Networks ��

����� Upper Bounds ��

����� Lower Bounds ��

����� The Non
Uniform Case ��

����� The Uninitialized Case ��

��� Shared Memory ���

����� Simple Bounds ���

����� Main Lower Bound ���

 Semi�Synchrony versus Real Time ���

��� A Lower Bound ���

��� An Upper Bound ���

� Discussion and Directions for Future Research ���

��� Continuous
Time Model ���

��� Discrete
Time Model ���

����� Semisynchrony versus Asynchrony ���

����� From Semi
Synchrony to Real Time ���

��� Open Problems ���

Glossary of Notation ���

Chapter �

Introduction

��� Motivation�Overview

An important application area of computer science is real
time process control� where a com

puter system interacts with a real
world system in order to guarantee certain desirable real

world behavior� In most interesting cases� the requirements for real
world behavior impose

certain real
time conditions� and so the behavior of the computer system is required to obey

certain timing constraints � its components� for example� should operate within given speeds�

or some outputs should not be released before certain time elapses�

It is evident that good theoretical work in the emerging �eld of real
time systems is

necessary� In the past few years� several researchers have proposed new theoretical frameworks

for specifying requirements and describing implementations of such systems� and� also� proving

that the implementations satisfy the requirements� These frameworks are built upon� among

others� state machines ����� ��
�� weakest precondition methods ����
�� temporal logic ����� ���

��� �
�� Petri nets ����
� and process algebra ����� ��
�� Much work is still needed in evaluating

and comparing the various models for their usefulness in reasoning about important problems

in the area of real
time systems and� perhaps� in developing new models if these prove to be

inadequate�

Work is also needed in developing the complexity theory of real
time systems� very little

�

CHAPTER �� INTRODUCTION �

work has so far been done in this area� An example of the kind of work needed is provided by

the theory of asynchronous concurrent systems in which processes work at completely inde

pendent and unpredictable rates and have no way of estimating time� That theory contains

many combinatorial results that show what can and cannot be accomplished by asynchronous

systems� for tasks that can be accomplished� other combinatorial results determine the in

herent costs �see� e�g�� ��� ��� ��� ��� ��
�� In addition to their individual importance� these

results also provide a testbed for evaluating decisions on modeling asynchronous concurrent

systems� and a stimulus for the development of algorithm veri�cation techniques� Similar re

sults should be possible for real
time systems� �Some examples of complexity results that have

already been obtained for real
time systems are the many results on clock synchronization�

surveyed in ���
��

In this thesis� we embark on a study of the complexity theory of real
time distributed

systems� We aim at combinatorial lower and upper bound results that determine the inherent

costs of tasks achievable by such systems� Our mission is to exemplify to the greatest possible

extent the precise e�ect of the timing assumptions used to model real
time distributed systems

on the time complexity of distributed algorithms that can be supported and based� perhaps�

on timing assumptions�

We divide our study into two major parts according to the kind of these timing assump

tions� The �rst major part involves timing assumptions of a continuous nature	 processes

obtain timing information from continuous� real
time clocks that run at the same rate as real

time� but might not be initially synchronized� all message delays are in the range �d� u� d
�

for some known constants u and d� � � u � d� We study the e�ect of such timing assump

tions on the case cost of supporting memory correctness conditions of varying strength in

implementations of a global shared memory on distributed memory multiprocessor machines�

We present novel synchronization schemes and build timing
based algorithms on them which

achieve essentially optimal e�ciency in supporting strong correctness conditions� Our speci�c

results are motivated and described in detail in Section ���� and laid out in Chapter �� where

the role of timing dependence in achieving e�ciency is pointed out�

CHAPTER �� INTRODUCTION ��

The second major part of our study involves timing assumptions of a discrete nature	

processes have access to inaccurate clocks that operate at approximately� but not exactly� the

same rate� Such systems capture the essence of the important middle ground between the syn

chronous and asynchronous models of distributed computation� where processes operate nei

ther at lock
step nor at a completely independent rate� We model these partially synchronous

systems by assuming that there exist a lower an an upper bound on process step time that may

enable processes to estimate time� More speci�cally� we make the following timing assump

tions	 In the asynchronous model� processes have step time in ��� �
� in the semi�synchronous

model� processes have step time in �c� �
� for some parameter c such that � � c � ��� We

assume that in these models interprocess communication can be achieved through either

point
to
point message passing or accessing and modifying variables of shared memory� but

not through both� We show time separation results between semi
synchronous �in particu

lar� synchronous� and asynchronous models under both message
passing and shared
memory

communication� We present lower bound results which show the inherent limitations on using

timing information in the semi
synchronous model� We also study the problem of obtaining

close estimates of real time in the semi
synchronous model� In Section ���� our results are

motivated and described in detail� they are fully presented in Chapters � and ��

Throughout this thesis� special emphasis is placed on formal techniques for de�ning prob

lems �correctness conditions�� describing algorithms and constructing correctness proofs� and

deriving impossibility results�

��� The Power of Synchronization

The shared
memory model has been proven a useful model of logically shared data in con

current computation� Perhaps� this is due to its success in allowing processes to access local

and remote information in a transparent and uniform way� which results in simplifying the

programming of distributed applications� Thus� the shared
memory model is an attractive

�The synchronousmodel is a special case of the semi�synchronous model where c � ��

CHAPTER �� INTRODUCTION ��

paradigm of an interprocess communication model� as it provides to the programmers the

illusion of a global shared memory across distributed processes�

Shared
memory implementations must allow user programs to run �concurrently�� i�e�� to

access shared data by interleaving steps or truly in parallel� Many such implementations have

employed the technique of caching� i�e�� maintaining multiple copies of the same logical piece

of shared data� their performance can be measured in terms of� e�g�� worst
case time to access

a piece of data� availability of data to processes� or tolerance to process faults� Even in the

simplest cases� however� problems arise since concurrent data accesses cannot be executed

instantaneously� and their interleaving causes additional �correctness� problems�

Thus� a need arises for a consistency mechanism to support the illusion of atomic oper

ations on single copies of memory objects� Such a mechanism may allow operations to be

executed concurrently on multiple copies of objects� but must still guarantee that the opera

tions will appear as if executed atomically� in some sequential order consistent with the order

in which individual processes �observe� them to occur� If� in addition� this order is required

to respect the order of non
overlapping operations at processes� the consistency mechanism

is said to guarantee linearizability �cf� ���
�� otherwise� it is said to guarantee sequential con�

sistency �cf� ���
�� Clearly� linearizability implies sequential consistency� It has been argued

quite convincingly ����
� that linearizability is the correctness condition that most appropri

ately guarantees �acceptable� concurrent behavior� indeed� linearizability enjoys a number of

nice properties� like� e�g�� localityy� and this has made it quite attractive for di�erent appli

cations� such as concurrent programming� multiprocessor operating systems� distributed �le

systems� etc�� where concurrency is of primary interest�

Attiya and Welch ����
� initiated a comparative study of the impact of the strength of

correctness guarantees provided by sequential consistency and linearizability on the cost of

supporting them� Speci�cally� they considered caching implementations of read�write objects

in non
bused distributed systems� and took as cost the worst�case response time of performing

yRoughly speaking� a correctness condition is said to be local if it is possible to compose independent
implementations of it and obtain an implementation of a larger set of objects�

CHAPTER �� INTRODUCTION ��

an operation on such objects in the best possible implementation supporting each of the

consistency conditions�

In this thesis� we continue this study and show how the timing assumptions of the

continuous
time model can be used to obtain upper bounds on the same cost for new� ef

�cient linearizable implementations� As a side e�ect� these bounds further enlighten the

advantages of linearizability over other� seemingly �cheaper�� correctness conditions� such as

sequential consistency�

We follow ���
 and consider a model consisting of a collection of application programs

running concurrently and communicating through virtual shared memory� which consists of a

collection of read�write objects� These programs are running in a distributed system consist

ing of a collection of processes located at the nodes of a complete communication networkz�

The shared memory abstraction is implemented by a memory consistency system �MCS��

which uses local memory at each process node� Each MCS process executes a protocol which

de�nes the actions it takes on operation requests by the application programs� Speci�cally�

each application program may send calls to access shared data to the corresponding MCS

process� the MCS process responds to such a request� based� perhaps� on information from

messages it receives from other MCS processes� In doing so� the MCS must provide the

proper read�write semantics� with respect to the values returned to application programs�

throughout the network�

We �rst consider the perfect clocks model� where processes have perfectly synchronized

clocks and the message delays are constant� i�e�� u � �x� We present a family of linearizable

implementations� parameterized by some tunable constant �� � � � � �� for which the worst

case response times for read and write operations are �d and �� � ��d� respectively� both

dependent on the network�s latency� the parameter � precisely quanti�es these dependencies

and may be appropriately chosen in order� e�g�� to degrade the less frequently occurring

zThe assumption of a complete communication network� made only for simplicity� is not necessary for our
results and can be removed�

xAs Attiya and Welch remark �cf� ��	
�� the assumptions that processes have perfectly synchronized clocks
and that message delays are constant �and known to the processes� are equivalent�

CHAPTER �� INTRODUCTION ��

operation� A read operation simply returns after time �d� while a write operation returns

after time �����d� Our implementations naturally generalize those in Theorems ��� and ���

of ���
� which are the special cases where � � � and � � �� respectively� By a result of Lipton

and Sandberg ����
� showing a lower bound of d on the sum of the worst
case response times

for read and write operations in any linearizable implementation� each of our implementations

is optimal�

We next turn to the more realistic imperfect clocks model� where clocks are not initially

synchronized and message delays can vary� i�e�� u � ��

Our �rst major result is the �rst known linearizable implementation of read�write objects

for this model� which achieves worst
case response times of less than �u � � �� � � is an

arbitrarily small constant� and of d� �u for read and write operations� respectively� A read

operation may return only after a value has resided for time at least u in the local memory of

a process� For a write operation� a �time
slicing� technique is used� Each process individually

slices time using its own local clock and� once in the appropriate �time slice�� it broadcasts

the value to be written and waits for an additional time of d before acknowledging� A major

ingredient of our implementation is that the value returned in a read operation need not be

the one to which the local memory of the reading process was most recently updated to�

but� instead� it is chosen among values of write operations on the same object performed by

processes within a small� recent time interval� this choice is based on information shown to be

�known� to all processes� As we show� this results not only in preserving the order in which

values are returned by di�erent reading processes� but also in maintaining consistent copies

of local memory throughout the network� As it turns out� this implies linearizability�

Our second major result is a modi�cation of our previous implementation which achieves

a quantitative degradation of the less frequently occurring operation� in a way similar to

the implementation for the perfect clocks model� A read operation is delayed for time �d�

then� it may return only after a value has resided for time at least u in the local memory

of a process� �The value to be returned is chosen as in our previous implementation�� It

is assumed that � � � � d�u
d � For a write operation� a process� once in the appropriate

CHAPTER �� INTRODUCTION ��

time slice� it broadacsts the value to be written and waits for an additional �� � ��d time

before acknowledging� This implementation achieves worst
case response times of less than

�d � �u � � �� � � is an arbitrarily small constant� and of ��� ��d� �u for read and write

operations� respectively�

Both previous implementations presuppose a run of an initialization phase� during which

processes follow a simple synchronization algorithm to achieve an accuracy of u� on which the

implementations heavily rely in order to exploit the known lower bound of d� u on message

delay time and achieve bounds on worst
case response times which� unlike previous ones�

depend on the message delay uncertainty u�

In the case where this uncertainty is su�ciently small� these implementations signi�cantly

outperform the ones by Attiya and Welch ����
� which supported an even weaker consistency

condition� namely sequential consistency� these latter implementations� not particularly tai

lored for a model in which a lower bound on message delay time is assumed� exploit only the

�known� upper bound of d on message delay time and achieve worst
case response times for

read and write operations whose sum amounts to �d or �d� Most important� for all values of

the parameters u and d� our implementations are more e�cient than the ones proposed by

Attiya and Friedman ���
�� when specialized to support only strong operations and guarantee

linearizability� these latter implementations do not assume any non
zero lower bound on mes

sage delay time� and achieve worst
case response times for strong read and write operations

whose sum amounts to ��d�

The dependence of our upper bounds on d is minimal	 the sum of the worst
case response

times for read and write operations contains only a single additive term of d which� by

���
� is inherent� Furthermore� although the analysis of our implementations is technically

challenging� the implementations themselves are fairly simple to implement� they do not use

complicated control mechanisms� and they are message
economical�

To argue optimality of our implementations� we present lower bound results on costs of

�That is� the maximum di�erence between local times of any two processes in the system at the same real
time is at most u�

CHAPTER �� INTRODUCTION ��

consistent implementations of shared memory� under general and mild assumptions on the

pattern of sharing properties of processes� Our main impossibility result is a lower bound of d�

u
� on the sum of the worst
case response times for any sequentially consistent implementation

in which processes handle operations on each object in a �symmetric� way �with respect

to the objects� and quite independently of operations on di�erent objects� This implies a

corresponding lower bound for linearizable implementations� We also show a lower bound of

u
� on the worst
case response time for a read operation in any linearizable implementation� The

proof of the �rst lower bound combines symmetry arguments with the technique of �shifting�

executions� originally introduced in ���
� The proof of the second lower bound makes use of

this technique as well� to improve upon a corresponding lower bound of u
� presented in ���
�

Our results for the imperfect clocks model� in particular� the upper bound of d � �u�

on the sum of the worst
case response times for read and write operations in a linearizable

implementation� along with the lower bound of d � �u� on this sum� may suggest that

sequential consistency and linearizability are actually �closer� than thought before�

Our work for the continuous
time model continues the complexity
theoretic study of the

costs of implementing memory objects on distributed memory multiprocessor machines under

various correctness conditions� This study was initiated in ���� ��
 and further pursued in ��
�

��	 Semi�Synchrony versus Asynchrony

Central to the programming of distributed systems are synchronization problems� where a

process is required to guarantee that all processes have performed a particular set of steps�

Naturally� the timing information available to processes has critical impact on the time com

plexity of synchronization� Arjomandi� Fischer and Lynch ���
� introduced the session problem

in order to study the impact of timing information on the time complexity of synchroniza

tion� Roughly speaking� a session is a sequence of events that contains at least one step by

each process� An algorithm for the s�session problem guarantees that each execution of the

algorithm includes at least s disjoint sessions�

The session problem is an abstraction of the synchronization needed for the execution of

CHAPTER �� INTRODUCTION ��

some tasks that arise in a distributed system� where separate components are each responsible

for performing a small part of a computation� Consider� for example� a system which solves

a set of equations by successive relaxation� where every process holds part of the data �cf�

���
�� Interleaving of steps by di�erent processes is necessary in order to ensure that a correct

value was computed� since it implies su�cient interaction among the intermediate values

computed by the processes� Any algorithm which ensures that su�cient interleaving has

occurred also solves the s
session problem� The session problem is also an abstraction of

some problems in real
time computing which involve synchronization of several computer

system components� in order that they cooperate in performing a task involving real
world

components� For example� multiple robots might cooperate to build a car on an assembly

line� with each robot responsible for assembling a small piece of the machinery� Interleaving

of assembly actions by di�erent robots is necessary to ensure that pieces are assembled in

the right order� a robot should not put the next item on the assembly line before all robots

have completed a particular set of assembly actions making it possible for the item to ��t

in�� Clearly� any algorithm which ensures that su�cient interleaving has occurred also solves

the s
session problem� Thus� the di�culty of solving the s
session problem re�ects those of

implementing the successive relaxation method and building the car on the assembly line�

Arjomandi� Fischer and Lynch ���
� assumed that processes communicate via shared vari�

ables and studied the time complexity of the session problem in synchronous and asynchronous

models� Informally� in a synchronous system� processes operate in lock
step� taking steps si

multaneously� while in an asynchronous system� processes work at completely independent

rates and have no way of estimating time� The results of Arjomandi� Fischer and Lynch

���
� show that there is a signi�cant gap between the time complexities of solving the session

problem in the synchronous and the asynchronous models�

Following Arjomandi� Fischer and Lynch ���
�� we address the cost of synchronization

in semi
synchronous and asynchronous systems by presenting upper and lower bounds on

the time complexity of solving the s
session problem� Informally� the time complexity of an

algorithm is the maximal time� over all executions� until every process stops executing the

CHAPTER �� INTRODUCTION ��

algorithm� Our study considers two di�erent� major interprocess communication models	

networks and shared memory�

In a network� a collection of n processes are arranged at the nodes of an undirected graph

G and communicate by sending messages along links of this graph� Messages sent over any

communication link incur a delay in the range ��� d
� where d � � is a known constant�

Interpocess communication can also be achieved through shared memory� Following ��
�

we consider a particular shared memory primitive� b�atomic registers� where the integer b � �

is an upper bound on the number of processes that may instantaneously and indivisibly access

�read and� possibly� modify� each of the registers� Thus� b re�ects the communication bound

in the model and captures communication limitations of existing distributed systems such as

those of a message
passing system which allows access of bu�ers with �nite fan
in�

����� Networks

We �rst consider the initialized case of the session problem� where all processes are initially

synchronized and take a step at time �� We start with upper bounds� The �rst algorithm

relies on explicit communication to ensure that the needed steps have occurred and does not

use any timing information� In the asynchronous model� this algorithm has time complexity

diam�G��d����s���� where the diameter� diam�G�� of an undirected graphG is themaximum

distance between any two nodes� In the semi
synchronous model� this algorithm can be

improved to take advantage of the initial synchronization and achieve a time complexity of

� � diam�G��d � ���s � ��� The second algorithm does not use any communication and

relies only on timing information� it works only in the semi
synchronous model� The time

complexity of this algorithm is � � �b�c c � ���s � ��� These algorithms can be combined

to yield a semi
synchronous algorithm for the s
session problem whose time complexity is

� � minfb�c c� �� diam�G��d� ��g�s� ���

We then present lower bounds� For the asynchronous model� we prove an almost matching

lower bound of diam�G�d�s� �� on the time complexity of any algorithm for the s
session

problem� For the semi
synchronous model� we prove two lower bounds� We �rst show a

CHAPTER �� INTRODUCTION ��

simple lower bound of b�c �s � ��c for the case where no communication is used� We then

present a lower bound of � � minfb �
�cc� diam�G�dg�s � �� for the time complexity of any

semi
synchronous algorithm for the s
session problem� the proof relies on the assumption

that d � d
minfb���cc�diam�G�dg � ��

These bounds extend in a straightforward way to the case where delays on the communi

cation links of G � �V�E� are not uniform� That is� for every communication link �i� j� � E�

delivery time for a message sent over �i� j� is in the interval ��� d�i� j�
 for some �xed d�i� j��

� � d�i� j�� �� �The study of this non
uniform case is partially inspired by recent work on

cost
sensitive analysis of communication protocols appearing in ���
��

We also consider the uninitialized case� where processes are not initially synchronized�

Speci�cally� at time � all processes but one� the initiator� start in a quiescent state� When in

a quiescent state� a process can neither send out any messages nor pass to a non
quiescent

state� However� upon a message delivery event� it may enter a non
quiescent� non
idle state�

The results we obtain for this case are similar in �avor to those for the initialized case�

although they are less tight�

We start with a straightforward adaptation of the asynchronous algorithm for the initial

ized case� The time complexity of this algorithm is diam�G��d���s in both the asynchronous

and the semi
synchronous models� Our second algorithm combines some initial communica

tion and timing information to achieve a time complexity of �diam�G��d�����b�cc����s����

it works only in the semi
synchronous model� These algorithms can be combined to yield

a semi
synchronous algorithm which solves the s
session problem on G in the uninitial

ized case and achieves a time complexity of �diam�G��d� �� � minfb�c c � �� diam�G��d�

��g�s � ��� We also prove lower bounds for this case� For the asynchronous model� we

prove an almost matching lower bound of diam�G�ds for the time complexity of any algo

rithm for the s
session problem� For the semi
synchronous model we prove a lower bound

of diam�G�bdc� minfb �
�cc� diam�G�dg�s� ��� the proof relies on the assumption that d �

d
minf��b���cc�diam�G�dg � ��

For appropriate values of the various parameters �choose� for example� c� d and diam�G�

CHAPTER �� INTRODUCTION ��

so that b �
�cc � diam�G�d�� our results imply a time separation between semi
synchronous

�in particular� synchronous� and asynchronous networks� The lower bound for the semi

synchronous model shows the inherent limitations on using timing information� In addition�

it can also be used to derive a lower bound of � � diam�G�d�s � �� for a model in which

processes� step time is in the range ��� �
 �rather than in ��� �
� as in the asynchronous model��

This is equivalent to requiring that no two steps by the same process may occur at the same

timek� Fix some c� � � such that b �
�c� c � diam�G�d� and use the proof of the lower bound

for the model where processes� step time is in the range �c�� �
� since �c�� �
 � ��� �
� the claim

follows� This implies the �rst time separation between this model and the synchronous model�

�The proof in ��
 relies heavily on the ability to schedule many steps by the same process at the

same time�� Note that our �rst �initialized� algorithm for the semi
synchronous model only

requires that two steps by the same process do not occur at the same time� This implies that

the almost matching upper bound of ��diam�G��d����s��� holds also for the asynchronous

model where processes� step time is in the range ��� �
�

The lower bounds shown for networks use the same general approach as in ��
� However�

since we assume processes communicate by sending messages� while ��
 assumes processes com

municate via shared memory� the precise details di�er substantially� The lower bound proof

in ��
 uses fan
in arguments� while our lower bounds are based on information propagation

arguments using long delays of messages� combined with appropriate selection of processes

and careful timing arguments� Our asynchronous lower bound is based and improves on a

result of Lynch ����
� showing a lower bound of rad�G�d�s� �����

Awerbuch ����
� introduced the concept of a synchronizer as a way to translate algorithms

designed for synchronous networks to asynchronous networks� Although the results of ���

may suggest that any synchronous network algorithm can be translated into an asynchronous

algorithm with constant time overhead� our results imply that this is not the case	 for some

values of the parameters� any translation of a semi
synchronous �in particular� synchronous�

kWe remark that this is the most common way of measuring time in an asynchronous system �e�g�� �
�
��
��The radius� rad�G� of G is the minimum� over all nodes in V of the maximum distance from that node to

any other node in V � For any undirected graph G� rad�G� � diam�G� � �rad�G��

CHAPTER �� INTRODUCTION ��

algorithm for the s
session problem to an asynchronous algorithm must incur a non
constant

time overhead�

Our results for networks are laid out in full in Section ����

����� Shared Memory

We start by describing some simple upper bounds that can be deduced from either previous

or our current work� An algorithm sketched in ��
 relies on explicit communication through

shared memory to ensure that the needed steps have occurred and does not use any timing

information� This algorithm achieves time complexity of O�s logb n� in both the asynchronous

and the semi
synchronous models� On the other hand� since our semi
synchronous algorithm

for networks does not use any communication� but relies on timing information� it also works

for the shared memory model to achieve time complexity of O�s�c �� These two algorithms

can be combined to yield a semi
synchronous algorithm for the s
session problem whose time

complexity is O�sminf�c � logb ng�� On the other hand� a lower bound of !�s logb n� shown in ��

holds for our asynchronous shared memory model as well and implies� for appropriate values

of the various parameters� a time separation between semi
synchronous and asynchronous

systems that use communication through atomic shared memory� �Choose� for example� c� b

and n so that b �
�cc � blogb�n� ��� �c��

At this point� it is natural to ask whether communication and timing information can be

combined to yield an upper bound that is signi�cantly better than O�sminf�c � logb ng�� We

show a lower bound of � � minfb �
�cc� blogb�n � �� � �cg�s � �� for the time complexity of

any semi
synchronous algorithm for the s
session problemyy� This result shows the inherent

limitations on using timing information and implies that such a combination is impossible�

As for networks� our lower bound result can also be used to derive a lower bound of

� � blogb�n � �� � �c�s � �� for a shared memory model in which processes� step time is in

the range ��� �
 �rather than in ��� �
� as in the asynchronous model�� This is equivalent to

yyAn essentially identical lower bound has been obtained independently� but subsequently to ours� by Rhee
and Welch �cf� �
	
��

CHAPTER �� INTRODUCTION ��

requiring that no two steps by the same process may occur at the same time� Fix some c� � �

such that b �
�c� c � blogb�n� ��� �c� and use the proof of the lower bound for the model where

the rate of processes steps is in �c�� �
� since �c�� �
 � ��� �
� the claim follows� This implies a

time separation between this model and the synchronous shared
memory model� �We stress�

again� that the proof in ��
 relies heavily on the ability to schedule many steps by the same

process at the same time��

Our lower bound proof uses the same general approach as in ��
 and our lower bound

proof for semi
synchronous networks� Speci�cally� our proof combines fan
in and causality

arguments as in ��
� along with information propagation and careful timing arguments as in

our lower bound proof for semi
synchronous networks�

Our results for shared memory are presented in detail in Section ����

��
 Semi�Synchrony versus Real Time

Central to the programming of distributed systems are synchronization problems� where pro

cesses are required to obtain some common notion of time so as to perform a particular action

simultaneously� How closely can they be guaranteed to perform such an action"

Such synchronization problems were �rst investigated by Lamport in ���
� where a simple

algorithm was presented allowing a system of asynchronous processes to maintain a discrete

clock that remains consistent with the ordering of receipt of communication messages by

the processes� Several researchers have considered models of a distributed system in which

processes have real
time clocks that run at the same rate as real time� but are arbitrarily

o�set from each other initially� In addition� there are known upper and lower bounds on

message delay� �These models are essentially identical to the continuous
time model studied

in Chapter ��� The goal has been to prove limits on how closely clocks can be synchronized�

In a completely connected network of n processes� Lundelius and Lynch ����
� show a tight

bound of ���� �
n� on how closely the clocks of n processes can be synchronized� where � is the

di�erence between the bounds on the message delay� Their work was subsequently extended

by Halpern� Megiddo and Munshi ����
� to arbitrary networks� There has also been much

CHAPTER �� INTRODUCTION ��

work done on the problem of devising fault
tolerant algorithms to synchronize real
time clocks

that drift slightly in the presence of variable message delay�

We depart from conventional approaches to clock synchronization problems� focusing on

models where processes obtain timing information from real
time �drifting or non
drifting�

clocks� and address the problem of achieving coordinated action in semi
synchronous networks

by studying the tick synchronization problem� which is the problem of achieving as close as

possible time estimates by di�erent processes in a semi
synchronous network�

The tick synchronization problem is an abstraction of the synchronization needed for

the execution of some tasks that arise in a distributed system� where separate components

need to agree on as a close as possible common value of real time� Consider� for example�

version management and concurrency control problems for database systems� solutions to

such problems heavily rely on the ability to assign timestamps and version numbers to �les

or other entities� Also� some algorithms that use timeouts� such as communication protocols�

are strongly dependent on availability of a �common� notion of real time to communicating

clients�

Roughly speaking� each process runs a tick synchronization algorithm� and enters� upon

its completion� a synchronized state modelling the ability of the process to make use of the

estimate of real time it has obtained from running the algorithm� Informally� the precision

achieved by a tick synchronization algorithm is the maximum� over all processes pi in the

system� of the di�erence between the real
time estimate that pi is making at precisely the

time at which it is entering a synchronized state and the real
time estimate that any other

process in a synchronized state is making at the same time�zz

More speci�cally� we consider a collection of n processes arranged at the nodes of a com

plete undirected graph G and communicating by sending messages along links of this graph�

Messages sent over any communication link incur a delay in the range ��� d
� where d � �

is a �known� constant� The time between any two computation steps of a process is in the

zzIt is perhaps counter�intuitive that a precision of � is the best precision� under our de�nition� that can be
achieved�

CHAPTER �� INTRODUCTION ��

interval �c� �
 for some parameter c such that � � c � ��

We show a lower bound of bd��
�c c on the precision achievable by any tick synchronization

algorithm� Our proof follows a general technique� that of explicitly �shifting� and �shrinking�

executions through retiming of events� reminiscent of a technique originally introduced in ���

and subsequently found applications in many di�erent contexts� e�g�� ���� ��
� �More instances

of application of this technique appear also in Chapters � and � of this thesis�� Since� however�

we are assuming that processes acquire information about time by receiving ticks from their

inaccurate� discrete clocks� while ���
 assumes processes have access to continuous clocks

running at a perfect rate� that of real time� the precise details di�er substantially� Thus�

our lower bound proof focuses more on timing uncertainty rather than message delivery time

uncertainty� Clearly� our lower bound is interesting when d � ��

We also present a simple algorithm that achieves a precision of ��n���
n �d�dc e�

d
���

��c
c d���

Our algorithm relies on explicit communication among the processes� so that each of them

can estimate the di�erence between the local time estimate of every other process and its

own� and add the average of these estimated di�erences to its local time estimate� This

algorithm is a direct adaptation for the semi
synchronous model of one presented in ���
�

Its analysis� however� is more involved� due to the fact that the timing assumptions in the

semi
synchronous model are more �crisp� than the ones in ���
� where clocks were assumed

to run at a perfect rate� as in the continuous
time model�

Clearly� after all processes enter a synchronized state� clock drifts may bring the system

out of synchronization again� so� it makes sense to consider the behavior of the system prior

to the time at which the last process enters a synchronized state� Multiple runs of a tick

synchronization algorithm� appropriately scheduled� possibly in a way similar to ���
� may

reduce such future �desynchronizations��

Our results for the tick synchronization problem are exhibited in Chapter ��

Chapter �

System Models

In this Chapter� we present descriptions and formal de�nitions for the continuous�time and

discrete�time system models that we consider��

De�nitions for the continuous
time model appear in Section ���� they are tailored towards

a message passing system supporting an implementation of shared memory on distributed

memory machines� closely following ���� �� ��� ��� �
� Section ��� includes our de�nitions

for the discrete
time model in which interprocess communication is achieved through either

point
to
point message passing or shared memory� but not through both� these de�nitions are

standard and similar in style to those in� e�g�� ��� ��� ��� ��� ��� �� ��
�

��� Continuous�Time Model

We consider a collection of application programs running concurrently and communicating

through virtual shared memory� consisting of a collection X of read�write objects� or simply

objects� for short� Each object X � X may attain values from a domain� a set V of values�

which includes a special unde�ned value �� a total order �V is de�ned on V � We assume a

system consisting of a collection P of nodes� jP j � n connected via a communication network�

The shared memory abstraction is implemented by a memory consistency system �MCS��

�These de�nitions could be expressed in terms of the general timed automatonmodel described in ��� 	�� ��
�

��

CHAPTER �� SYSTEM MODELS ��

consisting of a collection of MCS processes� one at each node� that use local memory� execute

some local protocol and communicate through sending messages� drawn from some message

alphabet M� along the network� Each MCS process pi� located at node i� is associated with

an application program Pi� pi and Pi interact by using call and response events� A correctness

condition is speci�ed at the interface between the application programs �written by the user�

and the MCS processes �supplied by the system��

The following external events may occur at the MCS process pi	

	 Call events� They represent initiation of operations by the application program� They

are Readi�X� and Writei�X� v�� for all objects X � X and values v � V �

	 Response events� They represent response by pi to operations initiated by the applica

tion program� They are Returni�X� v� and Acki�X�� for all objects X � X and values

v � V �

	 Message�delivery events� They represent delivery of a message from any other MCS

process to pi� They are deli�j�m� for all messages m and MCS processes pj �

	 Message�send events� They represent sending of a message by pi to any other MCS

process� They are sendi�j�m� for all messages m and MCS processes pj �

For each i� there is a physical� real
time clock at node i� readable by MCS process pi but

not under its control� that runs at the same rate as real time� This is modeled by assuming

that each state of pi has a special time
varying componenet Cli� the local clock component�

which is a function of the form	 Cli�t� � t � ci� where t� the real time� is a non
negative real

number� and ci� the local clock parameter of pi is a �xed real number� The real
time clocks

at various nodes might be initially non
synchronized� that is� it may be that ci
� cj for any

i and j� Process pi may use its local clock for �timing� itself� Formally� this is done through

the following internal events�

	 Timer�set events� They represent setting of a timer by pi to expire at a �xed� later

time� They are SetT imeri�t� for all real numbers t�

CHAPTER �� SYSTEM MODELS ��

	 Timer�expire events� They represent expiration of a timer at pi�

The call� message
delivery and timer
expire events are called interrupt events� The re

sponse� message
send and timer
set events are called react events�

Each MCS process pi is modeled as an automaton with a �possibly in�nite� set of states�

including an initial state� and a transition function� Each interrupt event causes an application

of the transition function� that is� computations of the system are interrupt driven� The

transition function is a function from pairs of states and interrupt events to pairs of states

and react events� That is� the transition function takes as input the current state and an

interrupt event� and produces a new state� a set of response events for the corresponding

application program� a set of messages to be sent to other MCS processes� and a set of timer

set events� A computation step of pi is a tuple �q� e� q
�� R� S� T �� where q and q� are states� e

is an interrupt event� R is a set of response events� S is a set of message
send events� T is a

set of timer
set events� so that s�� R� S and T result from the application of pi�s transition

function on q and e�

A history for an MCS process pi is a mapping hi from �� real�time domain� to �nite

sequences of computation steps by pi such that	

�� For each real time t� there is only a �nite number of times t� � t such that the cor

responding sequence of steps h�t�� is non
empty� thus� the concatenation of all such

sequences in real
time order is also a sequence� called the history sequence�

�� The old state in the �rst computation step in the history sequence is pi�s initial state�

�� The old state of each subsequent computation step is the new state of the previous

computation step in the history sequence�

For a given MCS� an execution 	 is a set of histories� one for each MCS process� such that

the following conditions hold	

�� There is a one
to
one correspondence between the messages sent by pi to pj and the

messages delivered at pj that were sent by pi� for any MCS processes pi and pj � �This

CHAPTER �� SYSTEM MODELS ��

condition is imposed by operational characteristics of the network	 the network reliably

delivers all messages sent��

�� Use the previous correspondence to de�ne the message�delivery time� or delay� of any

message for a set of histories to be the real time of delivery minus the real time of sent�

Then� for every i and j� every message in 	 from pi to pj incurs a delay in the range

�d� u� d
� for some real numbers u and d� where � � d � � and � � u � d� d is the

upper bound on message delay and u is the message delay uncertainty� �This condition

is imposed by architectural charactersistics of the network��

�� There is a one
to
one correspondence between timer
set and timer
expire events at each

MCS process pi� Furthermore� each timer
expire event occurs at real time t later than

the corresponding timer
set event� where t is the real number speci�ed by the timer
set

event� �This condition is imposed by operational characteristics of the physical clocks	

clocks support reliable �timeouts���

�� For every i� at most one call at pi is pending at a time� �This condition is imposed

by restrictions on the application programs	 no pipelining is allowed at the interface

between an application program and the corresponding MCS process��

Each pair of a call event and a subsequent matching response event forms an operation�

The call event marks the start of the operation� while the response event marks its end� An

operation op is invoked when the application program issues the appropriate call for op� op

terminates when the MCS process issues the appropriate response for op� Formally� each

object X has a serial speci�cation �cf� ���
� which describes its behavior in the absence of

concurrency and failures� Formally� it de�nes	

	 A set of operations on X � Op�X�� which are ordered pairs of call and response events�

Each operation op � Op�X� has a value� val�op�� associated with it�

	 A set of admissible operation sequences for X � which consists of certain sequences of

operations on X �

CHAPTER �� SYSTEM MODELS ��

For each object X � Op�X� contains a read operation on X � �Readi�X�� Returni�X� v�
 and

a write operation on X � �Writei�X� v�� Acki�X�
� for each index i and value v� v is the value

associated with either of them� The set of admissible operation sequences for X contains

all sequences of operations on X for which� for any read operation� rop� in the sequence�

the latest preceding write operation� wop� satis�es	 val�wop� � val�rop�� That is� all such

sequences obey the usual read�write semantics	 every read operation on X returns the value

of the latest preceding write operation on X �

An operation sequence
 for a collection of processes and objects is legal if� for every object

X � X � the restriction of
 to operations on X is in the set of admissible operation sequences

for X � de�ned by its serial speci�cation�

We often speak informally of an �operation� on an object as in �the read operation on

a read�write object�� An operation in our formal model is intended to represent a single

execution of an �operation� as used in the informal sense�

Given an execution 	� let ops�	� be the sequence of call and response events appearing in

	 in real
time order� breaking ties by ordering all response events before any call event� and

then using process identi�cation numbers �id�s�� An execution 	 speci�es a partial order�
�
���

on the operations which appear in 		 op�
�
�� op� if the response for operation op� precedes

the call for operation op� in ops�	�� that is� op�
�
�� op� if op� completely precedes op� in

ops�	��

Given an execution 	� an operation sequence
 is a serialization of 	 if it is a permutation

of ops�	�� A serialization
 of 	 is a linearization of 	 if it extends
�
��� that is� if op�

�
�� op��

then op�
�
�� op��

Let
 be an operation sequence� Denote by
 ji the restriction of
 to operations at the

MCS process pi� similarly� denote by
 jX the restriction of
 to operations on the object X �

Roughly speaking� our de�nitions for sequential consistency and linearizability will involve�

for each execution 	� the existence of a serialization
 of 	 which possesses certain properties�

Formally� we de�ne	

De�nition �
�
� An execution 	 is sequentially consistent �cf� 	
��
 if there exists a legal

CHAPTER �� SYSTEM MODELS ��

serialization
 of 	� such that for each MCS process pj� 	jj �
 jj�

De�nition �
�
� An execution 	 is linearizable �cf� 	���
 if there exists a legal linearization

 of 	� such that for each MCS process pj� 	jj �
 jj�

Intuitively� 	 is sequentially consistent if the sequence of operations in 	 can be permuted

to yield a valid operation sequence
 that maintains the order of call and response events seen

at each process� if� in addition�
 preserves the order of any two non
overlapping operations

in 	� 	 is said to be linearizabley �

An MCS is a sequentially consistent implementation of X if every execution of it is sequen

tially consistent� similarly� an MCS is a linearizable implementation of X if every execution

of it is linearizable�

In general� the e�ciency of an implementation of X is measured by the worst�case response

time for any operation on an object X � X � Given a particular MCS and a read�write object

X implemented by it� the time taken by an operation op on X in an execution 	 is the

maximum di�erence between the times at which the response and call events of op occur in

	� where the maximum is taken over all occurrences of op in 	� In particular� we denote by

jR�X�j the maximum time taken by a read operation on X and by jW �X�j the maximum

time taken by a write operation on X � where the maximum is taken over all executions�

We denote by jRj the maximum of jR�X�j� and by jW j the maximum of jW �X�j� over all

read�write objects X implemented by the MCS�

Fix 	 to be any execution and let op � �call�op�� response�op�
 be any operation in 	� We

denote by tc�op� and tr�op� the �real� times at which call�op� and response�op� occur in 	�

��� Discrete�Time Models

This Section is organized as follows� In Subsection ������ we present formal de�nitions for

the discrete
time system model� and describe the time measure we will consider� In Subsec

yLinearizability may be viewed as a special case of strict serializability �cf� ���� ��
�� a basic correctness
condition for concurrent computations on databases� where transactions are restricted to aggregate a single
operation on a single object�

CHAPTER �� SYSTEM MODELS ��

tions ����� and ������ we introduce and de�ne the s�session problem and the tick synchroniza�

tion problem� respectively�

����� The System Model

A system consists of a set P of n processes p�� � � � � pn� Each process pi is modeled as a

�possibly in�nite� state machine with state set Qi� The state set Qi contains a distinguished

initial state q��i� The state set Qi also includes a subset Ii of idle states� we assume q��i
� Ii� A

con�guration is a vector C � hq�� � � � � qni� where qi is the local state of pi� denote statei�C� �

qi� The initial con�guration is the vector hq���� � � � � q��ni� Interprocess communication can

be achieved through either a network� supporting point
to
point message passing� or shared

memory� supporting access of atomic shared variables� but not through both� �Each kind of

interprocess communication will shortly be described separately�� In either case� we consider

an interleaving model of concurrency� in the style of Lynch and Tuttle �cf� ���
�� where

computations of the system are modeled as sequences of atomic events� or simply events�

Communication through Network

Processes are located at the nodes of a graph G � �V�E�� where V � �n
� For simplicity�

we identify processes with the nodes they are located at and we refer to nodes and processes

interchangeably� Processes communicate by sending messages� taken from some alphabet

M� to each other� A send action send i�j�m� represents the sending of message m to a

neighboring process pj � Let Si denote the set of all send actions sendi�j�m� for all m � M

and all j � �n
� such that �i� j� � E� that is� Si includes all the send actions possible for pi�

Each event is either a computation event� representing a computation step of a single process�

or a delivery event� representing the delivery of a message to a process� Each computation

event is speci�ed by comp�i� S� for some i � �n
� In the computation step associated with

event comp�i� S�� the process pi� based on its local state� changes its local state and performs

some set S of send actions� where S is a �nite subset of Si� Each delivery event has the form

del i�j�m� for some m � M and j � �n
 such that �i� j� � E� In a delivery step associated

CHAPTER �� SYSTEM MODELS ��

with the event del�i�m�� the message m is added by the neighboring process pj to bu�er i�

pi�s message bu�er
z�

Each process pi follows a deterministic local algorithm Ai that determines pi�s local compu

tation� i�e�� the messages to be sent and the state transition to be performed� More speci�cally�

for each q � Qi� Ai�q� � �q
�� S� where q� is a state and S is a set of send actions� We assume

that once a process enters an idle state� it will remain in an idle state� i�e�� if q is an idle state�

then q� is an idle state� An algorithm �or a protocol� is a sequence A � �A�� � � � �An� of local

algorithms�

Communication through Shared Memory

Processes communicate by b�atomic registers �also called shared variables�� Fix some integer

b � � called the fan�in� Each shared variable may attain values from a domain� a set V of

values� which includes a special �unde�ned� value� �� Each process pi has a single read�

modify�write atomic operation available to it that may read a shared variable R� return its

value v� and modify R� Associated with each shared variable R� is a set Access�R� that

includes the processes which may perform atomic operations on R� we assume that� for each

R� jAccess�R�j � b�

A con�guration is extended to consist of the states of the processes and the values of

the shared variables� Formally� an extended con�guration #C is a vector hq�� � � � � qn� v�� v�� � � �i�

where qi is the local state of pi and vk is the value of the shared variable Rk� denote statei� #C� �

qi and valuek� #C� � vk � The initial con�guration is the con�guration in which every local state

is an initial state and all shared variables are set to ��

Each event is a computation event representing a computation step of a single process�

it is speci�ed by comp�i�R� for some i � �n
� In this computation step� the process� pi�

based on its local state performs an operation on a shared variable R� performs some local

computation� and changes to its next state�

zThe system model can be extended to allow arbitrary state change upon message delivery without changing
the results� for clarity of presentation� we chose not to do so�

CHAPTER �� SYSTEM MODELS ��

Each process pi follows a deterministic local algorithm Ai that determines pi�s local com

putation� i�e�� the register to be accessed and the state transition to be performed� More

speci�cally� Ai determines	

	 A shared variable R as a function of pi�s local state�

	 Whether pi is to modify R and� if so� the value v� to be written� and pi�s next state as

a function of pi�s local state and the value v read from R�

We assume that once a process enters an idle state� it will remain in an idle state� An

algorithm �or a protocol� is a sequence A � �A�� � � � �An� of local algorithms�

Timing Assumptions

An execution is an in�nite sequence of alternating con�gurations and events

� � C�� ��� C�� � � � � �j� Cj� � � � �

satisfying the following conditions	

�� C� is the initial con�guration�

�� If �j � del�i�m�� then statei�Cj� is obtained by adding m to bu�er i�

�� If �j � comp�i� S�� then statei�Cj� and S are obtained by applying Ai to statei�Cj����

�� If �j � comp�i�Rk�� then Rk is obtained by applying Ai to statei� #Cj���� and statei� #Cj�

and valuek� #Cj� are obtained by applying Ai to statei� #Cj�� and valuek� #Cj����

�� If �j involves process pi and shared variable Rk� then statel� #Cj��� � statel� #Cj� for

every l
� i and valuel� #Cj��� � valuel� #Cj� for every l
� i�

�� For each m � M and each process pi� let S�i�m� be the set of j such that �j is a

send event send i�j�m� and let D�i�m� be the set of j such that �j is a delivery event

del i�j�m�� Then there exists a one
to
one onto mapping 	i�m from S�i�m� to D�i�m�

such that 	i�m�j� � j for all j � S�i�m��

CHAPTER �� SYSTEM MODELS ��

That is� in an execution the changes in processes� states and shared variables� values are

according to the transition function� only a process which takes a step or to which a message

is delivered changes its state� only a shared variable on which an operation is performed

changes its value� and each sending of a message is matched to a later message delivery and

each message delivery to an earlier send� We adopt the convention that �nite pre�xes of an

execution end with a con�guration� and denote the last con�guration in a �nite execution

pre�x � by last���� We say that �j � comp�i� S� or �j � comp�i�R� is a non�idle step of the

execution if statei�Cj���
� Ii� i�e�� it is taken from a non
idle state�

A timed event is a pair �t� ��� where t� the �time�� is a nonnegative real number� and �

is an event� A timed sequence is an in�nite sequence of alternating con�gurations and timed

events

 � C�� �t�� ���� C�� � � � � �tj � �j�� Cj� � � � �

where the times are nondecreasing and unbounded�

Timed executions in this model are de�ned as follows� Fix real numbers c and d� where

� � c � � and � � d ��� Letting
 be a timed sequence as above� we say that
 is a timed

execution of A provided that the following all hold	

�� C�� ��� C�� � � � � �j� Cj� � � � is an execution of A�

�� �Synchronous start� There are computation events for all processes with time ��

�� �Upper bound on step time� If the jth timed event is �tj � comp�ij� S�� �resp�� �tj � comp�ij� R����

then there exists a k � j with tk � tj�� such that the kth timed event is �tk� comp�ij� S
���

�resp�� �tk� comp�ij� R�����

�� �Lower bound on step time� If the jth timed event is �tj � comp�ij � S�� �resp�� �tj � comp�ij�R����

then there does not exist a k � j with tk � tj � c such that the kth timed event is

�tk� comp�ij � S
��� �resp�� �tk� comp�ij�R

�����

�� �Upper bound on message delivery time� If message m is sent to pi at the jth timed

event� then there exists k � j such that the kth timed event is the matching delivery

CHAPTER �� SYSTEM MODELS ��

�tk� del i�j�m�� �i�e�� 	i�m�j� � k� and tk � tj � d�

We say that
 is an execution fragment of A if there is an execution
� of A of the form

� � �
��� This de�nition is extended to apply to timed executions in the obvious way� For

a �nite execution fragment
 � C�� �t�� ���� C�� � � � � �tk� �k�� Ck� we de�ne tstart�
� � t� and

tend �
� � tk�

The asynchronous model is de�ned by taking c � �� while the semi�synchronous model

is de�ned by taking � � c � �� the synchronous model is a special case of the latter� Note

that the asynchronous model� as de�ned above� allows two computation steps of the same

process to occur at the same time �Condition � is vacuous when c � ��� �We remark that our

proofs� as well as the proof in ��
� use this property�� If we want to de�ne the more common

asynchronous model� where a process can have at most one computation step at each time�

we have to replace Condition � above with	

�Lower bound on step time� If the jth timed event is �tj � comp�ij� S�� �resp��

�tj � comp�ij�R���� then there does not exist a k � j with tk � tj such that the

kth timed event is �tk � comp�ij � S
��� �resp�� �tk� comp�ij�R

�����

In both models� we say that a process pi enters an idle state by time t� �in a timed execution

� if there exists a timed event �tj��� �j��� in
 such that tj�� � t�� either �j�� � comp�i� S�

or �j�� � comp�i� R�� and statei�Cj� � Ii�

We say that a process pi receives the message m by time t� �in a timed execution
� if� by

time t�� pi has a computation event that is preceded in
 by a delivery event del�i�m�� For

the rest� let D denote d � �� Note that if m is sent to pj at time t� then pj receives m by

time t�D� To simplify the expression of our time bounds in terms of the parameters d and

c� we sometimes approximate the bounds in the case that �
 d� For example� in this case

we have D � d�

Notation

Consider an undirected graph G � �V�E�� For any i� j � V � let dist�i� j� be the distance of

i and j in G� i�e�� the number of edges in the shortest path in G from i to j� The diameter

CHAPTER �� SYSTEM MODELS ��

of G� diam�G�� is the maximum distance between any two nodes in V � i�e�� diam�G� �

maxi�j�V dist�i� j��

A node i � V is a peripheral node of G if maxj�V dist�i� j� � diam�G�� informally� a

peripheral node �realizes� the diameter of G� A node j � V is antipodal to a node i � V if

dist�i� j� � maxk�V dist�i� k�� informally� j is a �farthest neighbor� of i in G� �Note that if j

is antipodal to a peripheral node� then j is peripheral��

����� The Session Problem

An execution fragment C�� ��� C� � � � � �m� Cm is a session if for each i� i � �n
� there exists at

least one event �j � comp�i�� for some j � �m
� which is a non
idle step of the underlying

execution� Intuitively� a session is an execution fragment in which each process takes at least

one non
idle step� An execution
 contains s sessions if it can be partitioned into at least

s disjoint execution fragments such that each of them is a session� These de�nitions are

extended to apply to timed executions in the obvious way�

An algorithm solves the s�session problem within time t if each of its timed executions

satis�es the following	
 contains s sessions and all processes enter an idle state no later than

time t in
�

����� The Tick Synchronization Problem

We �rst provide some intuition in support of our de�nition of the precision achievable by a

tick synchronization algorithm�

At each receipt of a tick from its physical discrete clock� each process� pi� increases the

value of a special real�time register� Li� by one� Li represents pi�s �local time�� Thus� Li

can be modi�ed by pi during an execution according to the rate at which pi receives ticks

from its physical discrete clock� For a particular execution� we de�ne for each process pi a

function of �real� time t� Li�t�� which gives pi�s local time at �real� time t� Notice that Li�t�

is a piece
wise continuous function� We assume that for each i� � � i � n� Li��� � �� We

also assume that a process pi may modify Li during the execution of a tick synchronization

CHAPTER �� SYSTEM MODELS ��

algorithm in some way other than just incrementing it by one at the rate at which it receives

its ticks� We assume that a process can start executing a synchronization algorithm either

spontaneously or upon receipt of a message from a process that has already done so� Let ti be

the time at which pi completes executing its synchronization algorithm� We say that pi is in

a synchronized state at any time t � ti� Denote by Li�ti�� the local� real
time estimate that

pi is making at ti as a result of a run of a tick synchronization algorithm� that is� at time ti�

pi potentially updates Li�ti� to Li�ti��� based on knowledge gathered during the execution

of the algorithm and enters a synchronized state�

Clearly� it makes sense to compare Li�t� and Lj�t� for t � ti� tj � when both pi and pj

are guaranteed to be in a synchronized state� Furthermore� for a particular process pi� it is

most appropriate to compare Li�t� and Lj�t�� where pj is any process that has also entered

a synchronization state by ti� at time exactly ti� since further �asymmetry� in the rates at

which pi and pj receive ticks can occur after ti to separate Li and Lj even more�

We formalize the above intuitive ideas as follows	 we say that a tick synchronization

algorithm� A� synchronizes the system within precision $ if for every execution of A and for

every process pi� jLp�ti��� Lp�ti�j � $� for any process pj such that tj � ti�

We will consider �symmetric� tick synchronization algorithms for which each process

executes the same local protocol and treats uniformly all other processes�

Chapter �

Timing�Based� Linearizable

Read�Write Objects

In this Chapter� we show that the timing assumptions made for the continuous
time model

can be exploited in order to achieve e�cient� linearizable implementations of shared memory

on distributed memory multiprocessor machines�

In all of our implementations� we will use� for an arbitrary execution 	 of the implemen

tation and a real
valued� non
negative function T de�ned on operations in 	� a serialization�

 � of 	� de�ned as follows	

De�nition �
�
� �Serialization of 	 with respect to T � For any operations op� and op�

in 	�

��� If T �op�� � T �op��� then op�
�
�� op�� that is� operations are ordered in
 with respect to

T �

��� If T �op�� � T �op��� then�

�a� if op� and op� are write and read operations� respectively� then op�
�
�� op�� that is�

write operations precede in
 read ones with the same T �

�b� if op� and op� are both either read or write operations� then� if val�op�� �V val�op���

��

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

then op�
�
�� op�� while if val�op�� � val�op��� then op� and op� are ordered

arbitrarily in
 � that is� operations of the same type and with the same T are

ordered in
 with respect to �V �

We will call
 the serialization of 	 with respect to T �

This Chapter is organized as follows� Section ��� includes our results for the perfect clocks

model� where processes have perfectly synchronized �perfect� clocks and all messages incur a

constant and known delay d� We next turn to the more realistic imperfect clocksmodel� where

clocks are not initially synchronized and message delays can vary� In Section ���� linearizable

implementations of read�write objects are presented� while in Section ���� we present lower

bounds to support optimality of our implementations�

	�� Perfect Clocks

We present a family of linearizable implementations of read�write objects�Aper� parameterized

by some constant � �known to the processes�� � � � � �� which achieve worst
case response

times of �d and ��� ��d for read and write operations� respectively�

We start with an informal description of Aper � Each process pi keeps a local copy� Xi� of

each object X � Upon a Readi�X� event� pi waits for time �d and then issues Returni�X� v��

where v is the value currently held by Xi� Upon a Writei�X� v� event� pi sends update

messages� update�X� v�� to all other processes� after time ��� ��d elapses� it issues Acki�X��

but it waits for an additional time �d to set Xi to v� simultaneously with every other process

receiving update�X� v�� �Note that this additional �busy
waiting� time �d does not contribute

to jW j�� Upon receipt of an update message involving X � pi immediately sets Xi to the value

written� �If pi receives several update messages at the same time� it updates Xi to the minimal

with respect to �V of the delivered values��

The code for process pi appears in more detail in Figure �
�� On a call event� Readi�X�

or Writei�X� v�� or on receipt of an update message update�X� v�� pi executes procedure

Readi�X�� Writei�X� v�� or Updatei�X� v�� respectively� By convention� a SetT imeri�t� event

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

postpones continuing the current execution of a procedure for time t later �till the corre

sponding timer expires�� In procedure Updatei�X� v�� the role of the variable t
�X�
i is to store

the time of the latest update of Xi� so that if pi sequentially receives several update messages

in message
delivery events occurring at the same real time� pi detects this and updates Xi

to the minimal of the simultaneously delivered values� Also� �interleaving� of procedures is

possible	 for example� pi may execute Updatei�X� v� on receipt of update�X� v�� while waiting

for expiration of the timer in executing Readi�X�� or� pi may even initiate an execution of

Writei�X� v� while still waiting for expiration of the timer in a previous execution of it� Thus�

the computation of pi is the �parallel �self�
composition� of these procedures�

Formally� we show	

Algorithm Aper� code for process pi

Procedure Readi�X�� ��% executed upon a Readi�X� event %��
SetT imeri��d��
Returni�X�Xi��

end procedure Readi�X��

Procedure Writei�X� v�� ��% executed upon a Writei�X� v� event %��
broadcasti�update�X� v���
SetT imeri���� ��d��
Acki�X��
SetT imeri��d��
Xi 	� v�

end procedure Writei�X� v��

Procedure Updatei�X� v�� ��% executed upon receipt of update�X� v� %��

if t
�X�
i � Cli then Xi 	� min�VfXi� vg else Xi 	� v�

end procedure Updatei�X� v��

Figure ���	 The Algorithm Aper	 code for process pi

Theorem �
� For each �� � � � � �� Aper is a linearizable implementation of read�write

objects� which achieves� jRj � �d and jW j � ��� ��d�

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

Proof� Fix any execution 	 of Aper�

Clearly� in 	� the response time for every read operation is �d and the response time for

every write operation is ��� ��d� implying jRj � �d and jW j � ��� ��d�

We now show that Aper is a linearizable implementation of read�write objects� We con

struct a legal linearization
 of 	 such that� for each MCS process pj �
 jj � 	jj� each

read or write operation in 	 is �serialized� to occur at the time of its call or response in

	� respectively� breaking ties by ordering all write operations before read ones that occur

simultaneously in 	 and then using �V � Formally� we assign a time T �op� to each oper

ation op � �call�op�� response�op�
 in 		 T �op� � tc�op� if op is a read operation� else�

T �op� � tr�op�� Let
 be the serialization of 	 according to T �

We �rst prove	

Lemma �
�
 is a linearization of 	�

Proof� Let op� and op� be operations in 	 such that op�
�
�� op�� By de�nition of

�
���

tr�op�� � tc�op��� By de�nition of T � T �op�� � tr�op�� and T �op�� � tc�op��� it follows

that T �op�� � T �op��� If T �op�� � T �op��� then op�
�
�� op�� by ��� in De�nition ������ So

assume T �op�� � T �op��� By de�nition of ops�	�� it follows that op� and op� are write and

read operations� respectively� Hence� op�
�
�� op�� by ����a� in De�nition ������

We continue by showing	

Lemma �
� For each MCS process pj�
 jj � 	jj�

Proof� Consider operations op� and op� such that op�
�jj
�� op�� It su�ces to show that

op�
� jj
�� op�� Clearly� op�

�
�� op�� By Lemma ���� op�

�
�� op�� implying op�

� jj
�� op�� as

needed�

We continue with a simple claim which will be used in showing that
 is a legal operation

sequence� We de�ne a relation
�
�� between write and read operations in � as follows	 for

any write and read operations wop and rop� respectively� on object X in 	� wop
�
�� rop if

val�wop� � val�rop� and the latest update �in 	� on the local copy of X by the reading

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

process �before it returns on rop�� as a result of receiving update�X� val�wop�� from the

writing process� is to val�wop�� Roughly speaking�
�
�� captures causality and relates each

read operation in � to the write operation writing the returned value� We have	

Claim �
� Let wop� � �Writei�X� v��� Acki�X�
 and rop� � �Readk�X�� Returnk�X� v��

be write and read operations� respectively� for some value v� � V� indices i� k � �n
 and a

read�write object X� such that wop�
�
�� rop�� Then� wop�

�
�� rop��

Proof� Since all message delays are exactly d� tr�rop�� � tc�wop�� � d� Since T �rop�� �

tc�rop�� � tr�rop�� � �d� and T �wop�� � tr�wop�� � tc�wop�� � �� � ��d� it follows that

T �rop�� � T �wop��� If T �rop�� � T �wop��� then wop�
�
�� rop�� by ��� in De�nition ������ if

T �rop�� � T �wop��� then wop�
�
�� rop� by ����a� in De�nition ������

Notice that Claim ��� implies that if a read operation in
 returns a value �out of order��

i�e�� other than that of the immediately preceding �in
� write operation on the same object�

then this read operation is related �through
�
�� to a write operation that precedes it in
 �

Thus� Claim ��� restricts the way in which
 may violate legality�

We �nally show that
 is a legal operation sequence� An informal outline of our proof

follows� We assume that some read operation returns a value other than that of the imme

diately preceding write operation on the same object and derive a contradiction by showing

that the superseded written value is �known� to the reading process before the read operation

returns� We have	

Lemma �
�
 is a legal operation sequence�

Proof� Assume� by way of contradiction� that
 is not legal� From Claim ��� and the

assumption that
 is not legal� there must exist operations wop� � �Writei�X� v��� Acki�X�
�

wop� � �Writej�X� v��� Ackj�X�
 and rop� � �Readk�X�� Returnk�X� v��
� for some indices

i� j and k � �n
� a read�write object X and values v�� v� � V � such that wop�� wop�� rop� is a

subsequence of
 and wop� is the latest write operation on X in
 such that wop�
�
�� rop��

By construction of
 � T �wop�� � T �wop�� � T �rop��� i�e�� tr�wop�� � tr�wop�� �

tc�rop��� In fact� we prove	

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

Claim �
� T �wop�� � T �wop��

Proof� Assume� by way of contradiction� that T �wop�� � T �wop��� By construction of
 �

v� �V v�� By de�nition of T � tr�wop�� � tr�wop��� implying tc�wop�� � tc�wop��� Since

message delays are �xed� pk receives update messages simultaneously from pi and pj � it must

set Xk to v� �later returned�� Hence� by the algorithm� v� �V v�� A contradiction�

Note that Claim ��� implies that tc�wop�� � tc�wop��� Since all message delays are equal

to d and� by the algorithm� a writing process waits for time d to update its local copy to the

written value� it follows that each process sets its local copy of X to v� strictly before it sets

it to v�� Also� note that

tr�rop�� � tc�rop�� � �d � tr�wop�� � �d � tc�wop�� � ��� ��d� �d � tc�wop�� � d �

i�e�� pk updates Xk to v� no later than time tr�rop��� Hence� it follows that rop� returns v��

A contradiction�

Thus�
 is a legal linearization of 	 such that� for each MCS process pj �
 jj � 	jj� Since 	

was chosen arbitrarily� this implies that Aper is a linearizable implementation of read�write

objects�

We remark that it is possible to use a di�erent parameter� �X � for each di�erent ob

ject X � according� perhaps� to the pattern of read and write operations on X � Under

this modi�cation� Aper is no more symmetric with respect to the objects� But� the main

price paid is that the corresponding worst
case response times are jRj � maxX�X �Xd� and

jW j � �� � minX�X �X�d� so that jRj � jW j � �� � maxX�X �X � minX�X �X�d� which is

possibly larger than d� established in ���
 as a general lower bound on jRj � jW j for any

linearizable implementation of read�write objects� and met for the perfect clocks model by

taking minX�X �X � maxX�X �X � �� as in Theorem ����

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

	�� Imperfect Clocks� Upper Bounds

This Section is organized as follows� Subsection ����� presents Aimp
� � a linearizable imple

mentation of read�write objects� In Subsection ������ we show how to modify Aimp
� to obtain

a family of linearizable implementations� Aimp
� � supporting quantitative regulation of the re

sponse times of read and write operations� In an initialization phase� prior to each of these

implementations� a simple synchronization procedure� Asyn � runs in order to enable the pro

cesses acquire a certain amount of accuracy� this procedure is presented in Subsection ������

����� A Synchronization Strategy

In executing Asyn in an initialization phase of the computation� each process pi broadcasts a

special synchronization message synch and sets a timer for time d thereafter� On either the

�rst receipt of some �synch� message from any other process� or on expiration of the timer�

whichever happens �rst� pi sets its local time to � at real time� say� t�� That is� pi constructs

a logical clock out of its physical one by implicitly �changing� the local clock parameter ci to

ci � Cli�t��� and at all future accesses to local time� pi takes the local time Cli�t� to be the

di�erence of the physical clock time� read from its physical clock� and Cli�t��� �In all future

discussion� we will use local clock time to refer to logical clock time �constructed� in this

way��

We say that an algorithm synchronizes the system within accuracy � if the maximum

di�erence between the local times of any two processes at any real time after all processes

have completed the execution of the algorithm is at most �� We show	

Theorem �
� Asyn synchronizes the system within accuracy u�

Proof� Since clocks do not drift� it su�ces to consider the latest real time t at which a

process pi completes the execution of A
syn and show that the local clock time of any other

process is � u at time t�

Notice that every synch message was sent at time � t � d� since� otherwise� pi would

receive it �and halt� at time � t� Hence� every process pj that completes the execution of

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

Asyn on receipt of synch does so within the time interval �t�d�d�u� t
 � �t�u� t
� thus� the

local clock time of pj at time t is � u� as needed� So� consider a process pj completing the

execution of Asyn on expiration of its own timer� since pj broadcasts synch at time � t� d�

waits for time d and completes execution of Asyn at time � t �before pi does�� it can only be

that pj completes execution of A
syn and set its local time to � at time t� as pi does�

We remark that� by the results of Lundelius and Lynch in ���
� an accuracy of �� � �
n �u

is achievable in the imperfect clocks model� This accuracy is slightly better than u� but we

chose to present and use the slightly weaker one since it can be achieved by a much simpler

algorithm than the one in ���
� which might also be of independent interest� Furthermore�

the better accuracy achieved in ���
 does not seem to considerably improve our subsequent

results� if it improves them at all�

We conclude this Subsection with a simple observation encompassing the �common knowl

edge� acquired by the processes as a result of running Asyn � Fix any execution 	 and assume

that all processes executed Asyn in a prior phase� We show	

Lemma �
� Consider message�send events sendi��j�� m�� and sendi��j�� m�� occurring at

�real
 times t� and t�� respectively� in 	 such that Cli��t�� � Cli��t�� � �u� Let the corre�

sponding message�delivery events occur at �real
 times t�� and t��� respectively� in 	� Then�

t�� � t���

Proof� Clearly� it must be that t� � t�� since� otherwise�

Cli��t��� Cli��t�� � Cli��t��� �t� � t��� Cli��t�� � Cli��t��� Cli��t�� � u �

by Theorem ���� We have	

t��� t�� � t��d�u� t��d � Cli��t���Cli��t���u � Cli��t���Cli��t���u�u � �u��u � �

as needed�

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

����� First Implementation

We present a linearizable implementation of read�write objects� Aimp
� � which achieves worst

case response times of � �u� � and d� �u for read and write operations� respectively� where

� � � is an arbitrarily small constant�

We �rst describe the �timings� of Aimp
� � and then discuss how a process selects a value to

return in a read operation�

	 Upon a Readi�X� event� pi returns at the earliest possible time� provided that time

� u elapsed since the previous update of Xi� This is detected by using timeri�X�� a

timer� set �to �� on each update of Xi and reset �to �� each time pi returns for a read

operation on X �

	 A �time
slicing� technique is used for handling write operations� roughly speaking� each

process pi slices each time period of �u� � into an interval of length �u in which actions

on a call event of a write operation may not be initiated� followed by an interval of

length � in which they may� Upon a Writei�X� v� event and when in the appropriate

time interval� pi broadcasts an update�X� v� message together with its local time at the

�real� time of broadcasting� it then waits for an additional time d to set Xi to v and

issue Acki�X��

We now describe how process pi selects a value to return in a read operation on object

X 	 candidate values to be returned are those to which pi previously set Xi to and whose

local broadcasting time is within �u of that with the currently maximum local broadcasting

time� To do so� pi maintains a set Pendi�X� of �pending� update messages that it recently

received� Whenever pi updates Xi to v� either on receipt of update�X� v� or as a result of

a write operation by itself on X � it adds �v� t� to Pendi�X�� where t is the local time at

which update�X� v� was broadcasted by the writing process� To keep the size of Pendi�X�

small� at each update of Xi� pi removes from Pendi�X� all pairs �v�� t�� such that t� is not

within �u of the currently maximum time component of elements of Pendi�X�� pi returns

the maximum �with respect to �V� of the value components of elements of Pendi�X�� The

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

code for process pi appears in more detail in Figure �
�� following the same conventions as in

Figure �
�� where� for any real numbers r� and r�� fmod�r�� r�� denotes the �real� remainder

of the integral division of r� by r�� Formally� we show	

Algorithm Aimp
� � code for process pi

Procedure Readi�X�� ��% executed upon a Readi�X� event %��
if timeri�X�
� � then waitfor timeri�X� � u�

timeri�X� 	� ��
endif�
Xi 	� max�Vfv 	 �v� t� � Pendi�X�g�
Returni�X�Xi��

end procedure Readi�X��

Procedure Writei�X� v�� ��% executed upon a Writei�X� v� event %��
waitfor fmod�Cli� �u� �� � �u�
broadcasti��update�X� v�� Cli���
SetT imeri�d��
Pendi�X� 	� Pendi�X�� f�v� Cli� d�g�
tmax 	� maxft� 	 �v�� t�� � Pendi�X�g
Pendi�X� 	� f�v�� t�� 	 �v�� t�� � Pendi�X� and tmax � t� � �ug
Acki�X��

end procedure Writei�X� v��

Procedure Updatei�X� ��% executed upon receipt of update��X� v�� t� %��
Pendi�X� 	� Pendi�X�� f�v� t�g�
tmax 	� maxft

� 	 �v�� t�� � Pendi�X�g�
Pendi�X� 	� f�v�� t�� 	 �v�� t�� � Pendi�X� and tmax � t� � �ug�
timeri�X� 	� ��

end procedure Updatei�X��

Figure ���	 The Algorithm Aimp
� &code for process pi

Theorem �
� Aimp
� is a linearizable implementation of read�write objects� which achieves�

jRj � �u� �� jW j � d� �u�

Proof� Fix any execution 	 of Aimp
� �

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

We �rst present a timing analysis to show the claimed bounds on jRj and jW j�

The bound on jW j is obvious since� by the algorithm� each process pi waits till fmod�Cli� �u�

�� holds� and returns after an additional time d elapses� We proceed to show that jRj � �u���

Consider a call event Readi�X� occurring at time t in 	� We show that pi responds to

Readi�X� by time t
� � t� �u� ��

Since on delivery of an update message involving X to pi� pi sets timeri�X� to � and

procedure Readi�X� is prevented from immediate termination� it seems as if a deadlock may

occur due to successive deliveries of update messages to pi� the �time
slicing� technique�

however� rules this out� We show that there exists a family of �quiet� ��update
free�� time

intervals� quieti�k�� one for each integer k� with the following properties	

	 pi receives no update messages in each time interval quieti�k��

	 Each time interval quieti�k� has length at least u�

	 Any two such consecutive time intervals� quieti�k� and quieti�k � ��� are separated by

a time interval� gapi�k� � �dquieti�k�e� bquieti�k � ��c� of length � �u� ��

Formally established in the next two claims� these properties will imply that any read

operation will return strictly before time �u� � elapses from its initiation�

Claim �
� For each integer k� there exists a time interval quieti�k� such that pi receives no

update messages in quieti�k�� Furthermore� jquieti�k�j � u�

Proof� Consider any j � �n
� Any update message sent by pj to pi while Clj � k��u��� will

be delivered to pi while Clj � k��u� ���d� any update message sent by pj to pi while Clj �

k��u�����u is delivered to pi while Clj � k��u�����u�d�u � k��u����d��u� �Recall that�

by the algorithm� pj cannot send any update messages while k��u��� � Clj � k��u�����u��

Thus� no update message from pj is delivered to pi while k��u����d � Clj � k��u����d��u�

For each j � �n
� let tj�k� be the �real� time at which Clj � k��u � ��� It follows

that for each j � �n
� no update message from pj is delivered to pi in the time interval

�tj�k� � d� tj�k� � d� �u
� Hence� no message from any process is delivered to pi in the time

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

interval quieti�k�� where	

quieti�k� �
�

j��n�

�tj�k� � d� tj�k� � d� �u
 � �max
j��n�

tj�k� � d�min
j��n�

tj�k� � d� �u
 �

We have	

jquieti�k�j � min
j��n�

tj�k� � d� �u�max
j��n�

tj�k�� d � min
j��n�

tj�k��max
j��n�

tj�k� � �u �

It follows� however� from Theorem ��� that	

max
j��n�

tj�k�� min
j��n�

tj�k� � u �

This implies	 jquieti�k�j � �u � �u � u� as needed�

We now show an upper bound on the �gap� between consecutive �quiet� time intervals�	

Claim �
� For each integer k� jgapi�k�j � �u� ��

Proof� Using the notation of Claim ���� we have	

jgapi�k�j � bquieti�k � ��c � dquieti�k�e

� max
j��n�

tj�k � �� � d� min
j��n�

tj�k�� d� �u

� max
j��n�

tj�k� � �u� � � min
j��n�

tj�k�� �u

� max
j��n�

tj�k�� min
j��n�

tj�k� � u� �

� u� u� � �by Theorem ����

� �u� � �

as needed�

Clearly� in the worst
case� Readi�X� occurs �at time t� within some time interval quieti�k��

for some integer k� but pi enters the time interval gapi�k� and receives some update message

�For a real interval x � �x�� x�
� bxc � x� and dxe � x��

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

involving X before it may respond to Readi�X�� Such an update message must be delivered

to pi by time � t � u� since� otherwise� timeri�X� would have attained the value u� By

Claim ���� pi will enter quieti�k��� by time � t�u��u�� � t��u��� Since� by Claim ����

jquieti�k � ��j � u� timeri�X� does attain the value u within quieti�k � ��� and pi issues

Return�X�Xi� by time � t � �u� �� u � t � �u� �� Hence� jRj � �u� �� as claimed�

We turn to show that Aimp
� is a linearizable implementation�

We construct a legal linearization
 of 	 such that� for each MCS process pj �
 jj � 	jj�

Our construction proceeds in two phases�

In the �rst phase� we �serialize� each read and write operation in 	 to occur at the time

of its response in 	� breaking ties by ordering all write operations before read ones that occur

simultaneously and then using �V � Formally� let the operation sequence

� be the serialization

of 	 with respect to tr �

Clearly� if op�
�
�� op�� then tr�op�� � tr�op�� and� by construction of

� �De�nition ������

����� op�
�
�� op�� Hence�
 � is a linearization of 	 such that� for each MCS process pj �

 �jj � 	jj�

 � might� however� be not legal� and the objective of the second phase of our construction

is to �perturb�
 �� through reordering operations and while still preserving the properties of

 �� in order to obtain an operation sequence
 which is� in addition� legal�

We continue with a simple Claim �reminiscent of Claim ���� which we will use in construct

ing
 from
 �� To state it� we de�ne �as in Theorem ���� a relation�
�
�� between write and

read operations in 	 as follows	 for any write and read operations wop and rop� respectively�

on object X in �� wop
�
� rop if val�wop� � val�rop� and the element of the pending set of

the reading process with value component val�wop� �chosen to be returned� was added to the

pending set on receipt of an update message from the writing process� For wop and rop such

that wop
�
� rop� denote by tbr�wop� and tdel�wop� the real time at which the writing process

broadcasts the update message and the real time at which the reading process receives it�

respectively� We have	

Claim �

 Let wop � �Writei�X� v�� Acki�X�
 and rop � �Readk�X�� Returnk�X� v�
 be

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

write and read operations� respectively� for indices i� k � �n
� a read�write object X and a

value v � V� such that wop
�
� rop� Then� wop

� �
�� rop�

Proof� Since every message delay is � d � u� tdel�wop�� tbr�wop� � d � u� Since� by the

algorithm� tr�rop� � tdel�wop� � u� it follows that	 tr�rop� � tbr�wop� � d � tr�wop�� Thus�

by construction� wop
�
�� rop� as needed�

Notice that Claim ��� implies that if a read operation in
 � returns a value �out of order��

i�e�� other than that of the immediately preceding �in
 �� write operation on the same object�

then this read operation is related �through
�
�� to a write operation that precedes it in
 ��

Thus� Claim ��� restricts the way in which
 � may violate legality�

In the second phase� we scan
 � and trace and �x each legality violation in it by �locally�

reordering operations� while still preserving its properties� We show that the length of the

maximal pre�x of
 � which is a legal operation sequence strictly grows after each �x as we

proceed� thus� inductively� this results in a legal operation sequence
 which is a linearization

of 	 such that� for each MCS process pl� 	jl �
 jl�

Formally� let rop� � �Readk�X�� Returnk�X� v��
 be the earliest read operation in
 �� for

some index k � �n
� read�write object X � value v� � V � for which there exist write operations

wop� � �Writei�X� v��� Acki�X�
� wop� � �Writej�X� v��� Ackj�X�
� for some indices i� j �

�n
� and value v� � V � such that wop�� wop�� rop� is a subsequence of
 �� wop�
�
� rop�� and

wop� is the latest write operation on X in
 � such that wop�
� �
�� rop�� Call rop� an illegal

read operation� Reorder wop� to immediately precede wop� in
 �� Iterate till no illegal read

operation exists� Let
 be the resulting operation sequence�

We start by showing	

Lemma �

 is a legal operation sequence�

Proof� We proceed inductively and show that� after each reordering� the pre�x of
 � ending

with an illegal read operation rop� is a legal operation sequence�

We start with a simple Claim establishing that every process �hears� about a write op

eration before its termination� Since each process receives update message for wop by time

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

� tbr�wop� � d and� by the algorithm� tr�wop� � tbr�wop� � d� we immediately have	

Claim �
� For any write operation wop in 	� every process receives update message for wop

by time tr�wop��

Our next Claim establishes that the local broadcasting times of wop� and wop� are �close��

Claim �
	 jCli�tbr�wop���� Clj�tbr�wop���j � �u�

Proof� Assume� by way of contradiction� that	 jCli�tbr�wop���� Clj�tbr�wop���j � �u� We

proceed by case analysis�

�� Take Cli�tbr�wop��� � Clj�tbr�wop��� � �u� Clearly� it must be that tbr�wop�� �

tbr�wop��� since� otherwise�

Cli�tbr�wop���� Clj�tbr�wop��� � Cli�tbrwop��� �tbr�wop��� tbr�wop���� Clj�tbr�wop���

� Cli�tbr�wop���� Clj�tbr�wop���

� u �

by Theorem ���� By the algorithm� tr�wopi� � tbr�wopi� � d� for i � f�� �g� Hence�

tr�wop�� � tr�wop��� By ��� in De�nition ������ this implies	 wop�
� �
�� wop�� A

contradiction�

�� Take Clj�tbr�wop���� Cli�tbr�wop��� � �u� By Claim ���� an update message for v� is

delivered to pk by time � tr�wop�� � tr�wop��� since wop�
� �
�� rop�� Let tmax be the

maximal time component of elements in Pendk�X� at time tr�rop��� We have	

tmax � Cli�tbr�wop��� � Clj�tbr�wop���� Cli�tbr�wop��� � �u �

Hence� �v�� Cli�tbr�wop���� is removed from Pendk�X� at time tr�rop��� A contradic

tion�

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

We next use properties of the time slicing technique to show that Claim ��� implies that

the local broadacsting times fall within the same time slice of the writing processes� Formally�

assume �uk� � � � Cli�tbr�wop��� � �uk� and �uk� � � � Clj�tbr�wop��� � �uk�� for some

positive integers k� and k�� We have	

Claim �
� k� � k��

Proof� Assume� by way of contradiction� that k�
� k�� Without loss of generality� let

k� � k�� This implies	

jCli�tbr�wop���� Clj�tbr�wop���j � Cli�tbr�wop���� Clj�tbr�wop���

� k���u� ��� �k���u� ��� ��

� �k� � k����u� �� � �

� �u� ��

� �u �

contradicting Claim ����

We continue by showing a simple fact about
 ��

Claim �
� Let wop and wop� be any write operations in
 � such that there is no write oper�

ation in �wop� wop��� �� Then� every read operation in �wop� wop��� � returns the same value�

Proof� Consider any read operation in �wop� wop��� � � By De�nition ����� used in construct

ing
 �� tr�wop� � tr�rop� � tr�wop��� By Claim ���� the reading process receives update

messages for wop and all earlier �in
 �� write operations on X by time � tr�wop�� Moreover�

it must be that the reading process receives an update message for wop� later than time

tr�rop�� since� otherwise� the algorithm implies that tr�rop� � tr�wop�� Hence� the pend

ing set of the reading process at time tr�rop� may only contain elements corresponding to

write operations completed by time tr�wop�� By the algorithm� every reading process returns

identically�

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

By Claim ���� we assume� without loss of generality� that at most one read operation may

be completed between any two successsive completions of write operations in
 ��

Our key Claim follows	

Claim �
�� There is no read operation rop� on X in
 � such that wop�
�
� rop��

Proof� Assume� by way of contradiction� that there exists a read operation rop� on X in
 �

such that wop�
�
� rop�� We proceed by case analysis	

�� Assume� �rst� that tr�rop�� � tr�rop��� By assumption� there is no write operation on

X in �wop�� rop��� �� Hence� by Claim ���� there must be at least one write operation on

X in �rop�� rop��� �� let wop	 be the one with the maximal local broadcasting time� We

consider the intervals	 �wop�� rop��� � and �wop�� rop��� � in

�� it follows from Claims ���

and ��� that the local broadcasting times of val�wop�� and val�wop	� are in the same

time slice� as are those of val�wop�� and val�wop	�� Since every process receives both

val�wop�� and val�wop�� by time tr�wop��� it follows� by the algorithm� that all values

v�� v� and v	 were considered in both rop� and rop� as candidate values to be returned�

Thus� both v� �V v� and v� �V v�� A contradiction�

�� Assume� now� that tr�rop�� � tr�rop��� We apply the argument for the previous case to

the intervals �wop�� rop��� � and �wop�� rop��� �� Let t
�
max and t

�
max be the maximal time

components of elements of the pending sets for X of the processes performing rop� and

rop�� respectively� at the time of response� As already argued� by time tr�rop��� each

process modi�es its pending set for X as a result of a write operation on X completed

by time tr�rop��� Thus� any modi�cation of this set at time � tr�rop�� is due to a

write operation returning at time � tr�rop��� thus� the broadcasting time of such an

operation is greater than the broadcasting time of any write operation completed by

time tr�wop��� and the addition of its value to the pending set for X of any process

can only increase t�max� Hence� t
�
max � t�max� Clearly� t

�
max � Clj�tr�wop��� � �u and

t�max � Cli�tr�wop��� � �u� This implies	 t
�
max � tr�wop�� � �u� By the algorithm and

the way wop� returns� v� �V v�� Hence� by the way wop� returns� it must be that	

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

t�max � tr�wop�� � �u� A contradiction�

Clearly� Claim ���� implies that� after the reordering� the pre�x of
 � ending with rop� is

a legal operation sequence�

We continue by showing	

Lemma �
�
 is a linearization of 	�

Proof� It su�ces to show that the reordered operations wop� and wop� �overlap� in 	� i�e��

that tc�wop�� � tr�wop��� By Claim ���� the local broadcasting times of wop� and wop� fall in

the same time slice� Notice that� by Theorem ���� this implies	 jtbr�wop���tbr�wop��j � u���

Since� by assumption� � is arbitrarily small� we may choose � so that � � d� u� �Recall that�

by assumption� d � u�� Thus� we have	

tc�wop�� � tbr�wop�� � tbr�wop�� � �� u � tr�wop��� d� � � u � tr�wop���

as needed�

Recall that for
 ��
 �jl � 	jl for each MCS process pl� In permuting
 � to obtain
 � we

reordered only wop� and wop� and showed that neither wop�
�
�� wop� nor wop�

�
�� wop��

Hence	

Lemma �
	 For each MCS process pl�
 jl � 	jl�

It follows from Lemmas ���� ��� and ��� that Aimp
� is a linearizable implementation of

read�write objects�

����� Second Implementation

In this Subsection� we show how to slightly modify Aimp
� and obtain a linearizable implemen

tation of read�write objects� Aimp
� � which achieves worst
case response times of � �d��u� �

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

and �� � ��d � �u for read and write operations� respectively� where � � � is an arbitrarily

small constant �as in Aimp
� ��

Aimp
� di�ers from Aimp

� only with respect to the �timings� of read and write operations	

	 Upon a Readi�X� event� pi sets a timer to expire at time �d thereafter� for some

parameter � such that � � � � d�u
d � after the timer expires� pi runs as in A

imp
� 	 it

returns at the earliest possible time� provided that time � u elapsed since the previous

update of X �

	 Upon a Writei�X� v� event and when in the appropriate time slice� pi broadcasts an

update�X� v� message and waits for an additional time �����d to set Xi to v and issue

Acki�X��

pi selects a value to return in a read operation as in A
imp
� � The code for process pi appears

in detail in Figure �
�� using the same conventions as in Figures �
� and �
�� Formally� we

show	

Theorem �
� For each �� � � � � d�u
d � Aimp

� is a linearizable implementation of read�write

objects� which achieves� jRj � �d � �u� �� jW j � ��� ��d� �u�

Proof� Fix any execution 	 of Aimp
� �

We �rst present a timing analysis to show the claimed bounds on jRj and jW j�

The bound on jW j is obvious since� by the algorithm� each process pi waits till fmod�Cli� �u�

�� holds� and returns after an additional time �� � ��d elapses� We proceed to show that

jRj � �d � �u� �� Since� for a read operation� a process �rst waits for time �d and� then� it

runs as in Aimp
� � the proof of Theorem ��� immediately applies to yield	 jRj � �d� �u� ��

We turn to show that Aimp
� is a linearizable implementation�

We construct a legal linearization
 of 	 such that� for each MCS process pj �
 jj � 	jj�

Our construction proceeds in two phases�

The �rst phase is exactly identical to that in the proof of Theorem ���� Let
 � be the

operation sequence resulting from the �rst phase� As in the proof of Theorem ����
 � is a

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

Algorithm Aimp
�

� code for process pi

Procedure Readi�X�� ��� executed upon a Readi�X� event ���
SetT imeri��d��
if timeri�X� �� � then waitfor timeri�X� � u�

timeri�X� �� ��
endif�

Xi �� max�Vfv � �v� t� � Pendi�X�g�
Returni�X�Xi��

end procedure Readi�X��

Procedure Writei�X� v�� ��� executed upon a Writei�X� v� event ���
waitfor fmod�Cli� �u	 b� � �u�
broadcasti��update�X� v�� Cli���
SetT imeri��
 � ��d��
Pendi�X� �� Pendi�X� � f�v� Cli � �
� ��d�g�
tmax �� maxft� � �v�� t�� � Pendi�X�g�
Pendi�X� �� f�v�� t�� � �v�� t�� � Pendi�X� and tmax � t� � �ug�
Acki�X��

end procedure Writei�X� v��

Procedure Updatei�X� ��� executed upon receipt of update��X� v�� t� ���
Pendi�X� �� Pendi�X� � f�v� t�g�
tmax �� maxft� � �v�� t�� � Pendi�X�g�
Pendi�X� �� f�v�� t�� � �v�� t�� � Pendi�X� and tmax � t� � �ug�
timeri�X� �� ��

end procedure Updatei�X��

Figure ���	 The Algorithm Aimp
� &code for process pi

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

linearization of 	 such that for each MCS process pj �

�jj � 	jj� Note that Claim ��� still

applies� where
�
� is identically de�ned�

In the second phase� we scan
 � and trace and �x each legality violation in it by �locally�

reordering operations� while still preserving its properties� We show that the length of the

maximal pre�x of
 � which is a legal operation sequence strictly grows after each �x as we

proceed� thus� inductively this results in a legal operation sequence
 which is a linearization

of 	 such that for each MCS process pl�
 jl � 	jl�

Formally� let rop� � �Readk�X�� Returnk�X� v��
 be the earliest read operation in
 �� for

some index k � �n
� read�write objectX � value v� � V � for which there exist operations wop� �

�Writei�X� v��� Acki�X�
� wop� � �Writej�X� v��� Ackj�X�
� rop� � �Readk�X�� Returnk�X� v��
�

for some indices i� j � �n
� and value v� � V � such that wop�� wop�� rop� is a subsequence of

 �� wop�
�
� rop�� and wop� is the latest write operation on X in
 � such that wop�

� �
�� rop��

Call rop� an illegal read operation� We consider two cases	

	 Take jCli�tbr�wop���� Clj�tbr�wop���j � �u� i�e�� the local broadcasting times of wop�

and wop� do not fall in the same time slice� Reorder rop� to immediately precede wop�

in
 ��

	 Take jCli�tbr�wop���� Clj�tbr�wop���j � �u� i�e�� the local broadcasting times of wop�

and wop� fall in the same time slice� If there is no later read operation rop� in
 � such

that wop�
�
� rop�� then reorder wop� to immediately precede wop� in
 �� else� reorder

rop� to immediately precede wop� in
 �� �We will soon provide justi�cation for our

construction��

Iterate till no illegal read operation exists� Let
 be the resulting operation sequence�

We start by showing	

Lemma �
�
 is a legal operation sequence�

Proof� We proceed inductively and show that� after each reordering� the pre�x of
 � ending

with an illegal read operation rop� is a legal operation sequence� We consider separately each

of the two cases in our construction�

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

Assume� �rst� jCli�tbr�wop��� � Clj�tbr�wop���j � �u� Clearly� by the de�nition of an

illegal read operation� the pre�x of
 � ending with rop� is a legal operation sequence�

Assume� next� jCli�tbr�wop���� Clj�tbr�wop���j � �u� Notice that in this case it may be

possible for a read operation invoked su�ciently �late� �after wop� and wop� terminate� to

return v�� hence� reordering rop� to precede wop� �as in the previous case� might not guarantee

legality� We consider separately each of the two cases we considered in our construction�

Assume� �rst� that there is no later read operation� rop�� onX in
 � such thatwop�
�
� rop��

As in Claim �������� we can show	

Claim �
�� There is no read operation rop� on X in �wop�� rop��� � such that wop�
�
� rop��

v��

Hence� it follows that there is no read operation� rop�� on X in
 � such that wop�
�
�� rop��

and� after the reordering� the pre�x of
 � ending with rop� is trivially legal�

Assume� now� that there is a read operation rop� on X in
 � such that wop�
�
�� rop��

Notice that Claim ���� still applies and implies that there is no read operation rop�� in
 �

such that wop�
�
� rop� and rop�

� �
�� rop�� Hence� our reordering does not introduce any new

legality violation�

Hence� after the reordering� the pre�x of
 � ending with rop� is a legal operation sequence�

We continue by showing	

Lemma �
�
 is a linearization of 	�

Proof� We proceed by case analysis�

Assume� �rst� that jCli�tbr�wop��� � Clj�tbr�wop���j � �u� so that rop� is reordered to

immediately precede wop� in
 �� It su�ces to show that the reordered operations� rop� and

wop�� �overlap�	

Claim �
�� tr�wop�� � tc�rop���

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

Proof� Assume� by way of contradiction� that tr�wop�� � tc�rop��� We have	

tr�rop��� tbr�wop�� � tr�rop��� �tc�rop��� tr�wop���� tbr�wop��

� �d � ��� ��d � d �

Thus� the reading process receives update�X� v�� before time tr�rop��� whence it returns v��

A contradiction�

Assume� now� that jCli�tbr�wop����Clj�tbr�wop���j � �u� so that either wop� is reordered

to immediately precede wop�� or rop� is reordered to immediately precede wop� in case there

is read operation� rop�� on X in
 � such that wop�
�
�� rop�� In the next two Claims� we

establish that the corresponding reordered operations �overlap� in 		

Claim �
�� tc�wop�� � tr�wop�� �

Proof� Since the local broadcasting times of wop� and wop� fall in the same time slice� by

Claim ���� jtbr�wop��� tbr�wop��j � u� �� Since� by assumption� b
 u� we may assume that	

� � ��� ��d� u� �Note that ��� ��d� u � � since� � � d�u
d �� Thus� we have	

tc�wop�� � tbr�wop�� � tbr�wop�� � u� b � tr�wop��� ��� ��d� u� b � tr�wop��

as needed�

Finally� we show	

Claim �
�� Assume there is a read operation rop� in 	 such that wop�
�
� rop�� Then�

tc�rop�� � tr�wop���

Proof� Assume� by way of contradiction� that tr�wop�� � tc�rop��� We get	

tr�rop��� tbr�wop�� � tr�rop��� �tc�rop��� tr�wop���� tbr�wop�� � �d� ��� ��d � d

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

Thus� update�X� v�� is received by pk at time � tr�rop��� hence� by the algorithm� v� �V v��

But� the process performing rop� also receives update�X� v�� before it returns� since� by

assumption� tr�rop�� � tr�rop��� hence� v� �V v�� A contradiction�

The Lemma follows from Claims ���� and �����

Recall that for
 ��
 �jl � 	jl for each MCS process pl� In permuting
 � to obtain
 � for

each case of an illegal read operation� we showed that the reordered operations �overlap��

Hence� they may not be performed by the same process� implying	

Lemma �
�� For each MCS process pl�
 jl � 	jl�

It follows from Lemmas ���� ���� and ���� that Aimp
� is a linearizable implementation of

read�write objects�

	�	 Imperfect Clocks� Lower Bounds

This Section is organized as follows� In Subsection ������ we present a lower bound on jRj�jW j

for a certain class of sequentially consistent implementations� implying a corresponding lower

bound for linearizable implementations� In Subsection ������ we present a lower bound on jRj

for linearizable implementations�

����� Lower Bounds on jRj � jW j

Our lower bounds on jRj � jW j apply to a certain class of implementations of read�write

objects� called object�separable and object�symmetric� which� roughly speaking� satisfy the

following conditions	

	 Each process acts on an interrupt event involving a certain read�write object inde

pendently of activity it previously performed on other objects� Hence� the sequence

of actions taken by the process on this object is completely separated from and not

a�ected by the presence or abscence of events involving other objects�

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

	 Each process action on an interrupt event is symmetric with respect to the object

involved in the event�

Formally� we de�ne	

De�nition �
�
� �Object separability� symmetry� An implementation A of read�write

objects is object�separable if� for each process pi� every state s of pi� includes jX j components�

s�� s�� � � � � sjX j� one for each read�write object� so that if an interrupt event ek involves object

Xk and �s� ek� s
�� R� S� T � is a computation step of the process pi� then s�l � sl for every l
� k�

If� in addition� s�k � s�l for any pair of interrupt events ek and el involving objects Xk and Xl�

respectively� then A is object�symmetric�

We �rst present two technical lemmas which will be used in the proof of our main lower

bound on jRj � jW j� These lemmas establish simple properties of sequentially consistent�

object
separable and object
symmetric implementations� which are of independent interest�

Let A be any sequentially consistent� object
separable and object
symmetric implemen

tation of read�write objects�

First Property

Roughly speaking� our �rst lemma asserts that� in any execution of A� objects written iden

tically by processes respond identically to read operations� This lemma is inspired by and

generalizes Theorem � in ���
� shown there for the special case where u � d�

Formally� consider objects X and Y � both holding the value v� at time �� and construct

an execution 	� of A consisting of the following call and response events at processes pi and

pj � where hk�ops�	���� k � �n
� denotes the sequence of ordered pairs of call and response

events at pk and their corresponding times in 	�	

hi�ops�	��� � �Writei�Y� v�� ��� �Acki�Y �� ti����

�Readi�X�� ti���� �Returni�X� vi�� ti����

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

hj�ops�	��� � �Writej�X� v��
u

�
�� �Ackj�X�� tj����

�Readj�Y �� tj���� �Returnj�X� vj�� tj��� �

Furthermore� assume that in 	� delays of messages from any process to pj are equal to d�

delays of messages from pj to any process are equal to d�u� and all other message delays are

equal to d� u
� � Assume� also� that in 	�� Clk��� � � for any k � �n
� k
� j� while Clj��� � �u

� �

We show	

Lemma �
�� Read operations by pi and pj in 	� must both return v�

Proof� We start with an informal outline of our proof� By �perturbing� 	�� we construct an

execution 	��� �symmetric� with respect to the objectsX and Y � with the following properties	

�i
 each process �sees� the same event happening at the same �local� time in both 	� and 	
�
��

and �ii
 each of the objects X and Y undergoes the same �changes� at the same �local� time

in 	��� By �i
� it su�ces to show that read operations by pi and pj in 	
�
� both return v� which

follows from �ii
 and object
symmetry�

Formally� we obtain 	�� by retiming events and changing local clock times in 	� as follows	

	 Each event at process pj that occurs at �real� time t in 	� occurs at �real� time t �
u
�

in 	��� while each event at any other process occurs at the same �real� time in both 	�

and 	���

	 The �local� clock time of pj at �real� time t in 	�� is equal to that in 	� plus
u
� � while

�local� clock times of all other processes do not change�

Thus� we have	

hi�ops�	
�
��� � �Writei�Y� v�� ��� �Acki�Y �� ti����

�Readi�X�� ti���� �Returni�X� v�i�� ti����

hj�ops�	
�
��� � �Writej�X� v�� ��� �Ackj�X�� tj���

u

�
��

�Readj�Y �� tj�� �
u

�
�� �Returnj�X� v�j�� tj�� �

u

�
� �

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

where v�i and v
�
j are determined by A� We show that 	

�
� is an execution of A by proving	

Claim �
�
 In 	��� the time between a message�send event and the corresponding message�

delivery event is equal to d� u
� �

Proof� The only cases of interest involve message
send or message
delivery events at pj 	

�� Each message
send event at pj � occurring at time t in 	�� occurs at time t�
u
� in 	

�
�� In

	��� the corresponding message
delivery event occurs at time t�d�u� incurring a delay

of �t � d� u�� �t� u
� � � d� u

� �

�� Each message
delivery event at pj � occurring at time t in 	�� occurs at time t�
u
� in 	

�
��

In 	��� the corresponding message
send event occurs at time t � d� incurring a delay of

�t� u
� �� �t� d� � d� u

� �

Furthermore� consider an event at process pj that happens at real time t and local clock

time Clj�t� in 	�� In 	��� this event occurs at real time t�
u
� and local clock time Clj�t�

u
� ��

u
� �

Clj�t��
u
� �

u
� � Clj�t�� Thus� pj undergoes the same state changes in 	�� as in 	�� and so�

v�j � vj � Also� by construction� pi undergoes the same state changes in 	�� as in 	�� and so�

v�i � vi� Therefore� it su�ces to show that v
�
i � v�j � v�

Notice that in 	��� by construction� Cli��� � �� while Clj��� � �u
� �

u
� � �� Thus� local

clocks of pi and pj are synchronized in 	
�
�� Since all message delays are equal� object symmetry

implies that v�i � v�j � Notice that v
�
i � v�j � v� contradicts sequential consistency� Therefore�

v�i � v�j � v� as needed�

Second Property

Roughly speaking� our second lemma establishes that in any execution of A with �con�icting�

write operations on some object� read operations on this object performed su�ciently �late�

by di�erent processes� that is� after these processes �hear� about the write operations� must

return the same value�

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

Formally� consider an objectX � holding the value x� at time �� and construct an execution

	� of A consisting of the following call and response events at processes pi� pj � pk and pl	

hi�ops�	��� � �Writei�X� v��� ��� �Acki�X�� ti��

hj�ops�	��� � �Writej�X� v��� ��� �Ackj�X�� tj��

hk�ops�	��� � �Readk�X�� t�� �Returnk�X� vk�� tk��

hl�ops�	��� � �Readl�X�� t�� �Returnl�X� vl�� tl��

where t � d� jW j� so that any message sent by pi or pj is delivered before the read operations

are invoked� Furthermore� assume that in 	� delays of all messages are equal and all clocks

are initially synchronized� We show	

Lemma �
�� In 	�� read operations by pk and pl return the same value�

Proof� Assume� by way of contradiction� that vk
� vl� We construct an execution 	�� of A

which is not sequentially consistent�

We start with an informal outline of our proof� By �augmenting� 	�� we obtain an

execution 	�� as follows	 each of pk and pl performs an additional later read operation on

X preceded by a pair of a write and a read operation on two other objects Y and Z� We

use symmetry to argue that the operations on Y and Z must be �interleaved� in any legal

serialization of 	��� This will prevent all read operations on X by one of pk and pl to precede

all such of the other� Since 	�� is an �augmentation� of 	�� early read operations on X in 	��

must return di�erent values� as in 	�� We use object
separability to argue that each later read

operation on X returns the same value as the corresponding earlier one by the same process�

Since read operations on X by pk and pl must be interleaved� this contradicts sequential

consistency� We now present the details of the formal proof�

Consider objects Y and Z� holding the values y� and z�� respectively� at time �� By the

serial speci�cation ofX � Y and Z� there exists an execution 	�� of A consisting of the following

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

call and response events at processes pi� pj � pk and pl	

hi�ops�	
�
��� � hi�ops�	����

hj�ops�	
�
��� � hj�ops�	����

hk�ops�	
�
��� � �Readk�X�� t�� �Returnk�X� v�k�� tk��

�Writek�Y� y��� tk�� �Ackk�Y �� tk����

�Readk�Z�� tk���� �Returnk�Z� z
�
��� tk����

�Readk�X�� tk���� �Returnk�X� v��k�� tk�	��

hl�ops�	
�
��� � �Readl�X�� t�� �Returnl�X� v�l�� tl��

�Writel�Z� z��� tl�� �Ackl�Z�� tl����

�Readl�Y �� tl���� �Returnl�Y� y
�
��� tl����

�Readl�X�� tl���� �Returnl�X� v��l �� tl�	��

Furthermore� assume that� in 	��� delays of all messages are equal and all clocks are initially

synchronized�

By object
separability� v��k � v�k and v��l � v�l� Since all message delays are equal� object

symmetry implies that either y�� � y� and z�� � z�� or y
�
� � y� and z�� � z�� Notice� however�

that y�� � y� and z�� � z� contradicts sequential consistency� Hence� y
�
� � y� and z

�
� � z��

Since 	�� is sequentially consistent� there exists a legal serialization
 of 	��� respecting the

order of events at each process� In
 � either the second read operation on X by pk precedes

the �rst read operation on X by pl� or the second read operation on X by pl precedes the �rst

read operation on X by pk� assume� without loss of generality� the former� Note� however�

that the �rst read operation on X by pl precedes the write operation on Z by pl �since

 jl � 	��jl�� which precedes the read operation on Z by pk �by the serial speci�cation of Z��

which precedes the second write operation on X by pk �since
 jk � 	��jk�� A contradiction�

We now present our main lower bound result	

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

Theorem �

 In any sequentially consistent� object�separable and object�symmetric imple�

mentation of at least three objects� accessed by at least four processes� jRj� jW j � d� u
� �

Proof� Assume� by way of contradiction� that there exists a sequentially consistent� object

separable and object
symmetric implementation A of such objects for which jRj�jW j� d� u
� �

We construct an execution of A which is not sequentially consistent�

Informally� our proof proceeds as follows� We construct an execution 	 of A in which two

processes� pi and pi� � each perform an early and a late read operation on an object X � we

use symmetry to �force� pi and pi� to either return di�erent values in di�erent order� which�

clearly� violates sequential consistency� or to maintain �inconsistent� copies of the same object�

also shown to violate sequential consistency� These di�erent values are written by con�icting

write operations on X by processes pj and p
�
j � We appropriately choose message delay times

in 	 so that� under the assumption jRj � jW j � d � u
� � pi �gathers� fast information about

the write operation by pj � but cannot �hear� about the write operation by p
�
j till late� �The

roles of delays of messages from pj and p�j are reversed for pi� �� Thus� by symmetry� read

operations by pi and pi� return values in di�erent order� establishing the contradiction� We

now present the details of the formal proof�

Consider objectsX and Y � both holding the value v� at time �� and construct an execution

	 of A consisting of the following call and response events at processes pi� pj � pi� and pj� 	

hi�ops�	�� � �Writei�Y� v��� ��� �Acki�Y �� ti����

�Readi�X�� ti���� �Returni�X� xi�� ti����

�Readi�X�� ti�	�� �Returni�X� x�i�� ti����

hi��ops�	�� � �Writei��Y� v��� ��� �Acki��Y �� ti�����

�Readi��X�� ti����� �Returni��X� xi��� ti�����

�Readi��X�� ti��	�� �Returni��X� xi���� ti�����

hj�ops�	�� � �Writej�X� v���
u

�
�� �Ackj�X�� tj����

�Readj�Y �� tj���� �Returnj�Y� yj�� tj����

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

hj��ops�	�� � �Writej��X� v���
u

�
�� �Ackj��X�� tj�����

�Readj��Y �� tj����� �Returnj��Y� yj��� tj���� �

Furthermore� assume that� in 	� delays of messages from pj to any process pk� k � �n
� are

equal to d� u if k
� i�� and d if k � i�� delays of messages from p�j to any process pk� k � �n
�

are equal to d � u if k
� i and d if k � i� and all other message delays are equal to d � u
� �

Assume� also� that� in 	� Clk � � for any k � �n
� k
� j� j �� while Clj��� � Clj���� � �u
� �

Let also ti�	� ti��	 � u
� � jW j� so that any message sent by pj or pj� while performing write

operations on X is delivered before the late read operations on X by pi and pi� are invoked�

Since� by assumption� jRj� jW j � d� u
� � it follows that ti�� � d� u

� � hence� the assumed

message delays imply that pi may not receive a message from pj� till after time ti��� Thus�

Lemma ���� applies on the pre�ces of 	ji and 	jj consisting of all events at pi and pj occurring

at time � ti�� in 	 to yield	 xi � v�� A symmetric argument yields	 xi� � v��

By the symmetry in delays of messages sent by the processes writing X � pj and pj� to

pi and pi� � there are two possibilities	 either x
�
i � v� and x�i� � v�� or x

�
i � v� and x�i� � v��

Clearly� the �rst possibility immediately contradicts sequential consistency� On the other

hand� the second possibility contradicts� by object
separability� Claim �����

We remark that although� apparently� the assumption of at least three objects is not

explicitly used in the Proof of Theorem ���� this assumption is necessary since it is made for

the proof of Lemma �����

Since linearizability implies sequential consistency� it immediately follows	

Corollary �
� In any linearizable� object�separable and object�symmetric implementation of

at least three objects� using at least four processes� jRj� jW j � d� u
� �

����� Lower Bound on jRj

We show	

Theorem �
� In any linearizable implementation of read�write objects accessed by at least

three processes� jRj � u
� �

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

Proof� Assume� by way of contradiction� that there exists a linearizable implementation A

of such objects for which jRj � u��� We construct an execution of A which is not linearizable�

Consider an object X � holding the value x� at time �� and let pi and pj be two processes

that read X � and pk be a process that writes X �

Informally� our proof proceeds as follows	 We start with an execution in which pi reads

x� from X � pi and pj alternate reading from X while pk writes x� to X � and �nally pj

reads x� from X � Thus� there exists a read operation� rop�� say by pi� that returns x� and is

immediately followed by a read operation� rop�� by pj that returns x�� If pi�s history is shifted

later by u
� � while pj �s history is shifted earlier by

u
� � there results an execution in which rop�

precedes rop�� Since rop� returns x�� while rop� returns x�� this contradicts linearizability�

We now present the details of the formal proof�

Let b � d jW �X�j
u e� By the serial speci�cation of X � there exists an execution 	� of A

consisting of the following call and response events at processes pi� pj and pk 	

hi�ops�	�� � �Readi�X�� ��� �Returni�X� v��� t���

�Readi�X�� u�� �Returni�X� v��� t��� � � � �

�Readi�X�� bu�� �Returni�X� v�b�� t�b��

hj�ops�	�� � �Readj�X��
u

�
�� �Returnj�X� v��� t���

�Readj�X��
�u

�
�� �Returnj�X� v	�� t	�� � � � �

�Readj�X�� bu�
u

�
�� �Returnj�X� v�b
��� t�b
���

hk�ops�	�� � �Writek�X� x���
u

�
�� �Ackk�X�� tr��

Furthermore� we assume that the message delays in 	� are as follows	 Each message from pi

to pl� l
� i� incurs of delay of either d if l � j or d � u
� if l
� j� each message from pj to pl�

l
� j� incurs a delay of either d� u if l � i or d� u
� if l
� i�

Since� by the de�nition of b�

tr �
u

�
� jW �X�j �

u

�
� bu�

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

and 	� is linearizable� it follows that	 v�b
� � x�� Note also that for � � l � �b� �	

tl � l
u

�
� jR�X�j� l

u

�
�
u

�
�

which� for l � �� implies� by linearizability� that v� � x�� It also follows by linearizability that

there exists an index r� � � r � �b such that vr � x� and vr
� � x�� We assume� without

loss of generality� that r is even� so that vr is the result of a read operation by pj �

We now show how to �perturb� 	� to obtain another execution 	� of A that is not

linearizable� We assign times to events in 	�	 Each event at process pi that happens at �real�

time t in 	� will occur at �real� time t�
u
� in 	�� while each event at process pj that happens

at �real� time t� in 	� will occur at �real� time t
�� u

� in 	�� Let Cli�t� and Clj�t� be the �local�

clock times of processes pi and pj � respectively� at �real� time t in 	�� The �local� clock times

of pi and pj at time t in �� will be Cli�t� �
u
� and Clj�t� �

u
� � respectively� Times of events

and �local� clock times of any other process do not change�

We start by showing	

Lemma �
�� In 	�� the time between a message�send event and the corresponding message�

delivery event is in the range �d� u� d
�

Proof� We proceed by case analysis	

�� Each message that is sent by pi at �real� time t and delivered to pj at �real� time t� d

in 	� will be sent and delivered at �real� times t�
u
� and t � d� u

� � respectively� in 	��

incurring a delay of t� d� u
� � �t�

u
� � � d� u�

�� Each message that is sent by pj at �real� time t and delivered to pi at �real� time t�d�u

in 	� will be sent and delivered at �real� times t�
u
� and t � d� u� u

� � respectively� in

	�� incurring a delay of t � d� u� u
� � �t�

u
� � � d�

�� Each message that is sent by pi at �real� time t and delivered at a process other than

pj at �real� time t � d � u
� in 	� will be sent and delivered at �real� times t �

u
� and

t� d� u
� � respectively� in 	�� incurring a delay of t � d� u

� � �t �
u
� � � d� u�

CHAPTER �� TIMING�BASED� LINEARIZABLE READ�WRITE OBJECTS ��

�� Each message that is sent by pj at �real� time t and delivered at a process other than

pi at �real� time t � d � u
� in
� will be sent and delivered at �real� times t �

u
� and

t� d� u
� � respectively� in 	�� incurring a delay of t � d� u

� � �t �
u
� � � d�

We next argue that each process �sees� the same event happening at the same local clock

time in both 	� and 	�	 The only non
trivial cases are when this event involves either pi or

pj � Consider an event involving pi that occurs at real time t in 	�� Let Cli�t� be the local

clock time of pi at real time t in 	�� By construction� this event will occur at �real� time t�
u
�

in �� when the local clock time of pi will be	 Cli�t �
u
� � �

u
� � Cli�t� �

u
� �

u
� � Cli�t�� as

needed� The case where the event involves pj is similar� Thus� 	� is a collection of process

histories and� therefore� by Lemma ����� an execution of A�

Finally� note that in the execution 	�� the order of the values returned by read operations

on X performed by pi and pj is	 v�� v�� v	� v�� � � � � vr
�� vr� � � �� Thus� vr
� � x� is being read

before vr � x�� which contradicts linearizability�

We remark that the general outline of the lower bound proof follows ���
� Our improvement

over ���
 is achieved by carefully choosing message delays in the construction of 	��

Chapter �

Semi�Synchrony versus

Asynchrony

In this Chapter� we compare and contrast the asynchronous and semi�synchronous models

of distributed computation by presenting upper and lower bounds for the time complexity of

solving the s
session problem�

This Chapter is organized as follows� Section ��� includes our bounds for network mod

els� where interprocess communication is achieved through point
to
point message passing

between processes� Section ��� includes our bounds for shared memory� where interprocess

communication is achieved through a collection of shared variables that may be read and

written by processes�

�� Networks

This Section is organized as follows� Subsection ����� includes our upper bounds for both

the asynchronous and semi
synchronous models� while Subsection ����� includes our lower

bounds for both models� In Subsection ������ we consider networks with non
uniform delays

and state the corresponding upper and lower bounds� In Subsection ������ the uninitialized

case is considered� and upper and lower bounds for both models are presented�

��

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

����� Upper Bounds

The Asynchronous Model

We start with a simple asynchronous algorithm in which processes communicate in order

to learn about completion of a session before advancing to the next session� Each process

maintains as part of its state a variable that gives its current session number� upon hearing

that every other process has reached its current session� it increments its session number by

one and noti�es all other processes� Noti�cation is done by sending messages along a shortest

path tree rooted at it� The process enters an idle state when its session number is set to s�

We prove	

Theorem �
� Let G be any graph� There exists an asynchronous algorithm� Aas� that solves

the s�session problem on G within time diam�G�D�s� ���

Proof� We describe an asynchronous algorithm� Aas� that solves the s
session problem on

G within time diam�G�D�s� ��� that is� in any execution of Aas there are at least s sessions

and all processes enter an idle state no later than time diam�G�D�s � ��� The algorithm

is described here informally� this description can be easily translated into a state transition

function�

For each i � �n
� the state of pi consists of the following components	 bu�er & a bu�er�

an unordered set of elements ofM� initially �� session & a nonnegative integer� initially ��

The message alphabet� M� consists of the pairs �i� k�� where i � �n
 and � � k � s � �� The

initial state of pi is non
idle�

The algorithm is as follows� Upon taking its �rst computation step� pi broadcasts �i� ���

If for all j � �n
� �j� sessioni� � bu�er i� pi increments session by �� If sessioni � s� pi enters

an idle state and remains in this state forever� Otherwise� pi broadcasts �i� sessioni��

We assume that messages from a process are �ooded on a shortest path tree rooted at this

process� That is� Aas uses a routing algorithm by which� for any nodes u� v � G� a message

from u to v is routed through exactly dist�u� v� communication links in G� The details of

how this is done are not discussed here� the reader is referred to� e�g�� ���
�

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

If sessioni � k� we say that pi is in its kth session� The message �i� k� can be interpreted

as �process i executed a step in the kth session��

We start by showing that in any execution of Aas there are at least s sessions� Fix an

arbitrary timed execution
 of Aas� Clearly� each process pi receives �j� �� for all j � �n
 and

sets sessioni to �� By induction� it is simple to show that for each k� � � k � s � �� pi sets

sessioni to k in
� For each k� � � k � s� de�ne
k to be the longest pre�x of
 that does not

include a con�guration in which� for some i � �n
� sessioni � k� i�e�� no process has passed its

kth session� Note that
� � �� the empty sequence� and that for each k� � � k � s� ��
k is

a pre�x of
k
�� For each k� � � k � s� �� let �k be such that
k
� �
k�k� let �s be such

that
 �
s�s�

Lemma �
� For each k� � � k � s � �� there is a session in �k�

Proof� Let pi be a process which sets sessioni to k � �� By de�nition� this event is not

in �k� By the algorithm� this implies that for each j� j � �n
 and j
� i� pi has received a

�j� k� message� However� by de�nition� no process pj has sessionj � k in
k � Thus� by the

algorithm� no process pj sends a �j� k� message in
k� Hence� there is a step by every process�

and� therefore� a session in �k�

In addition� there is a session in �s� since� for every i � �n
� a computation step is included

in �s at which pi sets sessioni to s� �Note that� by the de�nition of
s� such a step cannot

be included in
s�� This implies that there are at least s sessions in
� Since
 was chosen

arbitrarily� this implies the correctness of Aas� We now analyze the time complexity of Aas�

Informally� the next de�nition captures the latest time at which the kth session can be

completed� For each k� � � k � s� �� de�ne

Tk � max
i�V

ft 	 pi sets sessioni to k at time t in
g �

By the algorithm� T� � �� We have	

Lemma �
� For each k� � � k � s� Tk
� � Tk � diam�G�D�

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

Proof� Fix some process pi� and let t be the time at which pi broadcasts �i� k�� note that� by

de�nition� t � Tk� Clearly� for every process pj � the event del�j� �i� k��� delivering the message

�i� k� to pj � will occur at time � t � �diam�G� � ��D � d� Thus� by time t � diam�G�D�

pi has a computation step in which �i� k� is in the bu�er� Thus� by time Tk � diam�G�D

every process has a computation step in which �i� k� is in the bu�er� for every i � �n
� By the

algorithm� at this step the process sets its session variable to k � �� The claim follows�

Since T� � �� it follows that Ts � diam�G�D�s� ��� Hence� every process enters an idle

state after setting session to s� no later than time diam�G�D�s� ��� Thus� Aas solves the

s
session problem on G within time diam�G�D�s� ���

The Semi�Synchronous Model

In the semi
synchronous model� we can slightly improve Aas by taking advantage of the

available initial synchronization� speci�cally� each process operates exactly as in Aas� except

that it does not wait to hear that every other process has completed its �rst session� but

passes directly to the second one upon taking its second step� We prove	

Theorem �
� Let G be any graph� There exists a semi�synchronous algorithm� Ass
� � that

solves the s�session problem on G within time � � diam�G�D�s� ���

Proof� We describe a semi
synchronous algorithm� Ass
� � which is very similar to A

as and

solves the s
session problem on G within time ��diam�G�D�s� ��� that is� in any execution

of Aas there are at least s sessions and all processes enter an idle state no later than time

� � diam�G�D�s� ���

For each i � �n
� the state of pi consists of the following components	 bu�er & a bu�er�

an unordered set of elements ofM� initially �� session & a nonnegative integer� initially ��

The message alphabet� M� consists of the pairs �i� k� where i � �n
 and � � k � s � �� The

initial state of pi is non
idle�

Upon taking its second computation step� pi increments sessioni to � and broadcasts

�i� ��� If for all j � �n
� �j� sessioni� � bu�er i� pi increments sessioni by �� If sessioni � s� pi

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

enters an idle state and remains in this state for ever� Otherwise� pi broadcasts �i� sessioni��

As in Aas� we assume that messages from a process are �ooded on a shortest path tree rooted

at this process� We say that pi is in its kth session if sessioni � k and we interpret the

message �i� k� as �process i executed a step in the kth session��

We start by showing that in any execution of Ass
� there are at least s sessions� Fix an

arbitrary execution
 of Ass
� � For each k� � � k � s� de�ne
k to be the longest pre�x of

that does not include a con�guration in which� for some i � �n
� sessioni � k� i�e�� no process

has passed its kth session� Note that
� � �� and that for each k� � � k � s � ��
k is a

pre�x of
k
�� For each k� � � k � s � �� let �k be such that
k
� �
k�k� let �s be such

that
 �
s�s�

Lemma �
� There is a session in ���

Proof� Note that �� �
�� since
� � �� For every process pi� the steps of pi that are

included in
� are exactly those that occur at time �� Since every process has a step at time

�� there is a session in
� � ���

As in Lemma ���� we can prove	

Lemma �
� For each k� � � k � s � �� there is a session in �k�

In addition� there is a session in �s� This implies that there are at least s sessions in
�

Since
 was chosen arbitrarily� this implies the correctness of Ass
� �

We now analyze the time complexity of Ass
� � For each k� � � k � s� �� we de�ne	

Tk � max
i�V

ft 	 pi sets sessioni to k at time t in
g �

Note that T� � �� In addition� as in Lemma ���� we have	

Lemma �

 For each k� � � k � s� Tk
� � Tk � diam�G�D�

Since T� � �� it follows that Ts � � � diam�G�D�s� ��� Every process enters an idle

state after setting session to s� no later than time ��diam�G�D�s� ��� Thus� Ass
� solves the

s
session problem on G within time � � diam�G�D�s� ���

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

We next show that the timing information available in the semi
synchronous model can

be exploited to obtain a bound which is sometimes better than the previous bound� This

algorithm uses no communication� intuitively� this means that no process state transition can

result in a send action� Formally� an algorithm A uses no communication if for every i� i � �n
�

for every q � Qi� Ai�q� � �q
�� �� for some q� � Qi� We prove	

Theorem �
� Let G be any graph� There exists a semi�synchronous algorithm� Ass
� � which

solves the s�session problem on G within time ���b�c c����s� ��� Furthermore� Ass
� uses no

communication�

Proof� We describe a semi
synchronous algorithm� Ass
� � which solves the s
session problem

on G within time � � �b�c c� ���s� ��� For each i � �n
� the state of pi consists of a counter�

an integer� initially
�� The initial state of pi is non
idle� At each computation event� pi

increments counteri by �� pi enters an idle state when counteri is equal to ���b
�
c c����s����

We start by showing that in any execution of Ass
� there are at least s sessions� Consider

an arbitrary execution
 of Ass
� � We partition
 into execution fragments�
 �
�
� � � �
s���

such that	 �i

� consists only of the computation steps at time �� and �ii
 for each k�

� � k � s� ��
� � � �
k is the shortest pre�x of
 that includes a con�guration in which� for

some i � �n
� counter i � k�b�c c� ��� We have	

Lemma �
� For each k� � � k � s � �� there is a session in
k�

Proof� Let pi be the �rst process to set counteri to k�b
�
c c��� in
� By the de�nition of
k �

the steps at which counteri is equal to �k� ���b
�
cc� ��� j� for � � j � b�c c� �� are included

in
k � Thus� there are at least b
�
c c � � steps by pi in
k� These steps take time at least

c�b�cc� �� � c�c � �� thus� there exists a computation step by every process and� therefore� a

session in
k�

In addition� there is a session in
� since every process takes a step at time ��

There is also a session in
s��� since� by the de�nition of
s��� each process sets its counter

to � � �s� ���b�c c � �� at its last non
idle step� Together with Lemma ���� this implies that

there are at least s sessions in any timed execution of Ass
� �

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

Each process will enter an idle state no later than time �� �b�c c� ���s� ��� since for any

process the time between successive computation steps is at most �� Thus� Ass
� solves the

s
session problem on G within time � � �b�c c� ���s� ���

When d and diam�G� are known� it is possible to calculate in advance which of the

algorithms of Theorems ��� and ��� is faster� and run it� Moreover� even if d and diam�G�

are not known� it is possible to run these algorithms �side by side�� halting when the �rst of

them does� In both cases� we get	

Theorem �
� Let G be any graph� There exists a semi�synchronous algorithm� Ass� which

solves the s�session problem on G within time � � minfb�cc � �� diam�G�Dg�s� ���

����� Lower Bounds

In all of our lower bound proofs� we use an in�nite timed execution in which processes take

steps in round
robin order� starting with p�� with step time close to �� and all messages incur

a delay of exactly d� It is called a slow� synchronous timed execution�

The Asynchronous Model

We start by showing that for the asynchronous model� the algorithm presented in Theorem ���

is optimal� The proof of the following theorem is based on delaying information propagation

and then perturbing an execution to obtain an execution of the algorithm which does not

include s sessions�

Theorem �

 Let G be any graph� There does not exist an asynchronous algorithm which

solves the s�session problem on G within time strictly less than diam�G�d�s� ���

Proof� Assume� by way of contradiction� that there exists an asynchronous algorithm� A�

which solves the s
session problem on G within time strictly less than diam�G�d�s� ��� We

construct a timed execution of A which does not include s sessions�

The following is an informal outline of the proof� We start with a slow� synchronous timed

execution ofA and partition it into s�� execution fragments each of which is completed within

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

time � diam�G�d� Since communication is slow� there is no communication between any pair

of antipodal nodes within each fragment� By �retiming� we will perturb each fragment to get

a new execution fragment in which there is a �fast� peripheral node which takes all of its steps

before a �slow� antipodal node takes any of its steps� Our construction will have the �slow�

node of each execution fragment be identical to the �fast� node of the next execution fragment�

In each execution fragment� a session can be completed as soon as the �slow� peripheral node

takes its �rst computation step� since the �fast� peripheral node does not take any more

computation steps� no more sessions can be completed in this execution fragment� This will

guarantee that at most one session is contained in each execution fragment� thus� the total

number of sessions in the �retimed� execution is at most s� �� contradicting the correctness

of A�

We now present the details of the formal proof�

Pick some � such that � � � � �diam�G�d�s� �� � ����� Consider a slow� synchronous

timed execution � �

� of A� with step time �� �� where
 is the shortest pre�x of � such

that all processes are in an idle state in last�
� and
� is the remaining part of �� We perturb

� to obtain another timed execution ��� that does not include s sessions�

We �rst show how to modify
 to obtain �� By assumption� tend �
� � diam�G�d�s� ���

Write
 �
�
� � � �
s��� where
� � � and for each k� � � k � s��� tend �
k�� tend �
k��� �

diam�G�d�� � �� � diam�G�d� �We adopt the convention that tend �
�� � ��� For some

sequence i�� � � � � is�� of peripheral nodes� we construct from each execution fragment
k an

execution fragment �k � �k	k� such that	

��� �k contains no computation step of pik�� � and

��� 	k contains no computation step of pik �

In this construction� ik�� is the �fast� node which takes all of its steps in the execution

fragment �k� before the �slow� node ik takes any of its steps� �All the steps of ik are in 	k��

Our construction uses peripheral nodes since they maximize the time to transfer information

to other nodes� which is roughly diam�G�d� In particular� ik�� will be antipodal to ik�

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

We now show� for each k� � � k � s� �� how to construct �k� by induction on k� For the

base case� let i� be an arbitrary peripheral node of G� and take �� to be ��

Assume we have picked i�� � � � � ik�� and constructed ��� � � � � �k��� Let ik be some node

that is antipodal to ik��� i�e�� dist�ik��� ik� � diam�G�� note that ik is also peripheral� We

now show how to construct �k�

For any node u� �k includes all events at u that occur at time � tend �
k����dist�u� ik���d

in
k � 	k includes all events at u that occur at time � tend �
k����dist�u� ik��d� in
k� Events

at each process occur in the same order as in
k and all occur at time �� in both �k and 	k�

In addition� ordering of events across di�erent processes that occur at the same time in
k is

preserved within each of �k and 	k � Since

tend �
k��� � dist�ik� ik���d � tend �
k��� � diam�G�d � tend �
k� �

and all events at ik occur at time � tend �
k� in
k� this implies that all events at ik will

appear in �k� On the other hand� since

tend �
k��� � dist�ik��� ik���d � tend �
k��� �

and all events at ik�� in
k occur at time � tend �
k���� all events at ik�� in
k will appear

in 	k� Thus� �k � �k	k has properties ��� and ��� above�

Let � � ���� � � � �s���

By construction� events at each process pi� i � �n
� occur in the same order in � as in
�

Hence� pi undergoes the same state changes in � as in
� and� therefore� statei�last���� �

statei�last�
���

We now modify
� to obtain ��� The �rst computation step of any process in �� will occur

at time � and all later computation steps of it are � time unit apart� Any message delivery

event at a process will occur at time d after the corresponding message sending event�

We next establish that ��� is a timed execution of A� We start by showing	

Lemma �
	 Each receive event is after the corresponding send event in ����

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

Proof� Consider the message send event �� at node u� which occurs at time t� in

�

and let �� be the corresponding message delivery event at node u� which occurs at time

t� in

�� Note that u� and u� are neighboring processes� i�e�� dist�u�� u�� � �� Hence�

dist�u�� ik��� � � � dist�u�� ik���� The only non
trivial case is when �� and �� occur in the

same
k� for some k� � � k � s � �� We show that the ordering of �� and �� is the same in

�k as in
k�

The only case of interest is when �� occurs in 	k� while �� occurs in �k� In this case�

t� � tend �
k��� � dist�u�� ik���d� while t� � tend �
k��� � dist�u�� ik���d� Then�

t� � t� � d

� tend �
k��� � dist�u�� ik���d� d �since �� occurs in 	k�

� tend �
k��� � �dist�u�� ik��� � ��d

� tend �
k��� � dist�u�� ik���d �

a contradiction�

All events in � occur at time �� in ��� computation steps occur at step time � and all

messages incur a delay of exactly d� Since there are no lower bounds on either process step

time or message delivery time in the asynchronous model� we have	

Lemma �
� Lower and upper bounds on step time are preserved in ����

Lemma �
� Lower and upper bounds on message delay time are preserved in ����

To derive a contradiction� we prove	

Lemma �
�� There are at most s� � sessions in ��

Proof� We show� by induction on k� that �� � � � �k���k� does not contain k sessions� for

� � k � s� ��

For the base case� note that� by construction� �� � � and �� does not include a computa

tion step of pi� � Thus� ���� cannot contain one session�

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

For the induction step� assume that the claim holds for k � �� i�e�� �� � � ��k���k�� does

not contain k � � sessions� for � � k � s� Hence� the kth session does not start within

�� � � � �k���k��� Since neither 	k�� nor �k contains a computation step of pik�� � 	k���k does

not contain a session� Thus� �� � � � �k���k does not contain k sessions�

To complete the proof� note that 	s�� does not contain a session since� by construction�

it does not contain a computation step of pis�� �

Thus� there are strictly less than s sessions in �� however� in �� no process takes a non
idle

step� so there cannot be an additional session in ��� A contradiction�

We remark that the general outline of this lower bound proof follows ��� ��
� However�

while the proofs in ��� ��
 use causality arguments to reorder the events in the execution�

our proof presents an explicit reordering and retiming of the events� We do so because this

provides a basis for the retiming arguments used to show the lower bound for the semi

synchronous model� Our improvement over ���
 is achieved by carefully choosing only periph

eral nodes in the construction of ��

The Semi�Synchronous Model

In Subsection ������ we have seen two algorithms that solve the s
session problem in the semi

synchronous model� The �rst of them� Ass
� � solves the s
session problem on G within time

��diam�G�D�s���� Designed for the asynchronous model� Ass
� has the interesting property

that processes do not use any timing information� Loosely speaking� the lower bound proved

in Theorem ��� says that if processes have no timing information� then diam�G�d�s� �� is a

lower bound for any asynchronous algorithm which solves the s
session problem on G�

Recall� also� that Ass
� uses no communication� but relies only on timing information to

achieve an upper bound of � � �b�c c� ���s� ��� We �rst show that this upper bound is close

to optimal in the absence of communication	

Theorem �
� Let G be any graph� There does not exist a semi�synchronous algorithm which

solves the s�session problem on G within time strictly less than b�c �s � ��c and uses no com�

munication�

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

Proof� Assume� by way of contradiction� that there exists a semi
synchronous algorithm�

A� which solves the s
session problem on G within time strictly less than b�c �s� ��c� and uses

no communication� We construct a timed execution of A which does not include s sessions�

Let
 be a slow� synchronous timed execution of A� Assume� without loss of generality�

that pn is the last process to enter an idle state in
� Let
 �
�

�� where
� includes events

at time �� while
� is the remaining part of
� Let m be the number of non
idle steps taken

by any process in
�� It must be that m � b�c �s � ��c� since A solves the s
session problem

within time � b�c �s� ��c� and
 is slow�

Now modify
� to get a new timed execution fragment � in which all processes except pn�

operate with fastest step time� i�e�� c� This can be done since there are no receive events in
�

In �� all processes but pn enter an idle state at time cm � cb�c �s���c � c�c �s��� � s���

Thus� in �� pn performs strictly less than s � � steps when all other processes are not in an

idle state� Therefore� at most s � � sessions can be completed in �� hence� at most s � �

sessions can be completed in
��� A contradiction�

We show next that communication and timing information cannot be combined to get an

upper bound that is signi�cantly better than the upper bound achieved in Theorem ���� We

prove	

Theorem �
	 Let G be any graph and assume that d � d
minfb���cc�diam�G�dg � �� There does

not exist a semi�synchronous algorithm which solves the s�session problem on G within time

strictly less than � �minfb �
�cc� diam�G�dg�s� ���

Proof� Assume� by way of contradiction� that there exists a semi
synchronous algorithm� A�

which solves the s
session problem on Gwithin time strictly less than ��minfb �
�cc� diam�G�dg�s�

��� We construct a timed execution of A which does not include s sessions�

The general structure of our lower bound proof closely follows that of Theorem ���� though

there are several complications	 First� the early events of the execution� happening at time � �

and including processes� steps occurring at time �� are handled separately �unlike the proof

of Theorem ���� Second� the additional timing requirements placed in the semi
synchronous

model require more careful arguing to show the correctness of the construction�

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

We start with a slow� synchronous timed execution of A and partition it into an execution

fragment containing the events at time � and s � � execution fragments each of which is

completed within time � minfb �
�cc� diam�G�dg� Since communication is slow� there is no

communication between any pair of antipodal nodes during a fragment� Furthermore� since

the execution is slow� a process takes� roughly� at most �
�c steps� so it is possible to have these

all steps occur at the same time another process takes only one step� By �retiming�� we will

perturb each fragment to get a new execution fragment in which there is a �fast� peripheral

node which takes all of its steps before a �slow� antipodal node takes any of its steps� The part

of the proof that shows that the �retimed� execution preserves the timing constraints of the

semi
synchronous model requires substantially more careful arguments than the corresponding

part in the proof of Theorem ���� In particular� we need to choose the execution fragments

to take time � b �
�cc� so that it will be possible for a process not to have a computation step

during a large part of the execution fragment� Our construction will have the �slow� node

of each execution fragment be identical to the �fast� node of the next execution fragment�

Arguing as in Theorem ���� this will guarantee that at most one session is contained in each

execution fragment� Thus� the total number of sessions in the �retimed� execution is at most

s� �� contradicting the correctness of A�

We now present the details of the formal proof�

Denote e � minfb �
�cc� diam�G�dg�

If e � �� then the lower bound we are trying to prove is � � � ��s � �� � s � �� Since s

steps of each process are necessary if s sessions are to occur and they can occur � time unit

apart� it follows that s�� is a lower bound� Thus� we assume� without loss of generality� that

e � �� It follows that c � �
� � Note that� by assumption� d �

d
e � �� i�e�� d �

�e
e�� � Since e � ��

it follows that d � ��

Let � be a slow� synchronous timed execution of A with step time �� Assume � � ��

��

where �� contains only events that occur at time � �� and ��
 is the shortest pre�x of

� such that all processes are in an idle state in last���
� �
� is the remaining part of ���

Denote T � tend ���
�� Since � is slow and s steps of each process are necessary to guarantee

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

s sessions� T � s � �� Since A solves the s
session problem within time strictly less than

�� e�s� ��� it follows that T � �� e�s� ��� Note that� by construction� tstart�
� � �� Thus�

tend �
� � tstart�
� � T � � � e�s � ��� and hence dT��
e e � �s � ��� Denote s� � dT��

e e� it

follows that s� � s � ��

We write
 �
�
� � � �
s� � where	

	 For each k� � � k � s��
k contains all events that occur at time t� where �� �k� ��e �

t � � � ke� and

	
s� contains all events occurring at time t� where � � �s
� � ��e � t � T �

That is� we partition
 into execution fragments� each taking time � e�

Figure �
� depicts the timed execution ��

�� Each horizontal line represents events

happening at one process� We use the symbol 	 to mark non
idle process steps� similarly�

we use the symbol � to mark idle process steps� Arrows show typical message delay times

between pairs of processes� dashed vertical lines mark time points that are used in the proof�

We reorder and retime events in
 to obtain a timed sequence � and reorder and retime

events in
� to obtain a timed sequence
�� such that ����
� is a timed execution of A that

does not include s sessions�

We �rst show how to modify
 to obtain an execution fragment � � ���� � � � �s� that

includes at most s� � s � � sessions� For some sequence i�� � � � � is� of peripheral nodes� we

construct from each execution fragment
k an execution fragment �k � �k	k � such that	

��� �k contains no computation step of pik�� � and

��� 	k contains no computation step of pik �

For each k� � � k � s�� we show how to construct �k inductively� For the base case� let i�

be an arbitrary peripheral node of G�

Assume we have picked i�� � � � � ik�� and constructed ��� � � � � �k��� Let ik be some node

that is antipodal to ik��� i�e�� dist�ik��� ik� � diam�G�� note that ik is also peripheral� We

now show how to construct �k� For any node u� �k includes all events at u that occur at

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

	 	 � � � 	 	 	 	 	 � � � 	 � � �

	 	 � � � 	 	 	 	 	 � � � � � � �

	 	 � � � 	 	 	 	 	 � � � � � � �

	 	 � � � 	 	 	 	 	 � � � 	 � � �

	 	 � � � 	 	 	 	 	 � � � � � � �

	 	 � � � 	 	 	 	 	 � � � � � � �

	 	 � � � 	 	 	 	 	 � � � 	 � � �

pn

pn��

pik

pik��

pik��

p�

p�

���

���

���

���

� � � � �k� ��e � � �k � ��e � � ke T

��

k�� ��

k
��

�� ��
 �

�

� � �

�
�
�
�
�
�
�
���

d

Q
Q
Q
Q
Q
Q
Q
QQs

d

�
�
�
�
�
�
�
���

d

Q
Q
Q
Q
Q
Q
Q
QQs

d

Figure ���	 The timed execution ��

�

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

time � � � �k � ��e � dist�u� ik���d in
k� 	k includes all events at u that occur at time

� � � �k � ��e � dist�u� ik���d in
k � Events at each process occur in the same order as in

k and all occur at step time of c� in both �k and 	k� In addition� ordering of events across

di�erent processes that occur at the same time in
k is preserved within each of �k and 	k�

Since

���k���e�dist�ik � ik���d � ���k���e�diam�G�d � ���k���e�e � ��ke � tend �
k� �

and all events at ik occur at time � tend �
k� in
k� this implies that all events at ik will

appear in �k� On the other hand� since

� � �k� ��e� dist�ik��� ik���d � � � �k � ��e � tstart�
k� �

and all events at ik�� in
k occur at time � tend �
k���� all events at ik�� in
k will appear

in 	k� Thus� �k � �k	k has properties ��� and ��� above�

To complete our construction� we assign times to events in �k� Let tstart���� � c� The

�rst and last computation steps of ik in �k occur at times tstart��k� � tend �	k��� � c and

tend��k�� respectively� Similarly� the �rst and last computation steps of ik�� in 	k occur at

times tstart�	k� � tend��k� and tend�	k�� respectively� Steps are taken c time units apart� For

each process pj � we schedule each computation step �j of pj in �k to occur simultaneously with

a computation step �ik of ik such that �j and �ik occurred at the same time in
k� Similarly�

for each process pj � we schedule each computation step �j of pj in 	k to occur simultaneously

with a computation step �ik�� of ik�� such that �j and �ik�� occurred at the same time in
k �

Any message delivery event at a process will occur right after and at exactly the same time

as the computation step of the process which immediately precedes the delivery event in
k �

We will shortly show that assigning times in this manner is consistent with the requirements

for a timed execution�

We now modify
� to obtain ��� The �rst computation step of any process in �� will

occur at time c after its last computation step in � and all later computation steps of it will

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

occur c time units apart in ��� Any delivery event at a process will occur at time d after the

corresponding send event�

Figure �
� depicts the timed execution ����
� using the same conventions as in Figure �
��

We remark that what allowed us to �separate� the steps at ik�� from those at ik in each

of the execution fragments was the assumption that the length of each execution fragment is

less than diam�G�d which is the time needed for a communication between an antipodal pair

of nodes to be established�

We �rst show that ����
� is a timed execution of A� By Lemma ����� since s� � s� � and

�� contains exactly one session� we derive a contradiction�

By the same arguments as in Lemma ���� we prove	

Lemma �
�� Each receive event is after the corresponding send event in ����
��

Before showing that the timing constraints are preserved in ����
�� we prove the following

simple fact	

Claim �
� ��
 For any k� � � k � s� � �� tend ��k
��� tend ��k� � �� c�

��
 For any k� � � k � s�� tend ��k�� tend ��k��� � �� c�

Proof� We �rst show that for any k� � � k � s� � �� tend ��k
��� tend ��k� �
�
� � and for any

k� � � k � s�� tend ��k�� tend ��k� �
�
� � c�

Fix some k� � � k � s�� By construction�

tstart�
k� � � � �k � ��e�

while

tend �
k� � � � ke�

Thus

tend �
k�� tstart�
k� � � � ke� �� �k � ��e � e � b
�

�c
c�

Let m be the maximum number of steps over all processes that some process takes within
k �

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

	 	 	 	 	 	 	 	� � � � � � 	 � � �

	 	 	 	 	 	 	 	� � � � � � � � � �

	 	 	 	 	 	 	 	� � � � � � � � � �

	 	 	 	 	 	 	 	� � � � � � 	 � � �

	 	 	 	 	 	 	 	� � � � � � � � � �

	 	 	 	 	 	 	 	� � � � � � � � � �

	 	 	 	 	 	 	 	� � � � � � 	 � � �

pn

pn��

pik

pik��

pik��

p�

p�

���

���

���

���

� c tend ��s��

��
�k�� ��

	k�� ��
�k ��

	k
��

�k�� ��
�k

��
�� ��

�
�
��

� � �

C
C
C
C
CCW �

�
�
�
���

�
�
�
�
��� C

C
C
C
CCW

Figure ���	 The timed execution ����
�

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

If both tstart�
k� and tend�
k� are integral� tend�
k�� tstart�
k� � b �
�cc � �� then� since

is a slow execution�

m � tend�
k�� tstart�
k� � � � b
�

�c
c �

�

�c
�

If at least one of tstart�
k� and tend�
k� is not integral� then� since
 is a slow execution�

m � dtend �
k�� tstart�
k�e � db
�

�c
ce � b

�

�c
c �

�

�c
�

Thus� in any case� m � �
�c �

Let nk be the number of computation steps of process pik�� in
k and nk
� be the number

of computation steps of process pik�� in
k
�� �Recall that� by construction� in �k� pik�� will

have all of its steps in 	k � while in �k
�� pik�� will have all of its steps in �k
��� Thus�

tend ��k
��� tend ��k� � nk
�c � mc �
�

�c
c �

�

�
�

Also� since pik�� takes nk steps in 	k with the �rst occurring at time tstart�	k� � tend��k��

and the last occurring at time tend�	k� � tend��k�� we have	

tend ��k�� tend ��k� � �nk � ��c � �m� ��c � �
�

�c
� ��c �

�

�
� c �

Now� we have

tend ��k
��� tend ��k� � tend ��k
��� tend ��k� � tend ��k�� tend ��k� �
�

�
�
�

�
� c � �� c�

which proves ���� Also�

tend ��k�� tend ��k��� � tend ��k�� tend ��k� � tend ��k�� tend ��k��� �
�

�
� c�

�

�
� �� c�

which proves ����

We next show	

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

Lemma �
�� Lower and upper bounds on step time are preserved in ����
��

Proof� By construction� no two computation steps are closer than c in ����
�� so� the lower

bound on step time is preserved� Note also that the di�erence between consecutive computa

tion steps of a process is maximized when the process is a peripheral node� ik� for some k such

that � � k � s� � �� that has no computation steps in either 	k or �k
�� By Claim �������

this is less than or equal to ��

To complete the proof that ����
� is a timed execution we show that	

Lemma �
�� The time between a send event and the corresponding receive event in ����
�

is at most d�

Proof� Let �� be a computation step at node u� which occurs at time t� in ��

�� in which

a message is sent� let �� be the corresponding delivery event at node u� occurring at time t�

in ��

�� Assume �� and �� are scheduled to occur at times t�� and t
�
�� respectively� in ����

��

If �� occurs in
� then� by construction� t��� t�� � d� in ����
�� So assume �� and �� occur

in ��
� We �rst consider the case where both �� and �� occur in
� Assume �� appears in

k� and �� appears in
k� � where � � k� � k� � s�� Clearly� in �� �� appears in �k� and ��

appears in �k� � Note that� by construction� d � t� � t� � �k� � ��e � k�e � �k� � k� � ��e�

i�e�� k� � k� � � �
d
e � It follows that	

t�� � t�� � tend ��k��� tstart��k��

� tend ��k��� tend ��k����

�
k�X

j�k�

tend ��j�� tend ��j���

� �k� � k� � �� �by Claim �������

�
d

b
� � � d �by assumption� �

as needed�

Finally� we consider the case where �� occurs in ��� i�e�� t� � �� Asume that �� appears

in
k� � By construction� d � t� � t� � t� � �k� � ��e� i�e�� k� � � �
d
e � Reasoning as in the

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

previous case� we get	

t�� � t�� � tend��k�� �
k�X

j��

�tend��j�� tend��j���� � k� �
d

e
� � � d�

as needed�

Lemma ���� implies that � contains at most s� � s� � sessions� also� �� contains exactly

one session� Therefore� there are at most s � � sessions in ���� Since in �� no process takes

a non
idle step� there is no additional session in ��� Thus� there are at most s� � sessions in

����
�� A contradiction�

����� The Non�Uniform Case

In this Subsection� we consider the case problem where delays on communication links are

not uniform� Speci�cally� we assume that for each �i� j� � E� the delay of any message along

�i� j� is in the interval ��� d�i� j�
 for some d�i� j� such that � � d�i� j����

We �rst develop some notation that is necessary for stating our results� Let p be a path

from node v� to node vk in G� i�e�� a sequence of nodes v�� v�� � � � � vk such that for each i�

� � i � k� �vi� vi
�� � E� Denote by l�p� the length� k� of p� We de�ne the delay on p� d�p��

to be the sum of the delay on its edges� i�e��

d�p� �
k��X

i��

d�vi� vi
�� �

We de�ne the delay from node i to node j� del�i� j�� to be the minimum of d�p� over all paths

p between i and j� Naturally� the delay on G� 'd�G�� is the maximum of the delay from one

node of G to another� over all pairs of nodes in G� i�e��

'd�G� � max
i�j�V

del�i� j� �

Intuitively� 'd�G� is the worst
case delay that a message between a pair of nodes may incur

along a �shortest
delay� path from i to j in G� However� because of local processing time a

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

message that is sent along a path p can e�ectively incur a delay of up to d�p�� l�p�� since each

process in the path can incur a local processing delay of at most � and postpone forwarding

the message until its next computation step� Thus� we de�ne the e�ective delay on G to be

'D�G� � max
i�j�V

min
p a path from i to j

�d�p� � l�p�� �

Clearly� in the uniform case� when all delays are equal to d� 'd�G� and 'D�G� are equal to

diam�G�d and diam�G�D� respectively� Also�

'd�G� � 'D�G� � 'd�G� � diam�G� �

Denote dmin � min�i�j��E d�i� j��

To obtain bounds for the non
uniform case� we observe that 'D�G� naturally replaces

diam�G�D in the upper bounds for the uniform analogs� while 'd�G� naturally replaces

diam�G�d in the corresponding lower bounds�

Also� for the lower bounds for the semi
synchronous model� let e� � minfb �
�cc�

'd�G�g and

assume� as in the proof of Theorem ���� that e� � �� Note that if the condition d � d
e� � �

holds with dmin for d� then it also holds with d�i� j�� for any �i� j� � E� for d� This implies

that the non
uniform analog of the condition d � d
e �� is dmin �

dmin

e� � �� We next state our

upper and lower bound results for the non
uniform case� Their proofs exactly follow those of

their uniform analogs and are omitted�

Theorem �
� Let G be any graph� There exists an asynchronous algorithm Aas
w which solves

the s�session problem on G within time 'D�G��s� ���

Theorem �
� Let G be any graph� There exists a semi�synchronous algorithm Ass
w which

solves the s�session problem on G within time � � minfb�cc � ��
'D�G�g�s� ���

Theorem �
�� Let G be any graph� There does not exist an asynchronous algorithm which

solves the s�session problem on G within time strictly less than 'd�G��s� ���

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

Theorem �
�� Let G be any graph and assume that dmin �
dmin

minfb���cc��d�G�g
� �� There does

not exist a semi�synchronous algorithm which solves the s�session problem on G within time

strictly less than � �minfb �
�cc�

'd�G�g�s� ���

����� The Uninitialized Case

In this Subsection� we consider the uninitialized case of the s
session problem� The states of

a process are now partitioned into three disjoint sets	 quiescent� non�idle and idle� At time �

all processes except one� the initiator� are in a quiescent state� A process may enter a non
idle

state only upon receiving a message� In all other aspects� the behavior of the system in the

uninitialized case is as described in Section ���� The time associated with an execution of an

algorithm is the time until the last process enters an idle state�

Upper Bounds

We present algorithms that solve the s
session problem in the uninitialized case�

We start with the asynchronous model and present an algorithm which follows the style

of Aas� As soon as a process receives the �rst message� it communicates in order to learn

about completion of a session before advancing to the next session� As in Aas� each process

maintains as part of its state a variable that gives its current session number� upon hearing

that every other process has reached its current session� it increments its session number by

one and noti�es all other processes� The process enters an idle state when its session number

is set to s� We prove	

Theorem �
�� Let G be any graph� There exists an uninitialized� asynchronous algorithm�

Bas� which solves the s�session problem on G within time diam�G�Ds�

Proof� We describe an uninitialized� asynchronous algorithm� Bas� which solves the s
session

problem on G within time diam�G�Ds� that is� in any execution of Bas there are at least s

sessions and all processes enter an idle state no later than time diam�G�Ds� The algorithm

is described here informally� this description can be easily translated into a state transition

function�

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

For each i � �n
� each non
quiescent state of pi consists of the following components	

bu�er & a bu�er� an unordered set of elements of M� initially �� session & a nonnegative

integer� initially �� The message alphabet� M� consists of the pairs �i� k�� where i � �n
 and

� � k � s� ��

The algorithm is as follows	 The initiator� pi� sends a message �i�� �� to all processes

�including itself�� For each i � �n
� when pi receives the message �i�� ��� it enters a non
idle

state� sets sessioni to �� and broadcasts �i� ��� It then continues as in Aas� If for all j � �n
�

�j� sessioni� � bufferi� pi increments sessioni by �� If sessioni � s� pi enters an idle state

and remains in this state forever� Otherwise� pi broadcasts �i� sessioni�� As in previous

algorithms� we assume that messages from a process are �ooded on a shortest
paths tree

rooted at this process� We say that pi is in its kth session if sessioni � k� and we interpret

the message �i� k� as �process i executed a step in the kth session��

We start by showing that in any execution of Bas there are at least s sessions� Fix an

arbitrary timed execution
 of Bas and let pi� be the initiator process for that execution� For

any k� � � k � s� de�ne
k to be the longest pre�x of
 that does not include a con�guration

in which for some i � �n
� sessioni � k� Note that for each k� � � k � s � ��
k is a pre�x

of
k
�� For each k� � � k � s � �� let �k be such that
k
� �
k�k� let �s be such that

 �
s�s� As in Lemma ���� we can prove	

Lemma �
�� For each k� � � k � s � �� there is a session in �k�

In addition� there is a session in �s� since� for every i � �n
� a computation step is included

in �s at which pi sets sessioni to s� �Note that� by the de�nition of
s� such a step cannot

be included in
s�� This implies that there are at least s sessions in
� Since
 was chosen

arbitrarily� this implies the correctness of Bas�

We now analyze the time complexity of Bas� For each k� � � k � s� we de�ne	

Tk � max
i�V

ft 	 pi sets sessioni to k at time t in
g

Since every process pi is guaranteed to receives a �i�� �� message by time � diam�G�D� it

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

follows that T� � diam�G�D� As in Lemma ���� we can prove	

Lemma �
�
 For each k� � � k � s� Tk
� � Tk � diam�G�D�

Thus� it follows that Ts � diam�G�Ds� Hence� every process enters an idle state after

setting session to s� no later than time diam�G�Ds� Thus� Bas solves the s
session problem

on G within time diam�G�Ds�

We continue with algorithms for the semi
synchronous model� Clearly� the algorithm in

Theorem ���� works also in the semi
synchronous model� We remark� however� that unlike

the case were processes start simultaneously� in the uninitialized case� timing information

cannot be exploited to improve the time complexity of diam�G�Ds achieved by Bas� We next

present a simple� semi
synchronous algorithm that relies on the timing information that is

available in the semi
synchronous model�

Theorem �
�� Let G be any graph� There exists an uninitialized� semi�synchronous algo�

rithm Bss which solves the s�session problem on G within time �diam�G�D��b�cc����s����

Proof� We describe an uninitialized semi
synchronous algorithm� Bss� which solves the s

session problem on G within time �diam�G�D � �b�c c � ���s � ��� For each i � �n
� the

state of process pi consists of a counter� an integer� initially ��� The message alphabet

is fwake � ack � ack�g� Let pi� be the initiator� At time �� pi� sends wake to all processes

and remains in a non
idle state� Once it receives ack from all processes� it sends ack� to

all processes and sets counteri� to �� At each of its next computation steps� it increments

counteri� by �� All other processes� upon receiving wake� enter a non
idle state and send ack

to pi� � When a non
initiator process� pi� receives an ack� message it sets counteri to �� At

each of its next computation steps� it increments counteri by �� Each process pi �including

the initiator� enters an idle state when counteri � �b
�
c c� ���s� ���

We start by showing that in any execution of Bss there are at least s sessions� Fix an

arbitrary timed execution � of Bss� Let � �
�
�

�� where	
� is the shortest pre�x of �

such that every process is in a non
quiescent state in last�
���
�
� is the shortest pre�x of �

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

such that counteri� � � in last�
�
���
�
�
 is the longest pre�x of � such that all processes

are in a a non
idle state in last�
�
�
� �

� is the remaining part of ���

We remark that� by construction� all processes are in a non
idle state in every con�guration

of
� Partition
 into execution fragments as
 �
�
� � � �
s��� such that� for each k�

� � k � s� ��
� � � �
k is the shortest pre�x of
 that includes a con�guration for which� for

some i � �n
� counteri � k�b�c c� ��� Clearly	

Lemma �
�� There is a session in
��

As in Lemma ���� we have	

Lemma �
�	 For each k� � � k � s � �� there is a session in
k�

Thus� there are at least s� � sessions in
 and� therefore� at least s sessions in �� Since �

was chosen arbitrarily� this implies the correctness of Bss� We now analyze the time complexity

of Bss�

Let � � ����
�� where �� is the shortest pre�x of � such that� for some i � �n
� counteri � �

in last����� and ��� is the longest pre�x of � such that some process is not in an idle state

in last����� ��
� is the remaining part of ��� It su�ces to show that

tend ��� � �diam�G�D� �b
�

c
c� ���s� �� �

Clearly� tend ���� � �diam�G�D� Also�

tend ���� tend ���� � �b
�

c
c � ���s� �� �

This implies that�

tend ��� � tend ���� � �b
�

c
c � ���s� �� � �diam�G�D� �b

�

c
c� ���s� �� �

as needed� Thus� every process enters an idle state no later than time �diam�G�D� �b�cc �

���s��� in �� Since � was chosen arbitrarily� this implies that Bss solves the s
session problem

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

on G within time �diam�G�D� �b�c c� ���s� ���

As in the initialized case� when d and diam�G� are known� it is possible to calculate in

advance which of the the algorithms of Theorem ���� and Theorem ���� is faster and run it�

Moreover� even if d and diam�G� are not known� it is possible to run these algorithms �side

by side� and halt when the �rst of them does�

Roughly speaking� each process starts executing the algorithm of Theorem ����� After

hearing from the initiator� pi� � for the �rst time� it starts executing also the algorithm of

Theorem ����� Speci�cally� it identi�es the wake message with the �i�� �� message�

Omitting some details and noting that	

minf�diam�G�D��b
�

c
c����s���� diam�G�Dsg � �diam�G�D�minf�b

�

c
c���� diam�G�Dg�s��� �

we can show	

Theorem �
�� Let G be any graph� There exists an uninitialized� semi�synchronous algo�

rithm� Bss� which solves the s�session problem on G within time �diam�G�D � minfb�c c �

�� diam�G�Dg�s� ���

Lower Bounds

We start by showing that for the asynchronous model� the uninitialized algorithm presented

in Theorem ���� is almost optimal� We will use an in�nite timed execution in which processes

take steps with step time close to � and all messages are delivered after exactly d delay� we

will call it a slow timed execution� The proof of the following theorem is based on delaying

information propagation and then perturbing an execution to obtain one which does not

include s sessions� The general structure of our proof closely follows that of Theorem ����

Theorem �
�
 Let G be any graph� There does not exist an uninitialized� asynchronous

algorithm which solves the s�session problem on G within time strictly less than diam�G�ds�

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

Proof� Assume� by way of contradiction� that there exists an uninitialized� asynchronous al

gorithm� A� which solves the s
session problem on G within time strictly less than diam�G�ds�

We construct a timed execution of A which does not include s sessions�

Pick some � such that � � � � �diam�G�d�s� �� � ����� Fix a peripheral process p� and

let � be a slow timed execution of A with step time �� �� in which p� is the initiator� Let p�

be a process which is antipodal to p�� Let � �
�

�� where	
� is the shortest pre�x of �

such that p� is in a non
quiescent state in last�
���
�
 is the shortest pre�x of � such that

all processes are in an idle state in last�
�
� �

� is the remaining part of ��� We perturb
�

to obtain another timed execution �
� that does not include s sessions�

We �rst show how to modify
�
 to obtain �� Since � is slow� tend �
�� � diam�G�d�

while� by assumption� tend�
�
� � diam�G�ds� This implies that	

tend �
�
�� tend �
�� � diam�G�ds� diam�G�d� diam�G�d�s� ��

Write
 �
�
� � � �
s��� where for each k� � � k � s � �� tend �
k� � tend �
k��� �

diam�G�d������ diam�G�d� Thus�
�
 �
�
� � � �
s�� �
��

�
� � � �

�
s��� where	

�
� �
�
�

and for each k� � � k � s� ��
�k �
k � Also denote

�
� �
�� For some sequence i�� � � � � is��

of peripheral nodes� we construct from each execution fragment
�k� an execution fragment

�k � �k	k such that	

��� �k contains no computation step of pik�� � and

��� 	k contains no computation step of pik �

We now show� for each k� � � k � s� �� how to construct �k� by induction on k� For the

base case� let i� � p��

Assume we have picked i�� � � � � ik�� and constructed ��� � � � � �k��� Let ik be some node

that is antipodal to ik��� i�e�� dist�ik��� ik� � diam�G�� note that ik is also peripheral� We

now show how to construct �k�

For any node u� �k includes all events at u that occur at time � tend �
k����dist�u� ik���d

in
�k� 	k includes all events at u that occur at time � tend �
k����dist�u� ik��� in

�
k� Events

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ��

at each process occur in the same order as in
�k � and all occur at time � in both �k and 	k�

In addition� ordering of events across di�erent processes that occur at the same time in
�k is

preserved within each of �k and 	k � Since

tend �

�
k��� � dist�ik� ik���d � tend �

�
k��� � diam�G�d � tend �

�
k� �

and all events at ik occur at time � tend �

�
k� in
�k� this implies that all events at ik will

appear in �k� On the other hand� since

tend �

�
k��� � dist�ik��� ik���d � tend �
k����

and all events at ik�� in
�k occur at time � tend �
k���� all events at ik�� will appear in 	k�

Thus� �k � �k	k has properties ��� and ��� above�

Let � � �� � � ��s���

By construction� events at each process pi� i � �n
� occur in the same order in � as in ��
�

Thus� pi undergoes the same state changes in � as in ��
� and� therefore� statei�last���� �

statei�last�
�
���

We now modify
� to obtain ��� The �rst computation step of any process in �� will occur

at time � after its last computation step in � and all later computation steps of it will occur

� time unit apart in ��� Any message delivery event at a process will occur at time d after

the corresponding message send event�

We next establish that ��� is a timed execution of A� In a way similar to the proof of

Lemma ��� we can show	

Lemma �
�� Each receive event is after the corresponding send event in ����

All events in � occur at time �� in ��� steps occur with step time � and all messages are

delivered after time exactly d� Since there are no lower bounds on either process step time or

message delivery time in the asynchronous model� we have	

Lemma �
�� Lower and upper bounds on step time are preserved in ����

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ���

Lemma �
�� Lower and upper bounds on message delay time are preserved in ����

As in Lemma ����� we can show	

Lemma �
�� There are at most s� � sessions in ��

Thus� there are strictly less than s sessions in �� however� in �� no process takes a non
idle

step� so there cannot be an additional session in ��� A contradiction�

We continue by showing that� as in the initialized case� there are limitations on combining

communication with the timing information available in the semi
synchronous model�

We will use an in�nite timed execution in which processes that are in a non
quiescent

state take steps synchronously� in round
robin order and with step time equal to �� and all

messages are delivered after exactly d delay� except for the initial messages from the initiator

to all other processes which are delivered after bdc delay� We will call it a slow� synchronous

timed execution� We show	

Theorem �
�� Let G be any graph and assume that d � d
minf��b���cc�diam�G�dg��� There does

not exist an uninitialized� semi�synchronous algorithm which solves the s�session problem on

G within time strictly less than diam�G�bdc� minfb �
�cc� diam�G�dg�s� ���

Proof� Assume� by way of contradiction� that there exists an uninitialized� semi
synchronous

algorithm� A� which solves the s
session problem onG within time strictly less than diam�G�bdc�

minfb �
�cc� diam�G�dg�s� ��� We construct a timed execution of A which does not include s

sessions�

The general structure of our lower bound proof closely follows that of Theorem ���� We

next present the details of the formal proof�

Denote e � minf�� b �
�cc� diam�G�dg�

If e � �� then the lower bound to prove is � diam�G�bdc� s� �� In this case� the proof is

trivial� Consider a slow� synchronous timed execution where the initiator� p�� is peripheral�

Since all initial messages take time bdc to be delivered� there is some peripheral process� p��

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ���

that enters a non
idle state no earlier than time diam�G�bdc� Since p� takes its steps at

a rate of �� and s steps of p� are necessary if s sessions are to occur� it follows that these

steps will need s � � time to be completed� Thus� p� enters an idle state no earlier than

time diam�G�bdc � s � �� Thus� we assume� without loss of generality� that e � �� As in

Theorem ���� it follows that c � �
� �

Fix a peripheral process p� and let � be a slow� synchronous timed execution of A in

which p� is the initiator� Let � �
�

�� where	
� is the longest pre�x of � such that there

is some peripheral process� p�� which is in a quiescent state in last�
���
�
 is the shortest

pre�x of � such that all processes are in an idle state in last�
�
� �

� is the remaining part

of ���

Since � is slow� tstart�
� � diam�G�bdc� Denote T � tend �
�
�� Since A solves the

s
session problem on G within time strictly less than diam�G�bdc� e�s � ��� it follows that

T � diam�G�bdc� e�s � ��� Thus� tend �
�� tstart�
� � T � diam�G�bdc � e�s � ��� hence�

dT�diam�G�bdc
e e � s � �� Denote s� � dT�diam�G�bdc

e e� it follows that s� � s� ��

We write
 �
�
� � � �
s� � where	

	 For each k� � � k � s��
k contains all events that occur at time t� where tstart�
� �

�k � ��e � t � tstart�
� � ke� and

	
s� contains all events occurring at time t� where tstart�
� � �s
� � ��e � t � T �

That is� we partition
 into execution fragments each taking time � e�

We reorder and retime events in
��
 and
� to obtain timed sequences ��� � and ���

respectively� such that ����
� is a timed execution of A that does not include s sessions�

We �rst show how to modify
� to obtain ��� Any event at a process which occurs at time

t in
� will occur at time tc in ��� This implies that events at each process occur in the same

order as in
� with step time c� In addition� ordering of events across di�erent processes that

occur at the same time in
� is preserved within ���

We now show how to modify
 to obtain an execution fragment � � ���� � � � �s� that

includes at most s� � s � � sessions� For some sequence i�� � � � � is� of peripheral nodes� we

construct from each execution fragment
k an execution fragment �k � �k	k � such that	

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ���

��� �k contains no computation step of pik�� � and

��� 	k contains no computation step of pik �

For each k� � � k � s�� we show how to construct �k inductively� For the base case� let i�

be p��

Assume we have picked i�� � � � � ik�� and constructed ��� � � � � �k��� Let ik be some node

that is antipodal to ik��� i�e�� dist�ik��� ik� � diam�G�� note that ik is also peripheral� We

now show how to construct �k� For any node u� �k includes all events at u that occur at time

� tstart�
� � �k � ��e � dist�u� ik���d in
k � 	k includes all events at u that occur at time

� tstart�
� � �k � ��e� dist�u� ik���d in
k � Events at each process occur in the same order

as in
k and all occur with step time c� in both �k and 	k� In addition� ordering of events

across di�erent processes that occur at the same time in
k is preserved within each of �k

and 	k � Since

tstart�
���k���e�dist�ik� ik��� � tstart�
���k���e�diam�G�d� tstart�
��ke � tend�
k� �

and all events at ik occur at time � tend�
k� in
k� this implies that all events at ik will

appear in �k� On the other hand� since

tstart�
k� � �k � ��e� dist�ik��� ik���d � tstart�
� � �k � ��e � tstart�
k� �

and all events at ik�� in
k occur at time � tend�
k���� this implies that all events at ik��

will appear in 	k � Thus� �k � �k	k has properties ��� and ��� above�

To complete our construction� we assign times to events in �k� Let tstart���� � tend�����c�

The �rst and last computation steps of ik in �k occur at times tstart��k� � tend�
k���� c and

tend��k�� respectively� Similarly� the �rst and last computation steps of ik�� in 	k occur at

times tstart�	k� � tend��k� and tend�	k�� respectively� Steps are taken c time units apart� For

each process pj � we schedule each computation step �j of pj in �k to occur simultaneously

with a computation step� �ik � of ik which is such that �j and �ik occurred at the same time

in
k � Similarly� for each process pj � we schedule each computation step �j of pj in 	k to

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ���

occur simultaneously with a computation step� �ik�� � of ik�� which is such that �j and �ik��

occurred at the same time in
k� Any message delivery event at a process will occur right

after and at exactly the same time as the computation step of the process which immediately

preceds it in
k� We shall shortly show that assigning times in this manner is consistent with

the requirements for a timed execution�

We �nally modify
� to obtain ��� The �rst computation step of any process in �� will

occur at time c after its last computation step in � and all later computation steps of it will

occur c time units apart in ��� Any message delivery event at a process will occur at time d

after the corresponding message send event�

We �rst show that ����
� is a timed execution of A� By Lemma ����� since s� � s� � and

�� contains no session� we derive a contradiction�

By the same arguments as in Lemma ���� we prove	

Lemma �
�� Each receive event is after the corresponding send event in ����
��

As in Lemma ����� we can show	

Lemma �
�� Lower and upper bounds on step time are preserved in ����
��

We �nally show	

Lemma �
�� The time between a message send event and the corresponding message delivery

event in ����
� is at most d�

Proof� Let �� be a computation step at node u�� occurring at time t� in
�

�� in which a

message is sent� let �� be the corresponding delivery event at node u�� occurring at time t�

in
�

�� Assume �� and �� are scheduled to occur at times t

�
� and t

�
�� respectively� in ����

��

If �� occurs in
�� then� by construction� t�� � t�� � d in ����
�� So assume �� and �� occur

in
�
� Since we constructed � exactly as in Theorem ���� the case where both �� and ��

occur in
 is handled as in Lemma ����� Thus� it only remains to consider the case where ��

occurs in
�� Assume that �� occurs in
k for some k such that � � k � s�� Note that� by

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ���

construction� t� � tend�
�� � �k � ��e� i�e�� k �
t��tend����

e � �� It follows that	

t�� � t�� � t�� � tend���� � tend����� t��

� t�� � tend���� � �tend�
��� t��c �by construction�

� tend��k�� tend���� �
tend�
��� t�

�
�since c � �

��

� k �
tend�
��� t�

�
�by Claim ��� ����

�
t� � tend�
��

e
� � �

tend�
��� t�
�

�
t� � t�

e
� � �

d

e
� � � d �by assumption� �

as needed�

By construction� there is no session in ��� Also� Lemma ���� implies that there are at most

s� � s sessions in ���� Since in �� no process takes a non
idle step� there is no additional

session in ��� Thus� there are at most s � � sessions in ����
�� A contradiction�

�� Shared Memory

This Section is organized as follows� Subsection ����� surveys some simple bounds� deducible

from either previous work �cf� ��
� or results in Section ���� that also hold for our asyn

chronous and semi
synchronous shared
memory models� Subsection ����� includes our main

lower bound�

����� Simple Bounds

For the asynchronous model� where there is no lower bound on processes� step time� the lower

bound proof in ��
� relying on the ability to schedule many steps by the same process at

the same time� still works to yield a lower bound of !�s logb n�
�� Also� the �tree network�

�Note that in ��
� the asynchronous model is de�ned in a slightly di�erent way than ours� more speci�cally
by having all in�nite admissible computations be allowable� and puts no restriction on the number of steps a
process takes at a time�

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ���

algorithm sketched in ��
 �Section �� still works in our model� The �tree network� algorithm

relies entirely on explicit communication between processes to ensure that the needed steps

have occurred and does not use any timing information� Roughly speaking� this algorithm

consists of building up a �tree�out of b
atomic registers whose leaves are the n processes�

Neglecting roundo�s� this network has depth logb n� Processes communicate through this

network in order to learn about completion of a session before advancing to the next session�

Thus� the necessary communication for one session can be accomplished in time O�logb n� and

the total time for all processes to enter an idle state after performing s sessions is O�s logb n�

in both the asynchronous and the semi
synchronous models�

On the other hand� the algorithm of Theorem ��� still works for the semi
synchronous

shared memory model� this algorithm does not use any communicationy� but relies entirely

on and exploits the timing information available in the semi
synchronous model to obtain a

bound which is sometimes better than the bound of the �tree network� algorithm� Roughly

speaking� in this algorithm each process takes about sb�c c computation steps before entering

an idle state�

It is possible to run the two previous algorithms �side by side�� halting when the �rst

of them does� and get a bound of O�minf�c � logb ngs� for the s
session problem in the semi

synchronous shared
memory model� Note that� by an appropriate choice of the various param

eters� this upper bound and the �s logb n� tight bound for the asynchronous model together

imply a time separation between semi
synchronous and asynchronous shared
memory models�

Note also that the lower bound of b�c �s � ��c� shown in Theorem ���� also holds for the

semi
synchronous shared memory model in the absence of communication�

����� Main Lower Bound

We show that� for the semi
synchronous model� communication and timing information cannot

be combined to yield an upper bound that is signi�cantly better than the O�minf�c � logb ngs�

upper bound discussed in Subsection ������

yThis means that no state transition can result in an operation on a shared variable�

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ���

In our lower bound proof� we use an in�nite timed execution in which processes take

steps in round
robin order� starting with p�� with step time equal to �� It is a called a slow�

synchronous timed execution� We have	

Theorem �
�	 There does not exist a semi�synchronous algorithm which solves the s�session

problem within time strictly less than � �minfb �
�cc� blogb�n� ��� �cg�s� ���

Proof� Assume� by way of contradiction� that there exists a semi
synchronous algorithm�

A� which solves the s
session problem within time strictly less than � � minfb �
�cc� blogk�n�

��� �cg�s� ��� We construct a timed execution of A which does not include s sessions�

We start with a slow� synchronous timed execution of A and partition it into an execution

fragment containing the events at time � and at most s � � other execution fragments each

of which is completed within time � minfb �
�cc� blogb�n � �� � �cg� We use causality and

fan
out arguments to argue that there is no communication through shared memory between

a certain pair of processes within each fragment� Furthermore� since the execution is slow� a

process takes� roughly� at most �
�c steps in each fragment� so it is possible to have all these

steps occur while another process takes only one step� By �retiming�� we will perturb each

fragment to get a new one in which there is a �fast� process which takes all of its steps

before a �slow� process takes any of its steps� The part of the proof that shows that the

�retimed� execution preserves the timing constraints of the semi
synchronous model requires

to choose the execution fragments to take time � b �
�cc� so that it will be possible for a process

to not take a computation step during a large part of the execution� Our construction will

have the �fast� process of each execution fragment be identical to the �slow� process of the

next execution fragment� This will guarantee that at most one session is completed in each

execution fragment� Thus� the total number of sessions in the �retimed� execution is at most

s� �� contradicting the correctness of A�

We now present the details of the formal proof�

Denote e � minfb �
�cc� blogb�n� ��� �cg�

If e � �� then the lower bound we are trying to prove is � � � ��s � �� � s � �� Since s

steps of each process are necessary if s sessions are to occur and they can occur � time unit

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ���

apart� it follows that s�� is a lower bound� Thus� we assume� without loss of generality� that

e � ��

Let � be a slow� synchronous timed execution of A� Assume � �
�

�� where
� contains

only events that occur at time � ��
�
 is the shortest pre�x of � such that all processes are in

an idle state in last�
�
�� and

� is the remaining part of �� Denote T � tend �
�
�� Since � is

slow and s steps of each process are necessary to guarantee s sessions� T � s��� Since A solves

the s
session problem within time strictly less than ��e�s���� it follows that T � ��e�s����

Note that� by construction� tstart�
� � �� Thus� tend �
�� tstart�
� � T �� � e�s���� Denote

s� � dT��
e e� it follows that s� � s� ��

We write
 �
�
� � � �
s� � where	

	 For each k� � � k � s��
k contains all events that occur at time t� where �� �k� ��e �

t � � � ke� and

	
s� contains all events occurring at time t� where � � �s
� � ��e � t � T �

That is� we partition
 into execution fragments� each taking time � e�

Figure �
� depicts the timed execution
�

�� Each horizontal line represents events

happening at one process� We use the symbol 	 to mark non
idle process steps� similarly� we

use the symbol � to mark idle process steps� Dashed vertical lines mark time points that are

used in the proof�

We reorder and retime events in
 to obtain a timed sequence � and reorder and retime

events in
� to obtain a timed sequence ��� such that
���
� is a timed execution of A that

does not include s sessions�

In our construction� we will use a partial order ��� representing �dependency�� on the

computation steps that processes take in
� We start by de�ning ��� For every pair of steps

��� �� in
� we let �� �� �� if �� � �� or if �� precedes �� in
 and either �� and �� are

steps taken by the same process or by di�erent processes� but on the same shared variable�

Close �� under transitivity� �� is a partial order� and every total order of computation

steps in
 consistent with �� represents a computation which leaves the system in the same

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ���

	 	 � � � 	 	 	 	 	 � � � 	 � � �

	 	 � � � 	 	 	 	 	 � � � � � � �

	 	 � � � 	 	 	 	 	 � � � � � � �

	 	 � � � 	 	 	 	 	 � � � 	 � � �

	 	 � � � 	 	 	 	 	 � � � � � � �

	 	 � � � 	 	 	 	 	 � � � � � � �

	 	 � � � 	 	 	 	 	 � � � 	 � � �

pn

pn��

pik

pik��

pik��

p�

p�

���

���

���

���

� � � � �k� ��e � � �k � ��e � � ke T

��

k�� ��

k
��

� ��
 �

�

� � �

Figure ���	 The timed execution
�

�

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ���

con�guration as
� �Clearly�
 itself provides such a total order��

We �rst show how to modify
 to obtain an execution fragment � � ���� � � � �s� that

includes at most s� � s�� sessions� For some sequence pi� � � � � � pis� of processes� we construct

from each execution fragment
k an execution fragment �k � �k	k� such that	

��� �k contains no computation step of pik�� � and

��� 	k contains no computation step of pik �

In this construction� pik is the �fast� process which takes all its steps in �k� before the

�slow� process pik�� takes any of its steps� �All the steps of pik�� are in 	k��

For each k� � � k � s�� we show how to construct �k inductively� For the base case� let

pi� be an arbitrary process�

Assume we have picked pi� � � � � � pik�� and constructed ��� � � � � �k��� We �rst show that

there exists some process such that a communication between it and pik�� cannot be estab

lished in
k�

Lemma �
�
 Let �� be the �rst step of pik�� in
k� There is some process of which there is

no computation step 	 in
k such that �� �� 	�

Proof� Clearly� it su�ces to show that the number of steps
 in
k such that � ��
 � where

� is any step of pik�� in
k � is at most n� �� We proceed to count the number of such steps�

By construction�

tend�
k�� tstart�
k� � � � ke� �� �k � ��e � e�

Let m be the maximum number of steps over all processes that some process takes within
k �

Since
 is a slow execution�

m � dtend�
k�� tstart�
k�e � dee � dblogb�n� ��� �ce � blogb�n� ��� �c�

Clearly� the number of steps
 taken by any process in
k such that �i ��
 � where �i is the

ith step of pik�� in
 is at most k
m�i
�� Thus� the number of steps
 in
k such that � ��
 �

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ���

where � is any step of �ik�� is at most	

mX

i��

bm�i
� � b
m��X

i��

bi � b
bm � �

b� �
� bm
� � bblogb�n�����c
� � blogb�n��� � n� ��

The claim follows�

Fix pik to be any process such that a communication between pik�� and pik is not estab

lished in
k � We now show how to construct �k� For any process u� 	k includes all steps
 of

u in
k such that � ��
 � where � is any step of �ik�� in
k� �k includes all remaining steps

of u in
k � Steps at each process occur in the same order as in
k and all occur at step time

of c� in both �k and 	k� In addition� ordering of steps by di�erent processes that occur at the

same time in
k is preserved within each of �k and 	k� By Lemma ����� there is no step 	

of pik in
k such that� for some step � of pik�� in
k � � �� 	� This implies that all steps of

pik in
k will appear in �k� On the other hand� since � �� � for any step � of pik�� in
k � all

steps of pik�� in
k will appear in 	k� Thus� �k � �k	k has properties ��� and ��� above�

To complete our construction� we assign times to steps in �k� Let tstart���� � c� The �rst

and last steps of pik in �k occur at times tstart��k� � tend �	k����c and tend ��k�� respectively�

Similarly� the �rst and last steps of pik�� in 	k occur at times tstart�	k� � tend ��k� and

tend �	k�� respectively� Steps are taken c time units apart� For each process pj � we schedule

each step �j of pj in �k to occur simultaneously with a step� �ik � of pik which is such that

�j and �ik occurred at the same time in
k� Similarly� for each process pj � we schedule each

step �j of pj in 	k to occur simultaneously with a step� �ik�� � of pik�� which is such that �j

and �ik�� occurred at the same time in
k� We will shortly show that assigning times in this

manner is consistent with the requirements for a timed execution�

We now modify
� to obtain ��� The �rst computation step of any process in �� will occur

at time c after its last computation step in � and all later computation steps of it will occur

c time units apart in ���

Figure �
� depicts the timed execution
���
� using the same conventions as in Figure �
��

We remark that what allowed us to �separate� the steps of pik�� from those of pik in each

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ���

	 	 	 	 	 	 	 	� � � � � � 	 � � �

	 	 	 	 	 	 	 	� � � � � � � � � �

	 	 	 	 	 	 	 	� � � � � � � � � �

	 	 	 	 	 	 	 	� � � � � � 	 � � �

	 	 	 	 	 	 	 	� � � � � � � � � �

	 	 	 	 	 	 	 	� � � � � � � � � �

	 	 	 	 	 	 	 	� � � � � � 	 � � �

pn

pn��

pik

pik��

pik��

p�

p�

���

���

���

���

� c tend ��s��

��
�k�� ��

	k�� ��
�k ��

	k
��

�k�� ��
�k

��

� ��

�
�
��

� � �

Figure ���	 The timed execution
���
�

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ���

of the execution fragments was the assumption that the length of each execution fragment is

less than blogb�n� ��� �c which� due to the communication limitations of the model� is not

enough to guarantee that a process can �a�ect� at least one step of every other process�

We next establish that
���
� is a timed execution of A� We start by showing	

Lemma �
�� Ordering of computation steps operating on the same shared variable is pre�

served in
���
��

Proof� Let �� and �� be computation steps operating on the same shared variable in
k �

such that �� �� ��� The only non
trivial case is when �� and �� occur in the same
k� for

some k� � � k � s�� We show that the ordering of �� and �� is the same in �k as in
k �

The only case of interest is when �� occurs in 	k� while �� occurs in �k� By construction�

there is some step ��� of pik�� in
k such that ��� �� ��� while there is no step ��� of pik�� in

k such that �
�
� �� ��� But� from ��� �� �� and �� �� ��� it follows� by transitivity� that

��� �� ��� A contradiction�

In a way similar to Claim ������� we can prove the following simple fact	

Claim �
� For any k� � � k � s� � �� tend ��k
��� tend ��k� � �� c�

We next show	

Lemma �
�	 Lower and upper bounds on step time are preserved in
���
��

Proof� By construction� no two computation steps are closer than c in
���
�� so� the lower

bound on step time is preserved� Note also that the time di�erence between consecutive

computation steps of a process is maximized when the process is some pik � for some k such

that � � k � s� � �� that has no computation steps in either 	k or �k
�� By Claim ���� this

time di�erence is less than or equal to ��

This completes the proof that
���
� is a timed execution� Lemma ���� implies that � contains

at most s� � s � � sessions� also�
� contains exactly one session� Therefore� there are at

most s� � sessions in
��� Since in �
� no process takes a non
idle step� there is no additional

session in ��� Thus� there are strictly less than s sessions in
���
�� A contradiction�

CHAPTER 	� SEMI�SYNCHRONY VERSUS ASYNCHRONY ���

We remark that the general structure of our proof closely follows ��
 and that of the proof

of the lower bound for semi
synchronous networks in Theorem ���� Speci�cally� we used

causality arguments as in ��
 to reorder the steps in the execution� and presented an explicit

retiming of them as in the proof of Theorem ����

Chapter �

Semi�Synchrony versus Real Time

In this Chapter� we show how the timing assumptions made for the semi
synchronous model

may be exploited to enable processes acquire close estimates of real time�

This Chapter is organized as follows� Sections ��� and ��� include our lower and upper

bounds� respectively� on the achievable precision�

��� A Lower Bound

We show	

Theorem

� No clock synchronization algorithm can synchronize P within precision $ for

any $ � bd��
�c c�

Proof� Fix any tick synchronization algorithm A which synchronizes P within precision $�

We will show that $ � bd��
�c c�

Consider a fast� synchronous in�nite timed execution
 of A in which all processes take

steps at a rate of c in a rouund
robin order� starting with p�� and start spontaneously and

simultaneously executing their local protocols� and all messages are delivered after exactly

d
� delay� As a result of our assumptions�
 will also be �symmetric� in the sense that all

processes will undergo the same state changes in a synchronous fashion� enter a synchronized

state simultaneously and make a common estimate of real time� Let
 � ���� where � is

���

CHAPTER
� SEMI�SYNCHRONY VERSUS REAL TIME ���

the longest pre�x of
 such that some process is not in a synchronized state in last���� and

�� is the remaining part of
� We reorder and retime events in
 to construct an in�nite

timed execution
� of A which is equivalent to
 in the sense that for each process pi� events

at pi occur in the same order in
� as in
� This will guarantee that
 and
� will be

indistinguishable to the processes and� therefore� each process will undergo the same state

changes and� therefore� make the same estimate of real time upon entering a synchronized

state� as a result of a run of A� for each of these executions�

To facilitate the description of the technical details of our construction� we introduce

the following de�nition	 for each process pi� we denote by Ti the time at which pi enters a

synchronized state in
 and we say that pi gets a
retarded in
 if events at pi are retimed so

that the following two conditions are met	

�� Ordering of events at pi which occur in � is maintained�

�� All computation steps of process pi that occur at time � Ti� a in
 are rescheduled to

occur at a rate of �� with the �rst of them occurring at the same time as in
�

�� Each message delivery event at process pi which occurs at time � Ti�a in
 is resched

uled to occur at exactly the same time as the computation step of pi that immediately

precedes it�

Our construction for obtaining
� consists merely of a
retarding pn in
� where a �
d
�

c
��c �

We next eastablish that
� is a timed execution of A� We start by showing	

Lemma

� Each receiving event is after the corresponding sending event in
��

Proof� Consider the message sending event �� at node u� which occurs at time t� in
 and

let �� be the corresponding message delivery event at node u� which occurs at time t� in
�

In
�� let �� occur at time t
�
� and �� occur at time t

�
�� We show� by case analysis� that the

ordering of �� and �� is the same in
� as in
�

�� None of u� and u� is a
retarded in
�	 Obvious�

CHAPTER
� SEMI�SYNCHRONY VERSUS REAL TIME ���

�� u� � pn	 In this case t�� � t�� thus� we only need to consider the subcase where

t� � Tn � a� since� otherwise� t�� � t�� and the claim becomes trivial� We can also

assume that t� � T�� since� otherwise� �� occurs in �� and can be rescheduled to occur

at a later time in �� without a�ecting the estimate of real time made by u� at T�� Note

that since	

t�� � t�� � t� � t�� � t� � t� � �t
�
� � t�� �

d

�
� �t�� � t���

to show that t�� � t��� it su�ces to show that t
�
� � t� �

d
� � By our construction� the �rst

computation step of u� that occurs at time � Tn � a in
 will occur at time dT� � ae

in
�� Since there are at most d
t���Tn�a�

c e computation steps of u� that occur in
 at

time t such that	 Tn � a � t � t� and u� is a
retarded in
�� we will have	

t�� � t� � dTn � ae� �d
t� � �Tn � a�

c
e � ��� t�

� Tn � a� � �
t� � �Tn � a�

c
� �� �� �Tn � a � t� � �Tn � a��

� � �
t� � �Tn � a�

c
� �t� � �Tn � a��

� � � �t� � �Tn � a��
�� c

c

� � � �Tn � �Tn � a��
�� c

c

�since t� � Tn�

� � � a
�� c

c

� � � �
d

�
� ��

c

�� c

�� c

c

�
d

�
�

as needed�

�� u� � pn	 We only need to consider the subcase where t� � T� � a� since� otherwise�

t�� � t�� and the claim is trivial� It is obvious� however� that� by construction� we will

then have	 t�� � t� � t� � t��� as needed�

CHAPTER
� SEMI�SYNCHRONY VERSUS REAL TIME ���

We next show	

Lemma

� The time between a message�send event and the corresponding message�delivery

event in
� is at most d�

Proof� Consider the message sending event �� at node u� which occurs at time t� in
 and

let �� be the corresponding message delivery event at node u� which occurs at time t� in

� In
�� let �� occur at time t
�
� and �� occur at time t

�
�� We show� by case analysis� that	

t�� � t�� � d�

�� None of u� and u� is a
retarded in
�	 Obvious�

�� u� � pn	 In this case� t
�
� � t�� while� by construction� t

�
� � t�� Thus	 t

�
� � t�� � t� � t� �

d
� � d�

�� u� � pn	 In this case� t�� � t�� As in Lemma ���� we can show that	 t�� � t� �
d
� � Thus	

t�� � t�� � t�� � t� � t�� � t� � t� � t� �
d

�
�
d

�
� d�

as needed�

We can now show	

Lemma

�
� is a timed execution of A�

Proof� Obvious from Lemma ���� Lemma ��� and the fact that by construction� any two

consecutive computation steps of any process are either c or � apart in
��

Thus� we have shown so far that
� is a timed execution of A� Moreover� pn makes precisely

the same estimate about real time at the moment it is entering a synchronized state in each

of
 and
�� Let Tn be the �real� time at which pn is entering a synchronized state in
��

Let Ln�Tn�� and Ln�T
�
n�� be the estimates of real time that pn is making at Tn and T �

n� in

CHAPTER
� SEMI�SYNCHRONY VERSUS REAL TIME ���

 and
�� respectively� By our construction� Ln�Tn�� � Ln�T
�
n��� By symmetry� Tn��� the

time at which pn�� is entering a synchronized state in
 �in
�� as well� since there are no

changes for the times at which events at pn�� occur in
�� must equal Tn� by symmetry� also�

Ln���Tn���� � Ln�Tn��� We show a simple fact	

Claim

� The number of ticks that process pn�� receives between Tn and T �
n is at least

bd��
�c c�

Proof� Since process pn takes its computation steps at a rate of c in
� it will have dac e

computation steps that occur in
 at time t such that Tn � a � t � Tn� In
�� these

computation steps will be taken at a rate of � and require time � dac e � � to be completed�

since they are completed at time T �
n� this implies that	

T �
n � �Tn � a� � d

a

c
e � �

Therefore	

T �
n � Tn � �T

�
n � �Tn � a��� �Tn � �Tn � a�� � d

a

c
e � a

In view of the above� the number of ticks� m� that pn�� receives between Tn and T �
n must

satisfy	

m � b
T �
n � Tn
c

c

� b
bac c � a

c
c

� b
bd�

�
��cc �

d
�

c
��c

c
c

� b
d
�

�
��c � ��

d
�

c
��c

c
c

� b
d� �

�c
c

CHAPTER
� SEMI�SYNCHRONY VERSUS REAL TIME ���

We are now ready to present the main argument of our proof� We have	

$ � Ln�Tn�� � $� Ln�T
�
n��

�since
 and
� are equivalent�

� Ln���Tn��

�since A synchronizes P within precision $�

� Ln���Tn���� �m

� Ln�Tn�� �m

�since
 is symmetric with respect to pn and pn���

� Ln�Tn�� � b
d� �

�c
c

�by Claim ����

Therefore	

$ � b
d� �

�c
c �

as needed�

��� An Upper Bound

We show	

Theorem

� There exists an algorithm which synchronizes P within precision ��n���
n �d�dc e�

d
�� �

��c
c d� ��

Proof� We describe an algorithm which is very similar to the one in ���
� Each process p

can start executing the synchronization algorithm either spontaneously or upon receiving a

message from a process that has already done so� As soon as it starts� it sends its local time

in a message to the remaining processes and waits to receive a similar message from every

other process�

CHAPTER
� SEMI�SYNCHRONY VERSUS REAL TIME ���

We start with an informal description of A� Each process p keeps a special register Rp�

as for local time� a piece
wise continuous function of �real� time t� Rp�t�� can be de�ned� If p

receives a message from q saying that q�s local time is Lq� at its next computation step� when

the local time of it is� say� Lp� it estimates the di�erence between its local time with that of

q to be Lq �
d
� � Lp and adds this value to Rp� After receiving local times from all other

processes� it sets Rp to the average of the estimated di�erences �including � for the di�erence

between p and itself� by simply dividing Rp by n� next� p sets Lp to Lp � Rp� i�e� it adds Rp

to the current value of Lp� Finally� it sets Rp back to � and passes to a synchronized state�

having completed its synchronization algorithm�

We analyze the precision achieved by the above algorithm� Consider the real time tp at

which process p enters a synchronized state and let q be a process that entered a synchronized

state at tq � tp� Let Lp�t�� and Lp�t�� be the values that Lp attains right before and right

after� respectively� the last computation step of p� �Note that� according to the de�nition

of synchronization we have proposed� Lp�tp�� is what is really important and should be

compared to Lq�tp�� we can consider Lp�tp�� as� merely� an intermediate value�� Let� also�

Rp�tp�� be the average of the estimated �by p� di�erences of its local time with those of the

other processes and Rp�tp�� be �� By the algorithm� Lp�tp�� � Lp�tp�� � Rp�tp��� We

can de�ne the corresponding quantities	 Lq�tq��� Lq�tq��� Rq�tq�� and Rq�tq�� � � for the

process q� For any i� � � i � n� and any t�� t�� t� � t�� we denote by Ti�t�� t�� the number of

physical ticks that process pi received from its local clock between the real times t� and t��

We have	

jLp�tp�� � Lq�tp�j � jLp�tp�� � Rp�tp��� �Lq�tq�� � Tq�tq� tp��

� jLp�tq� � Tp�tq� tp� � Rp�tp��� �Lq�tq�� � Rq�tq�� � Tq�tq� tp��j

� jLp�tq� � Tp�tq� tp� � Rp�tp��� Lq�tq�� �Rq�tq��� Tq�tq� tp�j

� jLp�tq�� Lq�tq�� � �Rq�tq��� Rp�tp���j� jTp�tq� tp�� Tq�tq � tp�j

We start by showing	

CHAPTER
� SEMI�SYNCHRONY VERSUS REAL TIME ���

Lemma

� jLp�tq�� Lq�tq��� �Rq�tq���Rp�tp���j �
��n���

n �d�dc e�
d
��

Proof� For each r � P � let Drq be the di�erence of the local times of processes r and q�

as estimated by the process q� Also� let Drp be the di�erence of the local times of processes

r and p� as estimated by the process p� By the algorithm� Rq�tq�� �
�
n

P
r�P Drq and

Rp�tp�� �
�
n

P
r�P Drp� We have	

Lp�tq�� Lq�tq�� � �Rq�tq��� Rp�tp���

� Lp�tq�� Lq�tq�� � �
�

n

X

r�P

Drq �
�

n

X

r�P

Drp�

�
�

n
�n�Lp�tq�� Lq�tq���� �

X

r�P

Drq �
X

r�P

Drp��

�
�

n

X

r�P

�Lp�tq�� Lq�tq��� �Drq �Drp��

For any process r� r � P � let t � minftr� tqg� �For notational simplicity� we hide the fact

that t is� actually� dependent on r�� We add and subtract Lr�t� in the right side of the above

equation to get	

Lp�tq�� Lq�tq��� �Rq�tq���Rp�tp��

�
�

n

X

r�P

��Lp�tq�� Lr�t��� �Lq�tq��� Lr�t��� �Drq �Drp��

�
�

n

X

r�P

��Lr�t�� Lq�tq���Drq�� �Lr�t�� Lp�tq��Drp��

Hence	

jLp�tq�� Lq�tq��� �Rq�tq�� �Rp�tp���j

�
�

n

X

r�P

j�Lr�t�� Lq�tq�� �Drq�� �Lr�t�� Lp�tq��Drp�j

�
�

n

X

r�P

�jLr�t�� Lq�tq���Drqj� jLr�t�� Lp�tq��Drpj�

�
�

n
�
X

r�P

jLr�t�� Lq�tq���Drqj�
X

r�P

jLr�t�� Lp�tq��Drpj�

CHAPTER
� SEMI�SYNCHRONY VERSUS REAL TIME ���

Next� we show some simple facts	

Claim

�
P

r�P jLr�t�� Lq�tq���Drqj � d�dc e�
d
�

Proof� Notice that for r � q� t � tq and Lr�t� � Lq�tq��� so that	 jLr�t��Lq�tq���Drqj �

jLq�tq���Lq�tq���Drrj � j�� �j � �� For r
� q� let t� be the �real� time at which process

r sends its local time� Lr�t��� to every other process and let t� be the �real� time at which

process q receives it� or� rather� the �real� time at which process q takes a computation step

at which it estimates the di�erence in local times between process r and itself� �Again� for

notational simplicity� we hide the fact that t� and t� are� actually� dependent on r�� We have	

jLr�t�� Lq�tq�� �Drqj � jLr�t�� Lq�tq�� � �Lr�t�� �
d

�
� Lq�t���

Note� however� that since� by de�nition� t� � tq� and process q can only increase Lq in the

interval �t�� tq�
 by incrementing its value by one every time it receives a tick� it follows that	

Lq�t�� � Lq�tq��� Hence	

jLr�t�� Lq�tq���Drqj � jLr�t�� Lq�tq��� �Lr�t�� �
d

�
� Lq�tq���j

� jLr�t�� Lr�t���
d

�
j

� jLr�t�� Lr�t��j�
d

�

Note� however� that since� by de�nition� t � tr� process r can only increase Lr in the interval

�t�� t
 by incrementing its value by one every time it receives a physical tick� Thus	

jLr�t�� Lr�t��j � d
t � t�
c

e�

But� t � t� � tr � t � �d� since a communication between process r and any other process

can take time up to �d� So� combining the above� we get	

jLr�t�� Lq�tq���Drqj � d
�d

c
e �

d

�

CHAPTER
� SEMI�SYNCHRONY VERSUS REAL TIME ���

Therefore	

X

r�P

jLr�t�� Lq�tq���Drqj � �n� ��max
r�P

jLr�t�� Lq�tq���Drqj

� �n� ���d
�d

c
e �

d

�
�

As in Claim ���� we can show	

Claim

�
P

r�P jLr�t�� Lp�tq���Drpj � �n� ���d
�d
c e �

d
��

The lemma follows from the last two claims�

We next show	

Lemma

 jTp�tq� tp�� Tq�tq� tp�j �
��c
c d� �

Proof� Clearly� dtp � tqe � Tp�tq� tp� � d tp�tqc e and dtp � tqe � Tq�tq� tp� � d tp�tqc e� Hence	

jTp�tq� tp� � Tq�t
�
q� tp�j � d tp�tqc e � dtp � tqe� Note� however� that	 � � tp � tq � d� since

every process is alive at tq �otherwise� q could not have heard from all of them and go to a

synchronized state at t�� and a message from any process to p must reach p within time d

from tq � Thus� we have	

Tp�tq� tp�� Tq�tq� tp� � d
tp � tq

c
e � dtp � tqe

�
tp � tq

c
� �� �tp � tq�

�
�� c

c
d� �

The theorem follows from Lemma ��� and Lemma ����

Chapter �

Discussion and Directions for

Future Research

In this Chapter� we summarize and discuss the results in this thesis and possible extensions

of them� and suggest some general directions for future research in the area of timing
based�

distributed computation�

Our results for the continuous�time model are discussed in Section ���� Section ��� surveys

our results for the discrete�time model� We conclude� in Section ���� with a general discussion

and some important open problems�

��� Continuous�Time Model

We presented strongly timing
dependent� full caching linearizable implementations of shared

memory consisting of read�write objects in perfect and imperfect clock models� We also

presented lower bound results to support optimality of our implementations� These results

indicate that the goal of designing e�cient� linearizable implementations of shared memory

whose logical correctness is timing
independent may be too hard to achieve�

Although there is a gap between our lower bound of d� u
� and upper bound of d� �u on

jRj� jW j in the imperfect clocks model� we feel we have substantially answered the question

���

CHAPTER �� DISCUSSION AND DIRECTIONS FOR FUTURE RESEARCH ���

of how jRj� jW j depends on the parameters d and u� In particular� our upper bounds show

that only a single �long communication� �i�e�� a communication requiring time d� is needed�

which cannot be avoided �cf� ���
�� As our model approaches the synchronous model� i�e�� as

the message delay uncertainty u becomes smaller� the additive �u� term in our lower bounds

becomes smaller� and our upper bounds get �closer� to optimal�

As usual� it is necessary to be cautious in making inferences about the performance of

real systems from theoretical negative results� for the theoretical results are often based

on �unrealistic� assumptions that might be weakened in practice� In the case of our lower

bound results� however� we believe that such practical inferences about the performance of

�real� cache consistency protocols can be safely drawn since our theoretical assumptions are

quite minimal� We feel that our lower bound results still apply for real protocols which are

more complex� since they have to deal with issues such as cache misses and network or bus

contentions� �Note that the executions used in our lower bound proofs are �mild� and do not

rely on any serious network congestion that is non
tolerable in practice��

Our work continues the study of the cost of implementing memory objects� under various

correctness conditions and timing assumptions� for shared
memory multiprocessor systems�

initiated in ���� �� ��
� Although our model ignores several important practical issues� like�

e�g�� clock drift and �hot spots�� we believe that our algorithms can be adapted to work in

more realistic systems� We also believe that our results contribute to the understanding of

the �ne and intrinsic relation between sequential consistency and linearizability�

We expect that our synchronization schemes� in particular� the �time
 slicing� technique�

will be applicable to other problems in distributed computing� in particular� to more general

broadcasting and deadlock resolution problems�

Our results assume that clocks are available to processes� what if processes have no timing

information at all and computations are totally asynchronous and message
driven" What is

the tightest coe�cient of d in jRj� jW j for sequentially consistent or linearizable implementa

tions of read�write objects in this case" Also� it will be very interesting to obtain bounds on

the worst
case response times of implementing other memory objects like� e�g�� atomic snap

CHAPTER �� DISCUSSION AND DIRECTIONS FOR FUTURE RESEARCH ���

Step time range Upper bound Lower bound

��� �
 diam�G�D�s� �� diam�G�d�s� ��
��� �
 � � diam�G�D�s� �� � � diam�G�d�s� ��

b�c �s� ��c�
if no communication is used

�c� �
 � � minfb�cc � �� diam�G�Dg�s� ��
�� � c � �� � � minfb �

�cc� diam�G�dg�s� ���
if d � d

minf �
�c
�diam�G�dg

� �

Figure ���	 Summary of our main results for networks

shots �cf� ��
� under sequential consistency and linearizability� How does strengthening of the

shared memory primitives a�ect the worst
case response times" In the opposite direction� is

it possible to obtain better bounds on response times by relaxing the correctness conditions

to weaker ones like� e�g�� causal memory �cf� ��
�� or slow memory �cf� ���
�" �Results in

this direction have already been obtained in ��
�� We leave all of these as a subject for future

work�

��� Discrete�Time Model

����� Semisynchrony versus Asynchrony

Assuming that �
 d� i�e�� that D � d� we have almost matching upper and lower bounds

of diam�G�D�s� �� for the asynchronous network model� For the semi
synchronous network

model� we showed an upper bound of ��minfb�c c� �� diam�G�Dg�s� �� and a lower bound

of � � minf �
�c � diam�G�Dg�s� ��� Neglecting roundo�s� the upper bound is within a factor

of � of the lower bound� Similar results were proved for the cases where message delays are

not uniform� The case where processes do not start simultaneously was also studied� and

our techniques were extended to yield similar� although less tight results for this case� We

summarize our main results for networks in Figure ������

We also showed a lower bound of � � minfb �
�cc� blogb�n � �� � �cg�s � �� on the time

complexity of the s
session problem in a realistic semi
synchronous� shared
memory model�

CHAPTER �� DISCUSSION AND DIRECTIONS FOR FUTURE RESEARCH ���

Neglecting round
o�s� this lower bound is no less than ��� of a simple �combined� upper

bound described in Section ������

Our lower bound results show the inherent limitations on using timing information in

systems where communication is achieved through either network or shared memory�

Our work continues the study of time bounds in the presence of timing uncertainty within

the framework of the semi
synchronous model �cf� ��� �� ��� ��
�� Our results give a time

separation between semi
synchronous �in particular� synchronous� and asynchronous systems

achieving communication through either network or shared memory� Unlike previous separa

tion results ���� ��
�� our results do not rely on the ability to schedule several steps by the

same process at the same real time�

Our work leaves open several interesting problems� An obvious open problem is to close

the gap between the lower and the upper bounds for the semi
synchronous case �in both

the network and shared memory models�� It will be interesting to relax the assumption

d � d
minfb���cc�diam�G�dg�� used in to prove the lower bound for the semi
synchronous network

model� The de�nition of a session does not require processes to be �aware� of a session�s end�

how do the bounds change if this requirement is imposed"

Our results show that there are some synchronous algorithms that cannot be simulated

by asynchronous time algorithms without signi�cant time overhead �e�g�� algorithms for the

s
session problem�� In contrast� the results of Awerbuch ����
� indicate that there are some

synchronous algorithms which can be simulated by asynchronous algorithms with only con

stant time overhead� Perhaps the most interesting extension of our research is to characterize

the synchronous algorithms which can �respectively� cannot� be e�ciently simulated by asyn

chronous algorithms�

����� From Semi�Synchrony to Real Time

We de�ned the tick synchronization problem� a variant of the general synchronization problem�

in semi
synchronous distributed networks and proposed the precision achieved by a tick syn

chronization algorithm as an appropriate worst
case measure of its performance� We showed

CHAPTER �� DISCUSSION AND DIRECTIONS FOR FUTURE RESEARCH ���

that no algorithm can solve the tick synchronization problem and yet achieve precision less

than bd��
�c c� On the positive side� we presented a simple algorithm that achieves a precision

of
��n���

n �d�dc e�
d
���

��c
c d��� Neglecting round
o�s and considering only terms proportional

to d
c as the dominant ones in the expressions for our lower and upper bounds on precision�

our upper bound can be easily seen to be within a factor of about � of the lower bound�

We believe that an algorithm using more sophisticated averaging than the one we presented

may exist and imply a better upper bound on precision� We are currently investigating this

possibility�

There are several open problems directly related to our work on tick synchronization�

Most obviously� there is a gap remaining between our upper and lower bounds� It would

be interesting to consider the same problem in a model in which there is a nontrivial lower

bound on the time for message delivery� While our upper bound proof still goes through in

this model� the same is not true for our lower bound proof� Perhaps� the most intriguing open

problem is the extension of our work to the case of a general communication network�

��	 Open Problems

We conclude our thesis with a list of important open problems in the area of timing
based

distributed computation�

	 Develop a framework model� perhaps as a su�ciently expressive extension of that of

the timed automaton model �cf� ���� �
�� to host assertional reasoning proofs of timing

properties for algorithms subject to probabilistic timing assumptions� Predictable per

formance� in the form� e�g�� of safety properties to hold with overwhelming probability�

is often a desirable characteristic of real
time systems� Such a framework model could

use the timed automaton model as a starting point� but� instead� use the boundmap for

a formal description of the probabilistic timing assumptions for the components of the

system� It would be very interesting to explore probabilistic analogs of the progress func�

tions developed in ���
� Also� allowing such algorithms to make use of randomization

CHAPTER �� DISCUSSION AND DIRECTIONS FOR FUTURE RESEARCH ���

techniques presents a new class of veri�cation problems�

	 Extract prototypical problems from practical real
time systems research and use them as

a basis for combinatorial work� Good candidates for such problems are several variants

of hazard avoidance problems �cf� ���
��

	 Derive the exact time and space complexities of variants of the fundamental problem

of reaching agreement� under various assumptions on possible faults �e�g�� fail�stop�

omission� Byzantine� etc��� in timing
based models of distributed computation like�

e�g�� the semi
synchronous model� It would be extremely interesting to derive bounds

on costs for solving agreement problems in the shared
memory semi
synchronous model

studied in our thesis� The approximate agreement problem �see� e�g�� ���� ��
�� closely

related to the important problem of synchronizing local clocks in a distributed system�

naturally lends itself to rigorous time complexity analysis� It would be interesting to

know how relaxing exactness a�ects the time bounds in ��� ��
� more speci�cally how

these bounds will depend on the approximation constant �� The renaming problem and

its variants �cf� ��
� is an important problem that should be studied in timing
based

models� can the timing assumptions of the semi
synchronous model reduce the inherent

space complexities that this problem has in asynchronous models" Probabilistic versions

of the agreement problem should also be formulated and studied in timing
based models�

	 Obtain complexity results on the e�ect of the strength of correctness conditions� such

as serializability �cf� ���
�� for highly available replicated databases on the costs of

supporting them� Such a cost might be the worst
case completion time� the amount of

communication or the local storage needed for performing a transaction� Such results

will naturally provide intuition for de�ning new� perhaps more appropriate correctness

conditions� possibly by strengthening the ones in ���
 while still sacrifying serializability�

that are tailored towards speci�c applications� We expect that precise trade
o�s between

these costs and the strength of a correctness condition can be shown in a way similar

to those for distributed implementations of concurrent data structures ����� ��
��

CHAPTER �� DISCUSSION AND DIRECTIONS FOR FUTURE RESEARCH ���

	 Develop the complexity theory of concurrent data structures� In particular� investigate

the possible advantages of supplying timing information to processes on the time com

plexity of data accessing� and also the inherent costs of building fault�tolerant concurrent

data structures� A fundamental problem in concurrent computation is that of imple

menting stronger shared
memory primitives �registers� by weaker ones� the costs of such

implementations� expressed as the number of physical registers used in implementing

one logical register� or the number of operations performed on a physical register per

operation on the logical register� are of ultimate importance� Previous work on these

costs �see� e�g�� ���
� assumed that no timing information was available to processes� We

believe that providing such information to processes can signi�cantly improve the costs

that are inherent in its absence�

	 The area of communication protocols should be a good arena for timing
dependent

algorithms� It would be worth studying� for example� the design of e�cient timer
based

protocols for the transport layer of communication networks� As for dynamic networks�

one could study the basic capabilities of algorithms that assume a certain amount of

reliability� quanti�ed at a given moment as the time since the link last recovered �cf�

���
�� It has been demonstrated in ���
 that algorithms for broadcasting� end
to
end

communication and topology update gain in e�ciency by assuming a certain amount of

link reliability� similar results should be possible for other dynamic network algorithms�

	 Investigate in depth the capabilities and the limitations of the approximately synchro�

nized clocks model introduced in ���
� In this model� each process obtains timing infor

mation from a local clock which runs �within an envelope� of real time� More precisely�

for any pair or real times t� and t�� t� � t�� the di�erence in clock values at t� and

t� is at least a��t� � t�� � a	 and at most a��t� � t�� � a	 for some positive constants

a�� a� and a	 such that � � a� � � � a� � �� thus� the quantity A � a�
a�
� called

accuracy� is a measure of the timing uncertainty in this model� �Preliminary steps in

this direction appear in ���
� where the session problem serves as a convenient vehicle

for showing time separation results between variants of the approximately synchronized

CHAPTER �� DISCUSSION AND DIRECTIONS FOR FUTURE RESEARCH ���

clocks model that are analogs of the asynchronous and the semi
synchronous models��

Glossary of Notation

 timed execution� p� ��

A algorithm �protocol�� pp� ��� ��

Ai local algorithm of process pi� pp� ��� ��

Acki�X� response event of a write operation� p� ��

Access�R� set of processes that can access R� p� ��

b fan
in� p� ��

bu�er i message bu�er of process pi� p� ��

c lower bound on process step time� p� ��

C con�guration �vector of local states�� p� ��

#C extended con�guration �vector of local states and shared variables�� p� ��

ci local clock parameter at node i� p� ��

Cli local clock at node i� p� ��

comp�i�R� computation step of process pi �shared memory�� p� ��

comp�i� S� computation step of process pi �network�� p� ��

d upper bound on message delivery time� pp� ��� ��

D d� �� p� ��

� accuracy� p� ��

$ precision� p� ��

del i�j�m� message delivery event� pp� ��� ��

diam�G� diameter of G� p� ��

���

���

D�i�m� set of indices of delivery events� p� ��

dist�i� j� distance of i and j �in G�� p� ��

E edge set� p� ��

� arbitrary small constant� p� ��

� execution in discrete
time models� p� ��

G graph� p� ��

hi history for MCS process pi� p� ��

Ii subset �of Qi� of idle states� p� ��

Li real
time register of process pi� p� ��

m message� pp� ��� ��

M message alphabet� pp� ��� ��

� tunable parameter� p� ��

n number of nodes and processes� pp� ��� ��

op operation� p� ��

Op�X� set of operations on X �X � X �� p� ��

ops�	� sequence of call and response events in 	� p� ��

P collection of nodes �processes�� pp� ��� ��

� �atomic� event� p� ��

pi MCS process at node i� pp� ��� ��

Pi application program at node i� p� ��

q state� pp� ��� ��

Qi state set of process pi� p� ��

q��i initial state of process pi� p� ��

R set of response events� p� ��

R shared variable� p� ��

jRj maximum� over all X � of jR�X�j� p� ��

� real
time domain� p� ��

���

Readi�X� call event of a read operation� p� ��

Returni�X� v� response event of a read operation� p� ��

rop read operation� p� ��

jR�X�j maximum time for a read operation on X � p� ��

s number of sessions� p� ��

S set of message
send events� or send actions� pp� ��� ��

	 execution in the continuous
time model� p� ��

sendi�j�m� message
send event� or send action� pp� ��� ��

	i�m one
to
one onto mapping from S�i�m� to D�i�m�� p� ��

SetT imeri�t� timer
set event at MCS process pi� p� ��

Si send actions possible for pi� p� ��

S�i�m� set of indices of send events� p� ��

statei�C� ith state component of C �or #C�� pp� ��� ��

t real time� p� ��

ti synchronization time of process pi� p� ��

T set of timer
set events� p� ��

 operation sequence� p� ��

 ji restriction of
 to operations at pj � p� ��

 jX restriction of
 to operations on X � p� ��

u message delay uncertainty� p� ��

V vertex set� p� ��

V domain �set of values�� pp� ��� ��

val�op� value associated with operation op� p� ��

valuek� #C� kth value component of #C� p� ��

jW j maximum� over all X � of jW �X�j� p� ��

wop write operation� p� ��

Writei�X� v� call event of a write operation� p� ��

���

jW �X�j maximum time for a write operation on X � p� ��

X read�write object� p� ��

X collection of read�write objects� p� ��

� �unde�ned� value� pp� ��� ��

�V total order on V � p� ��

�
�� partial order speci�ed by 	� p� ��

Bibliography

��
 Y� Afek� H� Attiya� D� Dolev� E� Gafni� M� Merritt� and N� Shavit� �Atomic
Snapshots of Shared Memory�� in Proceedings of the �th Annual ACM Symposium on
Principles of Distributed Computing� pp� ����� August �����

��
 J� Ahamad� P� Hutto� and R� John� Implementing and Programming Causal Dis�
tributed Shared Memory� Technical Report TR GIT
CC
��
��� College of Computing�
Georgia Institute of Technology� �����

��
 R� Alur� T� Feder� and T� Henzinger� �The Bene�ts of Relaxing Punctuality�� in
Proceedings of the ��th Annual ACM Symposium on Principles of Distributed Computing�
pp� �������� August �����

��
 E� Arjomandi� M� Fischer� and N� Lynch� �E�ciency of Synchronous versus Asyn

chronous Distributed Systems�� Journal of the ACM� Vol� ��� No� �� pp� �������� July
�����

��
 H� Attiya� �Implementing FIFO Queues and Stacks�� in Proceedings of the �th Inter�
national Workshop on Distributed Algorithms �WDAG ���
 �P�G� Spirakis� S� Toueg and
L� Kirousis� eds��� pp� ������ Lecture Notes in Computer Science �Vol� ����� Springer

Verlag� October �����

��
 H� Attiya� A� Bar�Noy� D� Dolev� D� Peleg� and R� Reischuk� �Renaming in
an Asynchronous Environment�� Journal of the ACM� Vol� ��� No� �� pp� �������� July
�����

��
 H� Attiya� C� Dwork� N� Lynch� and L� Stockmeyer� �Bounds on the Time to
Reach Agreement in the Presence of Timing Uncertainty�� in Proceedings of the �
rd
Annual ACM Symposium on Theory of Computing� pp� �������� May �����

��
 H� Attiya and R� Friedman� �A Correctness Condition for High
Performance Multi

processors�� in Proceedings of the ��th Annual ACM Symposium on Theory of Comput�
ing� pp� �������� May �����

��
 H� Attiya and N� Lynch� �Time Bounds for Real
Time Process Control in the Presence
of Timing Uncertainty�� in Proceedings of the ��th IEEE Real�Time Systems Symposium�
pp� �������� December �����

���

BIBLIOGRAPHY ���

���
 H� Attiya and N� Lynch� �Theory of Real
Time Systems�Project Survey�� in Foun�
dations of Real�Time Computing� Formal Speci�cations and Methods �A�M� van Tilborg
and G�M� Koob� eds��� pp� �������� Kluwer Academic Publishers� �����

���
 H� Attiya� N� Lynch� and N� Shavit� �Are Wait
Free Algorithms Fast"�� in Pro�
ceedings of the
�st IEEE Annual Symposium on Foundations of Computer Science� pp�
������ October �����

���
 H� Attiya and M� Mavronicolas� �E�ciency of Semi
Synchronous versus Asyn

chronous Networks�� in Proceedings of the ��th Annual Allerton Conference on Commu�
nication� Control and Computing� pp� �������� October �����

���
 H� Attiya and J� Welch� �Sequential Consistency versus Linearizability�� in Proceed�
ings of the
rd ACM Symposium on Parallel Algorithms and Architectures� pp� ��������
July �����

���
 B� Awerbuch� �Complexity of Network Synchronization�� Journal of the ACM� Vol�
��� No� �� pp� �������� October �����

���
 B� Awerbuch� A� Baratz� and D� Peleg� �Cost
Sensitive Analysis of Communi

cation Protocols�� in Proceedings of the �th Annual ACM Symposium on Principles of
Distributed Computing� pp� �������� August �����

���
 B� Awerbuch� O� Goldreich� and A� Herzberg� �A Quantitative Approach to
Dynamic Networks�� in Proceedings of the �th Annual ACM Symposium on Principles
of Distributed Computing� pp� �������� August �����

���
 J�C�M� Baeten and J�A� Bergstra� Real�Time Process Algebra� Technical Report
P����b� University of Amsterdam� �����

���
 G� M� Baudet� �Asynchronous Iterative Methods for Multi
Processors�� Journal of
the ACM� Vol� ��� No� �� pp� �������� April �����

���
 A� Bernstein and P� Harter� �Proving Real
Time Properties of Programs with
Temporal Logic�� in Proceedings of the �th Symposium on Operating Systems Principles�
Vol� ��� No� �� pp� ����� Operating Systems Review� December �����

���
 P� Bernstein� V� Hadzilacos� and N� Goodman� Concurrency Control and Recov�
ery in Database Systems� Addison
Wesley� Reading� Mass�� �����

���
 S� Chaudhuri and J� Welch� �Bounds on the Costs of Register Implementations�� in
Proceedings of the �th International Workshop on Distributed Algorithms �WDAG ���
�
�J� van Leeuwen and N� Santoro� eds��� pp� �������� Lecture Notes in Computer Science
�Vol� ����� Springer
Verlag� September �����

���
 J�E� Coolahan and N� Roussopoulus� �Timing Requirements for Time
Driven Sys

tems using Augmented Petri Nets�� IEEE Transactions on Software Engineering� Vol�
SE
�� No� �� pp� �������� September �����

BIBLIOGRAPHY ���

���
 D� Dolev� N� Lynch� S� Pinter� E� Stark� and W� Weihl� �Reaching Approximate
Agreement in the Presence of Faults�� Journal of the ACM� Vol� ��� No� �� pp� ��������
July �����

���
 C� Dwork and L� Stockmeyer� �Bounds on the Time to Reach Agreement as a
Function of Message Delay�� Technical Report RJ ���� �������� IBM� June �����

���
 M� Fischer� N� Lynch� and M� Paterson� �Impossibility of Distributed Consensus
with one Faulty Process�� Journal of the ACM� Vol� ��� No� �� pp� �������� April �����

���
 J� Halpern� N� Megiddo� and A� Munshi� �Optimal Precision in the Presence of
Uncertainty�� Journal of Complexity� Vol� �� No� �� pp� �������� December �����

���
 T� Henzinger� �Half
Order Modal Logic	 How to Prove Real
Time Properties�� in
Proceedings of the �th Annual ACM Symposium on Principles of Distributed Computing�
pp� �������� August �����

���
 M� Herlihy and J� Wing� �Linearizability	 A Correctness Condition for Concurrent
Objects�� ACM Transactions on Programming Languages and Systems� Vol� ��� No� ��
pp� �������� July �����

���
 P� Hutto and M� Ahamad� Slow Memory� Weakening Consistency to Enhance Con�
currency in Distributed Shared Memories� Technical Report GIT
ICS
������ College of
Computing� Georgia Institute of Technology� October �����

���
 F� Jahanian and A� Mok� �A Graph
Theoretic Approach for Timing Analysis and
its Implementation�� IEEE Transactions on Computers� Vol� C
��� pp� �������� August
�����

���
 L� Lamport� �Time� Clocks and the Ordering of Events in a Distributed System��
Communications of the ACM� Vol� ��� No� �� pp� �������� July �����

���
 L� Lamport� �How to Make a Multiprocessor that Correctly Executes Multiprocess
Programs�� IEEE Transactions on Computers� Vol� C
��� No� �� pp� �������� September
�����

���
 H�R� Lewis� Finite State Analysis of Asynchronous Circuits with Bounded Temporal
Uncertainty� Technical Report TR
��
��� Center for Research in Computing Technology�
Aiken Computation Laboratory� Harvard University� �����

���
 H�R� Lewis� �A Logic of Concrete Time Intervals�� in Proceedings of the �th IEEE
Symposium on Logic in Computer Science� pp� �������� June �����

���
 R� Lipton and J� Sandberg� A Scalable Shared Memory� Technical Report CS
TR

���
��� Department of Computer Science� Princeton University� September �����

���
 J� Lundelius and N� Lynch� �An Upper and Lower Bound for Clock Synchronization��
Information and Control� Vol� ��� No� ���� pp� �������� August�September �����

BIBLIOGRAPHY ���

���
 J� Lundelius and N� Lynch� �A New Fault
Tolerant Algorithm for Clock Synchro

nization�� Information and Computation� Vol� ��� No� �� pp� ����� April �����

���
 N� Lynch� Asynchronous versus Synchronous Computation� Lecture notes for MIT
������	 Network Protocols and Distributed Graph Algorithms� Spring �����

���
 N� Lynch and H� Attiya� �Using Mappings to Prove Timing Properties�� in Proceed�
ings of the �th Annual ACM Symposium on Principles of Distributed Computing� pp�
�������� August �����

���
 N� Lynch� B� Blaustein� and M� Siegel� �Correctness Conditions for Highly Avail

able Replicated Databases�� in Proceedings of the �th Annual ACM Symposium on
Principles of Distributed Computing� pp� ������ August �����

���
 N� Lynch and M� Fischer� �On Describing the Behavior and Implementation of
Distributed Systems�� Theoretical Computer Science� Vol� ��� No� �� pp� ������ January
�����

���
 N� Lynch and M� Tuttle� �Hierarchical Correctness Proofs for Distributed Algo

rithms�� in Proceedings of the �th Annual ACM Symposium on Principles of Distributed
Computing� pp� �������� August �����

���
 M� Mavronicolas� Accuracy and Real Time� in preparation� Harvard University� �����

���
 M� Mavronicolas� �E�ciency of Semi
Synchronous versus Asynchronous Systems	
Atomic Shared Memory�� Technical Report TR
��
��� Center for Research in Comput

ing Technology� Aiken Computation Laboratory� Harvard University� January ����� To
appear in Computers and Mathematics with Applications�

���
 M� Mavronicolas and D� Roth� �Sequential Consistency and Linearizability	
Read�Write Objects�� in Proceedings of the ��th Annual Allerton Conference on Com�
munication� Control and Computing� pp� �������� October �����

���
 M� Mavronicolas and D� Roth� E�cient� Strongly Consistent Implementations of
Shared Memory� Technical Report TR
��
��� Center for Research in Computing Tech

nology� Aiken Computation Laboratory� Harvard University� February ����� Accepted
for publication in �th International Workshop on Distributed Algorithms �WDAG���
�
Haifa� Israel� �����

���
 M� Merritt� F� Modugno� and M� Tuttle� �Time Constrained Automata�� in
Proceedings of the �nd International Conference on Concurrency Theory �CONCUR ���

�J�C�M� Baeten and J�F� Groote� eds��� pp� �������� Lecture Notes in Computer Science
�Vol� ����� Springer
Verlag� August �����

���
 S� Moran and Y� Wolfstahl� �Extended Impossibility Results for Asynchronous
Complete Networks�� Information Processing Letters� Vol� ��� No� �� pp� ��������
November �����

BIBLIOGRAPHY ���

���
 C� Papadimitriou� �The Serializability of Concurrent Database Updates�� Journal of
the ACM� Vol� ��� No� �� pp� �������� October �����

���
 G� Peterson� �Time
Space Trade
o�s for Asynchronous Parallel Models	 Reducibilities
and Equivalences�� in Proceedings of the �th Annual ACM Symposium on Theory of
Computing� pp� �������� May �����

���
 G� Peterson and M� Fischer� �Economical Solutions to the Critical Section Problem
in a Distributed System�� in Proceedings of the �th Annual ACM Symposium on Theory
of Computing� pp� ������ May �����

���
 S� Ponzio� The Real�Time Cost of Timing Uncertainty� Consensus and Failure De�
tection� Technical Report MIT�LCS�TR
���� Laboratory for Computer Science� MIT�
October �����

���
 I� Rhee and J� Welch� �The Impact of Time on the Session Problem�� to appear
in the ��th Annual ACM Symposium on Principles of Distributed Computing� August
�����

���
 A� Segall� �Distributed Network Protocols�� IEEE Transactions on Information The�
ory� Vol� IT
��� No� �� pp� ������ January �����

���
 A�U� Shankar and S�L� Lam� �Time
Dependent Distributed Systems	 Proving Safety�
Liveness and Safety Properties�� Distributed Computing� Vol� �� No� �� pp� ������ �����

���
 B� Simons� J� Welch� and N� Lynch� An Overview of Clock Synchronization� Tech

nical Report RJ ����� IBM� October �����

���
 R� Strong� D� Dolev� and F� Cristian� �New Latency Bounds for Atomic Broad

cast�� in Proceedings of the ��th IEEE Real�Time Systems Symposium� pp� ��������
December �����

���
 P� Vitanyi and B� Awerbuch� �Atomic Shared Register Access by Asynchronous
Hardware�� in Proceedings of the ��th IEEE Annual Symposium on Foundations of
Computer Science� pp� �������� October �����

���
 A� Zwarico� Timed�Acceptance� an Algebra of Time�Dependent Computing� Ph�D�
Thesis� Department of Computer and Information Science� University of Pennsylvania�
�����

