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Abstract

In this work, we consider an interesting variant of the well studied KP model for self-
ish routing on parallel links, which reflects some influence from the much older Wardrop
model [29]. In the new model, user traffics are still unsplittable and links are identical. So-
cial Cost is now the expectation of the sum, over all links, of Latency Costs; each Latency
Cost is modeled as a certain polynomial latency cost function evaluated at the latency in-
curred by all users choosing the link. The resulting Social Cost is called Polynomial Social
Cost, or Monomial Social Cost when the latency cost function is a monomial. All considered
polynomials are of degree d, where d ≥ 2, and have non-negative coefficients.

We are interested in evaluating Nash equilibria in this model, and we use the Monomial
Price of Anarchy and the Polynomial Price of Anarchy as our evaluation measures. Through
establishing some remarkable relations of these costs and measures to some classical com-
binatorial numbers such as the Stirling numbers of the second kind and the Bell numbers,
we obtain a multitude of results:

• For the special case of identical users:

– The fully mixed Nash equilibrium, where all probabilities are strictly positive,
maximizes Polynomial Social Cost.

– The Monomial Price of Anarchy is no more than Bd, the Bell number of order d.
This immediately implies that the Polynomial Price of Anarchy is no more than∑

1≤t≤d Bt.
For the special case of two links, the Monomial Price of Anarchy is no more than

2d−2

(
1 +

(
1
n

)d−1
)

, and this bound is tight for n = 2.

• The Monomial Price of Anarchy is exactly (2d − 1)d

(d− 1)(2d − 2)d−1

(
d− 1

d

)d

for pure Nash

equilibria. This immediately implies that the Polynomial Price of Anarchy is no more

than
∑

2≤t≤d
(2t − 1)t

(t− 1)(2t − 2)t−1

(
t− 1

t

)t

.
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1 Introduction

1.1 Framework

The Price of Anarchy [19, 25], also known as Coordination Ratio, is a widely adopted measure
of the extent to which competition approximates cooperation. In the most general setting, the
Price of Anarchy is the worst-case ratio between the value of a global objective function called
Social Cost [19] over its optimal value, called Optimum. The Social Cost is evaluated at a
Nash equilibrium [23, 24]; here, no user could unilaterally switch from its own (mixed) strategy
in order to improve the value of its local objective function, called (Expected) Individual Cost.
Yet, Optimum is the solution to some, usually hard, combinatorial optimization problem. So,
the Price of Anarchy represents a rendezvous of Nash equilibrium, a fundamental concept from
Game Theory, with approximation, an ubiquitous concept from Theoretical Computer Science.

Koutsoupias and Papadimitriou [19] introduced the Price of Anarchy in the context of some
specific setting, widely known as the KP model and extensively studied in the last few years as
a prevailing model for selfish routing (see, e.g., [10, 11, 13, 15, 16, 18, 21, 22]). In the KP model,
there are m parallel links and n selfish users with (unsplittable) traffics. The (expected) latency
incurred on a link is the (expected) total traffic of users choosing it. The (Expected) Individual
Cost of a user is the (expected) latency on the link it chooses. In a Nash equilibrium, each
user alone is minimizing its (Expected) Individual Cost. The Social Cost is the expectation of
maximum latency; the Optimum is the least possible maximum latency.

The Wardrop model [29] is another prevailing model for selfish routing that dates back to
the 1950s, when it was considered in the context of road traffic networks. In the Wardrop
model, the network can be arbitrary; user traffics are infinitesimally splittable, and this rules
out mixed strategies from consideration. In addition, Social Cost is defined here as the sum of
all Individual Costs; each Individual Cost is a certain sum of Latency Costs. More specifically,
the Latency Cost on a link is determined by a convex function, called latency cost function, of
the latency on the link; the Individual Cost of a user is the sum of Latency Costs on links in the
paths chosen by the user. Inspired by the vivid interest in the Price of Anarchy, Roughgarden
and Tardos [27] initiated recently a reinvestigation of the Wardrop model.

1.2 The Model and its Relatives

A natural goal is to understand the dependence of the Price of Anarchy on the particular way of
formulating Individual Cost and Social Cost. Towards this goal, some recent works [14, 20] have
considered bridging the KP model with the Wardrop model and analyzing the bridged model. In
this paper, we further pursue this goal by introducing and analyzing a new, interesting variant
of the KP model that reflects some influence from the Wardrop model.
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In our proposed model, we follow the KP model to consider the parallel links network, un-
splittable traffics and mixed strategies. However, inspired by the Wardrop model, we introduce
Polynomial Social Cost as the expectation of the sum of Latency Costs on links. We also assume
that latency cost functions are polynomial; all polynomials we consider are of degree d and have
non-negative coefficients. We assume that links are identical; so, all polynomials are identical.
Polynomial Social Cost gives rise to Polynomial Optimum and Polynomial Price of Anarchy in
the natural way. In some cases, we also consider monomials (that is, polynomials consisting
of a single power with unit coefficient). We then talk about Monomial Social Cost, Monomial
Optimum and Monomial Price of Anarchy.

Our model is closely related to two previously studied models:

• Relaxed to allow arbitrary links with (not necessarily identical) linear latencies, but
restricted to quadratic latency cost functions, our model has been already studied by
Lücking et al. [20]. The model in [20] adopted Quadratic Social Cost, which it defined (in
an equivalent way) as the sum of weighted (Expected) Individual Costs. Quadratic Social
Cost is the special case of our Monomial Social Cost with monomials of degree 2.

• Relaxed to allow arbitrary links with (not necessarily identical) convex latencies, our
model was already studied by Gairing et al. [14]. However, Gairing et al. [14] modeled
Social Cost as the sum of Individual Costs. Assuming identical users and linear latencies,
the model of Gairing et al. [14] and the model of Lücking et al. [20] become identical.

The relation of our model to the KP model and the models of Lücking et al. [20] and
Gairing et al. [14] is summarized in Figure 1. Restricted to pure Nash equilibria, where each
user chooses a single link (with probability 1), our model was already studied for monotone
latency cost functions in [9]. Besides pure Nash equilibria, we shall pay, in our study, some
particular attention to the fully mixed Nash equilibrium [22], where each user chooses each link
with non-zero probability.

Admittedly, our proposed model represents a significant departure from a long line of pre-
vious work (including [10, 14, 18, 20, 22, 27]). The reason is that, for the first time, the Social
Cost is not a simple and natural function (for example, sum or maximum) of either the Indi-
vidual Costs of the users or the latencies on the links. Thus, while the (Expected) Individual
Cost is still the conditional expectation of the link latency, the Latency Cost on a link (which
is what contributes to Social Cost) is now an (almost) arbitrary polynomial of the link latency.
We argue, however, that our proposed model is significant and has potential applications in
some economic scenaria:

• First, arbitrary polynomials have been long used for modeling Latency Costs in the context
of studying communication and transportation networks – see, for example, [2, 6].
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Model: KP [19] Lücking et al. [20] Gairing et al. [14] Present

Latency (as function Linear Linear Convex Identity
of total traffic)
Latency Cost Function — Quadratic — Polynomial
(as function of latency)
Individual Cost is Latency
expectation of:
Social Cost is Maximum Sum of Latency Costs Sum of Sum of
expectation of: Latency (= Weighted Sum of Individual Costs Latency Costs

Individual Costs)

Figure 1: Comparison of present model to three relatives (namely, the KP model [19] and the
models in [14, 20]). Note that all four models formulate Individual Cost (as a function of
latency) in the same way, while they do not (in general) do so for latency. In the special case
where the linear function for latency in the KP model and the model of Lücking et al. [20]
becomes the identity function, the Individual Costs for these models become identical with the
one for the present model, as also do their Nash equilibria.

• Second and at a more abstract level, recall that Latency Costs represent costs to the
society, while Individual Costs represent costs to the individuals (making up the society).
It is often the case that individuals receive support from some authority – for example,
individuals count on refunds from the tax authority. This is best modeled by assuming
that the actual Individual Costs are significantly lower than those corresponding to the
Social Cost.

• Third, Social Cost is often overestimated in order to allow claims for higher support
from funding agencies. Using higher degree polynomials provides a paradigm for such
overestimation.

1.3 Contribution and Significance

We are primarily interested in analyzing the Polynomial Price of Anarchy for our new model.
To do so, we introduce and study a natural conjecture, called the Polynomial Fully Mixed Nash
Equilibrium Conjecture and abbreviated as the PFMNE Conjecture; it asserts that the fully
mixed Nash equilibrium maximizes Polynomial Social Cost. Although the PFMNE Conjecture
is interesting in its own right, a resolution of it to the positive would also enable the derivation of
upper bounds on the Polynomial Price of Anarchy via deriving upper bounds on the Polynomial
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Social Cost of the fully mixed Nash equilibrium.
We address two important special settings of the problem:

1.3.1 Identical Users

For the case of identical users, we rely on a very thorough analysis of the fully mixed Nash
equilibrium. For the analysis, we employ, as our chief combinatorial instrument, the binomial
function originally introduced in [14]. We prove here that the binomial function can be expressed
as a combinatorial sum of Stirling numbers of the second kind [28] (Proposition 2.2). We also
observe that Polynomial Social Cost can be expressed as a sum of binomial functions (in the case
of identical users). Together these two imply that the Polynomial Social Cost of the fully mixed
Nash equilibrium is a combinatorial sum of Stirling numbers of the second kind (Corollary 3.2).
Moreover, the Polynomial Social Cost of any (mixed) Nash equilibrium is upper bounded by a
certain combinatorial sum of Stirling numbers of the second kind. Hence, comparison of these
two Polynomial Social Costs reduces to comparing like terms in the two combinatorial sums.
We obtain the following results:

• The PFMNE Conjecture is valid (Theorem 4.1). The proof follows a careful comparison
of like terms in the combinatorial sums upper bounding and expressing the Polynomial
Social Costs of an arbitrary and the fully mixed Nash equilibria, respectively.

• The Monomial Price of Anarchy is upper bounded by Bd, (Theorem 4.4); here, Bd is the
Bell number of order d. This follows from the PFMNE Conjecture. From this bound, an
upper bound of

∑
2≤t≤d Bt on Polynomial Price of Anarchy follows immediately (Corol-

lary 4.5).

For the special case of two links, the Monomial Price of Anarchy is upper bounded by

2d−2

(
1 +

(
1
n

)d−1
)

(Theorem 4.6). Furthermore, this upper bound is tight for the sub-

case of two users. From this upper bound, an upper bound of 2d−1 − 1 + d− 1
n on

Polynomial Price of Anarchy follows immediately (Corollary 4.7).

1.3.2 Pure Nash Equilibria

The Monomial Price of Anarchy is exactly (2d − 1)d

(d− 1)(2d − 2)d−1

(
d− 1

d

)d
(Theorem 5.4). The as-

ymptotic behavior of this exact bound is closely described by the simple function (2d)d

d(2d)d−1 = 2d

d .

From this exact bound, an upper bound of
∑

2≤t≤d
(2t − 1)t

(t− 1)(2t − 2)t−1

(
t− 1

t

)t
on Polynomial

Price of Anarchy follows immediately (Corollary 5.5).
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Bounds for Identical Users:

Monomial Price of Anarchy Polynomial Price of Anarchy

Lower Upper Upper

— Bd, if m ≥ 2
∑

2≤t≤d Bt, if m ≥ 2

2d−2 + 1
2, if m = n = 2 2d−2

(
1 +

(
1
n

)d−1
)

, if m = 2 2d−1 − 1 + d− 1
n , if m = 2

Bounds for Pure Nash Equilibria:

Monomial Price of Anarchy Polynomial Price of Anarchy

Lower Upper Upper

(2d − 1)d

(d− 1)(2d − 2)d−1

(
d− 1

d

)d (2d − 1)d

(d− 1)(2d − 2)d−1

(
d− 1

d

)d ∑
2≤t≤d

(2t − 1)t

(t− 1)(2t − 2)t−1

(
t− 1

t

)t

Figure 2: Summary of shown bounds on Monomial and Polynomial Prices of Anarchy.

1.3.3 Summary and Remarks

All shown bounds are summarized in Figure 2. We remark that (almost) all shown bounds are
independent of m and n, but depend on d. The lower bounds imply that this dependence is
inherent. Finally, we remark that all upper bounds on Polynomial Price of Anarchy are obtained
through naive reductions to corresponding upper bounds on Monomial Price of Anarchy. At
present, we do not know if there are better bounds on Polynomial Price of Anarchy that bypass
the naive reduction.

1.4 Related Work and Comparison

Gairing et al. [15, 16] were the first to explicitly state the related Fully Mixed Nash Equilibrium
Conjecture that the fully mixed Nash equilibrium maximizes Social Cost for the KP model. Up
to now, the conjecture has been proved for several particular cases of the KP model [13, 15,
21]. Recently, Fischer and Vöcking [12] presented a counterexample to the Fully Mixed Nash
Equilibrium Conjecture for the case of identical links. The validity of the Fully Mixed Nash
Equilibrium Conjecture for the case of identical users (but arbitrary links) remains open.

Lücking et al. [20] formulated the Quadratic Fully Mixed Nash Equilibrium Conjecture,
which asserts that the fully mixed Nash equilibrium maximizes Quadratic Social Cost for their
model. Lücking et al. [20, Theorem 4.8] proved the Quadratic Fully Mixed Nash Equilibrium
Conjecture for the case of identical users and identical links. Our PFMNE Conjecture generalizes
the Quadratic Fully Mixed Nash Equilibrium Conjecture of Lücking et al. [20] to polynomial
latency cost functions of arbitrary degree. Gairing et al. [14] also formulated a corresponding
conjecture for their model, stating that the fully mixed Nash equilibrium maximizes Social
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Cost (sum of Individual Costs) for their model. Gairing et al. [14, Theorem 3.5] proved their
conjecture for the case of identical users and arbitrary links with non-decreasing, non-constant
and convex latencies.

Our exact bound on Monomial Price of Anarchy for pure Nash equilibria includes, as the
special case with d = 2, the exact bound of 9

8 on Quadratic Price of Anarchy for pure Nash
equilibria shown in [20, Theorem 5.2]. Our proof generalizes the one for [20, Theorem 5.2].

Our upper bound of 2d−2

(
1 +

(
1
n

)d−1
)

on Monomial Price of Anarchy for the case of

identical users and two (identical) links implies, as the special case where d = 2, an upper
bound of 1+ 1

n ≤ 3
2 on Quadratic Price of Anarchy. This complements the corresponding exact

bound of 4
3 shown in [20, Theorem 5.1] for the case of identical users and pure Nash equilibria

(but for arbitrarily many related links).
Our upper bound of Bd for the case of identical users implies, as the special case where

d = 2, an upper bound of B2 = 2. The implied upper bound exceeds the corresponding upper
bound of 1 + min

{
m− 1

n , n− 1
m

}
< 2 on Quadratic Price of Anarchy shown in [20, Theorem

5.4]. So, our upper bound of Bd for the case of identical users is not tight for the particular
case where d = 2.

Other bounds on Price of Anarchy include tight asymptotic bounds (depending on m) for
the KP model [10, 18] and exact constant bounds for the Wardrop model [27]. Some recent
works [1, 4, 7, 8] have provided tight (and even exact) bounds on Price of Anarchy for congestion
games [26] and their variants. (The KP model is itself a special case of congestion games.) These
works have considered both Nash and correlated equilibria [3], linear and polynomial latencies
and different Social Cost functions.

1.5 Road Map

Section 2 summarizes some mathematical preliminaries. Section 3 introduces our theoretical
model. The case of identical users is considered in Section 4. Pure Nash equilibria are treated in
Section 5. We conclude, in Section 6, with a discussion of our results and some open problems.

2 Mathematical Preliminaries

Throughout, denote for any integer k ≥ 1, [k] = {1, · · · , k}. A monomial function g : R → R

has the form g(λ) = λd for some integer d ≥ 0. A polynomial function is a linear combination
of monomials. We shall only consider polynomial functions with non-negative coefficients. For
a random variable X with associated probability distribution P, denote EP(X) the expectation
of X. In some later proof, we shall make use of the following simple mathematical fact that
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follows directly from the convexity of the monomial function πd(λ) = λd.

Lemma 2.1 Let x, y1, y2 ∈ R with 0 < x ≤ y1 < y2 + x. Then, for each integer d ≥ 2,

(y1 − x)d + (y2 + x)d > yd
1 + yd

2 .

2.1 Falling Factorials, Stirling Numbers and Bell Numbers

For any pair of integers k ≥ 1 and t ≥ 1, the falling factorial of k order t, denoted as kt, is
given by kt = k · (k − 1) · . . . · (k − (t− 1))︸ ︷︷ ︸

t factors

, when k ≥ t. Otherwise (t ≥ k + 1), kt = 0.

For any pair of integers d ≥ 1 and t ∈ [d] ∪ {0}, the Stirling number of the second kind,
denoted as S(d, t), counts the number of partitions of a set with d elements into exactly t blocks
(non-empty subsets). In particular, S(d, 1) = 1. Also, for all integers d ≥ 2, S(d, 2) = 2d−1− 1.
Stirling numbers of the second kind satisfy the recurrence relation

S(d, t) =
∑

q: t≤q≤d−1

(
d− 1
q − 1

)
· S(q − 1, t− 1)

for all integers d ≥ 2 and t ∈ [d] (see, e.g., [17, Table 265, Identity (6.15)]). It is also known
that for all integers d ≥ 2 and k ≥ 1, kd =

∑
t∈[d] S(d, t) · kt.

For any integer d ≥ 1, the Bell number of order d [5], denoted as Bd, counts the number of
partitions of a set with d elements into blocks. So, clearly, B0 = 1 and Bd =

∑
t∈[d] S(d, t).

2.2 Binomial Function

We start with the definition of a binomial function [14, Definition 1].

Definition 2.1 For any integer r ≥ 1, consider a vector of probabilities p = 〈p1, . . . , pr〉. Fix
a function g(λ) : R→ R. Then, the binomial function BF(p, g) is given by

BF(p, g) =
∑

A⊆[r]

(∏
k∈A

pk ·
∏
k/∈A

(1− pk) · g(|A|)
)

.

Strictly speaking, Definition 2.1 defines a functional. If all probabilities have the same
value p, then we talk about a constant vector of probabilities, and we (abuse notation to) write
BF(p, r, g). Clearly, in this case,

BF(p, r, g) =
∑

0≤k≤r

(
r

k

)
pk(1− p)r−kg(k) .

We show that when g is monomial, the binomial function takes a special form.
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Proposition 2.2 For each integer d ≥ 1,

BF(p, r, λd) =
∑
t∈[d]

pt · S(d, t) · rt .

Proof: The proof will first establish a recurrence relation for BF
(
p, r, λd

)
. This relation will

then become instrumental for carrying out an inductive proof of the claim. We continue with
the details of the formal proof. Clearly,

BF(p, r, λd)

=
∑

k∈[r]

(
r
k

)
pk(1 − p)r−kkd (by definition of binomial function)

=
∑

k∈[r]
r
k

(
r−1
k−1

)
pk(1− p)r−kkd (since

(
r
k

)
= r

k

(
r−1
k−1

)
)

= p · r ·∑k∈[r]

(
r−1
k−1

)
pk−1(1− p)r−kkd−1

= p · r ·∑0≤k≤r−1

(
r−1

k

)
pk(1− p)r−1−k(k + 1)d−1 (by change of variable)

= p · r ·∑0≤k≤r−1

(
r−1

k

)
pk(1 − p)r−1−k

(∑
0≤q≤d−1

(
d−1

q

)
kq
)

(by the binomial theorem)

= p · r ·∑0≤q≤d−1

(
d−1

q

) (∑
0≤k≤r−1

(
r−1

k

)
pk(1− p)r−1−kkq

)
(by changing order of summation)

= p · r ·∑0≤q≤d−1

(
d−1

q

)
BF(p, r − 1, λq) (by definition of binomial function) .

We now use the obtained recurrence relation for the binomial function to prove the claim
by induction on r. For the basis case, let r = 1. Then, BF

(
p, 1, λd

)
=
(1
1

)
p11d = p and∑

t∈[d] p
tS(d, t)1t = p1S(d, 1)11 = p, so that the claim follows. Assume inductively that the

claim holds for some integer r − 1 ≥ 1. For the induction step, note that

BF(p, r, λd)

= p · r · (d−1
0

)
BF(p, r − 1, 1)

+p · r ·∑q∈[d−1]

(
d−1

q

)
BF(p, r − 1, λq) (by recurrence relation)

= p · r + p · r ·∑q∈[d−1]

(
d−1

q

)
BF(p, r − 1, λq) (by definition of binomial function)

= p · r + p · r ·∑q∈[d−1]

(
d−1

q

)(∑
t∈[q] p

t · S(q, t) · (r − 1)t
)

(by induction hypothesis)

= p · r +
∑

q∈[d−1]

(
d−1

q

)(∑
t∈[q] p

t+1 · S(q, t) · rt+1
)

= p · r +
∑

t∈[d−1] p
t+1 · rt+1 ·

(∑
q:t≤q≤d−1

(
d−1

q

) · S(q, t)
)

(by changing order of summation)

= p · r +
∑

2≤t≤d pt · rt ·
(∑

q:t≤q≤d

(
d−1
q−1

) · S(q − 1, t− 1)
)

(by change of variables)

= p · r +
∑

2≤t≤d pt · rt · S(d, t) (by recurrence relation for S(d, t))

=
∑

t∈[d] p
t · rt · S(d, t) (since S(d, 1) = 1) .

as needed.

Proposition 2.2 implies that for a constant vector of probabilities and a monomial function,
the binomial function is a combinatorial sum of Stirling numbers of the second kind.
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It is known [14, Lemma 3] that in case g is convex, the binomial function does not decrease
when replacing all probabilities in the vector of probabilities p by the average probability

p̃ =

∑
i∈[r] pi

r .

Lemma 2.3 ([14]) For a convex function g, BF(p, g) ≤ BF(p̃, r, g).

3 Model and Preliminaries

Our model definitions are built on top of those for the KP model [19], which are extended to
accommodate some features from the Wardrop model [29].

3.1 General

We consider a simple network consisting of a set of m parallel links 1, 2, . . . ,m from a source node
to a destination node. Each of n users 1, 2, . . . , n wishes to route a traffic along a (non-fixed)
link from source to destination. Denote wi the traffic of user i ∈ [n]; denote W =

∑
i∈[n] wi.

Define the n × 1 traffic vector w in the natural way. We assume that all links are identical.
Thus, an instance is a tuple 〈w,m〉. In the model of identical users, all traffics are equal to 1.
In that case, an instance is a pair 〈n,m〉. Assume throughout that m ≥ 2 and n ≥ 2.

The latency λ on a link is the total traffic on it. Associated with each link is a latency
cost function, which is a polynomial πd(λ) =

∑
0≤t≤d atλ

t of degree d ≥ 2 with non-negative
coefficients. In the special case of a monomial, πd(λ) = λd. The Latency Cost for latency λ on
the link is given by πd(λ).

3.2 Strategies and Assignments

A pure strategy for user i ∈ [n] is some specific link. A mixed strategy for user i ∈ [n] is a
probability distribution over pure strategies; so, it is a probability distribution over links.

A pure assignment is an n-tuple L = 〈�1, �2, . . . , �n〉 ∈ [m]n; a mixed assignment is an n×m

probability matrix P of nm probabilities pij, with i ∈ [n] and j ∈ [m], where pij is the probability
that user i chooses link j. Note that a mixed assignment induces a probability distribution on
the set of pure assignments. For each link j ∈ [m], denote rj = |{i ∈ [n] | pij > 0}|. Consider

now a link j ∈ [m] such that rj > 0. Then, the average probability p̂j on link j is p̃j =

∑
i∈[n] pij

rj
.

A mixed assignment P is fully mixed [22, Section 2.2] if for all users i ∈ [n] and links j ∈ [m],
pij > 0.

Fix now a mixed assignment P. The latency λj(P) on link j ∈ [m] induced by P is the total
traffic assigned to the link according to P; so, λj(P) is a random variable. Denote Λj(P) the
expected latency on link j ∈ [m]; thus, Λj(P) = EP(λj(P)) =

∑
i∈[n] pijwi.
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3.3 Cost Measures

3.3.1 Individual Cost and Expected Individual Cost

For a pure assignment L, the Individual Cost for user i ∈ [n], denoted as ICi(L), is ICi(L) =
Λ�i

(L); so, the Individual Cost for a user is the latency of the link it chooses. For a mixed
assignment P, the Expected Individual Cost for user i ∈ [n], denoted again as ICi(P), is the
expectation according to P of the Individual Cost for the user.

The Conditional Expected Individual Cost ICij(P) for user i ∈ [n] on link j ∈ [m] is the con-
ditional expectation according to P of the Individual Cost of user i had it been assigned to link
j. So, ICij(P) = Λj(P) + (1− pij)wi. Clearly, for each user i ∈ [n], ICi(P) =

∑
j∈[m] pij ICij(P).

3.3.2 Polynomial Social Cost

Associated with an instance 〈w,m〉, a latency cost function πd(λ) and a mixed assignment P

is the Polynomial Social Cost, denoted PSCπd(λ)(w,m,P), which is the expectation of the sum
of Latency Costs; so, by linearity of expectation,

PSCπd(λ)(w,m,P) = EP

⎛⎝∑
j∈[m]

πd

⎛⎝ ∑
k∈[n]|�k=j

wk

⎞⎠⎞⎠
=

∑
j∈[m]

EP

⎛⎝πd

⎛⎝ ∑
k∈[n]|�k=j

wk

⎞⎠⎞⎠
=

∑
j∈[m]

∑
A⊆[n]

(∏
i∈A

pij

)⎛⎝∏
i�∈A

(1− pij)

⎞⎠πd

⎛⎝ ∑
k∈A|�k=j

wk

⎞⎠ .

The displayed formulas for Polynomial Social Cost refer to a pure assignment L = 〈�1, . . . , �n〉
drawn according to the probability distribution (on the set of pure assignments) induced by the
mixed assignment P. Note that

PSCπd(λ)(w,m,P) =
∑

0≤t≤d

at · PSCλt(w,m,P) .

So, Polynomial Social Cost is a linear combination (with non-negative coefficients) of Monomial
Social Costs. This property will later reduce the comparison of the Polynomial Social Costs of
two different assignments to the pairwise comparison of their Monomial Social Costs.

We remark that the Polynomial Social Cost is a generalization of the Quadratic Social
Cost [20] to latency cost functions that are polynomials of arbitrary degree.
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3.3.3 Polynomial Optimum

Associated with an instance (w,m) and a latency cost function πd(λ) is the Polynomial Opti-
mum, denoted POPTπd(λ)(w,m), which is the least possible, over all pure assignments, Poly-
nomial Social Cost; thus,

POPTπd(λ)(w,m) = min
L∈[m]n

PSCπd(λ)(w,m,L) .

A (pure) assignment L such that PSCπd(λ)(w,m,L) = POPTπd(λ)(w,m) will be called optimal
(for the instance 〈w,m〉 and the latency cost function πd(λ)). We remark that the Polynomial
Optimum is a generalization of the Quadratic Optimum [20] to latency cost functions that are
polynomials of arbitrary degree. Monomial Optimum is defined as the natural special case of
Polynomial Optimum.

3.4 Nash Equilibria

Given an instance 〈w,m〉, the mixed assignment P is a Nash equilibrium [19, Section 2] if for
each user i ∈ [n], it minimizes the Expected Individual Cost ICi(P) over all mixed assignments
Q that differ from P only with respect to the mixed strategy of user i; that is, for all such
mixed assignments Q, ICi(P) ≤ ICi(Q). Thus, in a Nash equilibrium, there is no incentive for
a user to unilaterally deviate from its mixed strategy.

We remark that latency and (Expected) Individual Cost are defined for our model in the
same way they are defined for the KP model (and for the model of Lücking et al. [20] as well)
in the case of identical links. Thus, the sets of Nash equilibria for the two models coincide.

The particular definition of Expected Individual Cost implies that in a Nash equilibrium,
for each user i ∈ [n] and link j ∈ [m] such that pij > 0, all Conditional Expected Individual
Costs ICij(P) are the same and no more than any Conditional Expected Individual Cost ICil(P)
with pil = 0.

3.5 The Fully Mixed Nash Equilibrium

For the KP model, it is known [22] that the fully mixed Nash equilibrium F exists uniquely in
the case of identical links (with fij = 1

m for all users i ∈ [m] and links j ∈ [m]). As the set of
Nash equilibria in the KP model (in the case of identical links) and the present model coincide,
the same holds for the fully mixed Nash equilibria F in our model.

We formulate a natural conjecture related to Polynomial Social Costs of Nash equilibria in
our model, called the Polynomial Fully Mixed Nash Equilibrium Conjecture and abbreviated as
the PFMNE Conjecture.
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Conjecture 3.1 (Polynomial Fully Mixed Nash Equilibrium Conjecture) For any in-
stance 〈w,m〉 and associated Nash equilibrium P, PSCπd(λ)(w,m,P) ≤ PSCπd(λ)(w,m,F).

The PFMNE Conjecture generalizes the Quadratic Fully Mixed Nash Equilibrium Conjecture
to latency cost functions that are polynomials of arbitrary degree. It is also a variant of the
well known Fully Mixed Nash Equilibrium Conjecture [15, 16] for the original KP model.

3.6 Monomial and Polynomial Price of Anarchy

The Polynomial Price of Anarchy, denoted PPoA, is the worst-case ratio
PSCπd(λ)(w,m,P)
POPTπd(λ)(w,m)

over all instances 〈w,m〉 and associated Nash equilibria P. This generalizes the Quadratic
Price of Anarchy [20] to latency cost functions that are polynomials of arbitrary degree. The
Monomial Price of Anarchy, denoted MPoA, is the natural special case of the Polynomial Price
of Anarchy.

The following simple fact will be instrumental for reducing the Polynomial Price of Anarchy
for arbitrary polynomials (with non-negative coefficients) to the Monomial Price of Anarchy.

Lemma 3.1 (From Polynomials to Monomials) Fix any instance 〈w,m〉 with an associ-
ated Nash equilibrium P. Then,

PSCπd(λ)(w,m,P)
POPTπd(λ)(w,m)

≤
∑

2≤t≤d

PSCλt(w,m,P)
POPTλt(w,m)

.

Proof: Our proof will use the expression of Polynomial Social Cost as a linear combination of
Monomial Social Costs (see Section 3.3.2). We will manipulate sums of fractions while relying
on the non-negativeness of the coefficients in the latency cost function. We continue with the
details of the formal proof. Let Q be an optimal assignment for the instance 〈w,m〉. Then,

PSCπd(λ)(w, m,P)
POPTπd(λ)(w, m)

=
PSCπd(λ)(w, m,P)
PSCπd(λ)(w, m,Q)

=
a0 + a1 · PSCλ1(w, m,P) +

∑
2≤t≤d at · PSCλt(w, m,P)

a0 + a1 · PSCλ1(w, m,Q) +
∑

2≤t≤d at · PSCλt(w, m,Q)
.

Note that PSCλ1(w,m,P) = PSCλ1(w,m,P) = W , so that a0 +a1 ·PSCλ1(w,m,P) = a0 +a1 ·
PSCλ1(w,m,P). Since Q is an optimal assignment, PSCπd(λ)(w,m,P) ≥ PSCπd(λ)(w,m,Q),
which implies that

∑
2≤t≤d at · PSCλt(w,m,P) ≥ ∑2≤t≤d at · PSCλt(w,m,Q). Since a0 + a1 ·

PSCλ1(w,m,P) = a0+a1 ·PSCλ1(w,m,P) ≥ 0, and we consider polynomials with non-negative
coefficients, this implies that

a0 + a1 · PSCλ1(w, m,P) +
∑

2≤t≤d at · PSCλt(w, m,P)
a0 + a1 · PSCλ1(w, m,Q) +

∑
2≤t≤d at · PSCλt(w, m,Q)

≤
∑

2≤t≤d at · PSCλt(w, m,P)∑
2≤t≤d at · PSCλt(w, m,Q)

=

∑
2≤t≤d|at>0 at · PSCλt(w, m,P)∑
2≤t≤d|at>0 at · PSCλt(w, m,Q)

.
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Clearly, all terms at ·PSCλt(w,m,P) and at ·PSCλt(w,m,Q) in the last fraction are strictly
positive, and this implies that∑

2≤t≤d|at>0 at · PSCλt(w, m,P)∑
2≤t≤d|at>0 at · PSCλt(w, m,Q)

≤
∑

2≤t≤d|at>0

at · PSCλt(w, m,P)
at · PSCλt(w, m,Q)

=
∑

2≤t≤d|at>0

PSCλt(w, m,P)
PSCλt(w, m,Q)

≤
∑

2≤t≤d

PSCλt(w, m,P)
PSCλt(w, m,Q)

.

By definition of Monomial Optimum, PSCλt(w,m,Q) ≥ POPTλt(w,m). Hence,∑
2≤t≤d

PSCλt(w, m,P)
PSCλt(w, m,Q)

≤
∑

2≤t≤d

PSCλt(w, m,P)
POPTλt(w, m)

.

Combining now all inequalities yields the claim.

3.7 Identical Users

Restricted to identical users, Polynomial Social Cost reduces to

PSCπd(λ)(n,m,P) =
∑

j∈[m]

∑
A⊆[n]

(∏
i∈A

pij

)⎛⎝∏
i�∈A

(1− pij)

⎞⎠πd(|A|)

=
∑

j∈[m]

BF(〈p1j , . . . , pnj〉, πd(λ))

So, Polynomial Social Cost is now a sum of binomial functions, one for each link. Recall that
in the case of identical users, all probabilities are identical (and equal to 1

m) for the fully mixed
Nash equilibrium F. Hence, Proposition 2.2 implies now that the Monomial Social Cost of the
fully mixed Nash equilibrium F is a combinatorial sum of Stirling numbers of the second kind.

Corollary 3.2 Consider the case of identical users. Fix an instance 〈n,m〉. Then,

PSCλd(n,m,F) = m
∑
t∈[d]

(
1
m

)t

· S(d, t) · nt .

A lower bound on Monomial Optimum for the case of identical users is POPTλd(w,m) ≥
m
( n
m
)d if n ≥ m, while POPTλd(n,m) = n if n < m.

4 Identical Users

The PFMNE Conjecture is considered in Section 4.1. Bounds on the Monomial and Polynomial
Prices of Anarchy are presented in Section 4.2.
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4.1 The PFMNE Conjecture

We prove the validity of the PFMNE Conjecture.

Theorem 4.1 Consider the case of identical users. Then, the PFMNE Conjecture is valid.

Proof: Fix an instance 〈n,m〉 with associated Nash equilibrium P and fully mixed Nash equi-
librium F. Since Polynomial Social Cost is a linear combination (with non-negative coefficients)
of Monomial Social Costs, it suffices to prove the PFMNE Conjecture for a monomial latency
cost function πd(λ) = λd.

Denote α = n
m . Assume, without loss of generality, that for each link j ∈ [m], rj = |{i ∈

[n] : pij > 0}| ≥ 1. Clearly, the average probability on link j is Λj(P)
rj

.
We start with an informal outline of our proof. We will separately calculate the Polynomial

Social Costs of P and F; we will express their difference as a linear combination (with non-
negative coefficients) of terms, and we will use induction to prove that each term is non-negative.
The inductive proof will establish and use an upper bound on the average probability for a link.
We now continue with the details of the formal proof. On one hand,

PSCλd(n, m,P)

=
∑

j∈[m] BF
(〈p1j , . . . , pnj〉, λd

)
≤ ∑

j∈[m] BF
(

Λj(P)
rj

, rj , λ
d
)

(by Lemma 2.3)

=
∑

j∈[m]

∑
t∈[d]

(
Λj(P)

rj

)t

· S(d, t) · (rj)t (by Proposition 2.2)

=
∑

t∈[d] S(d, t) ·
(∑

j∈[m]

(
Λj(P)

rj

)t

· (rj)t

)
(by changing order of summation) .

On the other hand,

PSCλd(n, m,F)

= m ·∑t∈[d]

(
1
m

)t · S(d, t) · nt (by Corollary 3.2)

=
∑

t∈[d] S(d, t) ·mαt · nt

nt .

So, clearly,

PSCλd(n,m,F)− PSCλd(n,m,P) ≥
∑
t∈[d]

S(d, t) ·Δ(t) ,

where for each integer t ∈ [d],

Δ(t) = m αt · n
t

nt
−
∑

j∈[m]

(
Λj(P)

rj

)t

· (rj)t .

We prove:
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Lemma 4.2 For each integer t ≥ 1, Δ(t) ≥ 0.

Proof: Assume, without loss of generality, that for each integer t ∈ [d], for each link j ∈ [m],
rj ≥ t (since otherwise r

t
j = 0 and Δ(t) can only increase). The proof is by induction on t. For

the basis case where t = 1, note that

Δ(1) = m α−
∑

j∈[m]

Λj(P)
rj

· rj

= n−
∑

j∈[m]

Λj(P )

= 0 ,

as needed.
Assume inductively that the claim holds for (t−1), for some integer t ≥ 2. For the induction

step, we will prove the claim for t. We first prove a preliminary claim:

Lemma 4.3 For each integer t ≥ 2, for each link j ∈ [m] such that rj ≥ t,

Λj(P)
rj

(rj − (t− 1)) ≤ α · n− (t− 1)
n

.

Proof: Fix a link j ∈ [m] and a user i ∈ [n] such that 0 < pij ≤ Λj(P)
rj

. (Clearly, such a
user exists.) Since P is a Nash equilibrium and pij > 0, it follows that for each link � ∈ [m],

ICij(P) ≤ ICi�(P), or Λj(P)−pij ≤ Λ�(P)−pi�. Since pij ≤ Λj(P)
rj

, it follows that Λj(P)−pij ≥
Λj(P)− Λj(P)

rj
= rj − 1

rj
Λj(P). Hence, it follows that

rj − 1
rj

Λj(P) ≤ Λ�(P)− pi� .

Summing up over all links � ∈ [m] yields that∑
�∈[m]

rj − 1
rj

Λj(P) ≤
∑

�∈[m]

(Λ�(P)− pi�)

=
∑

�∈[m]

Λ�(P) −
∑

�∈[m]

pi�

= n− 1 .

Since rj ≥ t and t ≥ 2, rj ≥ 2. Hence, it follows that

Λj(P) ≤ n− 1
m
· rj

rj − 1
.
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Since rj ≥ t, rj − (t− 1) > 0; hence, it follows that

Λj(P)
rj

(rj − (t− 1)) ≤ n− 1
m
· rj − (t− 1)

rj − 1
.

Note that for each link j ∈ [m], the fraction rj − (t− 1)
rj − 1 is monotonically increasing in rj (since

t ≥ 2); since rj ≤ n, it follows that rj − (t− 1)
rj − 1 ≤ n− (t− 1)

n− 1 . Hence, it follows that

Λj(P)
rj

(rj − (t− 1)) ≤ n− 1
m
· n− (t− 1)

n− 1

= α · n− (t− 1)
n

,

as needed.

We are now ready to prove that Δ(t) ≥ 0. Clearly,∑
j∈[m]

(
Λj(P)

rj

)t

· (rj)t

=
∑

j∈[m]
Λj(P)

rj
(rj − (t− 1))

(
Λj(P)

rj

)t−1 · (rj)(t−1)

≤ ∑
j∈[m] α · n−(t−1)

n ·
(

Λj(P)
rj

)t−1
· (rj)

(t−1) (by Lemma 4.3)

= α · n−(t−1)
n

∑
j∈[m]

(
Λj(P)

rj

)t−1 · (rj)(t−1)

≤ α · n−(t−1)
n ·m αt−1 · n(t−1)

nt−1 (by induction hypothesis)

= m αt · nt

nt .

This implies that Δ(t) ≥ 0, as needed.

Lemma 4.2 implies now the claim.

4.2 The Monomial and Polynomial Prices of Anarchy

We prove:

Theorem 4.4 Consider the case of identical users. Then, MPoA ≤ Bd.

Proof: Fix any instance 〈n,m〉 with an associated fully mixed Nash equilibrium F. By
Corollary 3.2,

PSCλd(n, m,F) = m ·
∑
t∈[d]

(
1
m

)t

· S(d, t) · nt

≤ m ·
∑
t∈[d]

(
1
m

)t

· S(d, t) · nt .
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We now proceed by case analysis.

1. Assume first that n ≥ m. Recall that in this case, POPTλd(w,m) ≥ m · ( n
m

)d. Hence,

PSCλd(n, m,F)
POPTλd(n, m)

≤ 1
m ·
(

m
n

)d ·m ·∑t∈[d]

(
1
m

)t · S(d, t) · nt

=
∑

t∈[d]

(
m
n

)d−t · S(d, t)

≤ ∑
t∈[d] S(d, t) (since m ≤ n)

= Bd .

2. Assume now that n < m. Recall that, in this case, POPTλd(n,m) = n. Hence,

PSCλd(n, n,F)
POPTλd(n,m)

≤ 1
nm ·∑t∈[d]

(
1
m

)t · S(d, t) · nt

=
∑

t∈[d]

(
n
m

)t−1 · S(d, t)

<
∑

t∈[d] S(d, t) (since n < m)

= Bd .

So, in all cases, PSCλd(n,m,F)
POPTλd(n,m) ≤ Bd. Theorem 4.1 implies now the claim.

By Lemma 3.1, Theorem 4.4 immediately implies:

Corollary 4.5 Consider the case of identical users. Then, PPoA ≤∑2≤t≤d Bt.

We next consider the special case of (identical users and) two links. We prove:

Theorem 4.6 Consider the case of identical users and two links. Then,

MPoA ≤ 2d−2

(
1 +

(
1
n

)d−1
)

.

This bound is tight for n = 2.
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Proof: We start with the upper bound. Fix any instance 〈n, 2〉 with an associated Nash
equilibrium P. Clearly,

PSCλd(n, 2,P)

≤ PSCλd(n, 2,F) (by Theorem 4.1)

= 2 ·∑t∈[d]

(
1
2

)t · S(d, t) · nt (by Corollary 3.2)

≤ 2 ·
(

1
2 · S(d, 1) · n + 1

4 ·
∑

2≤t≤d S(d, t)nt
)

(since
(

1
2

)t

≤ 1
4 for t ≥ 2)

= 2 · ( 1
2 · S(d, 1) · n + 1

4 · (nd − S(d, 1) · n)
)

(since nd =
∑

t∈[d] S(d, t)nt)

= 2 ·
(

n
4 + nd

4

)
(since S(d, 1) = 1) .

On the other hand, POPTλd(n, 2) ≥ 2 ·
(

n
2

)d
. It follows that

PSCλd(w, 2,F)
POPTλd(w, 2)

≤
(

2
n

)d

·
(

n

4
+

nd

4

)
= 2d−2

(
1 +

(
1
n

)d−1
)

,

as needed.
To prove that the upper bound is tight for n = 2, note that for n = 2 it becomes 2d−2 + 1

2.
We continue to prove that this is also a lower bound for n = 2. Fix an instance 〈2, 2〉. Then,
POPTλd(n,m) = 2, while

PSCλd(w, m,F)

= 2 ·∑t∈[d]

(
1
2

)t · S(d, t) · 2t (by Corollary 3.2)

= 2 · ( 1
2 · S(d, 1) · 2 + 1

4 · S(d, 2) · 2 · 1) (since 2t = 0 for t ≥ 3)

= 2 · (S(d, 1) + 1
2 · S(d, 2)

)
= 2 · (1 + 1

2 · (2d−1 − 1)
)

(since S(d, 1) = 1 and S(d, 2) = 2d−1 − 1)

= 2 · (2d−2 + 1
2

)
.

It follows that MPoA ≥ 2d−2 + 1
2, which establishes the claimed tightness.

By Lemma 3.1 and Theorem 4.6, we obtain:

Corollary 4.7 Consider the case of identical users and two links. Then,

PPoA ≤ 2d−1 − 1 +
d− 1

n
.
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Proof: Clearly,

PPoA

≤ ∑
2≤t≤d 2t−2

(
1 +

(
1
n

)t−1
)

(by Lemma 3.1 and Theorem 4.6)

=
∑

0≤t≤d−2 2t + 1
n

∑
0≤t≤d−2

(
2
n

)t
≤ 2d−1 − 1 + d−1

n (since 2
n ≤ 1 for n ≥ 2) ,

as needed.

5 Pure Nash Equilibria

We first recall some technical definition from [20]. For a given instance 〈w,m〉, call a user
i ∈ [n] bursty [20, Section 3] if wi > W

m . Intuitively, the traffic of a bursty user exceeds the fair
share of traffic for a link. Say that an instance 〈w,m〉 is bursty if some user i ∈ [n] is bursty;
else, 〈w,m〉 is non-bursty. We first prove a simple property of bursty users.

Lemma 5.1 A bursty user is solo in an optimal assignment.

Proof: Fix an instance 〈w,m〉 with bursty user i ∈ [n]; so, wi > W
m . Consider an optimal

assignment Q = 〈q1, . . . , qn〉. Note that λqi(Q) ≥ wi. Since i is bursty, it follows that λqi(Q) >
W
m . Since

∑
j∈[m] λj(Q) = W , there is some other link j ∈ [m] with j 
= qi such that λj(Q) <

W
m . Thus, λj(Q) < wi. Assume now, by way of contradiction, that some user k 
= i is assigned
to link qi. Modify Q to obtain Q′ by switching user k to link j. Then,

PSCπd(λ)(w, m,Q′)− PSCπd(λ)(w, m,Q)

=
∑

t∈[d] at

(
(λqi (Q′))t + (λj(Q′))t − (λqi(Q))t − (λj(Q))t

)
=

∑
t∈[d] at

(
(λqi (Q′))t + (λj(Q) + wk)t − (λqi (Q′) + wk)t − (λj(Q))t

)
<

∑
t∈[d] at

(
(λqi(Q′) + wk)t + (λj(Q) + wk − wk)t − (λqi(Q′) + wk)t − (λj(Q))t

)
(by Lemma 2.1)

= 0 .

Since Q is optimum, PSCλt(w,m,Q′) ≥ PSCλt(w,m,Q). A contradiction.

The following two simple properties of bursty users in pure Nash equilibria were shown
in [20, Section 3]; they carry over to our model since their sets of Nash equilibria coincide.

Lemma 5.2 A bursty user is solo in a pure Nash equilibrium.

Lemma 5.3 Consider a pure Nash equilibrium P for a non-bursty instance 〈w,m〉. Then, for
each link j ∈ [m], λj(P) ≤ 2 min�∈[m] λ�(L).
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We are now ready to prove:

Theorem 5.4 For pure Nash equilibria.

MPoA =
(2d − 1)d

(d− 1)(2d − 2)d−1

(
d− 1

d

)d

.

In our proof, we will make use of the following notations. Consider an instance 〈w,m〉 with an
associated pure assignment L. Fix a set of links L, inducing a set of users U that are assigned
by L to links in L. Then, w \ U and m \ L denote the traffic vector and the number of links
resulting from w and m, respectively, by respective eliminations of all entries corresponding to
users in U and links in L. Also, L\(U ,L) denotes the assignment induced by these eliminations.
We are now ready for the proof.

Proof: We first prove the upper bound. Consider any arbitrary instance 〈w,m〉 with associ-
ated pure Nash equilibrium L = 〈�1, . . . , �n〉 and optimal assignment Q = 〈q1, . . . , qn〉. Denote
λ(L) = min�∈[m] λ�(L). We distinguish between two cases:

1. The instance 〈w,m〉 is non-bursty:
Recall that in this case, by Lemma 5.3, for each link j ∈ [m], λj(L) ≤ 2λ(L). So,
transform the set of loads {λ�(L) | � ∈ [m]} into a new set of loads

{
λ̂� | � ∈ [m]

}
as the

output of the following repetitive procedure:

for each link � ∈ [m] do
λ̂� ← λ�(L);

while there are distinct links j1, j2 ∈ [m] with λ(L) < λ̂j1 ≤ λ̂j2 < 2λ(L) do(
λ̂j1

λ̂j2

)
←
(

λ̂j1 −min{λ̂j1 − λ(L), 2λ(L) − λ̂j2}
λ̂j2 + min{λ̂j1 − λ(L), 2λ(L) − λ̂j2}

)
.

Intuitively, our transformation procedure chooses at each step two intermediate latencies
λ̂j1 and λ̂j2 (that is, two latencies that are not yet pushed either to the upper or to
the lower end of the interval of link loads). It transfers the (strictly) positive quantity
min

{
λ̂j1 − λ(L), 2λ(L) − λ̂j2

}
from the small latency λ̂j1 to the large latency λ̂j2. Clearly,

each step of the procedure either pushes the small latency λ̂j1 to the lower end λ(L) of
the interval of link latencies, or pushes the large load λ̂j2 to the upper end 2λ(L) of the
interval of link latencies (or both). So, clearly, when the procedure terminates, there is
at most one intermediate latency. Hence, by reordering links, we obtain that for some
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integer k ∈ [m− 1] ∪ {0}, for each link j ∈ [m],

λ̂j =

⎧⎪⎨⎪⎩
2λ(L) if j ∈ [k]
(1 + x)λ(L) if j = k + 1
λ(L) if j ∈ [m] \ [k + 1],

where 0 ≤ x < 1. Intuitively, k is the number of overloaded links. Note that
∑

j∈[m] λ̂j =
k · 2λ(L) + (1 + x) · λ(L) + (m− (k + 1)) · λ(L) = (m + k + x) · λ(L).

Note that this transformation procedure maps a set of latencies to a new set of latencies,
without explicitly mapping an instance to a new instance. However, for the sake of our
analysis, we will also consider that the procedure maps an instance 〈w,m〉 and a Nash
equilibrium L to a new instance 〈ŵ,m〉 and a new Nash equilibrium L̂. Note also that
this transformation preserves (at each of its steps) the sum of latencies. Hence, it also
preserves the total latencies, so that W = Ŵ . Clearly, for each link j ∈ [m], λj(L̂) = λ̂j .
Hence, it follows that

∑
j∈[m] λj(L̂) = (m + k + x) · λ(L).

For any individual step of our repetitive procedure, Lemma 2.1 implies that

PSCλd(ŵ, m, L̂)− PSCλd(w, m,L)

=
((

λ̂j1 −min
{
λ̂j1 − λ(L), 2λ(L) − λ̂j2

})d

+
(
λ̂j2 + min

{
λ̂j1 − λ(L), 2λ(L) − λ̂j2

})d
)

−
((

λ̂j1

)d

−
(
λ̂j2

)d
)

> 0 .

Hence, it follows that,

PSCλd(w,m,L) ≤ PSCλd(ŵ,m, L̂)

=
∑

j∈[m]

(
λj(L̂)

)d

= k(2λ(L))d + ((1 + x)λ(L))d + (m− k − 1)λ(L)d

=
(
m + (2d − 1)k − 1 + (1 + x)d

)
λ(L)d .

On the other hand,

POPTλd(w,m) ≥ m

(
W

m

)d

=
Ŵ d

md−1

=

(∑
j∈[m] λj(L̂)

)d

md−1

=
(m + k + x)dλ(L)d

md−1
.
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It follows that

PPoA ≤ (m + (2d − 1)k − 1 + (1 + x)d)md−1

(m + k + x)d
.

Define the real function

f(k) =
(m + (2d − 1)k − 1 + (1 + x)d)md−1

(m + k + x)d

of a real variable k. (The quantity x is taken as a parameter, while m is a fixed constant).
Clearly, MPoA ≤ supk f(k). So, we will determine supk f(k).

To gain some intuition about the function f(k) and its supremum, observe that the value
of x is not really important for the upper bound; so, consider that x = 0. Setting
then y = k

m , so that 0 < y ≤ 1, the resulting function g(y) may be written as g(y) =
1 + (2d − 1)y

(y + 1)d
. It may be easily verified that g(y) has a unique maximum y0 in (0, 1],

where y0 = 2d − 1− d
(2d − 1)(d − 1)

. The presence of x in g(k) will result in a bit more complicated

calculations. We now continue with the details of the formal proof.

To maximize the function f(k), observe that the first and second derivatives of f(k) are

f ′(k) =
(2d − 1)md−1

(m + k + x)d
− (m + (2d − 1)k − 1 + (1 + x)d)md−1d

(m + k + x)d+1

and

f ′′(k) =
md−1d

(
(2d − 1)(d − 1)k − 2(2d − 1)(m + x) + (m− 1 + (1 + x)d)(d + 1)

)
(m + k + x)d+2

,

respectively. The only root of f ′(k) is

k0 =
(2d − 1)(m + x) + d(−m + 1− (1 + x)d)

(2d − 1)(d− 1)
.

For k = k0, the second derivative evaluates to

f ′′(k0) =
md−1d

(−m(2d − 2)− (2d − 1)x + (1 + x)d − 1
)

(m + k0 + x)d+2
.

Since −(2d − 1)x + (1 + x)d ≤ 2d holds for all x ∈ [0, 1], it follows that f ′′(k0) < 0. Thus,
k0 is a local maximum of the function f(k). Since f(k) is a continuous function with a
single extreme point that is a local maximum, it follows that

f(k) ≤ f(k0)

=
(2d − 1)d

d− 1

(
d− 1

d

)d

· md−1

(m(2d − 2) + x(2d − 1)− (1 + x)d + 1)d−1
.
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Note that the minimum value of the function h(x) = x(2d− 1)− (1+ x)d + 1 for x ∈ [0, 1]
is h(0) = h(1) = 0. Thus

f(k) ≤ (2d − 1)d

d− 1
·
(

d− 1
d

)d

· md−1

(m(2d − 2))d−1

=
(2d − 1)d

(d− 1)(2d − 2)d−1

(
d− 1

d

)d

,

as needed.

2. The instance 〈w,m〉 is bursty:
We remark that Lemmas 5.1 and 5.2 imply that the existence of bursty users cannot
increase the Polynomial Price of Anarchy since their assignment in a Nash equilibrium
coincides with that in an optimal assignment.

Denote U the (non-empty) set of bursty users. Recall that, by Lemmas 5.1 and 5.2,
U induces sets of solo links LL and LQ for the Nash equilibrium L and the optimal
assignment Q, respectively, so that |LL| = |U| and |LQ| = |U|. Since links are identical,
we assume that LL = LQ = L, with |L| ≥ 1. So,

PSCλd(w,m,L) =
∑
j∈L

(λj(L))d + PSCλd(w \ U , [m] \ L,L \ (U ,L))

=
∑
i∈U

wd
i + PSCλd(w \ U , [m] \ L,L \ (U ,L))

and

POPTλd(w,m) = PSCλd(w,m,Q)

=
∑
j∈L

(λj(L))d + PSCλd(w \ U , [m] \ L,Q \ (U ,L))

=
∑
i∈U

wd
i + PSCλd(w \ U , [m] \ L,Q \ (U ,L)) .

Note first that the assignment L\(U ,L) is a Nash equilibrium for the instance 〈w\U , [m]\
L〉. Moreover, since Q is an optimal assignment for the instance 〈w,m〉, it follows that
Q \ (U ,L) is an optimal assignment for the instance 〈w \ U , [m] \ L〉, so that

PSCλd(w \ U , [m] \ L,Q \ (U ,L)) = POPTλd(w \ U , [m] \ L) .

Thus,

POPTλd(w,m) =
∑
i∈U

wd
i + POPTλd(w \ U , [m] \ L) .
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It follows that

PSCλd(w,m,L)
POPTλd(w,m)

=
∑

i∈U wd
i + PSCλd(w \ U , [m] \ L,L \ (U ,L))∑

i∈U wd
i + POPTλd(w \ U , [m] \ L)

≤ PSCλd(w \ U , [m] \ L,L \ (U ,L))
POPTλd(w \ U , [m] \ L)

.

Consider the smaller instance 〈w \ U , [m] \ L〉 and the associated Nash equilibrium L \
(U ,L). There are two possibilities depending on whether 〈w \U , [m] \L〉 is bursty or not.

• Assume first that the instance 〈w \ U , [m] \ L〉 is non-bursty. Then, we are reduced
to the previous case of non-bursty instances, and the upper bound follows.

• Assume now that the smaller instance 〈w\U , [m]\L〉 is bursty. We repeatedly identify
the set of bursty users for the smaller instance, and we reduce this smaller instance
to an even smaller instance that may be bursty or non-bursty. This procedure
eventually yields a non-bursty instance (even the trivial one with one user), and the
claim for the original bursty instance follows inductively.

The proof of the upper bound is now complete.
We continue to prove the lower bound. Construct an instance 〈w,m〉 as follows. There

are m = (2d − 1)(d − 1) links. There are 2(2d − d − 1) heavy users with traffic 1; there are
m · (m− (2d − d− 1)) light users with traffic 1

m . Consider now the following assignments:

• In the pure assignment L, heavy users are evenly distributed to 2d − d − 1 links; light
users are evenly distributed to the remaining m− (2d − d− 1) links. Clearly, L is a Nash
equilibrium with

PSCλd(w,m,L) = 2d · (2d − d− 1) + 1d · ((2d − 1)(d− 1)− (2d − d− 1))

= (2d − 1)(2d − 2) .

• In the pure assignment Q, each (of 2(2d − d − 1)) heavy user is assigned solo to each of
2(2d − d− 1) links; m(m− 2(2d − d− 1)) light users are evenly assigned to the remaining
m−2(2d−d−1) links, while the remaining m(2d−d−1) light users are evenly assigned to

all m links. It is easy to see that the latency on each link induced by Q is 1+ 2d − d− 1
m =

m + 2d − d− 1
m . Thus,

PSCλd(w,m,Q) = m ·
(

m + 2d − d− 1
m

)d

=
(d− 1)(2d − 2)d

(2d − 1)d−1
·
(

d

d− 1

)d

.
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Thus,

MPoA ≥ PSCλd(w,m,L)
PSCλd(w,m,Q)

=
(2d − 1)d

(d− 1)(2d − 2)d−1
·
(

d− 1
d

)d

,

as needed.

By Lemma 3.1, Theorem 5.4 immediately implies:

Corollary 5.5 For pure Nash equilibria.

PPoA ≤
∑

2≤t≤d

(2t − 1)t

(t− 1)(2t − 2)t−1

(
t− 1

t

)t

.

6 Epilogue

We introduced and analyzed an interesting variant of the well studied KP model [19] for selfish
routing that reflects some influence from the much older Wardrop model [29]. Our analysis
highlights some interesting connections to classical combinatorial numbers such as the Stirling
numbers of the second kind [28] and the Bell numbers [5]. In particular, we formulated and
proved the validity of the PFMNE Conjecture. In turn, this validity was instrumental for
proving (sometimes tight) bounds on Monomial Price of Anarchy; these immediately implied
upper bounds on Polynomial Price of Anarchy.

Several interesting problems remain open. On the most concrete level, we do not yet know
any lower bounds on Polynomial Price of Anarchy. Are our upper bounds tight? We are also
missing general bounds on Monomial and Polynomial Prices of Anarchy (ones that hold for
arbitrary users, for an arbitrary number of links and for all (mixed) Nash equilibria). Proving
such bounds remains a very challenging open problem.
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