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Abstract

In this work, we study the impact of the dynamic changing of the network link
capacities on the stability properties of packet-switched networks. Especially, we
consider the Adversarial, Quasi-Static Queueing Theory model, where each link
capacity may take on only two possible (integer) values, namely 1 and C > 1
under a (w, ρ)-adversary. We show that allowing the dynamic changing of the link
capacities of a network with just ten nodes that uses the LIS (Longest-in-System)
protocol for contention-resolution results in instability at rates ρ >

√
2− 1 for large

enough values of C. The combination of dynamically changing link capacities with
compositions of contention-resolution protocols on network queues suffices to drop
the instability bound of a network to a substantially low value. We show that the
composition of LIS with any of SIS (Shortest-in-System), NTS (Nearest-to-Source)
and FTG (Furthest-to-Go) protocols is unstable at rates ρ >

√
2−1 for large enough

values of C. We prove that the instability bound of the network subgraphs that are
forbidden for stability is affected by the dynamic changing of the link capacities
presenting improved instability bounds for all the directed subgraphs that are known
to be forbidden for stability on networks running a certain greedy protocol.
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1 Introduction

1.1 Motivation and Framework

Objectives. We are interested in the behavior of packet-switched networks in
which packets arrive dynamically at the nodes and they are routed in discrete
time steps across the links. Recent years have witnessed a vast amount of
work on analyzing packet-switched networks under non-probabilistic assump-
tions (rather than stochastic ones); we work within a model of worst-case con-
tinuous packet arrivals, originally proposed by Borodin et al. [4] and termed
Adversarial Queueing Theory to reflect the assumption of an adversarial way
of packet generation and path determination.

A major issue that arises in such a setting is that of stability– will the num-
ber of packets in the network remain bounded at all times? The answer to
this question may depend on the rate of injecting packets into the network,
the capacity of the links, which is the rate at which a link forwards outgoing
packets, and the protocol that is used to resolve the conflict when more than
one packet wants to cross a given link in a single time step. The underlying
goal of our study is to establish the stability properties of networks and pro-
tocols when packets are injected by an adversary (rather than by an oblivious
randomized process) and the link capacities are chosen by the same adversary
in a dynamic way.

Model of Quasi-Static Capacities. Most studies of packet-switched networks
assume that one packet can cross a network link (an edge) in a single time step.
This assumption is well motivated when we assume that all network links are
identical. However, a packet-switched network can contain different types of
links, which is common especially in large-scale networks like Internet. Then,
it is well motivated to assign a capacity to each link. Furthermore, if each link
capacity takes on values in the two-valued set of integers {1, C} for C > 1, C
takes on large values and each value remains fixed for a long time, then we can
consider approximately as a link failure the assigning of unit capacity to a link,
while the assigning of capacity C to a link can be considered as the proper
service rate. Therefore, the study of the stability behavior of networks and
protocols under our model of quasi-static capacities can be considered as an
approximation of the fault-tolerance of a network where links can temporarily
fail (zero capacity).

In this work, we consider the impact on the stability behavior of protocols
and networks if the adversary besides the packet injections in paths which it
determines, it also can set the capacities of network edges in each time step.
This subfield of study was initiated by Borodin et al. in [5]. Note that we

2



Table 1
Greedy protocols considered in this paper. (US stands for universally stable)

Protocol name Which packet it advances: US

SIS (Shortest-In-System) The most recently injected packet
√

[1]

LIS (Longest-In-System) The least recently injected packet
√

[1]

FTG (Furthest-To-Go) The furthest packet from its destination
√

[1]

NTS (Nearest-To-Source) The nearest packet to its origin
√

[1]

NTG-U-LIS The nearest packet to its destination X [2]

(Nearest-To-Go-Using-LIS) or the same as LIS for tie-breaking

continue to assume uniform packet sizes.

Stability. Roughly speaking, a protocol P is stable [4] on a network G against
an adversary A of rate ρ if there is a constant B (which may depend on G
and A) such that the number of packets in the system is bounded at all times
by B. On the other hand, a protocol P is universally stable [4] if it is stable
against every adversary of rate less than 1 and on every network. We also say
that a network G is universally stable [4] if every greedy protocol is stable
against every adversary of rate less than 1 on G. We say forbidden subgraphs
for network stability [2,8] any graph that is obtained by replacing any edge of
the graphs S1,S2,S3,S4,U1 and U2 (see Figure 4) by disjoint directed paths.

Greedy Protocols. We consider five greedy contention-resolution protocols– ones
that always advance a packet across a queue (but one packet at each discrete
time step) whenever there resides at least one packet in the queue (Table 1).

1.2 Contribution

We define here the weakest possible adversary of dynamically changing net-
work link capacities in the context of Adversarial Queueing Theory where the
adversary may set link capacities to any of two integer values 1 and C (C > 1
is a parameter called high capacity). 1 Moreover, once a link capacity takes
on a value, the value stays fixed for a continuous time period proportional to
the number of packets in the system at the time of setting the capacity to the
value. We call this the Adversarial, Quasi-Static Queueing Theory model. In
this framework, we consider four protocols LIS, SIS, FTG, NTS; all four were
shown universally stable in the model of Adversarial Queueing Theory.

1 In the classical Adversarial Queueing Theory only one capacity value is available
to the adversary.
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Table 2
Instability bounds of forbidden subgraphs in AQM vs. AQSQM. We denote AQM
the Adversarial Queueing Theory Model, AQSQM the Adversarial Quasi-Static
Queueing Theory Model and s.p. the simple path.

Apply to: Instability (AQM) Instability (AQSQM)

S1 pure s.p. ρ > 0.87055 [2, Lemma 12] ρ > 0.8191 [Thm. 5.1]

S2 pure s.p. ρ > 0.84089 [2, Lemma 13] ρ > 0.8191 [Thm. 5.2]

S3 pure s.p. ρ > 0.84089 [2, Lemma 14] ρ > 0.8191 [Thm. 5.3]

S4 pure s.p. ρ > 0.84089 [2, Lemma 15] ρ > 0.8191 [Thm. 5.4]

U1 not pure s.p. ρ > 0.84089 [2, Theorem 3] ρ > 0.794 [Thm. 5.5]

U2 not pure s.p. ρ > 0.84089 [2, Lemma 9] ρ > 0.754 [Thm. 5.6]

• We construct a simple LIS network of only 10 nodes that is unstable at
rates ρ >

√
2 − 1 for large enough values of C (Theorem 3.1). This result

is the first one that presents an instability bound on the injection rate less
than 1/2 for a small-size network. Till now instability bounds of 1/2 or
less have been proved only on parameterized networks. To show this, we
use an adversarial construction that sets properly the capacities of various
networks links to unit for specified time intervals in order to accumulate
packets.

• We consider networks where different protocols may run on their nodes
(heterogeneous networks, Internet). Thus, we prove that the composition of
the LIS protocol with any of SIS, NTS and FTG is unstable at rates ρ >√

2−1 (for large enough values of C) (Theorems 4.1, 4.2 and 4.3). To show
this, we provide interesting combinatorial constructions of networks where
we specify the contention-resolution protocol to be used to each queue.

• We examine the impact on network stability of dynamically changing net-
work link capacities presenting bounds on injection rate that guarantee
instability for all the directed subgraphs that are known to be forbidden for
stability. Through involved adversarial constructions we improve the state-
of-the-art instability bound that is induced by certain known forbidden sub-
graphs on networks running a certain greedy protocol (Theorems 5.1, 5.2,
5.3, 5.4, 5.5 and 5.6). More specifically, we improve the instability bound
of the six simple subgraphs in Figure 4 that have been proved in [2] to be
forbidden subgraphs for the universal stability of networks. For purpose of
completeness and comparison, we summarize, in Table 2, all results that are
shown in this work and in [2] concerning instability bounds on the injection
rate for the forbidden subgraphs (S1, S2, S3, S4, U1, U2).
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1.3 Related Work

Adversarial Queueing Model. Adversarial Queueing Theory was developed by
Borodin et al. [4] as a more realistic model that replaces traditional stochas-
tic assumptions in Queueing Theory [6] by more robust, worst-case ones. It
received a lot of interest and attention in the study of stability and instabil-
ity issues (see, e.g., [1,2,7,9,11,13]). The universal stability of various natural
greedy protocols (SIS, LIS, NTS and FTG) was established by Andrews et
al. [1]. Also, several greedy protocols such as NTG (Nearest-To-Go) have been
proved unstable at arbitrarily small rates of injection in [13].

Stability in Heterogeneous Networks. The subfield of study of the stability
properties of compositions of universally stable protocols was introduced by
Koukopoulos et al. in [9,11,10] where lower bounds of 0.683, 0.519 and 0.5 on
the injection rates that guarantee instability for the composition pairs LIS-SIS,
LIS-NTS and LIS-FTG were presented.

Instability of Forbidden Subgraphs. Alvarez et al. in [2, Theorems 8, 12] give
a characterization for the universal stability of directed networks when the
packets follow simple paths (paths do not contain repeated edges) that are
pure (simple paths do not contain repeated vertices) and simple paths that
are not pure (simple paths contain repeated vertices). 2 According to this
characterization, a directed network graph is not pure simple path universally
stable if and only if it does not contain as subgraphs any of the extensions
of the subgraphs U1 or U2 [2, Theorem 8]; it is pure simple path universally
stable if and only if it does not contain as subgraphs any of the extensions of
the subgraphs S1 or S2 or S3 or S4 [2, Theorem 12] (see Figure 4).

Stability Issues in Dynamic Networks. Borodin et al. in [5] studied for the first
time the impact on stability when the edges of a network can have capacities.
They proved that the universal stability of networks is preserved under this
varying context. Also, it was shown that many well-known universally stable
protocols (SIS, NTS, FTG) do maintain their universal stability when the link
capacity is changing dynamically, whereas the universal stability of LIS is not
preserved. More specifically Borodin et al. in [5, Theorem 1] presented for the
first time an instability bound of ρ > C/(2C − 1) > 0.5 for the LIS protocol.

2 Corresponding characterization for the stability of undirected networks was shown
in [1, Theorem 3.16].
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1.4 Road Map

The rest of this paper is organized as follows. Section 2 presents model def-
initions. Section 3 presents our instability bound for LIS. Section 4 demon-
strates instability bounds for protocol compositions. Section 5 shows instabil-
ity bounds for forbidden subgraphs. We conclude, in Section 6, with a discus-
sion of our results and some open problems.

2 Definitions and Preliminaries

The model definitions are patterned after those in [4, Section 3], they are
adjusted to reflect the fact that the edge capacities may vary arbitrarily as
in [5, Section 2], but we address the weakest possible model of changing ca-
pacities. We consider that a routing network is modelled by a directed graph
G = (V, E). Each node u ∈ V represents a communication switch, and each
edge e ∈ E represents a link between two switches. In each node, there is a
buffer (queue) associated with each outgoing link. Time proceeds in discrete
time steps. Buffers store packets that are injected into the network with a
route, which is a simple directed path in G. A packet is an atomic entity that
resides at a buffer at the end of any step. It must travel along paths in the
network from its source to its destination, both of which are nodes in the net-
work. When a packet is injected, it is placed in the buffer of the first link on
its route. When a packet reaches its destination, we say that it is absorbed.
During each step, a packet may be sent from its current node along one of the
outgoing edges from that node. Edges can have different integer capacities,
which may or may not vary over time. Denote Ce(t) the capacity of the edge e
at time step t. That is, we assume that the edge e is capable of simultaneously
transmitting up to Ce(t) packets at time t.

Let C > 1 be an integer parameter. We demand that ∀e and ∀t Ce(t) ∈ {1, C}
(i.e. each edge capacity can get only two values, high and low). We also demand
for each edge e that Ce(t) stays at some value for a continuous period of time
at least equal to f(ρ, C)s time steps, where s is the number of packets in the
system at the time of setting the link capacity to the value and f(ρ, C) is a
function of the injection rate ρ of the adversary in the network and the high
link capacity C. We call this the Adversarial, Quasi-Static Queueing Theory
Model. This model is the weakest possible of the models that are implied by [5].

Any packets that wish to travel along an edge e at a particular time step,
but they are not sent, they wait in a queue for the edge e. The delay of a
packet is the number of steps that are spent by the packet, while waiting in
queues. At each step, an adversary generates a set of requests. A request is a
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path specifying the route that will be followed by a packet. 3 We say that the
adversary generates a set of packets when it generates a set of requested paths.
Also, we say that a packet p requires an edge e at time t if the edge e lies on
the path from its position to its destination at time t. We restrict our study
to the case of non-adaptive routing, where the path that is traversed by each
packet is fixed at the time of injection, so that we are able to focus on queueing
rather than routing aspects of the problem. (See [3] for an extension of the
adversarial model to the case of adaptive routing.) There are no computational
restrictions on how the adversary chooses its requests at any given time step.

Fix any arbitrary positive integer w ≥ 1. For any edge e of the network and any
sequence of w consecutive time steps, define N(w, e) to be the number of paths
that are injected by the adversary during the time interval of w consecutive
time steps requiring to traverse the edge e. For any constant ρ, 0 < ρ ≤ 1, a
(w, ρ)-adversary is an adversary that injects packets subject to the following
load condition: For every edge e and for every sequence τ of w consecutive time
steps, N(τ, e) ≤ ρ

∑
t∈τ Ce(t) . We say that a (w, ρ)-adversary injects packets

at rate ρ with window size w. The assumption that ρ ≤ 1 ensures that it is not
necessary a priori that some edge of the network is congested (that happens
when ρ > 1).

In order to formalize the behavior of a network under the adversarial, quasi-
static queueing theory model, we use the notions of system and system config-
uration. A triple of the form 〈G,A, P〉 where G is a network, A is an adversary
and P is the used protocol on the network queues is called a system. The
execution of the system proceeds in global time steps numbered 0, 1, . . .. Each
time-step is divided in two sub-steps. In the first sub-step, one packet is sent
from each non-empty buffer over its corresponding link. In the second sub-
step, packets are received by the nodes at the other end of the links; they are
absorbed (eliminated) if that node is their destination, and otherwise they are
placed in the buffer of the next link on their respective routes. New packets
are injected in the second sub-step.

In every time step t, the current configuration Ct of a system 〈G,A, P〉 is a
collection of sets {St

e : eεG}, such that St
e is the set of packets waiting in the

queue of the edge e at the end of step t. If the current system configuration is
Ct, we obtain the system configuration Ct+1 for the next time step as follows:
(i) Addition of new packets to some of the sets St

e, each of which has an
assigned path in G, and (ii) for each non-empty set St

e deletion of a single

3 In this work, it is assumed, as it is common in packet routing, that all paths
are simple paths with no overlapping edges. However, in Section 5 we consider two
different kinds of simple paths: simple paths that do not contain repeated vertices
(pure simple paths) and simple paths that contain repeated vertices (not pure simple
paths).
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packet pεSt
e and its insertion into the set St+1

f where f is the edge following
e on its assigned path (if e is the last edge on the path of p, then p is not
inserted into any set.) A time evolution of the system for a ((w, ρ))-adversary
is a sequence of such configurations C1, C2, . . .. An execution of the adversary’s
construction on a system 〈G,A, P〉 determines the time evolution of the system
configuration.

A contention-resolution protocol specifies, for each pair of an edge e and a
time step, which packet among those waiting at the tail of the edge e will
be moved along the edge e. A greedy contention-resolution protocol always
specifies some packet to move along the edge e if there are packets waiting
to use the edge e. In this work, we restrict attention to deterministic, greedy
contention-resolution protocols. In particular, we consider:

• SIS (Shortest-in-System) gives priority to the most recently injected packet
into the network;

• LIS (Longest-in-System) gives priority to the least recently injected packet
into the network;

• FTG (Furthest-to-Go) gives priority to the packet that has to traverse the
larger number of edges to its destination;

• NTS (Nearest-to-Source) gives priority to the packet that has traversed the
smallest number of edges from its origin;

• NTG-U-LIS (Nearest-To-Go-Using-LIS) gives priority to the nearest packet
to its destination or the least recently injected packet for tie-breaking.

All these contention-resolution protocols require some tie-breaking rule in
order to be unambiguously defined. In this work, we can assume any well-
determined tie breaking rule for the adversary.

In the adversarial constructions we study here for proving instability, we split
time into phases. In each phase, we study the evolution of the system configura-
tion by considering corresponding time rounds. For each phase, we inductively
prove that the number of packets of a specific subset of queues in the system
increases in order to guarantee instability. This inductive argument can be
applied repeatedly, thus showing instability.

Furthermore, we assume that there is a sufficiently large number of packets
s0 in the initial system configuration. This will imply instability results for
networks with an empty initial configuration, as it was established by Andrews
et al. [1, Lemma 2.9]. For simplicity, and in a way similar to that in [1] and
in works following it, we omit floors and ceilings from our analysis, and we,
sometimes, count time steps and packets only roughly. This may only result
to loosing small additive constants, while it implies a gain in clarity.
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Fig. 1. The network N .

3 Instability Bound for LIS

In this section, we present a lower bound on the injection rate that guarantees
instability for the LIS protocol on the network N (see Figure 1). We show:

Theorem 3.1 Let ρ′ =
√

2 − 1 + ε with 0 < ε ≤ 3/2 −√
2 and C > 1 where

C is a particular function of ρ′. For the network N there is an adversary A of
rate ρ that can change the link capacities of N between the two integer values
1 and C such that the system 〈N ,A, LIS〉 is unstable for every ρ > ρ′. When
C → ∞ the system 〈N ,A, LIS〉 is unstable for ρ >

√
2 − 1.

PROOF. The construction of the adversary A is broken into phases.

Inductive Hypothesis: At the beginning of phase j (suppose j is even), there
are sj packets that are queued in the queues f

′
1, f

′
4, f

′
5, f

′
7 (in total) requiring

to traverse the edges e0, f2, f4.

Induction Step: At the beginning of phase j+1, there will be sj+1 > sj packets
that will be queued in the queues f1, f4, f5, f7 (in total) requiring to traverse
the edges e1, f

′
2, f

′
4.

We will construct an adversary A such that the induction step will hold.
The main ideas of the construction of A are (a) the accurate tuning of the
duration of each round of every phase j (as a function of the high capacity C,
the injection rate ρ and the number of packets in the system at the beginning
of phase j, sj) to maximize the growth of the packet population in the system,
(b) the careful setting of the capacities of some edges to 1 for specified time
intervals in order to accumulate packets, and (c) the careful injection of packets
in order to guarantee that the load condition is satisfied. When we inject
packets into different network queues simultaneously, we choose to assign them
paths that do not overlap in order to preserve the load condition.
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Proving that the induction step holds, we ensure that the inductive hypothesis
will hold at the beginning of phase j + 1 for the symmetric edges with an
increased value of sj, sj+1 > sj. By the symmetry of the network, repeating
the phase construction an unbounded number of times, we will create an
unbounded number of packets in the network.

From the inductive hypothesis, initially, there are sj packets (that constitute
the set of packets S) in the queues f

′
1, f

′
4, f

′
5, f

′
7 requiring to traverse the edges

e0, f2, f4. In order to prove the induction step, it is assumed that the set S has
a large enough number of |S| = sj packets in the initial system configuration.

During phase j the adversary plays three rounds of injections as follows:

• Round 1: It lasts |T1| = sj/C time steps.

Adversary’s behavior. During this round the edges f
′
1, f

′
2, f

′
4, f

′
5, f

′
7, e0, f1,

f5, f7, e1 have high capacity C, while all the other edges have unit capacity.
The adversary injects a set X of |X| = ρC|T1| packets in the queue e0 want-
ing to traverse the edges e0, f1, f5, f7, e1, f

′
2, f

′
4 and a set S1 of |S1| = ρ|T1|

packets in the queue f2 wanting to traverse the edges f2, f4. These injections
satisfy the load condition because the edges e0, f1, f5, f7, e1, f

′
2, f

′
4 have high

capacity C and the edges f2, f4 have unit capacity during this round, and
the injection paths of the different packet sets do not have overlapped edges.

Evolution of the system configuration. The packets of the set S delay the
packets of the set X in the queue e0 and the packets of the set S1 in the
queue f2 because they are longer time in the system than the packets of
the sets X and S1. At the same time, the packets of the set S are delayed
in f2 due to the unit capacity of the edge f2. At the end of this round, the
remaining packets of the set S in f2 are |S ′ | = |S|−|T1| packets. The packets
of the set S that manage to traverse the edge f2 continue traversing their
remaining path and they are absorbed. Therefore, the number of packets in
the queue f2 at the end of this round requiring to traverse the edges f2, f4

is a set S2 of |S2| = |S ′ | + |S1| packets.

• Round 2: It lasts |T2| = |S2|/C time steps.

Adversary’s behavior. During this round the edges f2, f4, f7, e0, e1, f
′
2, f

′
4

have high capacity C, while all the other edges have unit capacity. The
adversary injects a set Y of |Y | = ρC|T2| packets in the queue f4 requiring
to traverse the edges f4, f7, e1, f

′
2, f

′
4. These packet injections satisfy the

load condition because the assigned path consists of edges that have high
capacity C during this round.

Evolution of the system configuration. The packets of the set Y are delayed
by the packets of the set S2 in the queue f4 because the packets of the set
S2 are longer time in the system than the packets of the set Y . The packets
of the set S2 traverse the edge f4 and they are absorbed. At the same time,
the packets of the set X are delayed in the queue f1 due to its unit capacity.
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Therefore, the remaining packets of the set X in the queue f1 is a set |X ′ |
of |X ′ | = |X| − |T2| packets.

• Round 3: It lasts |T3| = |X ′ |/C time steps.

Adversary’s behavior. During this round the edges f1, f6, e1, f
′
2, f

′
4 have high

capacity C, while all the other edges have unit capacity. The adversary
injects a set Z of |Z| = ρC|T3| packets in the queue f1 requiring to traverse
the edges f1, f6, e1, f

′
2, f

′
4. These packet injections satisfy the load condition

because the assigned path consists of edges that have high capacity C during
this round.

Evolution of the system configuration. The packets of the set X
′
delay the

packets of the set Z in the queue f1 because they are longer time in the
system than the packets of the set Z. At the same time, the packets of the
set X

′
are delayed in f5 due to the unit capacity of the edge f5. Therefore,

the remaining packets of the set X
′
in the queue f5 is a set |X ′′| of |X ′′| =

|X ′ | − |T3| packets. Moreover, the packets of the set Y are delayed in f4

due to the unit capacity of the edge f4 during this round. Therefore, the
remaining packets of the set Y in the queue f4 is a set |Y ′ | of |Y ′| = |Y |−|T3|
packets.

Note that during this round |K| = 2|T3| packets arrive in the queue f7

from the queues f4, f5. However, the edge f7 has unit capacity and the
duration of this round is |T3| time steps. Consequently, at the end of this
round |L| = |T3| packets will remain in the queue f7 requiring to traverse the
edges f7, e1, f

′
2, f

′
4. Thus, the number of packets in the queues f1, f4, f5, f7

requiring to traverse the edges e1, f
′
2, f

′
4 at the end of this round is sj+1 =

|X ′′| + |Y ′| + |Z| + |L|. Substituting the quantities |X ′′ |, |Y ′ |, |Z| and |L|,
we take sj+1 = ρsj − 1+ρ

C
sj + 2−ρ

C2 sj + ρ−1
C3 sj + ρsj + ρ2−2ρ

C
sj + 1

C2 sj + ρ−1
C3 sj +

ρ2sj − ρ
C
sj + ρ−ρ2

C2 sj + ρ
C
sj − 1

C2 sj + 1−ρ2

C3 sj.
In order to have instability, we must have sj+1 > sj, that is ρ2[1 + 1

C
−

1
C2 ] + ρ[2− 3

C
+ 1

C3 ] + [− 1
C

+ 2
C2 − 1

C3 ] > 1. Initially, note that the following
inequalities hold: (i) 1 + 1

C
− 1

C2 < 1 + 1
C

, (ii) 2 − 3
C

+ 1
C3 < 2, (iii) 1 +

1
C
− 2

C2 + 1
C3 > 1 − 2

C2 . Therefore, the inequality becomes ρ2[1 + 1
C

] + 2ρ >
1 − 2

C2 . Thus, it suffices to be shown that ρ2[C2 + C] + 2ρC2 > C2 − 2.
This inequality holds for ρ larger than the largest root ρ1 of the polynomial
ρ2[C2 + C] + 2ρC2 − (C2 − 2). The largest root of the polynomial is ρ1 =
−2C2+

√
4C4+4(C2−2)(C2+C)

2C(C+1)
=

√
2C2+C−2− 2

C

C+1
− C

C+1
. But,

√
2C2+C−2− 2

C

C+1
<

√
2C

C+1
.

Therefore, ρ1 <
√

2C
C+1

− C
C+1

. Thus, it holds that ρ >
√

2C
C+2

− C
C+2

> ρ1.

When C → ∞, it holds that 1
Ck → 0 for all k ≥ 1. Then, the inequality

ρ2[1+ 1
C
− 1

C2 ]+ρ[2− 3
C

+ 1
C3 ]+[− 1

C
+ 2

C2− 1
C3 ] > 1 becomes ρ2+2ρ−1 > 0 which

holds for ρ >
√

2−1. Note that if we have a sequence of equations fC(ρ) and
there exists the limit limC→∞ fC(ρ) = f∞(ρ), then it holds fundamentally
by the theory of function limits that if ρ(C) is the root of fC(ρ) = 0,
then limC→∞ ρ(C) is the root of f∞(ρ). Therefore, for ρ >

√
2 − 1 the

11
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Fig. 2. The network G1.

system is unstable. Analyzing the inequality ρ′ >
√

2C
C+1

− C
C+1

, we take

C >
−[2(ρ′)2+2ρ′−2]+

√
4[(ρ′)2+ρ′−1]2−4(ρ′)2[(ρ′)2+2ρ′−1]

2[(ρ′)2+2ρ′−1]
= 1. If we replace ρ′ with√

2− 1+ ε at this inequality, we estimate a C > 1 such that sj+1 > sj. This
argument can be repeated for an infinite number of phases showing that the
number of packets in the system increases forever for ρ >

√
2 − 1. �

4 Instability Bounds for Protocol Compositions

In this section, we demonstrate instability bounds for protocol compositions.
First, we show an instability bound for the composition of LIS and SIS proto-
cols on the network G1 (see Figure 2). The edges e0, e1, f1, f

′
1, f3, f

′
3 of G1 use

the LIS protocol, while the remaining edges of G1 use the SIS protocol.

Theorem 4.1 Let ρ′ =
√

2−1+ ε with 0 < ε ≤ 3/2−√
2 and C > 1 where C

is a particular function of ρ′. For the network G1 there is an adversary A1 of
rate ρ that can change the link capacities of G1 between the two integer values
1 and C such that the system 〈G1,A1, LIS, SIS〉 is unstable for every ρ > ρ′.
When C → ∞ the system 〈G1,A1, LIS, SIS〉 is unstable for ρ >

√
2 − 1.

PROOF. The construction of the adversary A1 is broken into phases.

Inductive Hypothesis: At the beginning of phase j (suppose j is even), there
are sj packets that are queued in the queues f

′
1, f

′
4, f

′
5, f

′
6 (in total) requiring

to traverse the edges e0, f2, f3, f4.

Induction Step: At the beginning of phase j+1, there will be sj+1 > sj packets
that will be queued in the queues f1, f4, f5, f6 (in total) requiring to traverse
the edges e1, f

′
2, f

′
3, f

′
4.

12



We will construct an adversary A1 such that the induction step will hold.
Proving that the induction step holds, we ensure that the inductive hypothesis
will hold at the beginning of phase j + 1 for the symmetric edges with an
increased value of sj, sj+1 > sj. By the symmetry of the network, repeating
the phase construction an unbounded number of times, we will create an
unbounded number of packets in the network.

From the inductive hypothesis, initially, there are sj packets (that constitute
the set of packets S) in the queues f

′
1, f

′
4, f

′
5, f

′
6 requiring to traverse the

edges e0, f2, f3, f4. In order to prove the induction step, it is assumed that the
set S has a large enough number of |S| = sj packets in the initial system
configuration.

During phase j, the adversary plays three rounds of injections as follows:

• Round 1: It lasts |T1| = sj/C time steps.

Adversary’s behavior. During this round the edge f2 has unit capacity, while
all the other edges have high capacity C. Also, the adversary injects a set
X of |X| = ρC|T1| packets in the queue e0 wanting to traverse the edges
e0, f1, f5, f6, e1, f

′
2, f

′
3, f

′
4 and a set S1 of |S1| = ρ|T1| packets in the queue f2

wanting to traverse the edge f2. These injections satisfy the load condition
because the edges e0, f1, f5, f6, e1, f

′
2, f

′
3, f

′
4 have high capacity C and the

edge f2 has unit capacity during this round, and the injection paths of the
different packet sets do not have overlapped edges.

Evolution of the system configuration. The packets of the set S delay the
packets of the set X in the queue e0 that uses the LIS protocol because they
are longer time in the system than the packets of the set X. At the same
time, the packets of the set S are delayed in the queue f2 that uses the
SIS protocol due to the packets of the set S1, which are shorter time in the
system than the packets of the set S, and the unit capacity of the edge f2.
At the end of this round, the remaining packets of the set S in f2 is a set S2

of |S2| = |S|− (|T1|− |S1|) packets. The packets of the set S that manage to
traverse the edge f2, traverse their remaining path and they are absorbed.

• Round 2: It lasts |T2| = |S2|/C time steps.

Adversary’s behavior. During this round the edge f1 has unit capacity, while
all the other edges have high capacity C. Also, the adversary injects a set
Y of |Y | = ρC|T2| packets in the queue f3 requiring to traverse the edges
f3, f4, f6, e1, f

′
2, f

′
3, f

′
4. These packet injections satisfy the load condition be-

cause the assigned path consists of edges that have high capacity C during
this round.

Evolution of the system configuration. The packets of the set S2 delay the
packets of the set Y in the queue f3 that uses the LIS protocol because they
are longer time in the system than the packets of the set Y . The packets of
the set S2 traverse the edge f3 and they are absorbed. At the same time, the

13



packets of the set X are delayed in the queue f1 due to the unit capacity
of the edge f1. Thus, at the end of this round the remaining packets of the
set X in the queue f1 is a set |X ′ | of |X ′ | = |X| − |T2| packets.

• Round 3: It lasts |T3| = |X ′ |/C time steps.

Adversary’s behavior. During this round the edges f4, f5, f6 have unit ca-
pacity, while all the other edges have high capacity C. Also, the adversary
injects a set Z of |Z| = ρC|T3| packets in the queue f1 requiring to traverse
the edges f1, f7, e1, f

′
2, f

′
3, f

′
4. Also, it injects a set S3 of |S3| = ρ|T3| packets in

the queue f4 wanting to traverse the edge f4, a set S4 of |S4| = ρ|T3| packets
in the queue f5 wanting to traverse the edge f5 and a set S5 of |S5| = ρ|T3|
packets in the queue f6 wanting to traverse the edge f6. These injections
satisfy the load condition because the edges f1, f7, e1, f

′
2, f

′
3, f

′
4 have high

capacity C and the edges f4, f5, f6 have unit capacity during this round,
and the injection paths of the different packet sets do not have overlapped
edges.

Evolution of the system configuration. The packets of the set X
′
delay the

packets of the set Z in the queue f1 that uses the LIS protocol because
they are longer time in the system than the packets of the set Z. At the
same time the packets of the set X

′
are delayed in the queue f5 that uses

the SIS protocol due to the unit capacity of the edge f5 during this round
and the packets of the set S4 that are shorter time in the system than the
packets of the set X

′
. Therefore, the remaining packets of the set X

′
in the

queue f5 is a set |X ′′ | of |X ′′ | = |X ′ | − (|T3| − |S4)|. Moreover, the packets
of the set Y are delayed in the queue f4 that uses the SIS protocol due to
the unit capacity of the edge f4 during this round and the packets of the
set S3 that are shorter time in the system than the packets of the set Y .
Thus, the remaining packets of the set Y in the queue f4 is a set |Y ′ | of
|Y ′ | = |Y | − (|T3| − |S3|) packets.

Note that during this round |K| = 2|T3| − |S3| − |S4| packets arrive in
the queue f6 from the queues f4, f5. However, the edge f6 has unit capacity
and uses the SIS protocol that gives priority to the packets of the set S5.
Furthermore, the duration of this round is |T3| time steps. Consequently, at
the end of this round the number of packets that remain in the queue f6

requiring to traverse the edges f6, e1, f
′
2, f

′
3, f

′
4 is |L| = |K|+|S5|−|T3|. Thus,

the number of packets in the queues f1, f4, f5, f6 requiring to traverse the
edges e1, f

′
2, f

′
3, f

′
4 at the end of this round is sj+1 = |X ′′ |+ |Y ′|+ |Z|+ |L|.

Substituting the quantities |X ′′|, |Y ′ |, |Z| and |L|, we take sj+1 = ρsj +
ρ2−ρ−1

C
sj +21−ρ

C2 sj + −ρ2+2ρ−1
C3 sj +ρsj + 2ρ2−2ρ

C
sj + 1−ρ

C2 sj + −ρ2+2ρ−1
C3 sj +ρ2sj −

ρ
C
sj + ρ−ρ2

C2 sj + ρ−ρ2

C
sj + 2ρ−1

C2 sj + ρ2−2ρ+1
C3 sj.

In order to have instability, we must have sj+1 > sj, that is ρ2[1 + 2
C
−

1
C2 − 1

C3 ] + ρ[2− 3
C
− 1

C2 + 2
C3 ] + [− 1

C
+ 2

C2 − 1
C3 ] > 1. Initially, note that the

following inequalities hold: (i) 1 + 2
C
− 1

C2 − 1
C3 < 1 + 2

C
, (ii) 2 − 3

C
− 1

C2 +
2

C3 < 2, (iii) 1 + 1
C
− 2

C2 + 1
C3 > 1 − 2

C2 . Therefore, the inequality becomes
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ρ2[1 + 2
C

] + 2ρ > 1 − 2
C2 . Thus, it suffices to be shown that ρ2[C2 + 2C] +

2ρC2 > C2 − 2. This inequality holds for ρ larger than the largest root ρ1

of the polynomial ρ2[C2 + 2C] + 2ρC2 − (C2 − 2). The largest root of the

polynomial is ρ1 =
−2C2+

√
4C4+4(C2−2)(C2+2C)

2C(C+2)
=

√
2C2+2C−2− 4

C

C+2
− C

C+2
. But,√

2C2+2C−2− 4
C

C+2
<

√
2C

C+2
. Therefore, ρ1 <

√
2C

C+2
− C

C+2
. Thus, it holds that

ρ >
√

2C
C+2

− C
C+2

> ρ1.

When C → ∞, it holds that 1
Ck → 0 for all k ≥ 1. Then, the inequality

ρ2[1 + 2
C
− 1

C2 − 1
C3 ] + ρ[2 − 3

C
− 1

C2 + 2
C3 ] + [− 1

C
+ 2

C2 − 1
C3 ] > 1 becomes

ρ2 +2ρ−1 > 0 which holds for ρ >
√

2−1. Note that if we have a sequence
of equations fC(ρ) and there exists the limit limC→∞ fC(ρ) = f∞(ρ), then it
holds fundamentally by the theory of function limits that if ρ(C) is the root
of fC(ρ) = 0, then limC→∞ ρ(C) is the root of f∞(ρ). Therefore, for ρ >√

2 − 1 the system is unstable. Analyzing the inequality ρ′ >
√

2C
C+2

− C
C+2

,

we take C >
−[4(ρ′)2+4ρ′−4]+

√
16[(ρ′)2+ρ′−1]2−16(ρ′)2[(ρ′)2+2ρ′−1]

2[(ρ′)2+2ρ′−1]
> 1. If we replace

ρ′ with
√

2−1+ε at this inequality, we estimate a C > 1 such that sj+1 > sj.
This argument can be repeated for an infinite number of phases showing that
the number of packets in the system increases forever for ρ >

√
2 − 1. �

Then, we show an instability bound for the composition of LIS and NTS proto-
cols on the network G1 (see Figure 2). The network G1 is also used for proving
the instability of the composition of LIS and SIS protocols (Theorem 4.1).
However in this case, the edges f2, f

′
2, f4, f

′
4, f5, f

′
5, f6, f

′
6, f7, f

′
7 of G1 use the

NTS protocol instead of the SIS protocol, while the remaining edges of G1 use
the LIS protocol.

Theorem 4.2 Let ρ′ =
√

2−1+ ε with 0 < ε ≤ 3/2−√
2 and C > 1 where C

is a particular function of ρ′. For the network G1 there is an adversary A2 of
rate ρ that can change the link capacities of G1 between the two integer values
1 and C such that the system 〈G1,A2, LIS, NTS〉 is unstable for every ρ > ρ′.
When C → ∞ the system 〈G1,A2, LIS, NTS〉 is unstable for ρ >

√
2 − 1.

PROOF. We break the construction of the adversary A2 into phases.

Inductive Hypothesis: At the beginning of phase j (suppose j is even), there
are sj packets that are queued in the queues f

′
1, f

′
4, f

′
5, f

′
6 (in total) requiring

to traverse the edges e0, f2, f3, f4.

Induction Step: At the beginning of phase j+1, there will be sj+1 > sj packets
that will be queued in the queues f1, f4, f5, f6 (in total) requiring to traverse
the edges e1, f

′
2, f

′
3, f

′
4.
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We will construct an adversary A2 such that the induction step will hold.
Proving that the induction step holds, we ensure that the inductive hypothesis
will hold at the beginning of phase j + 1 for the symmetric edges with an
increased value of sj, sj+1 > sj. By the symmetry of the network, repeating
the phase construction an unbounded number of times, we will create an
unbounded number of packets in the network.

From the inductive hypothesis, initially, there are sj packets (that constitute
the set of packets S) in the queues f

′
1, f

′
4, f

′
5, f

′
6 requiring to traverse the

edges e0, f2, f3, f4. In order to prove the induction step, it is assumed that the
set S has a large enough number of |S| = sj packets in the initial system
configuration.

During phase j, the adversary plays three rounds of injections as follows:

• Round 1: It lasts |T1| = sj/C time steps.

Adversary’s behavior. During this round the edge f2 has unit capacity, while
all the other edges have high capacity C. Also, the adversary injects a set
X of |X| = ρC|T1| packets in the queue e0 wanting to traverse the edges
e0, f1, f5, f6, e1, f

′
2, f

′
3, f

′
4 and a set S1 of |S1| = ρ|T1| packets in the queue f2

wanting to traverse the edge f2. These injections satisfy the load condition
because the edges e0, f1, f5, f6, e1, f

′
2, f

′
3, f

′
4 have high capacity C and the

edge f2 has unit capacity during this round, and the injection paths of the
different packet sets do not have overlapped edges.

Evolution of the system configuration. The packets of the set S delay the
packets of the set X in the queue e0 that uses the LIS protocol because they
are longer time in the system than the packets of the set X. At the same
time, the packets of the set S are delayed in the queue f2 that uses the NTS
protocol due to the packets of the set S1 which are nearest to their source
(queue f2) than the packets of the set S and the unit capacity of the edge
f2. At the end of this round, the remaining packets of the set S in f2 are
|S2| = |S| − (|T1| − |S1|). The packets of the set S that manage to traverse
the edge f2, traverse their remaining path and they are absorbed.

• Round 2: It lasts |T2| = |S2|/C time steps.

Adversary’s behavior. During this round, the edge f1 has unit capacity,
while all the other edges have capacity C. Also, the adversary injects a set
Y of |Y | = ρC|T2| packets in the queue f3 requiring to traverse the edges
f3, f4, f6, e1, f

′
2, f

′
3, f

′
4. These packet injections satisfy the load condition be-

cause the assigned path consists of edges that have high capacity C during
this round.

Evolution of the system configuration. The packets of the set S2 delay the
packets of the set Y in the queue f3 that uses the LIS protocol because they
are longer time in the system than the packets of the set Y . The packets of
the set S2 traverse the edge f3 and they are absorbed. At the same time, the
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packets of the set X are delayed in the queue f1 due to the unit capacity
of the edge f1. Thus, at the end of this round the remaining packets of the
set X in the queue f1 is a set |X ′ | of |X ′ | = |X| − |T2| packets.

• Round 3: It lasts |T3| = |X ′ |/C time steps.

Adversary’s behavior. During this round the edges f4, f5, f6 have unit ca-
pacity, while all the other edges have high capacity C. Also, the adversary
injects a set Z of |Z| = ρC|T3| packets in the queue f1 requiring to traverse
the edges f1, f7, e1, f

′
2, f

′
3, f

′
4, a set S3 of |S3| = ρ|T3| packets in the queue f4

wanting to traverse the edge f4, a set S4 of |S4| = ρ|T3| packets in the queue
f5 wanting to traverse the edge f5 and a set S5 of |S5| = ρ|T3| packets in the
queue f6 wanting to traverse the edge f6. These injections satisfy the load
condition because the edges f1, f7, e1, f

′
2, f

′
3, f

′
4 have high capacity C and the

edges f4, f5, f6 have unit capacity during this round, and the injection paths
of the different packet sets do not have overlapped edges.

Evolution of the system configuration. The packets of the set X
′
delay the

packets of the set Z in the queue f1 that uses the LIS protocol because they
are longer time in the system than the packets of the set Z. At the same
time the packets of the set X

′
are delayed in the queue f5 that uses the NTS

protocol due to the unit capacity of the edge f5 during this round and the
packets of the set S4 that are nearest to their source (queue f5) than the
packets of the set X

′
(queue e0). Therefore, the remaining packets of the

set X
′
in the queue f5 is a set |X ′′| of |X ′′| = |X ′ | − (|T3| − |S4|) packets.

Moreover, the packets of the set Y are delayed in the queue f4 that uses the
NTS protocol due to the unit capacity of the edge f4 during this round and
the packets of the set S3 that are nearest to their source (queue f4) than
the packets of the set Y (queue f3). Therefore, the remaining packets of the
set Y in the queue f4 is a set |Y ′| of |Y ′| = |Y | − (|T3| − S3) packets.

Note that during this round |K| = 2|T3| − |S3| − |S4| packets arrive in
the queue f6 from the queues f4, f5. However, the edge f6 has unit capacity
and uses the NTS protocol that gives priority to the packets of the set S5.
Furthermore, the duration of this round is |T3| time steps. Consequently, at
the end of this round the number of packets that remain in the queue f6

requiring to traverse the edges f6, e1, f
′
2, f

′
3, f

′
4 is |L| = |K|+|S5|−|T3|. Thus,

the number of packets in the queues f1, f4, f5, f6 requiring to traverse the
edges e1, f

′
2, f

′
3, f

′
4 at the end of this round is sj+1 = |X ′′ |+ |Y ′|+ |Z|+ |L|.

Substituting the quantities |X ′′|, |Y ′ |, |Z| and |L|, we take sj+1 = ρsj +
ρ2−ρ−1

C
sj +21−ρ

C2 sj + −ρ2+2ρ−1
C3 sj +ρsj + 2ρ2−2ρ

C
sj + 1−ρ

C2 sj + −ρ2+2ρ−1
C3 sj +ρ2sj −

ρ
C
sj + ρ−ρ2

C2 sj + ρ−ρ2

C
sj + 2ρ−1

C2 sj + ρ2−2ρ+1
C3 sj.

In order to have instability, we must have sj+1 > sj, that is ρ2[1 + 2
C
−

1
C2 − 1

C3 ] + ρ[2− 3
C
− 1

C2 + 2
C3 ] + [− 1

C
+ 2

C2 − 1
C3 ] > 1. Initially, note that the

following inequalities hold: (i) 1 + 2
C
− 1

C2 − 1
C3 < 1 + 2

C
, (ii) 2 − 3

C
− 1

C2 +
2

C3 < 2, (iii) 1 + 1
C
− 2

C2 + 1
C3 > 1 − 2

C2 . Therefore, the inequality becomes
ρ2[1 + 2

C
] + 2ρ > 1 − 2

C2 . Thus, it suffices to be shown that ρ2[C2 + 2C] +
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2ρC2 > C2 − 2. This inequality holds for ρ larger than the largest root ρ1

of the polynomial ρ2[C2 + 2C] + 2ρC2 − (C2 − 2). The largest root of the

polynomial is ρ1 =
−2C2+

√
4C4+4(C2−2)(C2+2C)

2C(C+2)
=

√
2C2+2C−2− 4

C

C+2
− C

C+2
. But,√

2C2+2C−2− 4
C

C+2
<

√
2C

C+2
. Therefore, ρ1 <

√
2C

C+2
− C

C+2
. Thus, it holds that

ρ >
√

2C
C+2

− C
C+2

> ρ1.

When C → ∞, it holds that 1
Ck → 0 for all k ≥ 1. Then, the inequality

ρ2[1 + 2
C
− 1

C2 − 1
C3 ] + ρ[2 − 3

C
− 1

C2 + 2
C3 ] + [− 1

C
+ 2

C2 − 1
C3 ] > 1 becomes

ρ2 +2ρ−1 > 0 which holds for ρ >
√

2−1. Note that if we have a sequence
of equations fC(ρ) and there exists the limit limC→∞ fC(ρ) = f∞(ρ), then it
holds fundamentally by the theory of function limits that if ρ(C) is the root
of fC(ρ) = 0, then limC→∞ ρ(C) is the root of f∞(ρ). Therefore, for ρ >√

2 − 1 the system is unstable. Analyzing the inequality ρ′ >
√

2C
C+2

− C
C+2

,

we take C >
−[4(ρ′)2+4ρ′−4]+

√
16[(ρ′)2+ρ′−1]2−16(ρ′)2[(ρ′)2+2ρ′−1]

2[(ρ′)2+2ρ′−1]
> 1. If we replace

ρ′ with
√

2−1+ε at this inequality, we estimate a C > 1 such that sj+1 > sj.
This argument can be repeated for an infinite number of phases showing that
the number of packets in the system increases forever for ρ >

√
2 − 1. �

Then, we show an instability bound for the composition of LIS and FTG pro-
tocols on the network G3 (see Figure 3). The edges e0, e1, f1, f

′
1, f3, f

′
3 of G3 use

the LIS protocol, while the remaining edges use the FTG protocol.

Theorem 4.3 Let ρ′ =
√

2−1+ ε with 0 < ε ≤ 3/2−√
2 and C > 1 where C

is a particular function of ρ′. For the network G3 there is an adversary A3 of
rate ρ that can change the link capacities of G3 between the two integer values
1 and C such that the system 〈G3,A3, LIS, FTG〉 is unstable for every ρ > ρ′.
When C → ∞ the system 〈G3,A3, LIS, FTG〉 is unstable for ρ >

√
2 − 1.

PROOF. We break the construction of the adversary A3 into phases.

Inductive Hypothesis: At the beginning of phase j (suppose j is even), there
are sj packets that are queued in the queues f

′
1, f

′
4, f

′
5, f

′
6 (in total) requiring

to traverse the edges e0, f2, f3, f4.

Induction Step: At the beginning of phase j+1, there will be sj+1 > sj packets
that will be queued in the queues f1, f4, f5, f6 (in total) requiring to traverse
the edges e1, f

′
2, f

′
3, f

′
4.

We will construct an adversary A3 such that the induction step will hold.
Proving that the induction step holds, we ensure that the inductive hypothesis
will hold at the beginning of phase j + 1 for the symmetric edges with an
increased value of sj, sj+1 > sj. By the symmetry of the network, repeating
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Fig. 3. The network G3.

the phase construction an unbounded number of times, we will create an
unbounded number of packets in the network.

From the inductive hypothesis, initially, there are sj packets (that constitute
the set of packets S) in the queues f

′
1, f

′
4, f

′
5, f

′
6 requiring to traverse the

edges e0, f2, f3, f4. In order to prove the induction step, it is assumed that the
set S has a large enough number of |S| = sj packets in the initial system
configuration.

During phase j, the adversary plays three rounds of injections as follows:

• Round 1: It lasts |T1| = sj/C time steps.

Adversary’s behavior. During this round the edge f2 has unit capacity, while
all the other edges have high capacity C. Also, the adversary injects a set
X of |X| = ρC|T1| packets in the queue e0 wanting to traverse the edges
e0, f1, f5, f6, e1, f

′
2, f

′
3, f

′
4 and a set S1 of |S1| = ρ|T1| packets in the queue f2

wanting to traverse the edges f2, h2, h3, h4. These injections satisfy the load
condition because the edges e0, f1, f5, f6, e1, f

′
2, f

′
3, f

′
4 have high capacity C

and the edge f2 has unit capacity during this round, and the injection paths
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of the different packet sets do not have overlapped edges.

Evolution of the system configuration. The packets of the set S delay the
packets of the set X in the queue e0 that uses the LIS protocol because they
are longer time in the system than the packets of the set X. At the same
time, the packets of the set S are delayed in the queue f2 that uses the FTG
protocol due to the packets of the set S1 which have furthest to go (queue
h4) than the packets of the set S (queue f4) and the unit capacity of the
edge f2. At the end of this round, the remaining packets of the set S in
f2 are |S2| = |S| − (|T1| − |S1|). The packets of the set S that manage to
traverse the edge f2 traverse their remaining path and they are absorbed.

• Round 2: It lasts |T2| = |S2|/C steps.

Adversary’s behavior. During this round the edge f1 has unit capacity, while
all the other edges have high capacity C. Also, the adversary injects a set
Y of |Y | = ρC|T2| packets in the queue f3 requiring to traverse the edges
f3, f4, f6, e1, f

′
2, f

′
3, f

′
4. These packet injections satisfy the load condition be-

cause the assigned path consists of edges that have high capacity C during
this round.

Evolution of the system configuration. The packets of the set S2 delay the
packets of the set Y in the queue f3 that uses the LIS protocol because they
are longer time in the system than the packets of the set Y . The packets of
the set S2 traverse the edge f3 and they are absorbed. At the same time, the
packets of the set X are delayed in the queue f1 due to the unit capacity of
the edge f1. Therefore, the remaining packets of the set X in the queue f1

at the end of this round is a set |X ′ | of |X ′ | = |X| − |T2| packets.

• Round 3: It lasts |T3| = |X ′ |/C time steps.

Adversary’s behavior. During this round the edges f4, f5, f6 have unit ca-
pacity, while all the other edges have capacity C. Also, the adversary injects
a set Z of |Z| = ρC|T3| packets in the queue f1 requiring to traverse the
edges f1, f7, e1, f

′
2, f

′
3, f

′
4, a set S3 of |S3| = ρ|T3| packets in the queue f4

wanting to traverse the edges f4, h0, h1, h3, h4, h5, h6, a set S4 of |S4| = ρ|T3|
packets in the queue f5 wanting to traverse the edges f5, h7, g1, g2, g3, g4, g5

and a set S5 of |S5| = ρ|T3| packets in the queue f6 wanting to traverse
the edges f6, w1, w2, w3, w4, w5. These injections satisfy the load condition
because the edges f1, f7, e1, f

′
2, f

′
3, f

′
4 have high capacity C and the edges

f4, f5, f6 have unit capacity during this round, and the injection paths of
the different packet sets do not have overlapped edges.

Evolution of the system configuration. The packets of the set X
′
delay the

packets of the set Z in the queue f1 that uses the LIS protocol because they
are longer time in the system than the packets of the set Z. At the same
time the packets of the set X

′
are delayed in the queue f5 that uses the FTG

protocol due to the unit capacity of the edge f5 during this round and the
packets of the set S4 that have furthest to go (queue g5) than the packets of
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the set X
′
(queue f

′
4). Therefore, the remaining packets of the set X

′
in the

queue f5 is a set |X ′′ | of |X ′′ | = |X ′ | − (|T3| − |S4|) packets. Moreover, the
packets of the set Y are delayed in the queue f4 that uses the FTG protocol
due to the unit capacity of the edge f4 during this round and the packets
of the set S3 that have furthest to go (queue h6) than the packets of the set
Y (queue f

′
4). Thus, the remaining packets of the set Y in the queue f4 at

the end of this round is a set |Y ′ | of |Y ′| = |Y | − (|T3| − |S3|) packets.
Note that during this round |K| = 2|T3| − |S3| − |S4| packets arrive in

the queue f6 from the queues f4, f5. However, the edge f6 has unit capacity
and uses the FTG protocol that gives priority to the packets of the set S5.
Furthermore, the duration of this round is |T3| time steps. Consequently, at
the end of this round the number of packets that remain in the queue f6

requiring to traverse the edges f6, e1, f
′
2, f

′
3, f

′
4 is |L| = |K|+|S5|−|T3|. Thus,

the number of packets in the queues f1, f4, f5, f6 requiring to traverse the
edges e1, f

′
2, f

′
3, f

′
4 at the end of this round is sj+1 = |X ′′ |+ |Y ′|+ |Z|+ |L|.

Substituting the quantities |X ′′|, |Y ′ |, |Z| and |L|, we take sj+1 = ρsj +
ρ2−ρ−1

C
sj +21−ρ

C2 sj + −ρ2+2ρ−1
C3 sj +ρsj + 2ρ2−2ρ

C
sj + 1−ρ

C2 sj + −ρ2+2ρ−1
C3 sj +ρ2sj −

ρ
C
sj + ρ−ρ2

C2 sj + ρ−ρ2

C
sj + 2ρ−1

C2 sj + ρ2−2ρ+1
C3 sj.

In order to have instability, we must have sj+1 > sj, that is ρ2[1 + 2
C
−

1
C2 − 1

C3 ] + ρ[2− 3
C
− 1

C2 + 2
C3 ] + [− 1

C
+ 2

C2 − 1
C3 ] > 1. Initially, note that the

following inequalities hold: (i) 1 + 2
C
− 1

C2 − 1
C3 < 1 + 2

C
, (ii) 2 − 3

C
− 1

C2 +
2

C3 < 2, (iii) 1 + 1
C
− 2

C2 + 1
C3 > 1 − 2

C2 . Therefore, the inequality becomes
ρ2[1 + 2

C
] + 2ρ > 1 − 2

C2 . Thus, it suffices to be shown that ρ2[C2 + 2C] +
2ρC2 > C2 − 2. This inequality holds for ρ larger than the largest root ρ1

of the polynomial ρ2[C2 + 2C] + 2ρC2 − (C2 − 2). The largest root of the

polynomial is ρ1 =
−2C2+

√
4C4+4(C2−2)(C2+2C)

2C(C+2)
=

√
2C2+2C−2− 4

C

C+2
− C

C+2
. But,√

2C2+2C−2− 4
C

C+2
<

√
2C

C+2
. Therefore, ρ1 <

√
2C

C+2
− C

C+2
. Thus, it holds that

ρ >
√

2C
C+2

− C
C+2

> ρ1.

When C → ∞, it holds that 1
Ck → 0 for all k ≥ 1. Then, the inequality

ρ2[1 + 2
C
− 1

C2 − 1
C3 ] + ρ[2 − 3

C
− 1

C2 + 2
C3 ] + [− 1

C
+ 2

C2 − 1
C3 ] > 1 becomes

ρ2 +2ρ−1 > 0 which holds for ρ >
√

2−1. Note that if we have a sequence
of equations fC(ρ) and there exists the limit limC→∞ fC(ρ) = f∞(ρ), then it
holds fundamentally by the theory of function limits that if ρ(C) is the root
of fC(ρ) = 0, then limC→∞ ρ(C) is the root of f∞(ρ). Therefore, for ρ >√

2 − 1 the system is unstable. Analyzing the inequality ρ′ >
√

2C
C+2

− C
C+2

,

we take C >
−[4(ρ′)2+4ρ′−4]+

√
16[(ρ′)2+ρ′−1]2−16(ρ′)2[(ρ′)2+2ρ′−1]

2[(ρ′)2+2ρ′−1]
> 1. If we replace

ρ′ with
√

2−1+ε at this inequality, we estimate a C > 1 such that sj+1 > sj.
This argument can be repeated for an infinite number of phases showing that
the number of packets in the system increases forever for ρ >

√
2 − 1. �
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Fig. 4. The pure simple-path networks S1,S2,S3,S4, and the not pure simple-path
networks U1,U2.

5 Instability Bounds for Forbidden Subgraphs

In this section, we present lower bounds on the injection rate that guarantee
instability for forbidden subgraphs. First, we consider the pure simple-path
networks S1,S2,S3,S4 (see Figure 4) that use the NTG-U-LIS protocol. We
show:

Theorem 5.1 Let ρ ≥ 0.82. For the network S1 there is an adversary A1 of
rate ρ that can change the link capacities of S1 between the two integer values
1 and C > 1000 such that the system 〈S1,A1, NTG − U − LIS〉 is unstable.
When C → ∞ the system 〈S1,A1, NTG − U − LIS〉 is unstable for ρ > 0.8191.

PROOF. We break the construction of the adversary A1 into phases.

Inductive Hypothesis: At the beginning of phase j, there are sj packets that
are queued in the queues e1, e2 requiring to traverse the edge f1.

Induction Step: At the beginning of phase j+1, there will be sj+1 > sj packets
that will be queued in the queues e1, e2 requiring to traverse the edge f1.

We will construct an adversary A1 such that the induction step will hold.
Proving that the induction step holds, we ensure that the inductive hypothesis
will hold at the beginning of phase j+1 with an increased value of sj, sj+1 > sj.
From the inductive hypothesis, initially, there are sj packets (that constitute
the set of packets S) in the queues e1, e2 requiring to traverse the edge f1. In
order to prove that the induction step works, we consider that there is a large
enough number of packets sj in the initial system configuration.

During phase j, the adversary plays four rounds of injections as follows:
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• Round 1: It lasts |T1| = sj/C time steps.

Adversary’s behavior. During this round all the network edges have high
capacity C and the adversary injects in the queue f1 a set X of |X| = ρC|T1|
packets wanting to traverse the edges f1, f2. These packet injections satisfy
the load condition because the assigned path consists of edges that have
high capacity C during this round.

Evolution of the system configuration. The packets of the set S delay the
packets of the set X in the queue f1 because they are nearest to their
destination (queue f1) than the packets of the set X (queue f2). The packets
of the set S traverse the edge f1 and they are absorbed.

• Round 2: It lasts |T2| = |X|/C time steps.

Adversary’s behavior. During this round all the network edges have high
capacity C and the adversary injects a set Y of |Y | = ρC|T2| packets in
the queue f2 requiring to traverse the edges f2, e1. These packet injections
satisfy the load condition because the assigned path consists of edges that
have high capacity C during this round.

Evolution of the system configuration. The packets of the set X delay the
packets of the set Y in the queue f2 because they have nearest to go (queue
f2) than the packets of the set Y (queue e1). The packets of the set X
traverse the edge f2 and they are absorbed.

• Round 3: It lasts |T3| = |Y |/C time steps.

Adversary’s behavior. During this round all the network edges have high
capacity C and the adversary injects a set Z of |Z| = ρC|T3| packets in the
queue f2 requiring to traverse the edges f2, e2. Also, it injects a set Z1 of
|Z1| = ρC|T3| packets in the queue e1 requiring to traverse the edges e1, f1.
These injections satisfy the load condition because all the network edges
have high capacity C, and the injection paths of the different packet sets
do not have overlapped edges.

Evolution of the system configuration. The packets of the set Y delay the
packets of the set Z in the queue f2 because they are longer time in the
system than the packets of the set Z (the packets of the sets Y and Z have
to traverse the same distance to reach their destination). Moreover, the
packets of the set Y delay the packets of the set Z1 in the queue e1 because
they have nearest to go (queue e1) than the packets of the set Z1 (queue
f1). The packets of the set Y traverse the edge e1 and they are absorbed.

• Round 4: It lasts |T4| = |Z|/C time steps.

Adversary’s behavior. During this round the edge e1 has unit capacity, while
all the other edges have high capacity C. The adversary injects a set Z2 of
|Z2| = ρC|T4| packets in the queue e2 requiring to traverse the edges e2, f1.
These packet injections satisfy the load condition because the assigned path
consists of edges that have high capacity C during this round.
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Evolution of the system configuration. The packets of the set Z delay the
packets of the set Z2 in the queue e2 because they have nearest to go (queue
e2) than the packets of the set Z2 (queue f1). The packets of the set Z
traverse the edge e2 and they are absorbed. Moreover, the packets of the set
Z1 are delayed in the queue e1 due to the unit capacity of the edge e1 during
this round. Therefore, the remaining packets of the set Z1 in the queue e1

at the end of this round is a set |Z ′
1| of |Z ′

1| = |Z1| − |T4| packets, while
the remaining packets of the set Z1 traverse their remaining path and they
are absorbed. Thus, the number of packets in the queues e1, e2 requiring
to traverse the edge f1 at the end of this round is sj+1 = |Z2| + |Z ′

1| =

ρ4sj + ρ3sj − ρ3

C
sj.

In order to have instability, we must have sj+1 > sj, that is ρ4sj + ρ3sj −
ρ3

C
sj > sj. Therefore, ρ4C + ρ3(C − 1) > C. Dividing by C the inequality,

we take ρ4 + ρ3(1− 1
C

) > 1. If we let C = 1000 and ρ = 0.82, the inequality
holds. Thus, for C > 1000 and ρ = 0.82 the inequality holds, too.

When C → ∞, it holds that 1
Ck → 0 for all k ≥ 1. Then, our inequality

becomes ρ4 + ρ3 − 1 > 0 which holds for ρ > 0.8191. Note that if we have
a sequence of equations fC(ρ) and there exists the limit limC→∞ fC(ρ) =
f∞(ρ), then it holds fundamentally by the theory of function limits that
if ρ(C) is the root of fC(ρ) = 0, then limC→∞ ρ(C) is the root of f∞(ρ).
Therefore, for ρ > 0.8191 the system is unstable. This argument can be
repeated for an infinite number of phases showing that the number of packets
in the system increases forever for ρ > 0.8191. �

Theorem 5.2 Let ρ ≥ 0.82. For the network S2 there is an adversary A2 of
rate ρ that can change the link capacities of S2 between the two integer values
1 and C > 1000 such that the system 〈S2,A2, NTG − U − LIS〉 is unstable.
When C → ∞ the system 〈S2,A2, NTG − U − LIS〉 is unstable for ρ > 0.8191.

PROOF. We break the construction of the adversary A2 into phases.

Inductive Hypothesis: At the beginning of phase j, there are sj packets that
are queued in the queues e2, e4 requiring to traverse the edge f .

Induction Step: At the beginning of phase j+1, there will be sj+1 > sj packets
that will be queued in the queues e2, e4 requiring to traverse the edge f .

We will construct an adversary A2 such that the induction step will hold.
Proving that the induction step holds, we ensure that the inductive hypothesis
will hold at the beginning of phase j+1 with an increased value of sj, sj+1 > sj.
From the inductive hypothesis, initially, there are sj packets (that constitute
the set of packets S) in the queues e2, e4 requiring to traverse the edge f . In
order to prove that the induction step works, we consider that there is a large
enough number of packets sj in the initial system configuration.

24



During phase j, the adversary plays four rounds of injections as follows:

• Round 1: It lasts |T1| = sj/C time steps.

Adversary’s behavior. During this round all the network edges have high
capacity C and the adversary injects in the queue f a set X of |X| = ρC|T1|
packets wanting to traverse the edges f, e3. These packet injections satisfy
the load condition because the assigned path consists of edges that have
high capacity C during this round.

Evolution of the system configuration. The packets of the set S delay the
packets of the set X in the queue f because they have nearest to go (queue
f) than the packets of the set X (queue e3). The packets of the set S traverse
the edge f and they are absorbed.

• Round 2: It lasts |T2| = |X|/C time steps.

Adversary’s behavior. During this round all the network edges have high
capacity C and the adversary injects a set Y of |Y | = ρC|T2| packets in the
queue e3 requiring to traverse the edges e3, e4 and a set Z of |Z| = ρC|T2|
packets in the queue f requiring to traverse the edges f, e1. These injections
satisfy the load condition because all the network edges have high capacity
C, and the injection paths of the different packet sets do not have overlapped
edges.

Evolution of the system configuration. The packets of the set X delay the
packets of the set Z in the queue f because they are longer time in the
system than the packets of the set Z (the packets of the sets X and Z have
to traverse the same distance to reach their destination). Furthermore, the
packets of the set X delay the packets of the set Y in the queue e3 because
they have nearest to go (queue e3) than the packets of the set Y (queue e4).
The packets of the set X traverse the edge e3 and they are absorbed.

• Round 3: It lasts |T3| = |Y |/C time steps.

Adversary’s behavior. During this round all the network edges have high
capacity C. Also, the adversary injects a set Z1 of |Z1| = ρC|T3| packets
in the queue e4 requiring to traverse the edges e4, f and a set Z2 of |Z2| =
ρC|T3| packets in e1 requiring to traverse the edges e1, e2. These injections
satisfy the load condition because all the network edges have high capacity
C, and the injection paths of the different packet sets do not have overlapped
edges.

Evolution of the system configuration. The packets of the set Y delay the
packets of the set Z1 in e4 because they have nearest to go (queue e4) than
the packets of the set Z1 (queue f). Furthermore, for the same reason the
packets of the set Z delay the packets of the set Z2 in the queue e1. The
packets of the sets Y and Z traverse the edges e4 and e1 correspondingly
and they are absorbed.

• Round 4: It lasts |T4| = |Z1|/C time steps.
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Adversary’s behavior. During this round the edge e4 has unit capacity, while
all the other edges have high capacity C. Also, the adversary injects a set
Z3 of |Z3| = ρC|T4| packets in the queue e2 requiring to traverse the edges
e2, f . These packet injections satisfy the load condition because the assigned
path consists of edges that have high capacity C during this round.

Evolution of the system configuration. The packets of the set Z2 delay the
packets of the set Z3 in the queue e2 because they have nearest to go (queue
e2) than the packets of the set Z3 (queue f). Moreover, the packets of the
set Z1 are delayed in e4 due to the unit capacity of the edge e4 during this
round. Therefore, the remaining packets of the set Z1 in the queue e4 at
the end of this round is a set Z4 of |Z4| = |Z1| − |T4| packets, while the
remaining packets of the set Z1 traverse their path and they are absorbed.
Thus, the number of packets in the queues e2, e4 requiring to traverse the
edge f at the end of this round is sj+1 = |Z3| + |Z4| = ρ4sj + ρ3sj − ρ3

C
sj.

In order to have instability, we must have sj+1 > sj, that is ρ4sj + ρ3sj −
ρ3

C
sj > sj. Therefore, ρ4C + ρ3(C − 1) > C. Dividing by C the inequality,

we take ρ4 + ρ3(1− 1
C

) > 1. If we let C = 1000 and ρ = 0.82, the inequality
holds. Thus, for C > 1000 and ρ = 0.82 the inequality holds, too.

When C → ∞, it holds that 1
Ck → 0 for all k ≥ 1. Then, our inequality

becomes ρ4 + ρ3 − 1 > 0 which holds for ρ > 0.8191. Note that if we have
a sequence of equations fC(ρ) and there exists the limit limC→∞ fC(ρ) =
f∞(ρ), then it holds fundamentally by the theory of function limits that
if ρ(C) is the root of fC(ρ) = 0, then limC→∞ ρ(C) is the root of f∞(ρ).
Therefore, for ρ > 0.8191 the system is unstable. This argument can be
repeated for an infinite number of phases showing that the number of packets
in the system increases forever for ρ > 0.8191. �

Theorem 5.3 Let ρ ≥ 0.82. For the network S3 there is an adversary A3 of
rate ρ that can change the link capacities of S3 between the two integer values
1 and C > 1000 such that the system 〈S3,A3, NTG − U − LIS〉 is unstable.
When C → ∞ the system 〈S3,A3, NTG − U − LIS〉 is unstable for ρ > 0.8191.

PROOF. We break the construction of the adversary A3 into phases.

Inductive Hypothesis: At the beginning of phase j, there are sj packets that are
queued in the queues f1, f3 requiring to traverse the edges f1, e2 and f3, e1, e2

correspondingly.

Induction Step: At the beginning of phase j+1, there will be sj+1 > sj packets
that will be queued in the queues f1, f3 requiring to traverse the edges f1, e2

and f3, e1, e2 correspondingly.

We will construct an adversary A3 such that the induction step will hold.
Proving that the induction step holds, we ensure that the inductive hypothesis
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will hold at the beginning of phase j+1 with an increased value of sj, sj+1 > sj.
From the inductive hypothesis, initially, there are sj packets (that constitute
the set of packets S) in the queues f1, f3 requiring to traverse the edges f1, e2

and f3, e1, e2 correspondingly. In order to prove that the induction step works,
we consider that there is a large enough number of packets sj in the initial
system configuration.

During phase j, the adversary plays four rounds of injections as follows:

• Round 1: It lasts |T1| = sj/C time steps.

Adversary’s behavior. During this round all the network edges have high
capacity C and the adversary injects in the queue e2 a set X of |X| = ρC|T1|
packets wanting to traverse the edges e2, e3. These packet injections satisfy
the load condition because the assigned path consists of edges that have
high capacity C during this round.

Evolution of the system configuration. The packets of the set S delay the
packets of the set X in the queue e2 because they have nearest to go (queue
e2) than the packets of the set X (queue e3). The packets of the set S
traverse the edge e2 and they are absorbed.

• Round 2: It lasts |T2| = |X|/C time steps.

Adversary’s behavior. During this round all the network edges have high
capacity C and the adversary injects a set Y of |Y | = ρC|T2| packets in the
queue e3 requiring to traverse the edges e3, f1, f2. These packet injections
satisfy the load condition because the assigned path consists of edges that
have high capacity C during this round.

Evolution of the system configuration. The packets of the set X delay the
packets of the set Y in the queue e3 because they have nearest to go (queue
e3) than the packets of the set Y (queue f2). The packets of the set X
packets traverse the edge e3 and they are absorbed.

• Round 3: It lasts |T3| = |Y |/C time steps.

Adversary’s behavior. During this round all the network edges have high
capacity C. Also, the adversary injects a set Z of |Z| = ρC|T3| packets in the
queue f1 requiring to traverse the edges f1, e2 and a set Z1 of |Z1| = ρC|T3|
packets in f2 requiring to traverse the edges f2, f3. These injections satisfy
the load condition because all the network edges have high capacity C, and
the injection paths of the different packet sets do not have overlapped edges.

Evolution of the system configuration. The packets of the set Y delay the
packets of the set Z in f1 because they are longer time in the system than
the packets of the set Z (the packets of the sets Y and Z have to traverse
the same distance to reach their destination). Furthermore, the packets of
the set Y delay the packets of the set Z1 in the queue f2 because they have
nearest to go (queue f2) than the packets of the set Z1 (queue f3). The
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packets of the set Y traverse the edge f2 and they are absorbed.

• Round 4: It lasts |T4| = |Z|/C time steps.

Adversary’s behavior. During this round the edge f1 has unit capacity, while
all the other edges have high capacity C. Also, the adversary injects a
set Z2 of |Z2| = ρC|T4| packets in the queue f3 requiring to traverse the
edges f3, e1, e2. These packet injections satisfy the load condition because
the assigned path consists of edges that have high capacity C during this
round.

Evolution of the system configuration. The packets of the set Z1 delay the
packets of the set Z2 in the queue e1 because they have nearest to go (queue
f3) than the packets of the set Z2 (queue e2). The packets of the set Z1

traverse the edge f3 and they are absorbed. Moreover, the packets of the
set Z are delayed in f1 due to the unit capacity of the edge f1 during this
round. Therefore, the remaining packets of the set Z in the queue f1 at the
end of this round is a set Z3 of |Z3| = |Z|−|T4| packets, while the remaining
packets of the set Z traverse their path and they are absorbed. Thus, the
number of packets in the queues f1, f3 requiring to traverse the edges f1, e2

and f3, e1, e2 correspondingly at the end of this round is sj+1 = |Z2|+ |Z3| =

ρ4sj + ρ3sj − ρ3

C
sj.

In order to have instability, we must have sj+1 > sj, that is ρ4sj + ρ3sj −
ρ3

C
sj > sj. Therefore, ρ4C + ρ3(C − 1) > C. Dividing by C the inequality,

we take ρ4 + ρ3(1− 1
C

) > 1. If we let C = 1000 and ρ = 0.82, the inequality
holds. Thus, for C > 1000 and ρ = 0.82 the inequality holds, too.

When C → ∞, it holds that 1
Ck → 0 for all k ≥ 1. Then, our inequality

becomes ρ4 + ρ3 − 1 > 0 which holds for ρ > 0.8191. Note that if we have
a sequence of equations fC(ρ) and there exists the limit limC→∞ fC(ρ) =
f∞(ρ), then it holds fundamentally by the theory of function limits that
if ρ(C) is the root of fC(ρ) = 0, then limC→∞ ρ(C) is the root of f∞(ρ).
Therefore, for ρ > 0.8191 the system is unstable. This argument can be
repeated for an infinite number of phases showing that the number of packets
in the system increases forever for ρ > 0.8191. �

Theorem 5.4 Let ρ ≥ 0.82. For the network S4 there is an adversary A4 of
rate ρ that can change the link capacities of S4 between the two integer values
1 and C > 1000 such that the system 〈S4,A4, NTG − U − LIS〉 is unstable.
When C → ∞ the system 〈S4,A4, NTG − U − LIS〉 is unstable for ρ > 0.8191.

PROOF. We break the construction of the adversary A4 into phases.

Inductive Hypothesis: At the beginning of phase j, there are sj packets that
are queued in the queues f1, f3 requiring to traverse the edges f1, e2 and
f3, e1, g2, e2 correspondingly.
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Induction Step: At the beginning of phase j+1, there will be sj+1 > sj packets
that will be queued in the queues f1, f3 requiring to traverse the edges f1, e2

and f3, e1, g2, e2 correspondingly.

We will construct an adversary A4 such that the induction step will hold.
Proving that the induction step holds, we ensure that the inductive hypothesis
will hold at the beginning of phase j+1 with an increased value of sj, sj+1 > sj.
From the inductive hypothesis, initially, there are sj packets (that constitute
the set of packets S) in the queues f1, f3 requiring to traverse the edges f1, e2

and f3, e1, g2, e2 correspondingly. In order to prove that the induction step
works, we consider that there is a large enough number of packets sj in the
initial system configuration.

During phase j, the adversary plays four rounds of injections as follows:

• Round 1: It lasts |T1| = sj/C time steps.

Adversary’s behavior. During this round all the network edges have high
capacity C and the adversary injects in the queue e2 a set X of |X| = ρC|T1|
packets wanting to traverse the edges e2, e3. These packet injections satisfy
the load condition because the assigned path consists of edges that have
high capacity C during this round.

Evolution of the system configuration. The packets of the set S delay the
packets of the set X in the queue e2 because they have nearest to go (queue
e2) than the packets of the set X (queue e3). The packets of the set S
traverse the edge e2 and they are absorbed.

• Round 2: It lasts |T2| = |X|/C time steps.

Adversary’s behavior. During this round all the network edges have high
capacity C and the adversary injects a set Y of |Y | = ρC|T2| packets in the
queue e3 requiring to traverse the edges e3, f1, g1. These packet injections
satisfy the load condition because the assigned path consists of edges that
have high capacity C during this round.

Evolution of the system configuration. The packets of the set X delay the
packets of the set Y in the queue e3 because they have nearest to go (queue
e3) than the packets of the set Y (queue g1). The packets of the set X
traverse the edge e3 and they are absorbed.

• Round 3: It lasts |T3| = |Y |/C time steps.

Adversary’s behavior. During this round all the network edges have high ca-
pacity C. Also, the adversary injects a set Z1 of |Z1| = ρC|T3| packets in the
queue f1 requiring to traverse the edges f1, e2 and a set Z2 of |Z2| = ρC|T3|
packets in g1 requiring to traverse the edges g1, f2, f3. These injections sat-
isfy the load condition because all the network edges have high capacity C,
and the injection paths of the different packet sets do not have overlapped
edges.
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Evolution of the system configuration. The packets of the set Y delay the
packets of the set Z1 in f1 because they are longer time in the system than
the packets of the set Z1 (the packets of the sets Y and Z1 have to traverse
the same distance to reach their destination). Furthermore, the packets of
the set Y delay the packets of the set Z2 in the queue g1 because they have
nearest to go (queue g1) than the packets of the set Z2 (queue f3). The
packets of the set Y packets traverse the edge g1 and they are absorbed.

• Round 4: It lasts |T4| = |Z1|/C time steps.

Adversary’s behavior. During this round the edge f1 has unit capacity, while
all the other edges have high capacity C. Also, the adversary injects a set
Z3 of |Z3| = ρC|T4| packets in the queue f3 requiring to traverse the edges
f3, e1, g2, e2. These packet injections satisfy the load condition because the
assigned path consists of edges that have high capacity C during this round.

Evolution of the system configuration. The packets of the set Z2 delay the
packets of the set Z3 in the queue f3 because they have nearest to go (queue
f3) than the packets of the set Z3 (queue e2). Moreover, the packets of the
set Z1 are delayed in f1 due to the unit capacity of the edge f1 during this
round. Therefore, the remaining packets of the set Z1 in the queue f1 at
the end of this round is a set Z4 of |Z4| = |Z1| − |T4| packets, while the
remaining packets of the set Z1 traverse their remaining path and they are
absorbed. Thus, the number of packets in the queues f1, f3 requiring to
traverse the edges f1, e2 and f3, e1, g2, e2 correspondingly at the end of this

round is sj+1 = |Z3| + |Z4| = ρ4sj + ρ3sj − ρ3sj

C
.

In order to have instability, we must have sj+1 > sj, that is ρ4sj + ρ3sj −
ρ3

C
sj > sj. Therefore, ρ4C + ρ3(C − 1) > C. Dividing by C the inequality,

we take ρ4 + ρ3(1− 1
C

) > 1. If we let C = 1000 and ρ = 0.82, the inequality
holds. Thus, for C > 1000 and ρ = 0.82 the inequality holds, too.

When C → ∞, it holds that 1
Ck → 0 for all k ≥ 1. Then, our inequality

becomes ρ4 + ρ3 − 1 > 0 which holds for ρ > 0.8191. Note that if we have
a sequence of equations fC(ρ) and there exists the limit limC→∞ fC(ρ) =
f∞(ρ), then it holds fundamentally by the theory of function limits that
if ρ(C) is the root of fC(ρ) = 0, then limC→∞ ρ(C) is the root of f∞(ρ).
Therefore, for ρ > 0.8191 the system is unstable. This argument can be
repeated for an infinite number of phases showing that the number of packets
in the system increases forever for ρ > 0.8191. �

Now, we consider the not pure simple-path networks U1,U2 (see Figure 4) that
use the NTG-U-LIS protocol.

Theorem 5.5 Let ρ = 0.8. For the network U1 there is an adversary A of
rate ρ that can change the link capacities of U1 between the two integer values 1
and C > 1000 such that the system 〈U1,A, NTG − U − LIS〉 is unstable. When
C → ∞ the system 〈U1,A, NTG − U − LIS〉 is unstable for ρ > 3

√
0.5.

30



PROOF. We break the construction of the adversary A into phases.

Inductive Hypothesis: At the beginning of phase j, there are sj packets that
are queued in the queues e1, e2 requiring to traverse the edge f .

Induction Step: At the beginning of phase j+1, there will be sj+1 > sj packets
that will be queued in the queues e1, e2 requiring to traverse the edge f .

We will construct an adversary A such that the induction step will hold.
Proving that the induction step holds, we ensure that the inductive hypothesis
will hold at the beginning of phase j+1 with an increased value of sj, sj+1 > sj.
From the inductive hypothesis, initially, there are sj packets (that constitute
the set of packets S) in the queues e1, e2 requiring to traverse the edge f . In
order to prove that the induction step works, we consider that there is a large
enough number of packets sj in the initial system configuration.

During phase j the adversary plays four rounds of injections as follows:

• Round 1: It lasts |T1| = sj/C time steps.

Adversary’s behavior. During this round all the network edges have high
capacity C and the adversary injects in the queue f a set X of |X| = ρC|T1|
packets wanting to traverse the edges f, e1. These packet injections satisfy
the load condition because the assigned path consists of edges that have
high capacity C during this round.

Evolution of the system configuration. The packets of the set S delay the
packets of the set X in the queue f because they have nearest to go (queue
f) than the packets of the set X (queue e1). The packets of the set S traverse
the edge f and they are absorbed.

• Round 2: It lasts |T2| = |X|/C time steps.

Adversary’s behavior. During this round all the network edges have high
capacity C. Also, the adversary injects a set Y of |Y | = ρC|T2| packets in
the queue f requiring to traverse the edges f, e2 and a set Z of |Z| = ρC|T2|
packets in the queue e1 requiring to traverse the edge e1. These injections
satisfy the load condition because all the network edges have high capacity
C, and the injection paths of the different packet sets do not have overlapped
edges.

Evolution of the system configuration. The packets of the set X delay the
packets of the set Y in the queue f because they are longer time in the
system than the packets of the set Y (the packets of the sets X and Y have
to traverse the same distance to reach their destination). Furthermore, for
the same reason the packets of the set X delay the packets of the set Z in
the queue e1. The packets of the set X traverse the edge e1 and they are
absorbed.
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• Round 3: It lasts |T3| = |Y |/C time steps.

Adversary’s behavior. During this round the edge e2 has unit capacity, while
all the network edges have high capacity C. Also, the adversary injects a
set Z1 of |Z1| = ρC|T3| packets in the queue e1 requiring to traverse the
edges e1, f . These packet injections satisfy the load condition because the
assigned path consists of edges that have high capacity C during this round.

Evolution of the system configuration. The packets of the set Z delay the
packets of the set Z1 in the queue e1 because they have nearest to go (queue
e1) than the packets of the set Z1 (queue f). Furthermore, the packets of
the set Y are delayed in e2 due to the unit capacity of the edge e2 during
this round. Thus, the remaining packets of the set Y in the queue e2 at the
end of this round is a set Y

′
of |Y ′| = |Y |−|T3| packets, while the remaining

packets of the set Y traverse their remaining path and they are absorbed.

• Round 4: It lasts |T4| = |Y ′ |/C time steps.

Adversary’s behavior. During this round the edge e1 has unit capacity, while
all the other edges have high capacity C. Also, the adversary injects a set
Z2 of |Z2| = ρC|T4| packets in the queue e2 requiring to traverse the edges
e2, f . These packet injections satisfy the load condition because the assigned
path consists of edges that have high capacity C during this round.

Evolution of the system configuration. The packets of the set Y
′
delay the

packets of the set Z2 in the queue e2 because they have nearest to go (queue
e2) than Z2 packets (queue f). The packets of the set Y

′
packets traverse

the edge e2 and they are absorbed. Moreover, the packets of the set Z1 are
delayed in the queue e1 due to the unit capacity of the edge e1 during this
round. Therefore, the packets of the set Z1 in the queue e1 at the end of this
round is a set Z

′
1 of |Z ′

1| = |Z1| − |T4| packets, while the remaining packets
of the set Z1 traverse their path and they are absorbed. Thus, the number
of packets in the queues e1, e2 requiring to traverse the edges f at the end
of this round is sj+1 = |Z2| + |Z ′

1| = ρ3sj − ρ3

C
sj + ρ3sj − ρ2

C
sj + ρ2

C2 sj.

In order to have instability, we must have sj+1 > sj, that is 2ρ3sj − ρ3

C
sj −

ρ2

C
sj + ρ2

C2 sj > sj. Therefore, 2ρ3C2 − ρ3C − ρ2C + ρ2 > C2. Dividing by C2

the inequality, we take ρ3(2− 1
C

)− ρ2( 1
C
− 1

C2 ) > 1. If we let C = 1000 and
ρ = 0.8, the inequality holds. Thus, for C > 1000 and ρ = 0.8 the inequality
holds, too.

When C → ∞, it holds that 1
Ck → 0 for all k ≥ 1. Then, our inequality

becomes 2ρ3 − 1 > 0 which holds for ρ > 3
√

0.5. Note that if we have
a sequence of equations fC(ρ) and there exists the limit limC→∞ fC(ρ) =
f∞(ρ), then it holds fundamentally by the theory of function limits that
if ρ(C) is the root of fC(ρ) = 0, then limC→∞ ρ(C) is the root of f∞(ρ).
Therefore, for ρ > 3

√
0.5 the system is unstable. This argument can be

repeated for an infinite number of phases showing that the number of packets
in the system increases forever for ρ > 3

√
0.5. �
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Theorem 5.6 Let ρ = 0.76. For the network U2 there is an adversary A′ of
rate ρ that can change the link capacities of U2 between the two integer values 1
and C > 1000 such that the system 〈U2,A′, NTG − U − LIS〉 is unstable. When
C → ∞ the system 〈U2,A′, NTG − U − LIS〉 is unstable for ρ > 0.754.

PROOF. We break the construction of the adversary A′ into phases.

Inductive Hypothesis: At the beginning of phase j, there are sj packets that
are queued in the queues e1, f1 requiring to traverse the edge f2.

Induction Step: At the beginning of phase j +1 there will be sj+1 > sj packets
which will be queued in the queues e1, f1 requiring to traverse the edge f2.

We will construct an adversary A′ such that the induction step will hold.
Proving that the induction step holds, we ensure that the inductive hypothesis
will hold at the beginning of phase j+1 with an increased value of sj, sj+1 > sj.
From the inductive hypothesis, initially, there are sj packets (that constitute
the set of packets S) in the queues e1, f1 requiring to traverse the edge f2. In
order to prove that the induction step works, we consider that there is a large
enough number of packets sj in the initial system configuration.

During phase j the adversary plays three rounds of injections as follows:

• Round 1: It lasts |T1| = sj/C time steps.

Adversary’s behavior. During this round all the network edges have high ca-
pacity C and the adversary injects in the queue f2 a set X of |X| = ρC|T1|
packets wanting to traverse the edges f2, e1, e2. These packet injections sat-
isfy the load condition because the assigned path consists of edges that have
high capacity C during this round.

Evolution of the system configuration. The packets of the set S delay the
packets of the set X in the queue f2 because they have nearest to go (queue
f2) than the packets of the set X (queue e2). The packets of the set S
traverse the edge f2 and they are absorbed.

• Round 2: It lasts |T2| = |X|/C time steps.

Adversary’s behavior. During this round all the network edges have high
capacity C. Also, the adversary injects a set Y of |Y | = ρC|T2| packets in
the queue e1 requiring to traverse the edges e1, f2 and a set Z of |Z| = ρC|T2|
packets in the queue e2 requiring to traverse the edges e2, f1. These injections
satisfy the load condition because all the network edges have high capacity
C, and the injection paths of the different packet sets do not have overlapped
edges.

Evolution of the system configuration. The packets of the set X delay the
packets of the set Y in the queue e1 because they are longer time in the
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system than the packets of the set Y (the packets of the sets X and Y have
to traverse the same distance to reach their destination). Furthermore, the
packets of the set X delay the packets of the set Z in the queue e2 because
they have nearest to go (queue e2) than the packets of the set Z (queue f1).
The packets of the set X traverse the edge e2 and they are absorbed.

• Round 3: It lasts |T3| = |Y |/C time steps.

Adversary’s behavior. During this round the edge e1 has unit capacity, while
all the other edges have high capacity C. Also, the adversary injects a set Z1

of |Z1| = ρC|T3| packets in the queue f1 requiring to traverse the edges f1, f2.
These packet injections satisfy the load condition because the assigned path
consists of edges that have high capacity C during this round.

Evolution of the system configuration. The packets of the set Z delay the
packets of the set Z1 in the queue f1 because they have nearest to go (queue
f1) than the packets of the set Z1 (queue f2). Moreover, the packets of the
set Y are delayed in e1 due to the unit capacity of the edge e1 during this
round. Therefore, the packets of the set Y in the queue e1 at the end of this
round is a set |Y ′ | of |Y ′| = |Y | − |T3| packets, while the remaining packets
of the set Y traverse their path and they are absorbed. Thus, the number
of packets in the queues e1, f1 requiring to traverse the edge f2 at the end

of this round is sj+1 = |Z1| + |Y ′| = ρ3sj + ρ2sj − ρ2sj

C
.

In order to have instability, we must have sj+1 > sj, that is ρ3sj + ρ2sj −
ρ2sj

C
> sj. Therefore, ρ3C + ρ2(C − 1) > C. Dividing by C the inequality,

we take ρ3 + ρ2(1− 1
C

) > 1. If we let C = 1000 and ρ = 0.76, the inequality
holds. Thus, for C > 1000 and ρ = 0.76 the inequality holds, too.

When C → ∞, it holds that 1
Ck → 0 for all k ≥ 1. Then, our inequality

becomes ρ3 + ρ2 − 1 > 0, which holds for ρ > 0.754. Note that if we have
a sequence of equations fC(ρ) and there exists the limit limC→∞ fC(ρ) =
f∞(ρ), then it holds fundamentally by the theory of function limits that
if ρ(C) is the root of fC(ρ) = 0, then limC→∞ ρ(C) is the root of f∞(ρ).
Therefore, for ρ > 0.754 the system is unstable. This argument can be
repeated for an infinite number of phases showing that the number of packets
in the system increases forever for ρ > 0.754. �

6 Discussion and Directions for Further Research

In this work, we studied how the dynamic changing of the network link capac-
ities affects the instability properties of greedy contention-resolution protocols
and networks using an extension of the adversarial model that was first initi-
ated by Borodin et al. in [5], the Adversarial, Quasi-Static Queueing Theory
Model. Thus, we studied the instability properties of LIS showing an instability
bound on the injection rate that represents the current state-of-the-art. Also,
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we proved that the lower bound on the injection rate that guarantees insta-
bility for specific compositions of universally stable protocols can be dropped
lower than 1/2 when the link capacities change by an adversary. This result
improves the corresponding one in the classical adversarial model [10]. Fi-
nally, we studied the instability behavior which is induced by all the known
forbidden subgraphs on networks running the NTG-U-LIS protocol when the
link capacities change dynamically showing lower instability bounds than their
counterparts in the classical adversarial model [2].

However, a lot of problems remain open. Our results suggest that, for every
unstable network, its instability bound in the model of quasi-static capacities
may be lower than for the classical adversarial queueing model. Proving (or
disproving) this remains an open problem. Another avenue for further research
is whether there are upper bounds on the injection rate that guarantee stability
for forbidden subgraphs when the link capacities can change dynamically.
Studying the impact of dynamically changing link capacities on other greedy
protocols and networks or whether the lower bound on the injection rate that
guarantees instability for compositions of protocols can be dropped further is
another interesting problem. Finally, it worths to receive attention the study
of the stability behavior of networks and protocols in environments where the
adversary controls the movement of the network nodes.
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