
The Impact of Randomization in Smoothing Networks∗

Marios Mavronicolas
Department of Computer Science

University of Cyprus
CY-1678 Nicosia, Cyprus

mavronic@cs.ucy.ac.cy

Thomas Sauerwald
Department of Computer Science

University of Paderborn
D-33102 Paderborn, Germany

sauerwal@upb.de

ABSTRACT
We revisit smoothing networks [3], which are made up of
balancers and wires. Tokens arrive arbitrarily on w input
wires and propagate asynchronously through the network;
each token gets service on the output wire it arrives at. The
smoothness is the maximum discrepancy among the num-
bers of tokens arriving at the w output wires. We assume
that balancers are oriented independently and uniformly at
random. We present a collection of lower and upper bounds
on smoothness, which are to some extent surprising:

• The smoothness of a single block network [7] is lg lg w+
Θ(1) (with high probability), where the additive con-
stant is between −2 and 4. This tight bound improves
vastly over the upper bound of O(

√
lg w) from [9],

and it significantly improves our understanding of the
smoothing properties of the block network.

• Most significantly, the smoothness of the cascade of
two block networks is no more than 16 (with high
probability); this is the first known randomized net-
work with so small depth (2 lg w) and so good smooth-
ness. The proof introduces some novel combinatorial
and probabilistic structures and techniques which may
be further applicable. This result demonstrates the full
power of randomization in smoothing networks.

• There is no randomized 1-smoothing network of width
w and depth d that achieves 1-smoothness with prob-
ability better than d

w−1
. In view of the determinis-

tic 1-smoothing network in [14], this result implies
the first separation between deterministic and random-
ized smoothing networks, which demonstrates an un-
expected limitation of randomization: it can get to
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constant smoothness very easily, but after that, the
progress to 1-smoothing is very limited.

Category and Subject Descriptors: G.3 [Probabil-
ity and Statistics]: Stochastic Processes - Probabilistic algo-
rithms; C.2.4. [Distributed Systems]: Distributed Applica-
tions - Load Balancing
General Terms: Algorithms, Theory
Keywords: Smoothing networks, Randomization

1. INTRODUCTION
A smoothing network [3] is a distributed data structure

that receives tokens issued arbitrarily by multiple concurrent
processes at input wires and routes them asynchronously
through a network to output wires. The network consists of
switches (called balancers), and wires. A balancer is oriented
either top or bottom; the first token through the balancer
will be forwarded to its (local) top or bottom output wire,
respectively, and subsequent tokens will alternate. Each to-
ken represents a request by a client for a service to unit work;
the service is provided by the server residing on the output
wire the token arrives at. Tokens are dispersed through the
network, thereby reducing contention (cf. [3]).

The routing of tokens through the network must ensure
that all servers receive approximately the same number of
tokens, no matter how unbalanced arrival of tokens on input
wires is. The smoothness of a smoothing network is the max-
imum discrepancy among the numbers of tokens arriving at
different output wires; a γ-smoothing network has smooth-
ness γ. Smoothing networks with low smoothness are at-
tractive for multiprocessor coordination and load balancing
applications where low-contention is a requirement; these
include producers-consumers [8] and distributed numerical
computations [6]. Together with counting networks, smooth-
ing networks have been studied quite extensively since intro-
duced in the seminal paper of Aspnes et al. [3]. It has been
a major open problem to construct efficient and small-depth
(counting and) smoothing networks (cf. [5, 14]).

We only require local initialization for the balancers of a
smoothing network (cf. [1, 9, 10]). Specifically, we assume
that each balancer is oriented either top or bottom uniformly
at random during some initialization phase. Although local
initialization withdraws the advantage of global consistency
offered by global initialization, it is still attractive since it of-
fers fault-tolerance against crashes, resets or replacements of
balancers. Such smoothing networks were called randomized
smoothing networks [1, 9].

Herlihy and Tirthapura [9] studied the smoothing prop-



erties of the block network Blockw [3, 7] when all balancers
are initialized uniformly at random; the block network is a
very simple network of depth lg w that has been used in ad-
vanced constructions such as the periodic (counting) network
[3, 7]. An upper bound of 2.36

√
lg w (with high probabil-

ity) was shown in [9]; this bound is trivially inherited to the
bitonic network [3, 4] and the periodic network [3, 7] since
they both contain the block. The upper bound from [9] im-
proved vastly over the smoothness of lg w known before for
simple constructions (such as the bitonic merger [12] and
the butterfly [13, 14]) with global initialization, and for the
block network itself with local (arbitrary and not random-
ized) initialization [10]. Klugerman [13] and Klugerman and
Plaxton [14] had earlier presented an elaborate construction
of a network with smoothness 1; however, their network is
impractical since it contains the AKS network [2] inheriting
huge constants.

Herlihy and Tirthapura formulated three interesting Open
Problems about randomized smoothing networks in [9]:

1. Our bounds for the smoothness of the block network
does not make use of structure that may be present in
the input sequence. Can we obtain better bounds if
the input is already fairly smooth?

2. Can we get better bounds on the output smoothness
of the randomized periodic or bitonic networks?

3. How tight is the O(
√

lg w) upper bound for the block
network? Can we get a matching lower bound?

In this work, we provide answers to all these problems. We
first prove that Blockw is (lg lg w + 4)-smoothing with prob-
ability at least 1 − 4w−3 (Theorem 5.5). Our proof drasti-
cally improves the elementary techniques developed by Her-
lihy and Tirthapura [9] for their corresponding proof of the
O(

√
lg w) upper bound. The exponential improvement is

achieved through a tighter analysis of the same random vari-
ables. In more detail, we provide a judicious partition of the
block network into two groups of layers, and we analyze sep-
arately the influence of each group on smoothness; the first
group consists of lg w − lg lg w layers. Hence, a certain sum
of independent random variables that is bounded using a
Chernoff bound in [9] is now split into two sums; one of
them is again bounded with a Chernoff bound, while the
other is bounded deterministically by simply summing the
maximum possible absolute values of the random variable.
This result provides a partial answer to Open Problem 3 of
Herlihy and Tirthapura [9].

We continue to establish a matching lower bound (up to
a small additive constant) on the smoothness of the block
network. More precisely, we prove that Blockw is only a
(lg lg w − 2)-smoothing network with probability at most

2 exp(− 4
√

w

lg w
) (Theorem 5.6); thus, the analysis is essen-

tially tight. The proof again partitions the network into two
groups of layers. We determine a fixed point input for the
first group; we then prove that (with high probability) this
input is not smoothed better than lg lg w−1 when traversing
the second group. This result completes the answer to Open
Problem 3 of Herlihy and Tirthapura [9].

As our main result we show that there is a very simple
and shallow, randomized network that is O(1)-smoothing.
Specifically, consider the cascade of two block networks; we
prove that the cascade is 16-smoothing with probability at

least 1 − 4 lg lg w−47
w

(Theorem 6.1). The proof uses a ju-
dicious partition of the second block network into no more
than 1

2
lg lg w − 6 groups of layers; the number of layers per

group increases as we proceed. We show that each group
drops the smoothness by 1. Hence, at the end, the appli-
cation of Theorem 5.5 to the first cascaded block network
implies a constant smoothness. To establish each drop of
smoothness by 1, we employ some very delicate probabilis-
tic arguments; we believe that these will be useful elsewhere
— for example, in showing that a small number (greater
than 2) of cascaded block networks is 2-smoothing (with
high probability), and we conjecture this to be the case.

We remark that our result on the smoothness of the cas-
cade of two block networks provides an answer to Open
Problem 1 of Herlihy and Tirthapura [9]: When the input
to a block network has the properties of the output of a
block (for example, it is (lg lg w + 4)-smooth), then its out-
put is 16-smooth (with high probability). Since the cascade
of two block networks is contained in the periodic network
[3, 7] (which consists of lg w such blocks), the latter is also
16-smoothing. This settles Open Problem 2 of Herlihy and
Tirthapura [9]. Finally, we note that this result identifies the
first Θ(lg w)-depth (randomized) smoothing network that
simultaneously (i) achieves constant smoothness, (ii) does
not use the AKS network [2] (and, hence, it need not be
inpractical) and (iii) does not require global initialization.

We conclude with an improbability result: There is no
randomized network of width w and depth d that achieves
1-smoothing with probability greater than d

w−1
(Theorem

7.1). This is bad news: It implies that the output of any of
the common (randomized) networks of depth O(lg2 w) (such
as the periodic network [7]) is 1-smooth with an extremely
small probability. Furthermore, only randomized smoothing
networks of depth linear in w may guarantee 1-smoothness
with high probability; so, it is impossible to obtain a shallow
1-smoothing network through randomization. Since there is
a deterministic 1-smoothing network (relying, however, on
the AKS network to achieve depth Θ(lg w)) [13, 14], this
result provides the first separation between deterministic
and randomized (1-)smoothing networks, and demonstrates
a somehow unexpected limit on the impact of randomization
in smoothing networks: there is some c between 1 and 15
such that there are shallow randomized (c + 1)-smoothing
networks with high probability, but no shallow randomized
c-smoothing networks. The proof establishes that on a cer-
tain random input, the output is 1-smooth with probability
at most d

w−1
. This implies the existence of a deterministic

input with this property, which implies the claim.

2. PRELIMINARIES AND NOTATION
All logarithms are to the base 2. For an integer x, the

binary representation of x is a binary word x1x2 . . . xk with
k ≥ lg x such that

Pk

i=1 2k−ixi = x. For an integer x ≥ 1,
denote [x] = {0, . . . , x − 1}. For a number x ∈ R, denote
exp(x) = ex. For an integer x ≥ 0, the odd-characteristic
function of x, denoted as Odd(x), is given by Odd(x) = 1 if
x is odd, and 0 otherwise.

We denote by x a vector 〈x0, . . . , xw−1〉 of w integers.
For a vector x, denote

P
x =

P

i∈[w] xi. Say that x is γ-

smooth if for every pair xi, xj , |xi − xj | ≤ γ. We shall use
the Hoeffding Bound [11]:

Lemma 2.1 (Hoeffding Bound). Let vi ∈ [ai, bi], i ∈



Network Depth type GI? Smoothness Probability Reference

KP network Θ(lg w) D X 1 1 [13, 14]
r-butterfly lg w + o(lg w) D/R X 2 1 − 1

superpoly(w)
[1]

Bitonic merger lg w D X lg w 1 [12]
Butterfly lg w D X lg w 1 [14]
Block lg w D X lg w 1 [10, Theorems 3 & 4]

Block lg w R X 2.36
√

lg w 1 − 4w−1 [9, Theorem 10]

Block lg w R X lg lg w + 4 1 − 4w−3 Theorem 5.5

Block lg w R X lg lg w − 2 ≤ 2 exp(− 4
√

w

lg w
) Theorem 5.6

Two Blocks 2 lg w R X 16 1 − 4 lg lg w−47
w

Theorem 6.1

Any network d R X 1 ≤ d

w−1
Theorem 7.1

Table 1: Summary of known bounds on the smoothness of smoothing networks. D and R stand for deterministic and
randomized balancers, respectively; D/R stands for a combination of deterministic and randomized balancers. GI stands for
global initialization; that column indicates whether GI is required or not. KP stands for Klugerman and Plaxton [13, 14]. By
way of comparison, the KP network uses huge constant factors in its depth due to its reliance on the AKS network, while there
are no hidden constants in our 16-smoothing network of two blocks. Futhermore, some balancers in the r-butterfly network [1]
require deterministic initialization in order to achieve 2-smoothness.

[n], be independent random variables. Then, for δ ≥ 0,

P

»˛
˛
˛
˛

Pn

i=1 vi −E
h
Pn

i=1 vi

i˛˛
˛
˛ ≥ δ

–

≤ 2·exp
“

− 2δ2
P

n
i=1(bi−ai)

2

”

.

Our coming proofs will not consider the possibility that cer-

tain expressions (e.g., lg lg w and
P

x

w
) may not be integer.

Adding floors and ceilings in the analysis will suffice to ad-
dress the general case. For the seek of notational simplicity,
we have opted to present the simpler analysis with no floors
and ceilings.

3. SMOOTHING NETWORKS
A smoothing network [3] is a special case of a balanc-

ing network [3], which is a collection of interconnected bal-

ancers. A balancer is an asynchronous switch with two in-

put wires and two output wires, called top and bottom.
An initialization takes places in some preprocessing phase;
the initialization simply chooses an orientation : one of the
two output wires, either the top or the bottom. The balancer
is oriented top (resp. bottom) if the initialization chooses its
top (resp. bottom) output wire. A stream of tokens enters
a balancer via its two input wires; each time a new token
arrives on an input wire, it is directed to the output wire
currently labeled top; at the same time, the orientation of
the balancer changes. This ensures that the total number
of tokens is (almost) evenly divided among the two output
wires.

A balancing network is an acyclic network of balancers
where output wires of balancers are connected to input wires
of (other) balancers. The input wires 0, 1, . . . , w − 1 may
not be connected from any output wires; the output wires

may not be connected to any input wires. When the num-
bers of input and output wires of the network are the same,
this number w is called the width of the network and the
network is denoted by Bw. The acyclicity ensures that each
balancer can be assigned a unique layer : the length of the
longest path from an input wire to that layer; the depth

d(Bw) is the maximum layer.
The network Prefixℓ(Bw) consists of the layers 1, . . . , ℓ of

Bw ; the network Suffixℓ(Bw) consists of the layers d(Bw) −
ℓ + 1, . . . , d(Bw). Finally, for an integer k ≥ 1, Bκ

w denotes
the sequential cascade of κ copies of Bw. Say that a balancer

b in layer ℓ of a balancing network B depends on balancer
b′ in layer ℓ′ < ℓ if there is a path from b′ to b in B. Then,
each output wire of balancer b depends on balancer b′ as well
(and also trivially on b). The dependency set of balancer
b in layer ℓ is the set of all balancers b′ in layers ℓ′ ≤ ℓ such
that b depends on b′. Consider two output wires j1 and j2
of layer ℓ in a balancing network B. Say that j1 and j2 are
independent for layer ℓ′ < ℓ if there is no balancer b′ in
layer ℓ′ such that both j1 and j2 depend on b′.

We make a distinction according to the way balancers are
initialized. A deterministic balancer is one that is initial-
ized in some deterministic way. A deterministic balancing

network consists of deterministic balancers. A pair of a de-
terministic balancing network Bw and a (fixed) orientation
for each of its balancers induces a set of (asynchronous) ex-

ecutions in the natural way (cf. [3, Section 2]). Consider an
input vector x = 〈x0, x1, . . . , xw−1〉, where xi is the num-
ber of tokens fed into input wire i of the network Bw. A
quiescent state of the network Bw on the input vector x is
reached in some execution when all

P
x input tokens have

exited. It is simple to observe that all executions of network
Bw (on the input vector x) reach a quiescent state with a
common output vector y = 〈y0, y1, . . . , yw−1〉. So, identify
each quiescent state with the vector y = Bw(x). A vector x

is a fixed point for the network Bw if Bw(x) = x (cf. [10]).
Say that Bw is a γ-smoothing network for some integer

γ ≥ 1 (possibly dependent on w) if for each input vector x,
Bw(x) is γ-smooth.

A randomized balancer [1, 9] is initialized to each of
top and bottom with probability 1

2
and independently of all

other balancers; so, it is initialized uniformly at random.
A randomized balancing network consists of randomized
balancers. So, a randomized balancing network is a pair
of a balancing network Bw and a random orientation of it.
Given an input vector x to a randomized balancing network,
induced in the natural way is a probability measure P on
associated events. For some integer γ ≥ 1, say that Bw is
a γ-smoothing network with probability δ, where 0 ≤
δ ≤ 1, if for each input vector x, P [Bw(x) is γ-smooth] ≥ δ;
that is, the probability that for all output wires j and k,
1 ≤ j, k ≤ w, it holds that |yj − yk| ≤ γ is at least δ.

For a balancer b denote as x1 and x2 the number of tokens



arriving on the top and bottom input wires of b, respectively.
Denote as y1 and y2 the number of tokens leaving through
the top and bottom output wires of b, respectively. (We
shall sometimes use x1(b), x2(b), y1(b), y2(b) for x1, x2, y1

and y2, respectively, when reference to b is necessary.) If

b is oriented top (resp., bottom), y1 =
l

x1 + x2
2

m

and y2 =
¨

x1+x2
2

˝
(resp., y1 =

j
x1 + x2

2

k

and y2 =
l

x1 + x2
2

m

). As-

sume now that b is oriented uniformly at random. De-
fine a random variable rb taking values 1

2
and − 1

2
with

equal probability (cf. [9]). (Clearly, E [rb] = 0.) Define
xb = Odd(x1 + x2) · rb (cf. [9]). Then, y1 = x1+x2

2
+ xb =

x1+x2
2

+ Odd(x1 + x2) · rb and y1 = x1+x2
2

− xb = x1+x2
2

−
Odd(x1 + x2) · rb.

4. BLOCK NETWORK (AND RELATIVES)
The Block2 network is a single balancer. The Block2w is

constructed from two Blockw networks as follows. Given
an input vector x(2w), represent each subscript as a binary
string. The A-cochain of x(2w), denoted as xA, is the sub-
vector whose indices have low-order bits 00 or 11; the B-

cochain of x(2w) of x(2w), denoted as xB, is the subvector
whose indices have low-order bits 01 or 10. The input vector
x(2w) is fed into two parallel Blockw networks, so that xA

and xB go to each of the Blockw networks. Denote as yA

and yB the corresponding outputs of the two Blockw net-
works. In a final layer, each pair of corresponding entries of
yA and yB are matched through a balancer. So, Blockw has
lg w layers 1, . . . , lg w, each with w

2
balancers (cf. Figure 1).

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUT OUTPUT3 41 2

Figure 1: The Block16 network.

We will use the tree structure from [9, Section 2] for Blockw:

• The root is the set of all w
2

balancers at layer 1 of
Blockw; label this node v1,1. The leaves of the tree are
the balancers in layer lg w.

• For each ℓ, 2 ≤ ℓ ≤ lg w, layer ℓ is decomposed into
2ℓ−1 nodes, denoted as vℓ,1, . . . , vℓ,2ℓ−1 , each consisting
of w

2ℓ balancers. These nodes are defined inductively
(given the nodes for layer ℓ − 1): For each integer k,
where 1 ≤ k ≤ 2ℓ−2, the node vℓ,2k−1 consists of all
balancers (in layer ℓ) that the top output wires of bal-
ancers in node vℓ−1,k point to. Similarly, the node vℓ,2k

consists of all balancers (in layer ℓ) which the bottom
output wires of balancer in node vℓ−1,k point to.

The tokens that exit from output wire y1 must follow the
path v1,1, v2,1, . . . , vlg w,1 and exit on the top output wire of

balancer vlg w,1. See Figure 2 for an illustration of the tree
structure. We observe a preliminary property of Blockw,
easily shown by induction, which will be used later.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUT OUTPUT3 41 2

v3,4

v2,2

v3,2

v3,1v2,1

v4,2

v4,1

v4,3

v4,4

v4,5

v4,6

v4,8

v1,1

v4,7

v3,3

Figure 2: The tree structure of [9] within a Block16.

Lemma 4.1. In Blockw, there is at most one path from a
balancer b in layer ℓ to a balancer b′ in layer ℓ′ > ℓ.

The block network is very similar to (but different than)
the well-known merger network of Batcher [4]. In more de-
tail, under the standard orientation (cf. [9]), there is no per-
mutation between the input wires of the two networks that
yields one from the other while respecting the orientation
of each balancer. However, if the balancers’ orientations are
ignored, such permutations exist and the networks are called
isomorphic (cf. [7, Section 2]). The Periodicw network is
the cascade of lg w Blockw networks.

Cube-Connected-Cycles: For w a power of 2, the net-
work CCCw has lg w layers. In layer ℓ, 1 ≤ ℓ ≤ lg w, for
each wire u ∈ {0, 1}lg w, there is a balancer b between wire
u and wire u(ℓ), where u(ℓ) = u1 . . . uℓ−1uℓuℓ+1 . . . ulg w; the
top output wire of b is the one among u and u(ℓ) such that
uℓ = 0. See Figure 3 for an illustration. We observe a simple
structural property of CCCw.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUT OUTPUT3 41 2

Figure 3: The CCC16 network.

Lemma 4.2. Consider two integers l1 and l2 such that l1+
l2 < lg w. Let ℓ1 ∈ {0, 1}l1 and ℓ2 ∈ {0, 1}l2 be arbitrary
but fixed. Then, the restriction of CCCw to the layers l1 +
1, . . . , lg w− l2 and wires ℓ1uℓ2, where u ∈ {0, 1}lg w−l1−l2 is
arbitrary, is a network CCC2lg w−l1−l2 .



It is simple to see that the block network is a bidelta net-
work [15] (A bidelta network is a one that is delta network
in both directions (from left to right and vice versa); roughly
speaking, a delta network is one in which there is a unique
path from each input wire to every output wire, and the
path descriptors associated with paths leading to the same
output wire are identical.) The cube-connected-cycles is an-
other example of a bidelta network. It is known that any
two bidelta networks of the same width (and degree 2, say)
are isomorphic [15]. Hence, the block network is isomorphic
to the cube-connected-cycles network (ignoring the balancer
orientations). This allows to treat the two networks inter-
changeably when considering random orientations.

The numbers y0, y1, . . . , yw−1 of tokens on output wires
0, 1, . . . , w−1 are random variables of the block network with
random orientation. The symmetry of the block network
implies that all variables yj , 0 ≤ j ≤ w − 1, follow the same
distribution (cf. [9]).

For a layer ℓ and an integer j, where 1 ≤ j ≤ 2ℓ−1, denote
as xℓ,j and yℓ,j the total number of tokens entering and exit-
ing node vℓ,j , respectively. Since the tokens on the top (resp.
bottom) output wires of the balancers in vℓ,j enter the node
vℓ+1,2j−1 (resp. vℓ+1,2j), the numbers of tokens entering
nodes vℓ+1,2j−1 and vℓ+1,2j are xℓ+1,2j−1 =

xℓ,j

2
+
P

b∈vℓ,j
xb

and xℓ+1,2j =
xℓ,j

2
−P

b∈vℓ,j
xb, respectively. Since all ran-

dom variables yj , 0 ≤ j ≤ w−1, follow the same distribution,
we focus on the number of tokens y0 exiting on the top out-
put wire of node vlg w,1. To calculate y0, we need to count
the number of tokens following the path v1,1, v2,1, . . . , vlg w,1

and exiting on the top output wire of vlg w,1. We recall:

Lemma 4.3 (Herlihy and Tirthapura [9]). For the

network Blockw, y0 =
P

x

w
+
Plg w

ℓ=1
1

2lg w−ℓ

P

b∈vℓ,1
xb.

Lemma 4.4 (Herlihy and Tirthapura [9]).Let B be
a set of balancers in Blockw and cb be a constant for each
balancer b ∈ B. Then, for any δ > 0, P

ˆP

b∈B cbxb > δ
˜
≤

2 · P
ˆP

b∈B cbrb > δ
˜
.

Note that
P

b∈B cbxb is a sum of dependent random vari-
ables, while

P

b∈B cbrb is a sum of independent random vari-
ables. Furthermore, note that for each set of balancers B,
linearity of expectations implies E

ˆP

b∈B cbrb

˜
= 0. The fol-

lowing claim can be derived easily using techniques from [9].

Lemma 4.5. For Blockw, P

h˛
˛
˛y0−

P

x

w

˛
˛
˛≥δ

i

≤4 exp(−δ2).

Proof. First, we observe the following intermediate tech-
nical equality, which was also observed in [9, page 5]:

lg wX

ℓ=1

X

b∈vℓ,1

„
1

2lg w−ℓ+1
−
„

− 1

2lg w−ℓ+1

««2

= 2 − 2

w
.

By Lemma 4.4,

P

2

4

˛
˛
˛
˛
˛
˛

lg wX

ℓ=1

1

2lg w−ℓ

X

b∈vℓ,1

xb

˛
˛
˛
˛
˛
˛

≥ δ

3

5

≤ 2 · P

2

4

˛
˛
˛
˛
˛
˛

lg wX

ℓ=1

1

2lg w−ℓ

X

b∈vℓ,1

rb

˛
˛
˛
˛
˛
˛

≥ δ

3

5 .

For each pair of layer ℓ, 1 ≤ ℓ ≤ lg w and a balancer b ∈
vℓ,1, the variable rb has range {−2− lg w+ℓ−1, 2− lg w+ℓ−1}. By

Hoeffding Bound (Lemma 2.1) and the observed inequality,

we get P

h˛
˛
˛
Plg w

ℓ=1
1

2lg w−ℓ

P

b∈vℓ,1
xb

˛
˛
˛ ≥ δ

i

≤ 4 exp(−δ2).

5. ONE BLOCK
We present both upper and lower bounds on the smoothness
of Blockw. We start with some observations. By Lemma 4.3,

y0 =

P
x

w
+

lg wX

ℓ=1

1

2lg w−ℓ

X

b∈vℓ,1

xb =

P
x

w
+

lg w−lg lg wX

ℓ=1

1

2lg w−ℓ

X

b∈vℓ,1

xb

| {z }

X1

+

lg wX

ℓ=lg w−lg lg w+1

1

2lg w−ℓ

X

b∈vℓ,1

xb

| {z }

X2

,

where for each layer ℓ, |vℓ,1| = 2lg w−ℓ. We first prove:

Lemma 5.1. For the network Blockw,
Plg w−lg lg w

ℓ=1

P

b∈vℓ,1

`
1

2lg w−ℓ+1 − (− 1
2lg w−ℓ+1 )

´2
= 2

lg w
− 2

w
.

Now we prove two preliminary properties of X1 and X2.

Lemma 5.2. P [|X1| ≥ 2] ≤ 4w−4

Proof. Define R1 =
Plg w−lg lg w

ℓ=1
1

2lg w−ℓ

P

b∈vℓ,1
rb. By

Lemma 4.4, P [|X1| ≥ 2] ≤ 2 · P [|R1| ≥ 2] . For each pair of
a layer ℓ, 1 ≤ ℓ ≤ lg w − lg lg w, and a balancer b ∈ vℓ,1, the
variable 1

2lg w−ℓ · rb has range {−2− lg w+ℓ−1, +2− lg w+ℓ−1}.
By Hoeffding Bound and Lemma 5.1, P [|X1| ≥ 2] ≤ 2 · 2 ·
exp

„

− 2·22

2
lg w

«

≤ 4w−4.

We now use the triangle inequality to prove:

Lemma 5.3. |X2| ≤ 1
2

lg lg w.

Lemmas 5.2 and 5.3, and the Union Bound imply:

Lemma 5.4. P

"

W

k∈[w]

“˛
˛
˛yk−

P

x

w

˛
˛
˛≥ 1

2
lg lg w + 2

”
#

≤4w−3.

We start with the upper bound:

Theorem 5.5. Blockw is a (lg lg w + 4)-smoothing net-
work with probability at least 1 − 4w−3.

Proof. The event
V

k∈[w]

“˛
˛
˛yk−

P

x

w

˛
˛
˛< 1

2
lg lg w+2

”

im-

plies that for each pair of indices k, l ∈ [w], |yk − yl| ≤
˛
˛
˛yk −

P

x

w

˛
˛
˛+
˛
˛
˛−yl +

P

x

w

˛
˛
˛ ≤ 1

2
lg lg w+2+ 1

2
lg lg w+2 = lg lg w+4.

By Lemma 5.4,

P [Bw(x) is (lg lg w + 4)-smooth ]

= P

2

4
^

k,l∈[w]

(|yk − yl| ≤ lg lg w + 4)

3

5

≥ P

2

4
^

k∈[w]

„˛
˛
˛
˛yk −

P
x

w

˛
˛
˛
˛ ≤

1

2
lg lg w + 2

«
3

5

≥ 1 − P

2

4
_

k∈[w]

„˛
˛
˛
˛yk −

P
x

w

˛
˛
˛
˛ ≥

1

2
lg lg w + 2

«
3

5

≥ 1 − 4w−3.



We continue with the lower bound:

Theorem 5.6. Blockw is a (lg lg w − 2)-smoothing net-

work with probability at most 2 exp(− 4
√

w

lg w
).

Since the networks Blockw and CCCw are isomorphic, we
shall deal in the proof with the second.

Proof. We construct an input vector x such that the
probability that y = CCCw(x) is (lg lg w − 2)-smooth is at

most 2 exp(− 4
√

w

lg w
). Construct x as follows. For each input

wire i = i1i2 . . . ilg w, set xi :=
Plg w

k=lg w−lg lg w+2 ik; so, xi is
the number of 1’s in the lg lg w − 1 least significant bits of
i1i2 . . . ilg w (An illustration is given in Figure 4). We prove:
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Figure 4: The input vector for the lower bound together
with a sample initialization of the CCC16.

Lemma 5.7. x is fixed point of Prefixlg w−lg lg w+1(CCCw).

Proof. We prove that for each layer ℓ ≤ lg w−lg lg w+1,
x is a fixed point of Prefixℓ(CCCw). The proof is by induction
on ℓ. For the basis case, where ℓ = 1, consider a balancer b
in layer ℓ connecting wires u and u(1), where u ∈ {0, 1}lg w.
By construction of x, the inputs to balancer b are

x1(b) =

lg wX

k=lg w−lg lg w+2

uk, x2(b) =

lg wX

k=lg w−lg lg w+2

u(1)k.

By construction of the CCCw, uk = u(1)k for all k ≥ lg w −
lg lg w + 2 (since u and u(1) differ only in bit 1.) Hence,
x1(b) = x2(b). By definition of balancers, y1(b) = y2(b).
Hence, x is a fixed point of Prefixℓ(CCCw).

Assume inductively that the claim holds for layer ℓ − 1,
where 1 < ℓ < lg w − lg lg w + 2. Consider a balancer b in
layer ℓ connecting wires u and u(ℓ), where u ∈ {0, 1}lg w.

By induction hypothesis, x1(b) =
Plg w

k=lg w−lg lg w+2 uk and

x2(b) =
Plg w

k=lg w−lg lg w+2 u(ℓ)k. By construction of the net-

work, uk = u(ℓ)k for all k ≥ lg w − lg lg w + 2 (since u and
u(ℓ) differ only in bit ℓ.) Hence, x1(b) = x2(b). By defini-
tion of balancers, it follows that y1(b) = y2(b). Hence, x is
a fixed point of Prefixℓ(CCCw), and the claim follows.

We now focus on Suffixlg lg w−1(CCCw) which is, by construc-
tion, the parallel cascade of 2w

lg w
CCC lg w

2
networks. Take any

such network CCC lg w
2

. The input wires of such a CCCw are

u0lg lg w−1, . . . , u1lg lg w−1, where u ∈ {0, 1}lg w−lg lg w+1; by
Lemma 5.7, the input to i = uv, where v ∈ {0, 1}lg lg w−1, is
Plg w

k=lg w−lg lg w+2 ik. We prove:

Lemma 5.8. P [yu1lg lg w−1 = 0] ≥ 2−( lg w
2

−1) and

P [yu1lg lg w−1 = lg lg w − 1] ≥ 2−( lg w
2

−1).

Proof. Note that the output wire u1lg lg w−1 depends on
1+
Plg lg w−2

k=1 2k = lg w

2
−1 balancers in layers lg w− lg lg w+

1, . . . , lg w. Notice also that there are 2
lg w
2

−1 orientations
for these balancers, each occuring with the same probability.
Hence, it suffices to prove that each of 0 and lg lg w − 1 is a
possible output for the output wire u1lg lg w−1.

For simplicity, set w′ = lg w. The proof is by induction on
w′. For the basis case, where w′ = 4, the claim is verified
directly (see also Figure 3). Assume inductively that the

output wire u1lg w′

in the network CCCw′ can take the values
0 and lg w′. For the induction step, consider the network

CCC2w′ . Consider the output wire 0u1lg w′

. By construction
of the Cube-Connected-Cycles network, CCC2w′ consists of
a ladder network followed by two parallel CCCw′ networks.
Consider the top of these CCCw′ networks.

• Assume that all balancers in layer 1 of the CCC2w′ are
initialized bottom. Then, the input to each of the input
wires of CCCw′ equals the number of 1’s in the corre-

sponding input wire 0i′, where i′ ∈ {0, 1}lg(2w′)−1 =

{0, 1}lg w′

. Clearly, this number equals the number of
1’s in the string i′. Induction hypothesis implies that

the output wire u1lg w′

can have value 0.

• Assume now that all balancers in layer 1 of the CCC2w′

are initialized top. Then, the input to each of the in-
put wires of CCC′

w equals the number of 1’s in the

corresponding input wire i = 1i′ where i′ ∈ {0, 1}lg w′

.
Clearly, this number equals 1 plus the number of 1’s
in the string i′. Induction hypothesis implies that the

output wire u1lg w′

can have output 1+ lg w′ = lg 2w′.

The proof is now complete.

Consider two different subnetworks CCC lg w
2

with input wires

u0lg lg w−1, . . . u1lg lg w−1 and u′0lg lg w−1, . . . , u′1lg lg w−1, re-
spectively. Consider output wires u1lg lg w−1 and u′1lg lg w−1,
respectively. We now prove, using the structure of the CCCw:

Lemma 5.9. The set {yu1lg lg w−1 | u ∈ {0, 1}lg w−lg lg w+1}
is a set of independent random variables.

Now, by Lemmas 5.8 and 5.9, we get that

P
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4
^

u∈{0,1}lg w−lg lg w+1

yu1lg lg w−1 6= 0

3

5

≤
“

1 − 2−( lg w
2

−1)
”2lg w−lg lg w+1

=

0

@

“

1 − 2−( lg w
2

−1)
”2

lg w
2

−1

1

A

2lg w−lg lg w+1

2
lg w
2

−1

≤ exp(−2lg w−lg lg w+1− lg w
2

+1) = exp

„

−4
√

w

lg w

«

.

Similarly, we obtain that

P

2

4
^

u∈{0,1}lg w−lg lg w+1

(yu1lg lg w−1 6= lg lg w − 1)

3

5

≤ exp

„

−4
√

w

lg w

«

.



By the Union Bound, it follows that

P [Bw(x) is (lg lg w − 2)-smooth ]

= P

"
“ ^

u∈{0,1}lg w−lg lg w+1

(yu1lg lg w−1 6= 0)
”

_“ ^

u∈{0,1}lg w−lg lg w+1

(yu1lg lg w−1 6= lg lg w − 1)
”
#

≤ P

2

4
^

u∈{0,1}lg w−lg lg w+1

(yu1lg lg w−1 6= 0)
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+ P
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4
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u∈{0,1}lg w−lg lg w+1

(yu1lg lg w−1 6= lg lg w − 1)

3

5

≤ 2 · exp

„

−4
√

w

lg w

«

.

6. TWO BLOCKS
We consider the cascade of two networks Blockw. The anal-
ysis of the smoothness properties of the second cascaded
block will require some smoothness properties of the first
one which go beyond the one stated in Theorem 5.5. We
show:

Theorem 6.1. For w sufficiently large, Block2
w is a 16-

smoothing network with probability at least 1 − 4 lg lg w−47
w

.

Here is an informal outline of the proof. Recall that by The-
orem 5.5, the first Blockw is (lg lg w + 4)-smoothing with
high probability. The proof will use no more than lg lg w

2
− 6

phases; in phase ρ, 1 ≤ ρ ≤ lg lg w

2
− 6, we consider a dis-

tinct group of 4 lg w

(lg lg w−1−ρ)2
+ lg lg w consecutive layers in

the second Blockw. For each phase ρ > 1, we prove that the
smoothness of the cascade of the first Blockw and the layers
considered in the phase ρ drops by one over the correspond-
ing smoothness for phase ρ−1. At the end, this will establish
that the smoothness will become constant. A diagram for
the proof appears in Figure 5. The formal proof follows.

Proof. Since Blockw and CCCw are isomorphic, we will
deal with the cascade of two networks CCCw. Consider the
second cascaded CCCw with layers 1, 2, . . . , lg w. We prove:

Lemma 6.2. Fix a layer ℓ, with lg w + 1 ≤ ℓ ≤ 2 lg w,
in the network CCC2

w. Consider the input vector x to layer
ℓ. Then, with probability 1 − 4w−3, the following condition
holds: For every ζ, 0 ≤ ζ ≤ lg w − lg lg w, and for all pairs
ℓ1 ∈ {0, 1}ℓ−1−lg w and ℓ2 ∈ {0, 1}2 lg w−ℓ+1−lg lg w−ζ ,

˛
˛
˛
˛
˛

P

u∈{0,1}lg lg w+ζ xℓ1uℓ2

lg w · 2ζ
−
P

x

w

˛
˛
˛
˛
˛
≤ 2.

Proof. We first observe:

Lemma 6.3.
P

u∈{0,1}lg lg w+ζ

ℓ−1P

k=ℓ−1−lg w+lg lg w+ζ

P

bk∈k | ℓ1uℓ2
depends on bk

“
1

lg w
2k−ℓ−ζ − (− 1

lg w
2k−ℓ−ζ)

”2

≤ 2
lg w

.

layer

wire

CCCw

CCC2 lg w

CCC4 lg w

l
ρ1

x(b3)

CCClg w

CCClg w

x(b2)

x(b1)

b2

b1

lg
lg

w
+

1

lg
lg

w
+

2

lg
lg

w

b3

Figure 5: A diagram for the proof for the cascade of two
CCCw in group L1. The inputs x(b1), x(b2), x(b3), . . . on the
path π from the top input wire in layer lg lg w to some output
wire in layer lρ are all independent (for fixed input at layer
1) and are output wires of a CCClg w, CCC2 lg w, CCC4 lg w, . . ..

For some i ∈ {0, 1}lg w, let xi(ℓ) be the input to wire i in
layer 1 ≤ ℓ ≤ lg w in CCC2

w. We establish that

X

u∈{0,1}lg lg w+ζ

xℓ1uℓ2 =
1

2lg w−lg lg w−ζ
·
X

x +

X

u∈{0,1}lg lg w+ζ

ℓ−1X

k=ℓ−1−lg w+
lg lg w+ζ+1

2k−(ℓ−1)
X

bk∈k: ℓ1uℓ2
dep. on bk

xbk
.

Hence,
P

u∈{0,1}lg lg w+ζ xℓ1uℓ2

lg w · 2ζ
=

P
x

w
+

1

lg w · 2ζ
·

X

u∈{0,1}lg lg w+ζ

ℓ−1X

k=ℓ−1−lg w+
lg lg w+ζ+1

2k−(ℓ−1)
X

bk∈k: ℓ1uℓ2
dep. on bk

xbk

Define

X =
1

lg w · 2ζ

X

u∈{0,1}lg lg w+ζ

ℓ−1X

k=ℓ−1−lg w+
lg lg w+ζ+1

2k−(ℓ−1)
X

bk∈k | ℓ1uℓ2
dep. on bk

xbk
,

R =
1

lg w · 2ζ

X

u∈{0,1}lg lg w+ζ

ℓ−1X

k=ℓ−1−lg w+
lg lg w+ζ+1

2k−(ℓ−1)
X

bk∈k | ℓ1uℓ2
dep. on bk

rbk
.

By Lemma 4.4, P [|X| ≥ 2] ≤ 2 · P [|R| ≥ 2] . For each pair
of a u ∈ {0, 1}lg lg w+ζ and a layer k, where ℓ − 1 − lg w +
lg lg w + ζ +1 ≤ k ≤ ℓ− 1, such that ℓ1uℓ2 depends on some
balancer bk ∈ k, the variable 1

lg w·2ζ ·2k−(ℓ−1) · rbk
has range

{− 1
lg w

2k−(ℓ−1)−ζ · 1
2
, + 1

lg w
2k−(ℓ−1)−ζ · 1

2
}



= {− 1
lg w

2k−ℓ−ζ , + 1
lg w

2k−ℓ−ζ}. By Hoeffding Bound and

Lemma 6.3, P [|X| ≥ 2] ≤ 2 ·2 ·exp

„

− 2·22

2
lg w

«

≤ 4w−4. Define

C := {0, 1}lg w−lg lg w−ζ . By the Union Bound,

P
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6
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lg w−
lg lg w_
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_

ℓ1ℓ2∈C

˛
˛
˛
˛
˛
˛
˛

P
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xℓ1uℓ2

lg w · 2ζ
−
P

x

w

˛
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˛
˛
˛
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≤ 2

3
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lg w−
lg lg wX

ζ=0

X
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P
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6
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˛

P

u∈{0,1}lg lg w+ζ

xℓ1uℓ2

lg w · 2ζ
−
P

x

w

˛
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˛
˛
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≤ 2

3

7
5

≤ lg w · 2ℓ−1−lg w · 22 lg w−ℓ+1−lg lg w−ζ · 4

w4
≤ 4

w3
.

Consider again the second cascaded CCCw with layers
1, 2, . . . , lg w. Consider groups of layers L1,L2, . . . ,L lg lg w

2
−6

in this network, defined inductively as follows (see Figure 5):

• Basis case: L1 has layers 1, 2, . . . , 4 lg w

( 1
2

lg lg w−2)2
+lg lg w.

• Assume inductively that we have defined Lρ−1, ρ > 2.

• Induction step: Lρ consists of the 4 lg w

( 1
2

lg lg w−1−ρ)2
+

lg lg w layers which immediately follow group Lρ−1.

Denote as ℓρ the first layer in group Lρ. By simple calcula-
tions, we obtain:

Lemma 6.4. For sufficiently large w, the total number of
layers of groups L1,L2, . . . ,L lg lg w

2
−6

is at most lg w.

Consider a path π = b1, b2, . . . , bk (of balancers). For
each balancer br, 1 < r ≤ k, x(br) is the input to balancer
br from balancer br−1 and xbr is the other input to balancer
br. (x(b1) is arbitrarily chosen among x1(b1) and x2(b1).)
We now prove a key claim:

Lemma 6.5. Consider a path π = b1, b2, . . . , bd(Lρ)−lg lg w

from an input wire in layer lg lg w of group Lρ to an output
wire of Lρ. Then,

P

"
_

b∈π

˛
˛
˛
˛
x(br) −

P
x

w

˛
˛
˛
˛
≤ 1

2
lg lg w + 1 − ρ

#

≤ 1 − 8 · w−3.

Proof. We first prove a technical claim we need:

Claim 6.6. Consider an input vector x to Lρ. Then, the
random variables in the set {x(b1), . . . , x(bd(Lρ)−lg lg w)} are
independent.

Proof. Each variable x(br), where 1 ≤ r ≤ d(Lρ) −
lg lg w is determined by (i) the inputs to the balancers in
layer 1 of Lρ on which br depends, and (ii) the (randomly)
chosen orientation of the balancers of Lρ on which br de-
pends. By Lemma 4.1, the dependency sets of br, 1 ≤ r ≤
d(Lρ) − lg lg w, are disjoint and the claim follows.

We continue with a second technical claim:

Claim 6.7. Fix ℓ2 ∈ {0, 1}lg w−lρ−lg lg w−ζ+1 with ζ ≥ 0
and fix ℓ1 ∈ {0, 1}lg w−1. Consider an input vector x to Lρ

such that

˛
˛
˛
˛

P

u∈{0,1}lg lg w+ζ xℓ1uℓ2

2ζ ·lg w
−

P

x

w

˛
˛
˛
˛ ≤ 2. Then, for each

balancer br, 1 ≤ r ≤ d(Lρ) − lg lg w,

P
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˛
˛
˛x(br) −

P
x

w

˛
˛
˛
˛ ≥

1

2
lg lg w + 1 − ρ

–

≤ 4 · exp

„

−
“1

2
lg lg w − 1 − ρ

”2
«

.

Proof. Fix a balancer br, where 1 ≤ r ≤ d(Lρ) − lg lg w

in layer 1 ≤ ℓ(r) ≤ lg w. Let i = ℓ1(r)u(r)ℓ2(r) and i(ℓ)

be the input wires of br, where ℓ1(r) ∈ {0, 1}ℓρ−1, u(r) ∈
{0, 1}lg lg w+r and ℓ2(r) ∈ {0, 1}lg w−ℓρ−lg lg w−r+1. Consider
the restriction of group Lρ to layers ℓρ, ℓρ+1, . . . , ℓρ+lg lg w+

r−1 and wires ℓ1(r)uℓ2(r), where u ∈ {0, 1}lg lg w+r. Lemma
4.2 implies that this restriction is a CCC2r lg w. Hence, x(br)
is some output of the network CCC2r lg w; notice that the
input vector to this network comes from the (arbitrary but
fixed) input vector x to Lρ. We finally use the triangle in-
equality, the assumption and Lemma 4.5 to prove that

P
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.

We continue with the proof of the claim. Denote by E the
event that ∀ ζ ≥ 0, ℓ1 ∈ {0, 1}ℓρ , ℓ2 ∈ {0, 1}lg w−ℓρ−lg lg w−ζ ,
˛
˛
˛
˛

P

u∈{0,1}lg lg w+ζ xℓ1uℓ2

2ζ ·lg w
−

P

x

w

˛
˛
˛
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2
lg lg w +

1 − ρ. By Claims 6.6 and 6.7 and Lemma 6.2,

P

"
^

b∈π

˛
˛
˛
˛
x(br) −

P
x

w

˛
˛
˛
˛
≥ α

#

=
X

x(ℓρ):
ind. by x

P

"
^

b∈π

˛
˛
˛
˛x(br) −

P
x

w

˛
˛
˛
˛ ≥ α | x(ℓρ)

#

· P [x(ℓρ)]



≤
X

x(ℓρ):
ind. by x and E

d(Lρ)−
lg lg wY

r=1

P

»˛
˛
˛
˛x(br) −

P
x

w

˛
˛
˛
˛ ≥ α

˛
˛
˛ x(ℓρ)

–

· P [x(ℓρ)] +
X

x(ℓρ):
ind. by x and ¬E

1 · P [x(ℓρ)]

≤
X

x(ℓρ):
ind. by x and E

d(Lρ)−
lg lg wY

r=1

4 exp
“

−(α − 2)2
”
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„
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+
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We continue to prove:

Lemma 6.8. Consider the cascade of all layers from ℓ to
ℓ′, ℓ′ > ℓ, with input vector x and output vector y, respec-

tively. Assume that (i) for every i ∈ [w], |xi −
P

x

w
| ≤ γ and

(ii) for every path π = bℓ, bℓ+1, . . . , bℓ′ from layer ℓ to layer
ℓ′, there is at least one layer r, with ℓ ≤ r ≤ ℓ′, such that

|x(br) −
P

x

w
| ≤ γ − 2. Then, |yi −

P

x

w
| ≤ γ − 1 for every

i ∈ [w].

Proof. By contradiction. Assume that there is an i ∈ [w]

such that |yi −
P

x

w
| = γ. Without loss of generality, assume

that yi ≥
P

x

w
+ γ. Let bℓ′ be the balancer in layer ℓ′ with

output wire yi. By definition of the balancer and assumption
on the input vector x in layer ℓ ≤ ℓ′, the two inputs must

satisfy x1(br) ≥ γ +
P

x

w
− 1 and x2(br) ≥

P

x

w
+ γ for

an arbitrary ordering of the two input wires of br. Hence,
there must be a path π = bℓ, bℓ+1, . . . , bℓ′ such that for all

ℓ ≤ r ≤ ℓ′, |x(br) −
P

x

w
| ≥ γ − 1. A contradiction.

We are now ready to prove:

Lemma 6.9. For an integer ρ, where 1 ≤ ρ ≤ lg lg w

2
− 6,

consider the input and output vectors x(ρ) and y(ρ) respec-
tively, to group Lρ. Then,
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Proof. Let P be the set of all paths from the first layer
of Lρ to the last layer of Lρ. Clearly, |P| ≤ w · 2d(Lρ) ≤
w · 2lg w ≤ w2. Hence, by the Union Bound and Lemma 6.5,
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So, by the Union Bound,
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For each 1 ≤ ρ ≤ lg lg w

2
− 6, let x(ρ),y(ρ) be the input

and output vector of Lρ, respectively. We shall prove by
induction that for every ρ, with 1 ≤ ρ ≤ lg lg w

2
− 6,
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For the basis case (ρ = 1), by Lemmas 4.5 and 6.9,
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Assume inductively that the claim holds for ρ − 1. For the
induction step, by Lemma 6.9 and the induction hypothesis,
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and the induction is complete. This implies that for ρ =
1
2

lg lg w−6, P

h
V
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lg lg w
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; hence, the output of the second CCCw is 16-

smooth with probability at least 1 − 4 lg lg w−47
w

.

7. IMPROBABILITY OF 1-SMOOTHING
We now use elementary arguments to show:

Theorem 7.1. A randomized network Bw is 1-smoothing

with probability at most d(Bw)
w−1

.

Proof. Fix a randomized network Bw. Choose two dis-
tinct integers 0 ≤ i, j ≤ w − 1 uniformly at random. Define

xi,j = 〈1, . . . , 1, 0
|{z}

component i

, 1, . . . , 1, 2
|{z}

component j

, 1, . . . , 1〉,

so, the input vector xi,j is a random variable. For each
layer ℓ, 1 ≤ ℓ ≤ d(Bw), denote by Eℓ the event that there is
a balancer b in layer ℓ whose inputs are 0 and 2. Clearly,
Bw(xi,j) is 1-smooth if and only if there is a layer ℓ such
that Eℓ occurs. By the Law of Conditional Alternatives,

P [Bw(x) is 1-smooth]

=
X

0≤î,ĵ≤w−1

î6=ĵ

P
ˆ
x = xî,ĵ

˜
·P
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˜

=
X

0≤î,ĵ≤w−1

î6=ĵ

1

w(w − 1)
· P
ˆ
Bw(x) 1-smooth | x = xî,ĵ

˜
.

Lemma 7.2. For each layer ℓ ≥ 1, P [Eℓ] ≤ 1
w−1

.

Proof. We first prove:

Lemma 7.3. Consider a pair i, j ∈ [w], i 6= j. Then, for
each layer ℓ, 1 ≤ ℓ ≤ d(Bw), P [x(ℓ) = xi,j ] ≤ 1

w(w−1)
.

By the Union Bound and Lemma 7.3,

P [Eℓ] = P
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_
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#
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X
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X
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„
1

w(w − 1)
+

1

w(w − 1)

«

≤ 1

w − 1
.

Clearly, by the Union Bound and Lemma 7.2,

P [Bw(x) is 1-smooth ] ≤
d(Bw)
X

ℓ=1

P [Eℓ] ≤ d(Bw) · 1

w − 1
.

Hence, there is a pair 0 ≤ î, ĵ ≤ w − 1, î 6= ĵ such that

P
ˆ
Bw(x) is 1-smooth

˛
˛ x = xî,ĵ

˜
≤ d(Bw)

w−1
.

8. EPILOGUE
We presented a thorough study of the impact of random-

ization in smoothing networks. We proved a tight (up to
a small additive constant) bound of lg lg w + Θ(1) on the
smoothness of the popular block network. As our main re-
sult, we established an upper bound of 16 on the smoothness
of the cascade of two block networks. Finally, we proved

that it is impossible to obtain a 1-smoothing randomized
network of low depth and sufficiently large probability. Our
results reveal the full power of randomization in smooth-
ing networks: randomization can be employed in a practical
network to yield a constant upper bound on smoothness.

Our work leaves open a number of interesting questions.
On the most concrete level, it would be extremely interesting
to establish our conjecture that the cascade of a small num-
ber of block networks may result to a 2-smoothing network
(with high probability).
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