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Abstract

We consider the problem of routing n users on m parallel links under the restriction that each
user may only be routed on a link from a certain set of allowed links for the user. So, this problem
is equivalent to the correspondingly restricted scheduling problem of assigning n jobs to m par-
allel machines. In a Nash equilibrium, no user may improve its own Individual Cost (latency) by
unilaterally switching to another link from its set of allowed links.

For identical links, we present, as our main result, a polynomial time algorithm to compute from
any given assignment a Nash equilibrium with non-increased makespan. The algorithm gradually
transforms the assignment by pushing the unsplittable user traffics through a flow network, which is
constructed from the users and the links. The algorithm uses ideas from blocking flows.

Furthermore, we use techniques simular to those in the generic PREFLOWPUSH algorithm to
approximate in polynomial time a schedule with optimum makespan. This results to an improved
approximation factor of 2 − 1

w1
for identical links, where w1 is the largest user traffic, and to an

approximation factor of 2 for related links.
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1 Introduction

1.1 Motivation and Framework

The concept of Nash equilibrium [22, 23] has become an important mathematical tool for analyzing the
behavior of selfish users in non-cooperative systems. The celebrated result of Nash [22, 23] guaran-
tees the existence of a Nash equilibrium in mixed strategies for every (finite) strategic game and many
algorithms have been devised to compute one (see [20] for an overview). However, the complexity of
computing a Nash equilibrium for a strategic game has only recently started to attract systematic study,
after the problem was advocated as one of the most important open problems in Theoretical Computer
Science [24].

Some recent breakthrough work has established the intractability of computing a Nash equilibrium
for a strategic game with at least four players [4]. Cheng and Deng [3] soon thereafter showed that the
case of two players is already intractable. The limit of the class of strategic games whose Nash equilibria
can be computed efficiently is still far from being well understood. In this work, we extend the current
limit by employing some new algorithmic techniques. These techniques come from identifying some
natural connections between the problems of computing a Nash equilibrium and computing a maximum
network flow (cf., [1]).

Our starting point is the well known KP model for selfish routing, introduced by Koutsoupias and
Papadimitriou [18]. Here, n non-cooperative users wish to route their unsplittable traffics w1, . . . , wn

through a simple network from source to sink, joined by m parallel links with capacities c1, . . . , cm.
In the case of identical links, all links have equal capacity; link capacities may vary arbitrarily in the
case of related links. Each user chooses a link as its strategy and wishes to minimize its latency. An
assignment where no user has an incentive to unilaterally change its strategy is called a (pure) Nash

equilibrium [22, 23]. There is also a global objective function called Social Cost, which is the makespan

(the maximum latency); however, users do not adhere to it. The KP model reflects an extension of the
job scheduling problem on related machines [15] to cope with selfishness; it is also a special case of
weighted congestion games [21], equipped with Social Cost.

In contrast to general strategic games, there is always a (pure) Nash equilibrium for the KP model [8,
Theorem 1], and there are known polynomial time algorithms to compute one [7, 8]. This is no more
known to be the case for the most general case of unrelated links, where there is, instead of traffics and
capacities, an arbitrary cost (or processing time) for each user on each link. This extension of the KP
model reflects the job scheduling problem on unrelated machines [15]. Computing Nash equilibria for
this extension appears to be intractable in the current state-of-the-art.

In this work, we consider a middle ground between the KP model with related links and its most
general extension with unrelated links, which we call the model of restricted parallel links. While the
new model still adopts related links, the critical additional assumption is that each user i is only allowed
to ship its traffic through a subset Si of the links; these are called the allowed links for user i. The
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cost of a user on a link is either its incurred latency if the link is allowed (like in the KP model), or
infinite otherwise. Clearly, introducing allowed links into the KP model can change the set of its Nash
equilibria; so, alternative algorithms are needed for computing Nash equilibria in the new model. Our
work provides the first such algorithms.

The model of restricted parallel links reflects a special case of the job scheduling problem on unre-
lated machines, which we call restricted related machines. In some parts of our study, we shall restrict
to the case of restricted identical parallel links, which naturally corresponds to restricted identical ma-

chines.

1.2 Contribution and Significance

Our approach for computing Nash equilibria for restricted parallel links is modular. We first compute
an assignment which approximates well the optimum Social Cost. For the case of identical links, we
then transform this assignment into a Nash equilibrium with non-increased Social Cost. As a bonus, the
obtained Nash equilibrium approximates well the Social Cost.

1.2.1 Approximation of Optimum Social Cost

Computing an assignment that approximates the optimum Social Cost on restricted parallel links can
be cast as a special case of the single-source unsplittable flow problem introduced in the seminal work
of Kleinberg [16]. In this special case, the flow network is a 2-layered bipartite graph. All previous
approaches [6, 16, 17] to the unsplittable flow problem relied on first computing a splittable flow and
then using rounding techniques to compute an unsplittable flow from the splittable flow. Such techniques
have yielded an approximation factor of 2.

In this work, we pursue a simpler approach to compute an unsplittable flow directly for the special
case of the flow network we consider. The key idea is to use techniques from the PREFLOW-PUSH

algorithm [13, 14] in the setting of unsplittable flow. However, such techniques need to be adapted so
that they still allow for pushing traffics but not for splitting them.

Our approach yields approximation algorithms for optimum Social Cost for both cases of identical
links and related links, which are purely combinatorial and much simpler than all previous ones. More
specifically, we obtain:

• For the case of identical links, our approximation algorithm has approximation factor 2 − 1
w1

,
where w1 is the largest traffic. The achieved factor is the first to break the barrier of 2 [19].

• For the case of related links, our approximation algorithm has approximation factor 2.

For identical links, the running time of the approximation algorithm is O(mS log W ), where S is
the total number of allowed links and W is the total traffic of the users; for related links, the running
time slightly increases to O(mS log(mW )).
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1.2.2 Nashification

For the case of identical links, we present, as our main result, an algorithm NASHIFY for the transforma-
tion of an arbitrary assignment into a Nash equilibrium. The algorithm is an instance of a more general
technique known as Nashification [7, 11], which achieves the transformation without increasing Social
Cost.

In contrast to previous Nashification algorithms for the KP model [7, 11], we rely here again on
using techniques from network flows. More specifically, we first design an algorithm UNSPLITTABLE-
BLOCKING-FLOW to compute a blocking flow [5] in the unsplittable setting. Intuitively, an (unsplit-
table) flow is blocking if each directed path from source to sink contains a saturated edge. This algo-
rithm extends ideas from the splittable setting to the unsplittable setting; the key is that flow is pushed
but not split. The blocking flow algorithm is then extensively used within the algorithm NASHIFY.

The running time of the algorithm NASHIFY is O(nmS(log W + m2)).

1.2.3 Summary

Putting together the two pieces yields the first polynomial time algorithm to compute a pure Nash
equilibrium that approximates well the optimum Social Cost for the case of of restricted identical parallel
links. The approximation factor is 2− 1

w1
, while the total running time is O(nmS(log W + m2)).

The modularity of our approach allows for modular improvements to the approximation factor of
optimum Social Cost for a Nash equilibrium. Any improvement to the approximation factor of optimum
Social Cost will do when combined with algorithm NASHIFY.

Computing a Nash equilibrium for the case of related links of the model remains an important open
problem. So remains of course the problem of computing a Nash equilibrium for the case of unrelated
links, but we feel that this problem may be much harder.

Our work is the first to apply the generic PREFLOW-PUSH algorithm [13, 14] to the setting of
unsplittable flows. We believe that such application may have further potential.

1.3 Related Work and Comparison

The model of restricted parallel links has been also studied in an independent work by Awerbuch et

al. [2]. That work focused mostly on the case of identical links, but also considered the case of unre-
lated links. The work of Awerbuch et al. [2] provided bounds on the Price of Anarchy [18], but examined
neither the problem of approximating optimum Social Cost nor the problem of computing a Nash equi-
librium, which are the subject of our work. Additional bounds on the Price of Anarchy for restricted
parallel links have been shown by Gairing et al. [10].

Computing an assignment with optimum Social Cost for job scheduling on unrelated machines was
first considered by Horowitz and Sahni [15]; they presented an exponential time, dynamic programming
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algorithm. They also presented a FPTAS to approximate the optimum assignment for a constant number
of machines. For the general case, Lenstra et al. [19] proved that an approximation factor less than 3

2

is not possible unless P = NP . This holds even if all processing times are taken from {1, 2,∞}; in
contrast, an optimum assignment can be computed in polynomial time if all processing times are taken
from {1, 2}. Lenstra et al. [19] also presented a polynomial time algorithm with approximation factor
2; this algorithm computes an optimum fractional solution and then uses rounding. Recently, Shchepin
and Vakhania [25] introduced a new rounding technique yielding an improved approximation factor of
2− 1

m .
The first constant-factor, polynomial time approximation algorithms for the (single-source) unsplit-

table flow problem were already obtained by Kleinberg [16]. Further such algorithms based on rounding
techniques were presented by Kolliopoulos and Stein [17]; one achieved approximation factor 3 for the
general case, while another achieved approximation factor 2− 1

C for the case where all processing times
are taken from {p, Cp,∞}, for any C > 1 with 1

C ≥ p > 0. Dinitz et al. [6] showed how to turn a
splittable flow into an unsplittable flow in polynomial time; this yielded an approximation factor of 2.

1.4 Organization

Restricted parallel links are introduced in Section 2. In Section 3, we introduce a framework for unsplit-
table network flows. Section 4 presents the approximation algorithms for an assignment with optimum
Social Cost. The unsplittable blocking flow algorithm is presented in Section 5; in turn, this algorithm
is used within the Nashification algorithm in Section 6. We conclude, in Section 7, with a discussion
and some open problems.

2 Restricted Parallel Links

Throughout, denote for each integer k ≥ 1, [k] = {1, 2, . . . , k}. We consider a network consisting of a
set L = [m] of m parallel links from a source node to a sink node. Each user from a set U = [n] wishes
to route a particular amount of unsplittable traffic along a (non-fixed) link from source to sink. Denote
by wi the (integer) traffic of user i ∈ U . Assume, without loss of generality, that w1 ≥ . . . ≥ wn, and
denote W =

∑
i∈U wi (the total traffic). The traffic vector w = (w1, . . . , wn) is the tuple of all user

traffics.
Denote by cj > 0 the (integer) capacity of link j ∈ L. The capacity vector c = (c1, . . . , cm) is

the tuple of all link capacities. In the case of identical links, all link capacities are equal to 1. Link
capacities may vary arbitrarily in the case of related links. An instance is denoted as a tuple 〈w, c〉. In
the case of identical links, we denote an instance by 〈w,m〉.

Associated with each user i ∈ U is a (non-empty) strategy set Si ⊆ L, which is the set of allowed

links for user i. Denote S =
∑

i∈U |Si| the total size of strategy sets. A strategy for a user i ∈ U is some
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specific link si ∈ Si. An assignment s = (s1, . . . , sn) is a tuple of strategies, one for each user. For a
set B ⊆ L of links and an assignment s, denote as s(B) the restriction of s to links in B; so, s = s(L).
By abuse of notation, a partial assignment s = (s1, . . . , sn) is a tuple of strategies where si might be nil

(i.e., left unspecified) for some users i ∈ U . In an empty assignment s, si = nil for all users i ∈ U .
The latency for traffic w through link j is w

cj
. For the assignment s, the load δj(s) on link j is the

sum of traffics of all users assigned to link j; thus, δj(s) =
∑

k∈U|sk=j wk. The Individual Cost ICi(s)
of user i ∈ U in the assignment s is the latency of the link it chooses; that is,

ICi(s) =
δsi(s)
csi

.

Associated with an instance 〈w, c〉 and an assignment s is the Social Cost [18, Section 2], denoted
SC (w, c, s), which is the maximum, over all links, latency for the load on the link; so,

SC (w, c, s) = max
j∈L

δj(s)
cj

,

or equivalently

SC (w, c, s) = max
i∈U

ICi(s).

The optimum [18, Section 2] associated with an instance 〈w, c〉 is the least possible, over all assign-
ments, of the maximum, over all links, latency for the load on the link; so,

OPT (w, c) = min
s∈S1×...×Sn

SC (w, c, s) .

A user i ∈ U is satisfied in assignment s if for all links j ∈ Si,

ICi(s) ≤
δj(s) + wi

cj
;

so, a satisfied user has no incentive to unilaterally change its strategy. An unsatisfied user is one that is
not satisfied. The assignment s is a Nash equilibrium [22, 23] if all users are satisfied.

3 Unsplittable Network Flows

We outline a framework for unsplittable network flows, which will be used later for both approximation
and Nashification algorithms.

All algorithms are controlled by two parameters w and ∆. Intuitively, w will be used to further
restrict the assignment of users to links; ∆ will be determined by binary search, and it will be integer
for the case of identical links and rational for the case of related links.

Given some w > 0, we consider a flow network Gs(w) representing a partial assignment s, called
the residual network:
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Definition 3.1 (Residual Network) Let w > 0 and s be a partial assignment. The residual network
Gs(w) is a directed bipartite graph Gs(w) = (V,Es(w)) with V = L∪U and Es(w) = E1

s (w)∪E2
s (w),

where:

E1
s (w) = {(j, i) | j ∈ L, i ∈ U , si = j, wi ≤ w · cj} , and

E2
s (w) = {(i, j) | j ∈ L, i ∈ U , j ∈ Si \ {si}, wi ≤ w · cj} .

The partite sets of the (bipartite) residual network Gs(w) are L and U , respectively. Observe that
V depends on neither w nor s; in contrast, Es(w) depends on both the partial assignment s and the
parameter w.

For our approximation algorithm for identical links, w will be chosen large enough so that the
constraint wi ≤ w · cj is always fulfilled; thus, it will not impose any restriction on the set of edges
Es(w). This will not be the case for our approximation algorithm for related links.

We use the parameters ∆ and w and the (partial) assignment s to partition the set of links L into
three sets L−(s,∆, w), L0(s,∆, w) and L+(s,∆, w) as follows:

Definition 3.2 (Partition of Links) Let ∆, w > 0 and s be a partial assignment. Partition the set of

links L into three subsets:

L−(s,∆, w) = {j ∈ L : δj(s) ≤ ∆ · cj}

L0(s,∆, w) = {j ∈ L : ∆ · cj < δj(s) ≤ (∆ + w) · cj}

L+(s,∆, w) = {j ∈ L : δj(s) > (∆ + w) · cj}

Intuitively, nodes in L+(s,∆, w) and L−(s,∆, w) will be interpreted as source and sink nodes,
respectively. Since the parameter ∆ and the assignment s will vary, both L+(s,∆, w) and L−(s,∆, w)
will be varying as well; thus, there will be no fixed source or sink nodes. We note that Definition 3.2
applies to any set of links B ⊆ L as well.

Our algorithms will further use a height function h : V → N, which depends on the parameters
w and ∆. Given w and ∆ and a partial assignment s, the height function h has the height property:
h(u) = 0 for all nodes u ∈ L−(s,∆, w), and h(u) ≤ h(v) + 1 for every edge (u, v) ∈ Es(w).

4 Approximation of Optimum Social Cost

In Section 4.1, we adapt the generic PREFLOW-PUSH algorithm [13, 14] to unsplittable flows and derive
the algorithm UNSPLITTABLE-PREFLOW-PUSH. In Section 4.2, we will apply algorithm UNSPLITTABLE-
PREFLOW-PUSH to compute an assignment that approximates optimum Social Cost.
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4.1 The Algorithm UNSPLITTABLE-PREFLOW-PUSH

4.1.1 Preliminaries

Fix the parameters ∆ and w and a partial assignment s. Define the excess flow e(u) into node u ∈ V as
follows.

e(u) =


1 , if either (1) u ∈ L+(s,∆, w),

or (2) u ∈ U and su = nil,

0 , otherwise.

A node u ∈ V with e(u) = 1 will be called overflowing.
The algorithm UNSPLITTABLE-PREFLOW-PUSH will use the two basic operations PUSH and LIFT,

depicted in Figure 1.

PUSH(u, v)
Precondition:
e(u) = 1, h(u) ≤ 2m and h(u) = h(v) + 1 with (u, v) ∈ Es(w).
Effect:

1: Es(w)← (Es(w) \ {(u, v)}) ∪ {(v, u)};
2: update s, e(u), e(v).

LIFT(u)
Precondition:
e(u) = 1, h(u) ≤ 2m and h(u) ≤ h(v) for all edges (u, v) ∈ Es(w).
Effect:

1: h(u)←

{
1 + min {h(v) | (u, v) ∈ Es(w)} , if there exists an edge (u, v) ∈ Es(w)

2m + 1 , else.

Figure 1: The operations PUSH and LIFT in precondition-effect style

• PUSH(u, v) can be applied on edge (u, v) ∈ Es(w) if u is overflowing, h(u) ≤ 2m and h(u) =
h(v)+1. The operation PUSH(u, v) replaces the edge (u, v) with the edge (v, u). In other words,
the direction of the edge (u, v) is reversed; so each PUSH operation is saturating. Also, the
assignment s and the excess flows e(u) and e(v) are updated.

If u ∈ L, then PUSH(u, v) has the effect that user v ∈ U gets unassigned from link u; afterwards,
sv = nil (v is not assigned to any link). On the other hand, if u ∈ U , then PUSH(u, v) assigns the
unassigned user u to link v.

Observe that PUSH(u, v) preserves the height property.
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• LIFT(u) can be applied on node u ∈ V if u is overflowing, h(u) ≤ 2m and h(u) ≤ h(v) for all
edges (u, v) ∈ Es(w). We consider two different cases:

– If there exists an edge (u, v) ∈ Es(w), then LIFT(u) increases the height of u to 1 +
min{h(v) | (u, v) ∈ Es(w)}. Observe that this is the maximum value for h(u) that pre-
serves the height property.

– If there does not exists an edge (u, v) ∈ Es(w), then u will always stay overflowing. In this
case, LIFT(u) increases the height of u to 2m + 1. This assures that u will not participate in
any further PUSH or LIFT operation.

In either case LIFT(u) preserves the height property.

4.1.2 The Algorithm

UNSPLITTABLE-PREFLOW-PUSH(∆, w)
Input: positive rational numbers ∆, w

Output: partial assignment s
1: set s to the empty assignment;
2: construct Gs(w);
3: for each node u ∈ V do
4: h(u)← 0;
5: compute e(u); . e(u) = 1 if u ∈ U and e(u) = 0 if u ∈ L
6: end for
7: while some PUSH or LIFT operation is applicable do
8: perform any applicable PUSH or LIFT operation; . PUSH modifies s

9: end while
10: return s;

Figure 2: The algorithm UNSPLITTABLE-PREFLOW-PUSH

The algorithm UNSPLITTABLE-PREFLOW-PUSH first initializes s to be the empty assignment and con-
structs the residual network Gs(w). Then, all values of the height function are set to 0 and the excess
flows e(u) for each node u ∈ V are computed. Since s is the empty assignment, it is sufficient to set
e(u) = 1 for all users u ∈ U and e(u) = 0 for all links u ∈ L. Afterwards, the algorithm keeps
executing PUSH and LIFT operations as long as there are still such applicable operations. Observe, that
a PUSH modifies the current partial assignment s. When there is no further applicable PUSH or LIFT

operation, the current partial assignment s is returned. From the preconditions for the operations PUSH

and LIFT and the height property, we immediately observe:
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Observation 4.1 Let s be the partial assignment computed by UNSPLITTABLE-PREFLOW-PUSH(∆, w).
Then one of the following conditions holds:

(1) e(u) = 0 for all nodes u ∈ V .

(2) h(u) > 2m for all nodes u ∈ V with e(u) = 1.

We prove:

Lemma 4.1 UNSPLITTABLE-PREFLOW-PUSH executes at mostO(m(n+m)) LIFT andO(mS) PUSH

operations.

Proof: Consider first any node u ∈ V . We will analyze the number of executed operations LIFT(u).
Initially, h(u) = 0. By the precondition for LIFT(u), h(u) ≤ 2m, while LIFT(u) increases the height
of u by at least 1. It follows that LIFT(u) is executed at most 2m+1 times. Since there are n+m nodes
in the graph Gs(w), this implies that there are executed at most O(m(n + m)) LIFT operations.

Consider now any edge (u, v) ∈ Es(w). We will analyze the total number of executed operations
PUSH(u, v) and PUSH(v, u). When PUSH(u, v) is executed, h(u) = h(v) + 1, (u, v) is deleted from
Es(w) and (v, u) is added. Before PUSH(v, u) can be executed, h(v) must increase by at least 2. It
follows that between any two PUSH(u, v) and PUSH(v, u) operations, there is either a LIFT(u) or a
LIFT(v) operation. Thus, the number of PUSH operations per edge is O(m). Since Gs(w) has at most
S edges, it follows that O(mS) PUSH operations are executed.

We now briefly present a simple implementation of UNSPLITTABLE-PREFLOW-PUSH yielding a
running time of O(mS). We maintain a set Q of nodes u ∈ V where either LIFT(u) is applicable
or there exists an edge (u, v) ∈ Es(w) such that PUSH(u, v) is applicable. By the height property,
Q = {u ∈ V | e(u) = 1 and h(u) ≤ 2m}. Updating Q takes time O(1) per PUSH or LIFT operation.

Each node u ∈ V has also an ordered list of its incident (incoming or outgoing) edges in Gs(w); u

has also a current edge {u, v}, which is a candidate for the next PUSH operation out of u. Initially, the
current edge is the first edge in the edge list of node u.

The running time of UNSPLITTABLE-PREFLOW-PUSH is dominated by the time needed for the
while-loop. We implement this loop as follows: As long as Q is not empty, we take a node u from Q
and apply PUSH(u, v) to the current edge {u, v} if this operation is applicable. If not, we replace the
current edge by the next edge in the edge list of node u; or if {u, v} was the last edge on this list we
make the first edge on the list the current one and apply LIFT(u). LIFT(u) is applicable since for each
edge (u, v) ∈ Es(w), h(u) ≤ h(v). This is because h(u) has not changed since {u, v} was the current
edge, h(v) never decreases, and h(v) > h(u) if the edge (u, v) was added to Es(w) by a PUSH(v, u)
operation after {u, v} was the current edge. For a detailed presentation of this implementation, we refer
to Goldberg and Tarjan [14, Section 4].
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We have seen in the proof of Lemma 4.1 that each node u ∈ V can execute at most O(m) LIFT(u)
operations. LIFT(u) takes time O(deg(u)), where deg(u) is the number of edges on the edge list of
u. Without checking the precondition, a PUSH operation takes time O(1). Thus, the total time spent in
LIFT(u) and PUSH(u, ·) operations is O(m deg(u)) plus O(1) per PUSH out of node u. Summing up
over all nodes and using Lemma 4.1, we obtain:

Lemma 4.2 UNSPLITTABLE-PREFLOW-PUSH runs in O(mS) time.

We remark that the analysis of UNSPLITTABLE-PREFLOW-PUSH is much simpler than the one of its
splittable counterpart, the generic PREFLOW-PUSH algorithm [13, 14]. This is due to the fact that each
PUSH operation is now saturating.

4.2 Applications

We now show how to use the algorithm UNSPLITTABLE-PREFLOW-PUSH to approximate an assignment
with optimum Social Cost. Identical links and related links are considered in Sections 4.2.1 and 4.2.2,
respectively.

4.2.1 Identical Links

For a (partial) assignment s, consider the residual network Gs(w1) = (V,Es(w1)). Since w1 is the
largest user traffic, the constraint wi ≤ w1 does not impose any restriction on Es(w1).

The parameter ∆ will always be chosen as an integer. Given a (partial) assignment s and an integer
∆, partition the set of links L according to Definition 3.2. As ∆ and w1 are integer, and cj = 1 for all
links j ∈ L, it follows that

L−(s,∆, w1) = {j ∈ L : δj(s) ≤ ∆}

L0(s,∆, w1) = {j ∈ L : ∆ + 1 ≤ δj(s) ≤ ∆ + w1}

L+(s,∆, w1) = {j ∈ L : δj(s) ≥ ∆ + w1 + 1} .

We start with an informal description of the approximation algorithm. We will run the algorithm
UNSPLITTABLE-PREFLOW-PUSH with argument (∆, w1). The first parameter ∆ will be determined by
binary search, while the second parameter is fixed to w1. The intention is to find a ∆ which is a lower
bound on OPT(w,m), and use it to compute an assignment s with SC(w,m, s) ≤ ∆ + w1. We prove:

Lemma 4.3 If UNSPLITTABLE-PREFLOW-PUSH(∆, w1) returns an assignment where e(u) = 1 for

some node u ∈ V , then OPT(w,m) > ∆ + 1.

Proof: Let s be the (partial) assignment returned by UNSPLITTABLE-PREFLOW-PUSH(∆, w1). Since
Gs(w1) is bipartite, the maximum length of a path between any two nodes u, v ∈ V is at most 2m.
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Fix now a node u ∈ V with e(u) = 1. By Observation 4.1, we have h(u) > 2m. Assume, by way
of contradiction, that there is a path from node u ∈ V to some link v ∈ L−(s,∆, w1). By the height
condition, h(v) = 0 and for each edge (i, j) on this path, h(i) ≤ h(j) + 1. This implies h(u) ≤ 2m,
a contradiction to h(u) > 2m. Thus, there is no path from node u ∈ V to any link v ∈ L−(s,∆, w1).
Let B ⊆ L be the set of links that are still reachable from node u. Note that no user assigned to a link
in B can be assigned to a link outside B (since otherwise, there would be a path to this link). Note also
that δj(s) ≥ ∆ + 1 for all links j ∈ B. Now u is either an unassigned user that can only be assigned
to a link in B, or u ∈ B and δu(s) > ∆ + w1. In either case, this implies OPT(w,m) > ∆ + 1. This
completes the proof of the lemma.

We now use UNSPLITTABLE-PREFLOW-PUSH to approximate an assignment with optimum Social
Cost. We do this by a sequence of calls to UNSPLITTABLE-PREFLOW-PUSH(∆, w1) with appropri-
ate integers ∆. By binary search on ∆ ∈ [0,W ],∆ ∈ N, we find a pair of integers (∆− 1,∆) with the
following properties:

• UNSPLITTABLE-PREFLOW-PUSH(∆, w1) returns an assignment s with e(u) = 0 for all nodes
u ∈ V , that is, all users are assigned to some link and δj(s) ≤ ∆ + w1 for all links j ∈ L. So,
SC(w,m, s) ≤ ∆ + w1.

• UNSPLITTABLE-PREFLOW-PUSH(∆−1, w1) returns a (partial) assignment t where e(u) = 1 for
some node u ∈ V . It follows from Lemma 4.3 that OPT(w,m) > ∆ and thus OPT(w,m) ≥
∆ + 1.

We have

SC(w,m, s)
OPT(w,m)

≤ ∆ + w1

OPT(w,m)
(since SC(w,m, s) ≤ ∆ + w1)

≤ OPT(w,m)− 1 + w1

OPT(w,m)
(since OPT(w,m) ≥ ∆ + 1)

≤ 2− 1
w1

(since w1 ≤ OPT(w,m)).

Lemma 4.2 shows that UNSPLITTABLE-PREFLOW-PUSH runs in O(mS) time. The binary search
on ∆ ∈ [0,W ] contributes a factor of log W . In conclusion, we have:

Theorem 4.4 Consider the model of restricted parallel links, for the case of identical links. Then, there

is an algorithm that computes an assignment with Social Cost within a factor of 2 − 1
w1

from optimum

in time O(mS log W ).

4.2.2 Related Links

In this section we set w = ∆. Given a (partial) assignment s and a rational number ∆, consider the
residual network Gs(∆) = (V,Es(∆)). Moreover, partition the set of links L according to Definition
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3.2. Here:

L−(s,∆,∆) = {j ∈ L : δj(s) ≤ ∆ · cj}

L0(s,∆,∆) = {j ∈ L : ∆ · cj < δj(s) ≤ 2 ·∆ · cj}

L+(s,∆,∆) = {j ∈ L : δj(s) > 2 ·∆ · cj} .

Recall, that Es(∆) consists only of edges {i, j} with i ∈ U and j ∈ L, such that wi ≤ ∆ · cj .
This restriction is necessary to ensure that a link from L+(s,∆,∆) is not transfered to L−(s,∆,∆) by
reassigning a single user.

Similar to Lemma 4.3, we prove:

Lemma 4.5 If UNSPLITTABLE-PREFLOW-PUSH(∆,∆) returns an assignment where e(u) = 1 for

some node u ∈ V , then OPT(w, c) > ∆.

Proof: Let s be the (partial) assignment computed by UNSPLITTABLE-PREFLOW-PUSH(∆,∆). Fix a
node u ∈ V with e(u) = 1. By Observation 4.1, we have h(u) > 2m. With the same argument as in
Lemma 4.3, it follows that there is no path from node u ∈ V to some link v ∈ L−(s,∆,∆) in Gs(∆).

Let B ⊆ L be the set of links that are still reachable from node u. Since Gs(∆) consists only of
edges {i, j} with i ∈ U , j ∈ L and wi ≤ ∆ · cj , it is now possible that some user i ∈ U which is
assigned to some link in B has a link p ∈ L \ B in its strategy set Si. However, on link p user i would
cause latency wi

cp
> ∆. On the other hand, if we do not move users from links in B to links outside B,

then ICi(s) > ∆ for all users i ∈ U with si ∈ B. It follows that OPT(w, c) > ∆. This completes the
proof of the lemma.

Again we make a sequence of calls to UNSPLITTABLE-PREFLOW-PUSH(∆,∆) with appropriate
rational numbers ∆. We choose ∆ from the set of rational numbers { 1

c1
, . . . , W

c1
}∪ . . .∪{ 1

cm
, . . . , W

cm
}.

These are at most mW rational numbers and they include all possible values of link latencies.
By binary search, we find a pair of rational numbers (∆′,∆), where ∆′ is the largest value with

∆′ < ∆ in our sample space, with the following properties:

• UNSPLITTABLE-PREFLOW-PUSH(∆,∆) returns an assignment s where e(u) = 0 for all nodes
u ∈ V , that is, all users are assigned to some link and SC(w, c, s) ≤ 2∆.

• UNSPLITTABLE-PREFLOW-PUSH(∆′,∆′) returns a (partial) assignment where e(u) = 1 for
some node u ∈ V . By Lemma 4.5 this implies that OPT(w, c) > ∆′ and thus OPT(w, c) ≥ ∆.

It follows that

SC(w, c, s)
OPT(w, c)

≤ 2∆
∆

= 2 .

One call to UNSPLITTABLE-PREFLOW-PUSH takes O(mS) time (Lemma 4.2). The binary search
on ∆ ∈ { j

ci
: 1 ≤ j ≤W, 1 ≤ i ≤ m} can be implemented to run in O(log(mW )) time. So, we have:
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Theorem 4.6 Consider the model of restricted parallel links for the case of related links. Then, there

exists an algorithm that computes an assignment with Social Cost within a factor of 2 from optimum in

time O(mS log(mW )).

5 The Algorithm UNSPLITTABLE-BLOCKING-FLOW

In this section, we introduce a blocking flow algorithm, called UNSPLITTABLE-BLOCKING-FLOW,
which will be extensively used by our Nashification algorithm is Section 6. For the rest of the paper, we
consider the case of identical links.

To control our blocking flow algorithm we use two integer parameters ∆ and w. Here, w will refer
to a certain traffic size, and ∆ will be determined by binary search.

For an assignment s and a traffic size w, consider the residual network Gs(w) = (V,Es(w)). Given
a set of links L, an assignment s, an integer ∆ and a traffic size w, we partition the set of links L
according to Definition 3.2. Since w and ∆ are integer,

L−(s,∆, w) = {j ∈ L : δj(s) ≤ ∆}

L0(s,∆, w) = {j ∈ L : ∆ + 1 ≤ δj(s) ≤ ∆ + w}

L+(s,∆, w) = {j ∈ L : δj(s) ≥ ∆ + w + 1} .

Roughly speaking, algorithm UNSPLITTABLE-BLOCKING-FLOW(L, s,∆, w) shifts users so that
the latencies of links from L−(s,∆, w) are never decreased, the latencies of links from L+(s,∆, w) are
never increased, and links from L0(s,∆, w) remain in L0(s,∆, w). Our algorithm is controlled by a
height function h : V → N0 with h(j) = distGs(w)(j,L−(s,∆, w)) for all j ∈ V . We call an edge
(u, v) admissible, if h(u) = h(v) + 1. In an admissible path, all edges are admissible. For each node
j ∈ V with 0 < h(j) < ∞, define Suc(j) to be the set of successors of node j; this is the set of nodes
to which j has an admissible edge, so that

Suc(j) = {i ∈ V : (j, i) ∈ Es(w) and h(j) = h(i) + 1} .

Note that Suc(j) also defines the set of admissible edges leaving j. Let suc(j) be the first node in a list
implementation of the set Suc(j). We proceed to define:

Definition 5.1 A link j ∈ L with 0 < h(j) <∞ is helpful if δj(s) ≥ ∆ + 1 + wsuc(j).

Observe, that a link j ∈ L+(s,∆, w) with 0 < h(j) <∞ is always helpful. However, there might also
be helpful links in L0(s,∆, w).

Definition 5.2 A helpful path is a sequence v0, . . . , vr (with r ≥ 2 and even), where v2i ∈ L for all

0 ≤ i ≤ r/2 and v2i+1 ∈ U for all 0 ≤ i < r/2 such that
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(1) v0 is a helpful link of minimum height,

(2) (vi, vi+1) ∈ Es(w) and h(vi) = h(vi+1) + 1 for all 0 ≤ i ≤ r − 1,

(3) ∆ + 1 ≤ δv2i(s) + wsuc(v2i−2) − wsuc(v2i) ≤ ∆ + w for all 0 < i < r/2,

(4) δvr(s) + wsuc(vr−2) ≤ ∆ + w.

We prove:

Lemma 5.1 Let v0 be a helpful link of minimum height. Then, for some even r ≥ 2 the sequence

v0, . . . , vr where suc(vi) = vi+1 for all 0 ≤ i ≤ r − 1 is a helpful path.

Proof: We will show that the sequence v0, . . . , vr satisfies the conditions from Definition 5.2. Condi-
tion (1) is immediate. Condition (2) follows from the definition of suc. It remains to show conditions
(3) and (4).

Note that a link j ∈ L+(s,∆, w) is helpful if h(j) <∞. Thus, since v0 is a helpful link of minimum
height, then all links v2, v4, . . . , vr−2 belong to L0(s,∆, w), and link vr belongs to L0(s,∆, w) ∪
L−(s,∆, w). Therefore,

δv2i(s) ≤ ∆ + w,

for all 0 < i ≤ r/2. Furthermore, none of these links is helpful, which implies that

δv2i(s) < ∆ + 1 + wsuc(v2i),

for all 0 < i ≤ r/2. There are two cases to consider now. If δv2i(s) + wsuc(v2i−2) ≤ ∆ + w, then r = 2i

and condition (4) holds. On the other hand, since w ≥ wsuc(v2i), the fact that δv2i(s) + wsuc(v2i−2) ≥
∆ + w + 1 implies

δv2i(s) + wsuc(v2i−2) − wsuc(v2i) ≥ ∆ + 1,

proving the lower bound in (3). To prove the upper bound, recall that δv2i(s) < ∆ + 1 + wsuc(v2i) for
all 0 < i ≤ r/2 (since v2i is not helpful). Since wsuc(v2i−2) ≤ w, this implies

δv2i(s) + wsuc(v2i−2) − wsuc(v2i) ≤ ∆ + w,

proving the upper bound in (3). This completes the proof.

We are now ready to present the algorithm UNSPLITTABLE-BLOCKING-FLOW. The algorithm is
depicted in Figure 3. Initially, the height function h is computed as the distance in Gs(w) of each
node to the set of links L−(s,∆, w). Then, the algorithm proceeds in phases. In each phase first
the minimum height d = min{h(v) | v ∈ L+(s,∆, w)} over all (helpful) links from L+(s,∆, w)
is computed. Inside each phase, we do not update the height function, but we successively choose a
helpful link v of minimum height and we push users along the helpful path induced by v and adjust
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UNSPLITTABLE-BLOCKING-FLOW(L, s,∆, w)
Input: set of links L

assignment s
positive integers ∆, w

Output: assignment t
1: compute h;
2: while L−(s,∆, w) 6= ∅ and ∃v ∈ L+(s,∆, w) : h(v) <∞ do
3: d← min{h(v) | v ∈ L+(s,∆, w)};
4: while ∃ admissible path from v ∈ L+(s,∆, w) with h(v) = d to L−(s,∆, w) do
5: choose helpful link v of minimum height;
6: push users along helpful path defined by v;
7: update s, Gs(w);
8: end while
9: recompute h;

10: end while
11: return s;

Figure 3: UNSPLITTABLE-BLOCKING-FLOW

the assignment accordingly. In order to update Gs(w) we have to change the direction of two arcs for
each user push. The phase ends when there is no further admissible path from a link v ∈ L+(s,∆, w)
with h(v) = d to some link in L−(s,∆, w). Before the new phase starts, we recompute h, and we
check whether we need to start a new phase or not. UNSPLITTABLE-BLOCKING-FLOW stops when
either L−(s,∆, w) = ∅ or h(v) = ∞ for all v ∈ L+(s,∆, w). Denote t the assignment computed by
UNSPLITTABLE-BLOCKING-FLOW(L, s,∆, w).
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We prove:

Lemma 5.2 For t, the following conditions hold:

(1) j ∈ L−(s,∆, w)⇒ δj(t) ≥ δj(s),

(2) j ∈ L0(s,∆, w)⇒ ∆ + 1 ≤ δj(t) ≤ ∆ + w,

(3) j ∈ L+(s,∆, w)⇒ δj(t) ≤ δj(s).

Proof: UNSPLITTABLE-BLOCKING-FLOW only pushes users along a helpful path that is defined by a
helpful link v of minimum height h(v). The properties of a helpful path (Definition 5.2) ensure that we
never add a link to L−(s,∆, w) or L+(s,∆, w), which implies (2). Since a link j ∈ L+(s,∆, w) with
0 < h(j) <∞ is always helpful, such a link j can only be the first link in a helpful path. It follows that
j does not receive load, which implies (3). By the definition of a helpful path, a link j ∈ L−(s,∆, w)
can only be the last link on a helpful path. But this link can only receive load, which implies (1).

The following corollary is an immediate consequence of Lemma 5.2 and the fact that UNSPLITTABLE-
BLOCKING-FLOW(L, s,∆, w) does not change the assignment s if either
L+(s,∆, w) = ∅ or L−(s,∆, w) = ∅.

Corollary 5.3 For t, maxj∈L δj(t) ≤ maxj∈L δj(s) and minj∈L δj(t) ≥ minj∈L δj(s).

We continue to prove:

Lemma 5.4 For t, one of the following conditions holds:

(1) L−(t,∆, w) = ∅.
(2) L+(t,∆, w) = ∅.
(3) there exists some set of links B ⊂ L such that:

(a) δj(t) ≥ ∆ + 1 for all j ∈ B,

(b) δj(t) ≤ ∆ + w for all j ∈ L \ B,

(c) si ∈ B ⇒ Si ⊆ B for all i ∈ U with wi ≤ w.

Proof: If either (1) or (2) holds, then the algorithm terminates. So assume that L−(t,∆, w) 6= ∅ and
L+(t,∆, w) 6= ∅, and that the algorithm terminates. It follows that h(v) = ∞ for all v ∈ L+(t,∆, w)
which implies that in Gt(w) there is no path from a link in L+(t,∆, w) to a link in L−(t,∆, w). Define
B to be the set of links that are reachable from L+(t,∆, w). Since L−(t,∆, w) is not reachable from
a link in L+(t,∆, w), (3a) holds. All links in L+(t,∆, w) are in B, therefore (3b) holds. By the
definition of B, if a user i is assigned to a link si ∈ B, then it can not be assigned to a link in L \ B
which implies (3c). The proof is now complete.
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We are now ready to prove:

Theorem 5.5 UNSPLITTABLE-BLOCKING-FLOW runs in O(mS) time.

Proof: We consider a phase of algorithm UNSPLITTABLE-BLOCKING-FLOW to be a single pass
through the outer while-loop. In a phase we first compute the minimum height d ← min{h(v) | v ∈
L+(s,∆, w)} of a link in L+(s,∆, w). Let Gd denote the subgraph of Gs(w) defined by the admissible
edges connecting nodes of height at most d. As defined earlier, let Suc(v) denote the set of successors
of v in Gd for any node v in Gd. Our algorithm will manipulate the graph Gd by deleting edges, i.e. by
deleting elements from Suc(v) for some nodes v ∈ V .

In the algorithm, we successively choose a helpful link v of minimum height in Gd, and we push
users along the helpful path induced by v. Pushing a user along an edge results in changing the direction
of this edge in Gs(w) and deleting it from Gd. This can make other nodes helpful. We see later, how the
problem of finding the next helpful link of minimum height is solved. We push users along such helpful
paths until no further helpful path in Gd from a link v ∈ L+(s,∆, w) with h(v) = d exists.

If no further such path exists, then we reached a blocking flow. Thus, after updating the height
function, the minimum height d of a link in L+(s,∆, w) increased (see Ahuja et al. [1]). Since Gs(w)
is a bipartite graph, d has to increase by at least 2 Furthermore, the maximum height of any link v with
admissible path to a link in L−(s,∆, w) is at most 2m. This implies that the number of phases is a most
m.

Note that S is an upper bound on the number of edges in Gs(w). So, the computation of the height
function h and the construction of the graph Gd can both be done in O(S) time using breadth-first

search. Recall that suc(v) is the first element in the list implementation of Suc(v). Every node keeps
track of its position in these lists. We always choose the first entry suc(u) from Suc(u) to define a
helpful path. As we shall see, this is sufficient for our algorithm and it reduces the running time.

During the run of the algorithm, the edge (u, suc(u)) may be deleted. In this case, suc(u) is also
deleted from Suc(u) and from the list implementation of Suc(u). If Suc(u) is not empty after this
deletion, then the first element in its list implementation is defined and suc(u) is newly defined, without
mentioning this explicitly in the algorithm, to be this element.

Inside a phase we always push users along a path that is induced by a helpful link v of minimum
height h(v). There are two ways in which a link v′ with h(v′) ≤ h(v) which was not helpful before can
become helpful. Either the load δv′ or the first successor suc(v′) ∈ Suc(v′) changed. Consider a link v′

on the path induced by v. Link v′ can become helpful since both the load δv′ and suc(v′) have changed.
Furthermore, it is possible that Suc(v′) became empty. In this case v′ is no longer on an admissible path
to a link in L−(s,∆, w) and therefore v′ and all edges (u, v′) entering v′ are deleted from Gd. So, v′

is extracted from Suc(u). This again can make u helpful, since suc(u) may have changed. It is also
possible that Suc(u) became empty in which case we proceed recursively.
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We now show how to find the next helpful link of minimum height efficiently using a leveled stack

K. Intuitively, K holds all nodes that could be helpful or could make other nodes helpful. The nodes
are always ordered by their height such that on top of K there is a node with minimal height. A level

on K is a maximal set of successive entries of constant height. We have two basic operations for our
leveled stack:

• The operation READ extracts the node on top of K. READ takes O(1) time.

• The operation WRITE inserts a node to the level in K according to the height of the node, provided
that it is not already on the stack. By WRITE we will add a node either to the same level as the
top node of K or to the level below. By storing a pointer with each node on K that refers to the
first node in the level below, all executed WRITE operations can be executed in O(1) time.

At the beginning of each phase every link is potentially helpful. Thus, we initialize K with all nodes
from u ∈ Gd. We then do the following until K becomes empty:

• We take node u to be the one returned by executing READ on K.

• If Suc(u) is not empty and if u is helpful then we PUSH(u, suc(u)), we delete the edge (u, suc(u))
from Gd, we WRITE(u) to K (since u may still be helpful) and we WRITE(suc(u)) to K (since
suc(u) may now be helpful).

• If Suc(u) is empty and u 6∈ L−(s,∆, w), then u is no longer on an admissible path to a link in
L−(s,∆, w). In this case for all (v, u) ∈ Gd we delete (v, u) from Gd (since (v, u) is no longer
admissible) and we execute the operation WRITE(v) to K.

When K becomes empty, the phase ends.
In going down the stack, all edges are deleted which are incident to the node examined and which are

no longer on an admissible path to a link in L−(s,∆, w). So, if a link u is recognized to be helpful, then
it defines a helpful path as described in Lemma 5.1. This also implies that if a node v ∈ L+(s,∆, w)
is not helpful when read from the stack, then Suc(v) = ∅ and there is no longer an admissible path to a
link from L−(s,∆, w).

We now analyze the time needed for one phase of the algorithm. The processing of a node u takes
constant time if Suc(u) 6= ∅. If Suc(u) = ∅, then all nodes v with (v, u) ∈ Gd have to be inserted into
the leveled stack and the edges (v, u) have to be deleted from Gd. Note that together with each WRITE

operation, an edge is deleted from Gd. Since the number of edges in Gd is at most S, the total number
of WRITE operations is O(S).

Initially, there are n + m nodes on K. There are two cases where a node v, no longer on K, may
become helpful:

• The node v is on a helpful path because in this case suc(v) is recomputed. But note that in this
case, the edge on the helpful path leading to v is deleted from Gd. So, the number of insertions of
this type is O(S).
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• The node v is connected to a node u with Suc(u) = ∅. We have already argued that the number
of insertions of this type is O(S).

Since each stack operation can be executed in constant time, it follows that one phase of UNSPLITTABLE-
BLOCKING-FLOW takes time O(S). The claim follows, since there are at most m phases.

6 Nashification

In this section, we present a Nashification algorithm, called NASHIFY, that computes a pure Nash equi-
librium from any given assignment in the case of identical links.

The algorithm first finds an assignment satisfying all users with traffic w1 by recursively applying
UNSPLITTABLE-BLOCKING-FLOW from Section 5. This algorithm, called RECURSIVEUBF, is given
in Section 6.1. We then fix the assignment of all users with traffic w1 and proceed with the next smaller
traffic while making sure that all fixed users stay satisfied. To make sure that all fixed users stay satisfied,
we introduce lower and upper bounds on the load of the links, such that the load of each link is always
in its bounds, the lower bound only increases and the upper bound only decreases. This is done until all
users are satisfied. In order to achieve this, NASHIFY makes extensive use of algorithm UNSPLITTABLE-
BLOCKING-FLOW. A detailed description of algorithm NASHIFY is in Section 6.2. In the following,
we denote w = wi for some user i ∈ U .

6.1 RECURSIVEUBF

We first turn our attention to RECURSIVEUBF(B, s(B), [l, u], w), which is depicted in Figure 4. If l ≤
δj(s) ≤ u+w for all links j ∈ B prior to a call to RECURSIVEUBF(B, s(B), [l, u], w), then it computes
an assignment, where no user with traffic w which is assigned to some link in B can improve by moving
to some other link in B. By a series of calls to UNSPLITTABLE-BLOCKING-FLOW(B, s(B),∆, w) we
compute an assignment t(B) where B−(t(B),∆, w) and B+(t(B),∆, w) are either both empty or both
non-empty. Parameter ∆ is chosen by binary search ∆ ∈ [l, u],∆ ∈ N, as follows:

• If UNSPLITTABLE-BLOCKING-FLOW(B, s(B),∆, w) returns an assignment t(B) where
B−(t(B),∆, w) = ∅ and B+(t(B),∆, w) 6= ∅, then we increase ∆.

• Otherwise, if UNSPLITTABLE-BLOCKING-FLOW(B, s(B),∆, w) returns an assignment t(B) where
B−(t(B),∆, w) 6= ∅ and B+(t(B),∆, w) = ∅, then we decrease ∆.

If after the binary search, B−(t(B),∆, w) = ∅ and B+(t(B),∆, w) = ∅, then we have computed an
assignment t(B) where all users with traffic at least w are satisfied. If neither B−(t(B),∆, w) = ∅ nor
B+(t(B),∆, w) = ∅ it follows that condition (3) from Lemma 5.4 holds. Define B′ as the set of links
still reachable from B+(t(B),∆, w) (Lemma 5.4) and let B′ be the complement of B′ in B. In this case
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RECURSIVEUBF(B, s(B), [l, u], w)
Input: A set of links B, an assignment s(B), an interval [l, u] and a traffic size w.
Output: An assignment t(B).

1: ∆← b(l + u)/2c;
2: if ∆ = u then
3: return s(B)
4: end if
5: t(B)← UNSPLITTABLE-BLOCKING-FLOW(B, s(B),∆, w);
6: if B−(t(B),∆, w) = ∅ and B+(t(B),∆, w) 6= ∅ then
7: t(B)← RECURSIVEUBF(B, t(B), [∆ + 1, u], w);
8: else if B−(t(B),∆, w) 6= ∅ and B+(t(B),∆, w) = ∅ then
9: t(B)← RECURSIVEUBF(B, t(B), [l, ∆], w);

10: else if B−(t(B),∆, w) 6= ∅ and B+(t(B),∆, w) 6= ∅ then
11: split B (according to Lemma 5.4 (3)) into sets B′ and B′;
12: t(B′)← RECURSIVEUBF(B′, t(B′), [∆ + 1, u], w);
13: t(B′)← RECURSIVEUBF(B′, t(B′), [l, ∆], w);
14: t(B)← t(B′) ∪ t(B′);
15: end if
16: return t(B);

Figure 4: RECURSIVEUBF

we split our instance into two parts. One part with all links in B′ and all users that are currently assigned
to a link in B′, the other part holds the complement. Whenever B is split into B′ and B′, condition (3)
from Lemma 5.4 implies that no user v with wv ≤ w, assigned to a link in B′, has a link from B′ in its
strategy set.

We recursively proceed with the binary search on ∆ in both parts of the instance. For the part that
corresponds to B′, we increase ∆, while in the other part we decrease ∆. The recursive splitting of B
(line 11) defines a partition of the links into sets B1, . . . ,Bp. At the end, all parts B1, . . . ,Bp are put
together to form t(B).

For each Bk, k ∈ [p], define a lower bound Low(Bk) on the load of all links from Bk as the last value
for ∆ after the binary search on ∆ in Bk. This implies:

Lemma 6.1 If l ≤ δj(s) ≤ u + w for all j ∈ B, then RECURSIVEUBF(B, s(B), [l, u], w) returns

a reassignment t(B) of users in B, a partition of B into p sets B1, . . . ,Bp for some p, and (implicit)

numbers Low(Bk) for k ∈ [p], such that:

(1) u ≥ Low(B1) > . . . > Low(Bp) ≥ l for all k ∈ [p].
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(2) Low(Bk) ≤ δj(t) ≤ Low(Bk) + w for all j ∈ Bk and for all k ∈ [p].

(3) No user u with wu ≤ w assigned to a link in Bk has a link from B` in its strategy set, if ` > k.

By the postconditions of Lemma 6.1, it follows that in the assignment computed by RECUR-
SIVEUBF(B, s(B), [l, u], w), no user with traffic w which is assigned to a link in B can improve by
moving to some other link in B. In order to preserve this property, we have to ensure that in further
computations the lower bounds only increase and the upper bounds only decrease. We denote the upper
bound by Up(Bk) for all links from Bk, and in coincidence with (2) we set Up(Bk) = Low(Bk) + w.

6.2 NASHIFY

We are ready to present algorithm NASHIFY that converts any given assignment s into a pure Nash
equilibrium t with non-increased Social Cost. Let w̃1 > . . . > w̃r be all different user traffics from
w1, . . . , wn. The idea is to compute a sequence of assignments t0, . . . , tr such that t0 = s, and such
that for all assignments ti with 1 ≤ i ≤ r, all users j ∈ U with wj ≥ w̃i are satisfied. We call the
computation of ti from ti−1 stage i. The aim in stage i is to compute an assignment ti from ti−1 such
that in ti all users u ∈ U with wu ≥ w̃i are satisfied.

NASHIFY(s)
. stage 1:

1: t1 ←RECURSIVEUBF(L, s(L), [0,maxj δj(s)], w̃1)
. stages 2,. . . , r:

2: for i← 2 to r do
3: while there are sets of active links do
4: execute SWEEP over the active links;
5: end while

. ti is the current assignment:
6: end for

Figure 5: NASHIFY

Figure 5 shows the high-level structure of our Nashification algorithm. It first uses the procedure
RECURSIVEUBF to compute an assignment t1, where all users with traffic w̃1 are satisfied. Afterwards
we iteratively satisfy users with traffic w̃2, . . . , w̃r making sure that users with larger traffic remain
satisfied (lines 2-6). We do this by executing SWEEP over the sets of active links. In the following, we
define what we mean by sets of active links, and we describe how a SWEEP over these sets of active
links is executed.

Lemma 6.1 implies that after stage 1, all users with traffic w̃1 are satisfied. Furthermore, the links
are partitioned into p1 sets B1, . . . ,Bp1 with Up(Bk) = Low(Bk) + w̃1 for all k ∈ [p1], and no user
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u ∈ U with wu ≤ w̃1, which is assigned to a link from Bk can be assigned to a link from B` when
k < `.

We now describe stage i > 1 (lines 2-6 in Figure 5). During stage i, the lower bound on the load
of a link only increases and the upper bound only decreases. This implies that fixed users (that is, all
users j ∈ U with wj > w̃i) remain satisfied. At the beginning of stage i, we have an assignment ti−1,
where the links are partitioned into pi−1 sets B1, . . . ,Bpi−1 with Up(Bk) = Low(Bk) + w̃i−1, for all
k ∈ [pi−1], and no user u, which is assigned to a link from Bk can be assigned to a link from B` when
k < `.

During each stage i, we always maintain an assignment where the links are partitioned into q sets
C1, . . . , Cq for some q. They are ordered such that Up(Ck) > Up(Ck+1) and Low(Ck) ≥ Low(Ck+1) for
all k with 1 ≤ k < q.

At the beginning of a SWEEP, we have three classes of sets (see Figure 6):

• Some sets of links Ck, 1 ≤ k < x, have not been considered yet and fulfill Up(Ck)− Low(Ck) =
w̃i−1.

• Moreover, some sets of links Ck, q ≥ k > y, have been done in stage i already and fulfill Up(Ck)−
Low(Ck) = w̃i.

• Finally, we have sets Cx, . . . , Cy of active links, with w̃i < Up(Ck) − Low(Ck) ≤ w̃i−1 and
Low(Ck) = Low(Cy) for all k ∈ [x, y].

Initially, Cj = Bj for all 1 ≤ j ≤ pi−1, the links from Cpi−1 are active, and the remaining links have
not been considered. During a SWEEP, the number of partitions q may change. We prove in Lemma 6.2
that at the beginning of each SWEEP, the sweep property introduced below holds:

...
......

Low(Cx) Low(Cx+1) Low(Cy)

Up(Cx) Up(Cx+1) Up(Cy)

Cx Cx+1 Cy Cy+1Cx−1

w̃i

w̃i−1

Figure 6: Sets of active links in stage i at the beginning of a sweep

Definition 6.1 (Sweep Property during stage i)
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(1) There is a partition of the links into q sets C1, . . . , Cq for some q with Low(C1) ≥ . . . ≥ Low(Cq)
and Up(C1) > . . . > Up(Cq).

(2) If link j ∈ Ck, then Low(Ck) ≤ δj ≤ Up(Ck).

(3) No user u with wu ≤ w̃i which is assigned to a link in Ck has a link from C` in its strategy set Su,

if ` > k.

(4) There are integers x and y with 1 ≤ x ≤ y ≤ q, such that:

(a) Up(Ck)− Low(Ck) = w̃i−1 for 1 ≤ k < x,

(b) Up(Ck)− Low(Ck) = w̃i for y < k ≤ q, and

(c) w̃i < Up(Ck)− Low(Ck) ≤ w̃i−1 and Low(Ck) = Low(Cy) for all x ≤ k ≤ y.

We use the definition of Sweep Property to define active links.

Definition 6.2 Let x, y be as in Definition 6.1. Then, a link j with j ∈ Ck, x ≤ k ≤ y, is called active.

A SWEEP is shown in Figure 7 and works on active links as follows: At the beginning of SWEEP,
the sweep property holds. The aim of SWEEP is to process links in Cy such that they do not have to
be considered again in this stage, or to make all links in Cx−1 active by increasing the lower bound of
all active links to Low(Cx−1). In order to preserve the structure of our assignment, we choose ∆ =
min{Up(Cy) − w̃i, Low(Cx−1)}. We insert all sets into a list List such that List = [Cx, . . . , Cy]. Then,
as long as there are at least two sets in List, we do the following: We extract the first element, say
D1, of List and apply UNSPLITTABLE-BLOCKING-FLOW to the sub-instance defined by the set D1.
UNSPLITTABLE-BLOCKING-FLOW(D1, s(D1),∆, w̃i) returns an assignment t(D1), where one of the
following conditions hold:

(1) D+
1 (t(D1),∆, w̃i) = ∅: In this case, all links in D1 have load at most ∆ + w̃i, and Corollary 5.3

implies that this property is preserved. Let D2 be the next element in List. Before the call,
Up(D1) > Up(D2) > ∆ + w̃i was true. After the call, the loads of all links in D1 are bounded by
∆ + w̃i. So, by setting Up(D1) ← Up(D2), we get a new upper bound on the loads of the links
in D1, and we fulfill the requirement that upper bounds can be only decreased. D1 and D2 are
merged, and the union of both sets is inserted into List. This way, the number of sets in the list is
decreased by 1.

(2) D−
1 (t(D1),∆, w̃i) = ∅ and D+

1 (t(D1),∆, w̃i) 6= ∅: In this case, all links in D1 have load at least
∆, and Corollary 5.3 implies that this property is preserved. Thus, we are allowed to set Low(D1)←
∆. We are done with D1 during this execution of SWEEP.
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Require: List = [Cx, . . . , Cy] is a list of the sets of active links
1: ∆← min{Up(Cy)− w̃i, Low(Cx−1)};
2: while |List| ≥ 2 do
3: D1 ← ExtractFirst(List);
4: t(D1)← UNSPLITTABLE-BLOCKING-FLOW(D1, s(D1),∆, w̃i) ;
5: if D+

1 (t(D1),∆, w̃i) = ∅ then
6: D2 ← ExtractFirst(List);
7: Up(D1)← Up(D2);
8: D1 ← D1 ∪ D2; Insert(D1, List);
9: else if D−

1 (t(D1),∆, w̃i) = ∅ and D+
1 (t(D1),∆, w̃i) 6= ∅ then

10: Low(D1)← ∆ and output: ”links in D1 are done in this sweep”;
11: else if D−

1 (t(D1),∆, w̃i) 6= ∅ and D+
1 (t(D1),∆, w̃i) 6= ∅ then

12: split D1 (according to Lemma 5.4 (3)) into sets D′
1 and D′

1;
13: Low(D′

1)← ∆ and output: ”links in D′
1 are done in this sweep”;

14: D2 ← ExtractFirst(List);
15: Up(D′

1)← Up(D2);
16: D1 ← D′

1 ∪ D2; Insert(D1, List);
17: end if
18: end while

. Different handling of last set
19: D1 ← ExtractFirst(List);
20: if ∆ = Up(D1)− w̃i then
21: RECURSIVEUBF(D1, s(D1), [Low(D1),∆], w̃i) and output: ”links in D1 are done in stage i”;
22: else
23: t(D1)← UNSPLITTABLE-BLOCKING-FLOW(D1, s(D1),∆, w̃i);
24: if D−

1 (t(D1),∆, w̃i) = ∅ then
25: Low(D1)← ∆ and output: ”links in D1 are done in this sweep”;
26: else if D−

1 (t(D1),∆, w̃i) 6= ∅ and D+
1 (t(D1),∆, w̃i) = ∅ then

27: Up(D1)← ∆ + w̃i;
28: RECURSIVEUBF(D1, t(D1), [Low(D1),∆], w̃i) and output: ”links in D1 are done in stage i”;
29: else if D−

1 (t(D1),∆, w̃i) 6= ∅ and D+
1 (t(D1),∆, w̃i) 6= ∅ then

30: split D1 (according to Lemma 5.4 (3)) into sets D′
1 and D′

1;
31: Low(D′

1)← ∆ and output: ”links in D′
1 are done in this sweep”;

32: Up(D′
1)← ∆ + w̃i;

33: RECURSIVEUBF(D′
1, t(D′

1), [Low(D′
1),∆], w̃i) and output: ”links in D′

1 are done in stage i”;
34: end if
35: end if

Figure 7: SWEEP over the sets of active links
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(3) D−
1 (t(D1),∆, w̃i) 6= ∅ and D+

1 (t(D1),∆, w̃i) 6= ∅: In this case, we split D1 according to condi-
tion (3) from Lemma 5.4 into setsD′

1 andD′
1. Condition (3c) implies, that no user that is assigned

to a link in D′
1 can be assigned to a link in D′

1. Since the load on each link in D′
1 is at least ∆,

we can set Low(D′
1)← ∆. The load of each link in D′

1 is at most ∆ + w̃i. Thus, since the upper
bound of the next element, say D2, in List is Up(D2) > ∆ + w̃i, we again can extract D2 from
List, set Up(D′

1)← Up(D2), merge D′
1 and D2, and insert it in List. We are done with D′

1 during
this execution of SWEEP.

So, in each case, the number of sets in List is decreased by 1. Now, we consider the case that there
is only one set, say D1, in List. This case has to be handled differently.

If ∆ = Up(D1)− w̃i, then we apply RECURSIVEUBF to the sub-instance defined by D1 in the in-
terval [Low(D1),∆] with traffic size w̃i. Otherwise, when ∆ = Low(Cx−1), we apply UNSPLITTABLE-
BLOCKING-FLOW to the sub-instance defined by the setD1. UNSPLITTABLE-BLOCKING-FLOW(D1, s(D1),∆, w̃i)
returns an assignment t(D1) where one of the following conditions holds:

(1) D−
1 (t(D1),∆, w̃i) = ∅: Here, we set Low(D1)← ∆.

(2) D−
1 (t(D1),∆, w̃i) 6= ∅ and D+

1 (t(D1),∆, w̃i) = ∅: In this case, we set Up(D1) ← ∆ + w̃i and
apply RECURSIVEUBF to the sub-instance defined byD1 in the interval [Low(D1),∆] with traffic
size w̃i.

(3) D−
1 (t(D1),∆, w̃i) 6= ∅ and D+

1 (t(D1),∆, w̃i) 6= ∅: Here, we split D1 according to condition (3)
Lemma Lemma 5.4 into sets D′

1 and D′
1. For D′

1 we set Low(D′
1) ← ∆ and for D′

1 we set
Up(D′

1) ← ∆ + w̃i and we apply RECURSIVEUBF to the sub-instance defined by D′
1 in the

interval [Low(D′
1),∆] with traffic size w̃i.

After each sweep, by renumbering the partitions, we get a new assignment that again has the same
structure as in Definition 6.1. This completes the description of SWEEP. We prove:

Lemma 6.2 The sweep property holds at the beginning of each execution of SWEEP. Moreover, in each

execution, either a non-empty set of links is added to the set of active links, or some non-empty set of

links is stage-finalized.

Proof: In order to prove that the sweep property holds at the beginning of each execution of SWEEP,
we first show that properties (1), (2) and (3) are maintained in each execution. We then show that
property (4) holds after SWEEP is executed.

(1) In each execution of SWEEP, the upper bound of a set D1 of links is only decreased when it is
joined with the next setD2 in List. Thus, the property that the upper bounds are strictly decreasing
in the sequence of sets is maintained. Moreover, if the lower bound of a set of links is increased
to ∆, then it is not considered again. Thus, all sets of active links which are not considered again
have lower bound ∆, proving that the lower bounds are decreasing in the sequence of sets.
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(2) Both algorithms UNSPLITTABLE-BLOCKING-FLOW an RECURSIVEUBF maintain property (2)
due to Lemma 6.1 and Corollary 5.3. Moreover, we only decrease an upper bound ifD+

1 (t(D1),∆, w̃i) =
∅, and we increase a lower bound only if D−

1 (t(D1),∆, w̃i) = ∅. This also maintains (2).

(3) If we split a set D1 into sets D′
1 and D′

1, then still no user on a link in D′
1 ∪ D′

1 has a link in a set
in List in its strategy set. Moreover, by Lemma 5.4, also no user on a link in D′

1 has a link in D′
1

in its strategy set. Thus, property (3) is maintained.

During each SWEEP, we always have a partition of the links into sets such that for some t the sets
Ct, . . . , Cy are still in List and Low(Ck) = Low(Cy) holds for all t ≤ k ≤ y. In general, List contains
one further set, say D1, with Low(D1) = Low(Cy) which was obtained by processing Cx, . . . , Ct−1. For
each link from Cx, . . . , Ct−1 either the lower bound increased to ∆ or it is included in D1. Links with
lower bound ∆ are not processed further in this sweep.

After the while loop, List contains exactly one set of links D1. For all links not included in D1, the
lower bound was increased to ∆. We increase the lower bound of some of the links in D1 to ∆, and
process the remaining links such that they do not have to be considered again in this stage.

After each execution of SWEEP, we either increased the lower bound of all sets of active links
to Low(Cx−1) (which makes Cx−1 active), or we processed some links from Cy by applying RECUR-
SIVEUBF to Cy such that these links do not have to be considered again in this stage. This defines the
new values of x, y for property (2) in the natural way, and it proves the second statement.

We continue to prove:

Lemma 6.3 After stage i, every user u with traffic wu ≥ w̃i is satisfied.

Proof: Stage i ends when all links are processed such that they do not have to be considered in this
stage. After stage i we have an assignment ti, where the links are partitioned into pi sets B1, . . . ,Bpi

with Low(B1) > . . . > Low(Bpi) and Up(Bk) = Low(Bk) + w̃i, for all k ∈ [pi]. Therefore, no user
u with traffic wu = w̃i that is assigned to a link from Bk can improve by moving to a link from B`, if
` ≤ k. Furthermore, no user u, that is assigned to a link from Bk, can be assigned to a link from B`

when k < `. Thus, all users with traffic w̃i are satisfied. Since we only increased the lower bounds and
decreased the upper bounds on the load of the links, all users u with traffic wu > w̃i remain satisfied
during stage i.

We are now ready to prove:

Theorem 6.4 Consider the model of restricted parallel links for the case of identical links. Given

any assignment s, NASHIFY(s) computes a Nash equilibrium with non-increased Social Cost in time

O(rmS(log W + m2)), where r is the number of distinct traffic sizes.
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Proof: Lemma 6.3 implies that after stage r all users are satisfied and therefore the resulting assign-
ment tr is a Nash equilibrium. In no step of the algorithm, the overall maximum latency is increased,
so NASHIFY(s) computes a Nash equilibrium with non-increased Social Cost.

It remains to show that the running time is O(rmS(log W + m2)). By Theorem 5.5, one call to
UNSPLITTABLE-BLOCKING-FLOW takesO(mS) time. Since in each SWEEP a set of links becomes ac-
tive or some links are processed such that they do not have to be considered again, we have at mostO(m)
executions of SWEEP per stage. Not counting the possible binary search (by a call to RECURSIVEUBF)
at the end of each SWEEP, we have at mostO(m) calls to UNSPLITTABLE-BLOCKING-FLOW per each
SWEEP. Since in a stage the binary search is done on disjoint subsets of the users and links, the total
time for all the binary searches in a stage is O(mS log W ). Since there are r stages, the total time is
O(rmS(log W + m2)), as claimed.

7 Epilogue

We have further expanded the class of strategic games whose Nash equilibria can be efficiently com-
puted. The class includes now an extension of the selfish routing game from [18] that accommodates
restrictions on the pattern of sharing links. To establish tractability, we have imported techniques from
network flows into a Nashification algorithm. We believe that such techniques may be the key to settling
other instances of the problem that are not yet known to be tractable.

As a by-product, we have improved the current record for the approximation factor of optimum
makespan for restricted identical machines. Even more so, we have both improved the approximation
factor and simplified the techniques for computing single-source unsplittable flows in the special case
of two-layered bipartite graphs.

Subsequent to this paper, Gairing et al. [12] provided a combinatorial 2-approximation algorithm
for optimum makespan for the general case of unrelated links. For their fast and simple approximation
algorithm, the procedure UNSPLITTABLE-BLOCKING-FLOW from this paper is an essential element.

Perhaps, the most interesting extension of our work is to extend our Nashification algorithm to
the case of related links, or even to unrelated links. Another important open questions is to improve
the approximation factor for optimum makespan (or proving that no further improvement is possible).
Perhaps some powerful techniques from network flows will be handy in this endeavor.
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