
An Upper and a Lower Bound for Tick Synchronization

Marios Mavronicolas
�

Aiken Computation Laboratory

Harvard University

Cambridge� MA �����

Abstract

The tick synchronization problem is de�ned and
studied in the semi�synchronous complete network
with n processes� An algorithm for the tick synchro�
nization problem enables each process to make an es�
timate of real time close enough to those of other pro�
cesses� It is assumed that the �real� time for message
delivery is at most d and the time between any two
consecutive steps of any process is in the interval �c� ���
where � � c � ��

We de�ne the precision of a tick synchronization
algorithm to be the maximum di�erence between es�
timates of real time made by di�erent processes� and
propose it as a worst�case performance measure� We
show that no such algorithm can guarantee precision
less than bd��

�c
c� We also present an algorithm which

achieves a precision of ��n���
n

�d�d
c
e � d

� � �
��c
c
d� ��

� Introduction

Most existing distributed systems are modeled as
a communication network�a collection of n processes
arranged at the nodes of an undirected graph G and
communicating by sending messages across links that
correspond to the edges of G	 Central to the pro

gramming of distributed systems are synchronization
problems� where processes are required to obtain some
common notion of time so as to perform a particular
action simultaneously	 How closely can they be guar

anteed to perform such an action�

Such synchronization problems were �rst investi

gated by Lamport in ��� where a simple algorithm
was presented allowing a system of asynchronous pro

cesses to maintain a discrete clock that remains con

sistent with the ordering of receipt of communication
messages by the processes	 Several researchers have

�Supported by ONR contract N���������J������ Current
address	 Department of Computer Science
 University of Crete

Iraklion
 Crete
 Greece�

considered a so called �partially synchronous� model
of a distributed system in which processes have real

time clocks that run at the same rate as real time�
but are arbitrarily o�set from each other initially	 In
addition� there are known upper and lower bounds on
message delay	 The goal has been to prove limits on
how closely clocks can be synchronized	 In a com

pletely connected network of n processes� Lundelius
and Lynch ����� show a tight bound of ��� � �

n
� on

how closely the clocks of n processes can be synchro

nized� where � is the di�erence between the bounds on
the message delay	 Their work was subsequently ex

tended by Halpern� Megiddo and Munshi ����� to arbi

trary networks	 There has also been much work done
on the problem of devising fault
tolerant algorithms to
synchronize real
time clocks that drift slightly in the
presence of variable message delay	 �A good survey of
this work on fault
taulerant clock synchronization� as
well as of the general clock synchronization problem�
appears in ����	�

In reality� however� each process acquires informa

tion about time from a local� inaccurate� discrete clock
component that is available to it and operates at the
rate at which it receives ticks from its local clock	 Such
information is necessarily imprecise since the time be

tween successive ticks of any clock is not known ex

actly� but only within certain bounds	 We model these
semi�synchronous systems by assuming that there is
an upper and a lower bound on the time between
successive clock ticks that enable processes to esti

mate time	 Such modelling was �rst introduced in
���� and subsequently received a lot of attention �see�
e	g	� ���� �� �� ��� ��� ����	

We address the problem of achieving coordinated
action in semi
synchronous networks by studying the
tick synchronization problem� which is the problem of
achieving as close as possible time estimates by di�er

ent processes in a semi
synchronous network	

The tick synchronization problem is an abstrac

tion of the synchronization needed for the execution of
some tasks that arise in a distributed system� where



separate components need to agree on as a close as
possible common value of real time	 Consider� for ex

ample� version management and concurrency control
problems for database systems� solutions to such prob

lems heavily rely on the ability to assign timestamps
and version numbers to �les or other entities	 Also�
some algorithms that use timeouts� such as communi

cation protocols� are very much dependent on a value
of real time common among processes	

Upon �nishing the execution of a tick synchroniza

tion algorithm� a process enters a synchronized state	
Informally� the precision that a tick synchronization
algorithm achieves is the maximum� over all processes
in the system� of the di�erence between the real
time
estimate that a process is making at precisely the time
at which it is entering a synchronized state and the
real
time estimate that any other process in a syn

chronized state is making at the same time�	

A synchronized state models the possibility that a
process is in a position to make use of the estimate of
real time it has obtained as a result of executing a tick
synchronization algorithm	 Clearly� after all processes
enter a synchronized state� clock drifts may bring the
system out of synchronization again� so� it makes sense
to consider the behavior of the system prior to the time
at which the last process enters a synchronized state	
Multiple runs of a tick synchronization algorithm� ap

propriately scheduled� in a way� possibly� similar to
����� may reduce such future �desynchronizations�	

Time is measured under the following assumptions
on the system� Messages sent on a communication
link incur a delay in the range ��� d�� where d � � is a
�known� constant	 The time between any two consec

utive clock ticks �equivalently� consecutive computa

tion steps of a process� is in the interval �c� �� for some
parameter c such that � � c � �	

We show a lower bound of bd��
�c c on the precision

achievable by any tick synchronization algorithm	 Our
proof follows a general technique of explicitly �shift

ing� and �shrinking� executions through retiming of
events� reminiscent of a technique originally intro

duced in ���� which subsequently found applications
in many di�erent contexts �see� e	g	� ��� �� �� ����	
Since� however� we are assuming that processes ac

quire information about time by receiving ticks from
their inaccurate� discrete clocks� while ��� assumes pro

cesses have access to continuous clocks running at a
perfect rate� that of real time� the precise details dif

fer substantially	 Thus� while the lower bound proof
in ��� relies on message delivery time uncertainty� our

�It is perhaps counter�intuitive that a precision of � is the
best precision
 under our de�nition
 that can be achieved�

lower bound proof focuses more on timing uncertainty	
Clearly� our lower bound is interesting in the cases
where d � �	

We also present a simple algorithm that achieves a

precision of ��n���
n

�d�d
c
e�d

� ��
��c
c
d��	 This algorithm

relies on explicit communication among the processes�
so that each of them can estimate the di�erence be

tween the local time estimate of every other process
and its own� and add the average of these estimated
di�erences to its local time estimate	 This algorithm
is a direct adaptation for the semi
synchronous model
of one presented in ���	 Its analysis� however� is more
intricate� since the timing assumptions in the semi

synchronous model are more �crisp� than the ones in
���� where clocks were assumed to run at a perfect rate	

The tick synchronization problem can be thought
of as a �discrete analog� of the classical clock synchro

nization problem that has been extensively studied in
the literature	 We believe that discrete synchroniza

tion problems will play an important role in the de

velopment of a theory of real
time computing	 To the
best of our knowledge� the only synchronization prob

lem that has been studied so far in the context of
real
time distributed systems is the session problem�
where a process is required to guarantee that all pro

cesses have performed a particular set of steps	 Sev

eral combinatorial results on time bounds for the ses

sion problem in asynchronous and semi
synchronous
models have been presented in ��� ��� ���� our present
results are similar in style to those	

The rest of this paper is organized as follows� Sec

tion � presents the system model� de�nes the tick syn

chronization problem and introduces some notation	
Section � contains our lower bound result� and Sec

tion � contains our upper bound result	 We conclude�
in Section �� with a discussion of our results and some
open problems	

� De�nitions

In this section� we present the de�nitions for the
underlying formal model�� de�ne what it means for
an algorithm to solve the tick synchronization problem
and introduce some notation	

��� The System Model

A system consists of n processes p�� � � � � pn	 Pro

cesses are located at the nodes of a complete graph

�These de�nitions are similar to those in �� and could be
expressed in terms of the general timed automaton model de�
scribed in ��
 ��
 ����



G � �V�E�� where V � �n�	 For simplicity� we iden

tify processes with the nodes they are located at and
we refer to nodes and processes interchangeably	 Each
process pi is modelled as a �possibly in�nite� state ma

chine with state set Qi	 The state set Qi contains a
distinguished initial state q��i	 The state set Qi also
includes a subset Si of synchronized states	 We as

sume that any state of pi includes a special component�
bu�er i� which is pi�s message bu�er	 A con�guration
is a vector C � �q�� � � � � qn� where qi is the local state
of pi� denote statei�C� � qi	 The initial con�guration
is the vector �q���� � � � � q��n�	 Processes communicate
by sending messages� taken from alphabetM� to each
other	 A send action send �j�m� represents the send

ing of message m to a neighboring process pj 	 Let
Si denote the set of all send actions send �j�m� for all
m � M and all j � �n�� such that �i� j� � E	 That is�
Si includes the set of all the send actions possible for
pi	

We model computations of the system as sequences
of atomic events� or simply events� for short	 Each
event is either a computation event� representing a
computation step of a single process� or a delivery
event� representing the delivery of a message to a pro

cess	 Each computation event is speci�ed by comp�i�
for some i � �n�	 In the computation step associated
with event comp�i�� the process pi� based on its lo

cal state� changes its local state and performs some
set S of send actions� where S is a �nite subset of Si	
Each delivery event has the form del�i�m� for some
m � M	 In a delivery step associated with the event
del�i�m�� the message m is added to bu�er i� pi�s mes

sage bu�er	�

Each process pi follows a deterministic local algo

rithm Ai that determines pi�s local computation� i	e	�
the messages to be sent and the state transition to
be performed	 More speci�cally� for each q � Qi�
Ai�q� � �q�� S� where q� is a state and S is a set of
send actions	 An algorithm �or a protocol� is a se

quence A � �A�� � � � �An� of local algorithms	

An execution is an in�nite sequence of alternating
con�gurations and events

� � C�� ��� C�� � � � � �j� Cj� � � � �

satisfying the following conditions�

�	 C� is the initial con�guration�

�	 If �j � del�i�m�� then statei�Cj� is obtained by
adding m to bu�er i	

�The system model can be extended to allow arbitrary state
change upon message delivery without changing the results� for
clarity of presentation
 we chose not to do so�

�	 If �j � comp�i�� then statei�Cj� and S are ob

tained by applying Ai to statei�Cj����

�	 If �j involves process i� then statek�Cj��� �
statek�Cj� for every k �� i�

�	 For each m �M and each process pi� let S�i�m�
be the set of j such that �j contains a send �i�m�
and let D�i�m� be the set of j such that �j is a
delivery event del�i�m�	 Then there exists a one

to
one onto mapping 	i�m from S�i�m� toD�i�m�
such that 	i�m�j� � j for all j � S�i�m�

That is� in an execution the changes in processes�
states are according to the transition function� only
a process which takes a step or to which a message
is delivered changes its state� and each sending of a
message is matched to a later message delivery and
each message delivery to an earlier send	 We adopt
the convention that �nite pre�xes of an execution end
with a con�guration� and denote the last con�guration
in a �nite execution pre�x � by last���	 We say that
�j � comp�i� is a synchronized step of the execution
if statei�Cj� � Si� i	e	� it is taken from a synchronized
state	

A timed event is a pair �t� ��� where t� the �time��
is a nonnegative real number� and � is an event	 A
timed sequence is an in�nite sequence of alternating
con�gurations and timed events

� � C�� �t�� ���� C�� � � � � �tj� �j�� Cj� � � � �

where the times are nondecreasing and unbounded	
Timed executions in this model are de�ned as fol


lows	 Fix real numbers c and d� where � � c � � and
� � d ��	� Letting � be a timed sequence as above�
we say that � is a timed execution of A provided that
the following all hold�

�	 C�� ��� C�� � � � � �j� Cj� � � � is an execution of P �

�	 �Synchronous start� There are computation
events for all processes with time ��

�	 �Upper bound on step time� If the jth timed event
is �tj� comp�ij � Sj��� then there exists a k � j

with tk � tj � � such that the kth timed event is
�tk� comp�ij � Sk���

�	 �Lower bound on step time� If the jth timed event
is �tj � comp�ij� Sj��� then there does not exist a
k � j with tk � tj � c such that the kth timed
event is �tk� comp�ij � Sk���

�The synchronous model is a special case of the present
model where c � � and d � ��



�	 �Upper bound on message delivery time� If mes

sage m is sent to pi at the jth timed event�
then there exists k � j such that the kth timed
event is the matching delivery �tk� del�i�m�� �i	e	�
	i�m�j� � k� and tk � tj � d	

We say that � is an execution fragment of A if there
is an execution �� of A of the form� �� � 
�
�	 This
de�nition is extended to apply to timed executions in
the obvious way	 For a �nite execution fragment � �
C�� �t�� ���� C�� � � � � �tk� �k�� Ck� we de�ne tstart��� �
t� and tend��� � tk	 We say that a process pj receives
the message m by time t� �in a timed execution �� if�
by time t�� pj has a computation event that is preceded
in � by a delivery event del�j�m�	 Note that if m is
sent to pj at time t� then pj receives m by time t�d��	

We say that a process pi enters a synchronized state
by time t� �in a timed execution �� if there exists
a timed event �tj��� �j��� in � such that tj�� � t��
�j�� � comp�i�� and statei�Cj� � Si	

��� The Tick Synchronization Problem

At each computation step� simulating receipt of a
tick from a physical discrete clock� each process� pi�
increases the value of a special register� Li� by one	 Li

represents pi�s �local time�	 Thus� Li can be modi�ed
by pi during an execution according to the rate at
which pi receives ticks from its physical discrete clock	
For a �xed timed execution� we de�ne for each process
pi a function of �real� time t� Li�t�� which gives pi�s
local time at �real� time t	 Notice that Li�t� is a piece

wise continuous function	 We assume that for each i�
� � i � n� Li��� � �	

Intuitively� the tick synchronization problem is the
problem of establishing synchronization among the
processes� assuming that a process pi can modify Li

during the execution of a synchronization algorithm
in some way other than just incrementing it by one
at the rate at which it receives its ticks	 We assume
that a process can start executing a tick synchroniza

tion algorithm either spontaneously or upon receipt
of a message from a process that has already done so	
Let ti be the time at which pi �nishes executing its
synchronization algorithm	 We say that pi is in a syn�
chronized state at any time t � ti	 We will denote by
Li�ti�� the local� real
time estimate that pi is making
at ti as a result of a run of a tick synchronization algo

rithm� that is� at time ti� potentially� pi updates Li�ti�
to Li�ti��� based on knowledge gathered during the
execution of the algorithm and enters a synchronized
state	 Clearly� it makes sense to compare Li�t� and
Lj�t� for t � ti� tj� when both pi and pj are guaran


teed to be in a synchronized state	 Furthermore� for
a particular process pi� it is most appropriate to com

pare Li�t� and Lj�t�� where pj is any process that has
also entered a synchronized state by ti� at time exactly
ti� since further �asymmetry� in the rates at which pi
and pj receive ticks can occur after ti to separate Li

and Lj even more	 Thus� we are somehow interested
for the worst asynchronism that can possibly occur
at the best moment for a process� which is the time
at which the process is entering a synchronized state	
This is in contrast to the situation investigated in ����
where once the clocks are brought into synchroniza

tion� synchronization is maintained for ever	

We formalize the above intuitive ideas as follows�
we say that a tick synchronization algorithm� A� syn�
chronizes P within precision � if for every execution
of A and for every process pi� jLp�ti�� � Lp�ti�j � ��
for any process pj such that tj � ti	

We will consider �symmetric� tick synchronization
algorithms for which each process executes the same
local protocol and treats uniformly all other processes	

� A Lower Bound

We show�

Theorem ��� No clock synchronization algorithm
can synchronize P within precision � for any � �

bd��
�c c�

Proof� Fix any tick synchronization algorithm A
which synchronizes P within precision �	 We will show
that � � bd��

�c c	
Consider a fast� synchronous in�nite timed execu


tion � of A in which all processes take steps at a rate
of c in a round
robin order� starting with p�� and start
spontaneously and simultaneously executing their lo

cal protocols� and all messages are delivered after ex

actly d

� delay	 As a result of our assumptions� � will
also be �symmetric� in the sense that all processes
will undergo the same state changes in a synchronous
fashion� enter a synchronized state simultaneously and
make a common estimate of real time	 Let � � 

��
where 
 is the longest pre�x of � such that some pro

cess is not in a synchronized state in last�
�� and 
�

is the remaining part of �	 We reorder and retime
events in � to construct an in�nite timed execution
�� of A which is equivalent to � in the sense that for
each process pi� events at pi occur in the same order
in �� as in �	 This will guarantee that � and �� will
be indistinguishable to the processes and� therefore�
each process will undergo the same state changes and�



therefore� make the same estimate of real time upon
entering a synchronized state� as a result of a run of
A� for each of these executions	

To facilitate the description of the technical details
of our construction� we introduce the following de�ni

tion� for each process pi� we denote by Ti the time at
which pi enters a synchronized state in � and we say
that pi gets a
retarded in � if events at pi are retimed
so that the following two conditions are met�

�	 Ordering of events at pi which occur in 
 is main

tained	

�	 All computation steps of process pi that occur at
time � Ti � a in � are rescheduled to occur at a
rate of �� with the �rst of them occurring at the
same time as in �	

�	 Each message delivery event at process pi which
occurs at time� Ti�a in � is rescheduled to occur
at exactly the same time as the computation step
of pi that immediately precedes it	

Our construction for obtaining �� consists merely
of a
retarding pn in �� where a � d

�
c

��c
	

We next eastablish that �� is a timed execution of
A	 We start by showing�

Lemma ��� Each receiving event is after the corre�
sponding sending event in ���

Proof� Consider the message sending event �� at
node u� which occurs at time t� in � and let �� be
the corresponding message delivery event at node u�
which occurs at time t� in �	 In ��� let �� occur at
time t�� and �� occur at time t��	 We show� by case
analysis� that the ordering of �� and �� is the same in
�� as in �	

�	 None of u� and u� is a
retarded in ��� Obvious	

�	 u� � pn� In this case t�� � t�� thus� we only need
to consider the subcase where t� � Tn � a� since�
otherwise� t�� � t�� and the claim becomes trivial	
We can also assume that t� � T�� since� otherwise�
�� occurs in 
� and can be rescheduled to occur at
a later time in 
� without a�ecting the estimate
of real time made by u� at T�	 Note that since�

t���t
�

� � t��t
�

� � t��t���t���t�� �
d

�
��t���t���

to show that t�� � t��� it su�ces to show that
t���t� �

d
� 	 By our construction� the �rst compu


tation step of u� that occurs at time � Tn�a in �
will occur at time dT� � ae in ��	 Since there are

at most d t���Tn�a�
c

e computation steps of u� that
occur in � at time t such that� Tn � a � t � t�
and u� is a
retarded in ��� we will have�

t�� � t� � dTn � ae � �d
t� � �Tn � a�

c
e � ��� t�

� Tn � a� � �
t� � �Tn � a�

c
� �� �

��Tn � a� t� � �Tn � a��

� � �
t� � �Tn � a�

c
� �t� � �Tn � a��

� � � �t� � �Tn � a��
�� c

c

� � � �Tn � �Tn � a��
�� c

c

�since t� � Tn�

� � � a
�� c

c

� � � �
d

�
� ��

c

�� c

�� c

c

�
d

�
�

as needed	

�	 u� � pn� We only need to consider the subcase
where t� � T� � a� since� otherwise� t�� � t�� and
the claim is trivial	 It is obvious� however� that�
by construction� we will then have� t�� � t� �
t� � t��� as needed	

We next show�

Lemma ��� The time between a message sending
event and the corresponding message delivery event in
�� is at most d�

Proof� Consider the message sending event �� at
node u� which occurs at time t� in � and let �� be
the corresponding message delivery event at node u�
which occurs at time t� in �	 In ��� let �� occur at
time t�� and �� occur at time t��	 We show� by case
analysis� that� t�� � t�� � d	

�	 None of u� and u� is a
retarded in ��� Obvious	

�	 u� � pn� In this case� t�� � t�� while� by construc

tion� t�� � t�	 Thus� t

�

� � t�� � t� � t� �
d
� � d	

�	 u� � pn� In this case� t�� � t�	 As in Lemma �	��
we can show that� t�� � t� �

d
� 	 Thus�

t�� � t�� � t�� � t� � t�� � t� � t� � t� �
d

�
�
d

�
� d�

as needed	



We can now show�

Lemma ��� �� is a timed execution of A�

Proof� Obvious from Lemma �	�� Lemma �	� and
the fact that by construction� any two consecutive
computation steps of any process are either c or �
apart in ��	

Thus� we have shown so far that �� is a timed exe

cution of A	 Moreover� pn makes precisely the same
estimate about real time at the moment it is entering
a synchronized state in each of � and ��	 Let T �n be
the �real� time at which pn is entering a synchronized
state in ��	 Let Ln�Tn�� and Ln�T

�

n�� be the esti

mates of real time that pn is making at real times Tn
and T �n in � and ��� respectively	 By our construction�
Ln�Tn�� � Ln�T �n��	 By symmetry� Tn��� the time
at which pn�� is entering a synchronized state in � �in
��� as well� since there are no changes for the times at
which events at pn�� occur in ��� must equal Tn� by
symmetry� also� Ln���Tn���� � Ln�Tn��	 We show
a simple fact�

Claim ��� The number of ticks that process pn�� re�
ceives between Tn and T �n is at least bd��

�c c�

Proof� Since process pn takes its computation steps
at a rate of c in �� it will have da

c
e computation steps

that occur in � at time t such that Tn � a � t � Tn	
In ��� these computation steps will be taken at a rate
of � and require time � da

c
e�� to be completed� since

they are completed at time T �n� this implies that�

T �n � �Tn � a� � d
a

c
e � �

Therefore�

T �n�Tn � �T �n� �Tn�a��� �Tn � �Tn�a�� � d
a

c
e�a

In view of the above� the number of ticks� m� that
pn�� receives between Tn and T �n must satisfy�

m � b
T �n � Tn

c
c

� b
ba
c
c � a

c
c

� b
bd�

�
��c

c � d
�

c
��c

c
c

� b
d
�

�
��c

� �� d
�

c
��c

c
c

� b
d� �

�c
c

We now present the main argument of our proof	 We
have�

� � Ln�Tn�� � � � Ln�T
�

n��

�since � and �� are equivalent�

� Ln���T
�

n�

�since A synchronizes P within

precision ��

� Ln���Tn���� �m

� Ln�Tn�� �m

�since � is symmetric with respect

to pn and pn���

� Ln�Tn�� � b
d� �

�c
c

�by Claim �	��

Therefore�

� � b
d� �

�c
c

This completes our proof	

� An Upper Bound

In this section� we prove the following theorem�

Theorem ��� There exists an algorithm which syn�

chronizes P within precision ��n���
n

�d�d
c
e� d

� ��
��c
c
d�

��

Proof� We describe an algorithm which is very simi

lar to the one in ���	 Each process p can start executing
the synchronization algorithm either spontaneously or
upon receiving a message from a process that has al

ready done so	 As soon as it starts� it sends its local
time in a message to the remaining processes and waits
to receive a similar message from every other process	

We describe A quite informally� Each process p

keeps a special register Rp� as for local time� a piece

wise continuous function of �real� time t� Rp�t�� can be
de�ned	 If p receives a message from q saying that q�s
local time is Lq � at its next computation step� when
the local time of it is� say� Lp� it estimates the dif

ference between its local time with that of q to be
Lq�

d
� �Lp and adds this value to Rp	 After receiving

local times from all other processes� it sets Rp to the
average of the estimated di�erences �including � for
the di�erence between p and itself� by simply divid

ing Rp by n� next� p sets Lp to Lp�Rp� i	e	 it adds Rp

to the current value of Lp	 Finally� it sets Rp back to �
and passes to a synchronized state� having completed
its synchronization algorithm	



We analyze the precision achieved by the above al

gorithm	 Consider the real time tp at which process
p enters a synchronized state and let q be a process
that entered a synchronized state at tq � tp	 Let
Lp�t�� and Lp�t�� be the values that Lp attains right
before and right after� respectively� the last compu

tation step of p	 �Note that� according to the de�

nition of synchronization we have proposed� Lp�tp��
is what is really important and should be compared
to Lq�tp�� we can consider Lp�tp�� as� merely� an
intermediate value	� Let� also� Rp�tp�� be the av

erage of the estimated �by p� di�erences of its local
time with those of the other processes and Rp�tp��
be �	 By the algorithm� Lp�tp�� � Lp�tp�� �
Rp�tp��	 We can de�ne the corresponding quantities�
Lq�tq��� Lq�tq��� Rq�tq�� and Rq�tq�� � � for the
process q	 For any i� � � i � n� and any t�� t�� t� � t��
we denote by Ti�t�� t�� the number of physical ticks
that process pi received from its local clock between
the real times t� and t�	 We have�

jLp�tp��� Lq�tp�j

� jLp�tp�� � Rp�tp�� � �Lq�tq�� � Tq�tq � tp��j

� jLp�tq� � Tp�tq � tp� �Rp�tp�� � �Lq�tq��

�Rq�tq�� � Tq�tq� tp��j

� jLp�tq� � Tp�tq � tp� �Rp�tp�� � Lq�tq��

�Rq�tq�� � Tq�tq� tp�j

� jLp�tq�� Lq�tq�� � �Rq�tq�� � Rp�tp���j

�jTp�tq� tp�� Tq�tq � tp�j

We start by showing�

Lemma ��� jLp�tq� � Lq�tq�� � �Rq�tq�� �

Rp�tp���j �
��n���

n
�d�d

c
e � d

�
�

Proof� For each r � P � let Drq be the di�erence of
the local times of processes r and q� as estimated by
the process q	 Also� let Drp be the di�erence of the
local times of processes r and p� as estimated by the
process p	 By the algorithm� Rq�tq�� �

�
n

P
r�P Drq

and Rp�tp�� �
�
n

P
r�P Drp	 We have�

Lp�tq�� Lq�tq��� �Rq�tq�� � Rp�tp���

� Lp�tq�� Lq�tq��� �
�

n

X

r�P

Drq �
�

n

X

r�P

Drp�

�
�

n
�n�Lp�tq�� Lq�tq��� � �

X

r�P

Drq �
X

r�P

Drp��

�
�

n

X

r�P

�Lp�tq�� Lq�tq�� � �Drq �Drp��

For any process r� r � P � let t � minftr� tqg	 �For no

tational simplicity� we hide the fact that t is� actually�

dependent on r	� We add and subtract Lr�t� in the
right side of the above equation to get�

Lp�tq� � Lq�tq�� � �Rq�tq�� �Rp�tp���

�
�

n

X

r�P

��Lp�tq�� Lr�t�� � �Lq�tq��� Lr�t��

��Drq �Drp��

�
�

n

X

r�P

��Lr�t� � Lq�tq�� �Drq�

��Lr�t�� Lp�tq��Drp��

Hence�

jLp�tq�� Lq�tq��� �Rq�tq�� � Rp�tp���j

�
�

n

X

r�P

j�Lr�t�� Lq�tq���Drq�

��Lr�t� � Lp�tq� �Drp�j

�
�

n

X

r�P

�jLr�t�� Lq�tq�� �Drq j

�jLr�t�� Lp�tq��Drpj�

�
�

n
�
X

r�P

jLr�t�� Lq�tq�� �Drq j

�
X

r�P

jLr�t�� Lp�tq��Drpj�

Next� we show some simple facts�

Claim ���
P

r�P jLr�t� � Lq�tq�� � Drq j � �n �

��d�d
c
e � d

�

Proof� Notice that for r � q� t � tq and Lr�t� �
Lq�tq��� so that� jLr�t��Lq �tq���Drq j � jLq�tq���
Lq�tq�� �Drr j � j�� �j � �	 For r �� q� let t� be the
�real� time at which process r sends its local time�
Lr�t��� to every other process and let t� be the �real�
time at which process q receives it� or� rather� the
�real� time at which process q takes a computation
step at which it estimates the di�erence in local times
between process r and itself	 �Again� for notational
simplicity� we hide the fact that t� and t� are� actually�
dependent on r	� We have�

jLr�t� � Lq�tq�� �Drq j

� jLr�t� � Lq�tq�� � �Lr�t�� �
d

�
� Lq�t���j

Note� however� that since� by de�nition� t� � tq� and
process q can only increase Lq in the interval �t�� tq��
by incrementing its value by one every time it receives
a tick� it follows that� Lq�t�� � Lq�tq��	 Hence�

jLr�t� � Lq�tq�� �Drq j



� jLr�t� � Lq�tq�� � �Lr�t�� �
d

�
� Lq�tq���j

� jLr�t� � Lr�t���
d

�
j

� jLr�t� � Lr�t��j�
d

�

Note� however� that since� by de�nition� t � tr� pro

cess r can only increase Lr in the interval �t�� t� by
incrementing its value by one every time it receives a
physical tick	 Thus�

jLr�t�� Lr�t��j � d
t � t�

c
e�

But� t � t� � tr � t � �d� since a communication
between process r and any other process can take time
up to �d	 So� combining the above� we get�

jLr�t�� Lq�tq�� �Drq j � d
�d

c
e�

d

�

Therefore�
X

r�P

jLr�t� � Lq�tq�� �Drq j

� �n� ��max
r�P

jLr�t�� Lq�tq�� �Drq j

� �n� ���d
�d

c
e�

d

�
�

As in Claim �	�� we can show�

Claim ���
P

r�P jLr�t� � Lp�tq�� � Drpj � �n �

���d�d
c
e � d

� �

The lemma follows from the last two claims	

We next show�

Lemma ��� jTp�tq� tp�� Tq�tq� tp�j �
��c
c
d� �

Proof� Clearly� dtp � tqe � Tp�tq � tp� � d tp�tq
c
e and

dtp � tqe � Tq�tq � tp� � d tp�tq
c
e	 Hence� jTp�tq � tp� �

Tq�t�q� tp�j � d
tp�tq

c
e � dtp � tqe	 Note� however� that�

� � tp � tq � d� since every process is alive at tq
�otherwise� q could not have heard from all of them
and go to a synchronized state at t�� and a message
from any process to p must reach p within time d from
tq	 Thus� we have�

Tp�tq� tp�� Tq�tq � tp� � d
tp � tq

c
e � dtp � tqe

�
tp � tq

c
� �� �tp � tq�

�
�� c

c
d� �

The theorem follows from Lemma �	� and Lemma �	�	

� Discussion and Future Research

In this paper� we de�ned the tick synchroniza

tion problem� a variant of the general synchroniza

tion problem� in semi
synchronous distributed net

works and proposed the precision achieved by a tick
synchronization algorithm as an appropriate worst

case measure of its performance	 We showed that no
algorithm can solve the tick synchronization problem
and yet achieve precision less than bd��

�c c	 On the
positive side� we presented a simple algorithm that

achieves a precision of ��n���
n

�d�d
c
e � d

� � �
��c
c
d� �	

Neglecting round
o�s and assuming that c� �� the
dominant terms in the expressions for our lower and
upper bounds on precision will be the ones that are
proportional to d

c
	 In this case� we get the following

approximations�

b
d � �

�c
c �

�

�

d

c
�

and

��n� ��

n
�d
�d

c
e�

d

�
� �

�� c

c
d� �

�
��n� ��

n

�d

c
�
d

c

� ���
�

n
�
d

c

Thus� our lower bound is approximately within a fac

tor of ��� � �

n
� � �� of our upper bound under the

assumption that c � �	 Although our bounds are�
in general� not completely tight� we feel that our
work substantially answers the question of how the
precision achievable in a completely connected semi

synchronous network depends on the timing and mes

sage delay uncertainties� as measured by d

c
	

There are several open problems directly related to
the work in this paper	 Most obviously� there is a
gap remaining between our upper and lower bounds	
We believe that an algorithm using more sophisticated
averaging than the one we presented may exist and
imply a better upper bound on precision	 It would be
interesting to consider the same problem in a model in
which there is a nontrivial lower bound on the time for
message delivery	 While our upper bound proof still
goes through in this model� the same is not true for
our lower bound proof	 Perhaps� the most intriguing
open problem is the extension of this work to the case
of a general communication network	 We have some
preliminary results towards this direction	

The work presented in this paper continues the
study of time bounds in the presence of timing uncer

tainty within the framework of the semi
synchronous



model ���� �� ���	 We believe that other related prob

lems can also be studied using the models and tech

niques of this paper	 One can de�ne timing
based
analogs of other problems that have been studied in
the asynchronous setting� for example� other exclu

sion problems such as the dining philosophers prob

lem� or the k
critical section problem of ���	 Another
interesting direction is to study problems in the semi

synchronous model� assuming that processes commu

nicate via shared
memory	

Besides the semi
synchronous model� there have
been recently proposed many other models for con

current computation that make di�erent assumptions
about the timing information that is available to the
processes� for example� the periodic and sporadic mod

els introduced in ����	 What precision can be achieved
in these models�

References

��� H	 Attiya� C	 Dwork� N	 Lynch and L	 Stockmeyer�
�Bounds on the Time to Reach Agreement in the
Presence of Timing Uncertainty�� in Proceedings
of the 	
rd Annual ACM Symposium on Theory of
Computing� pp	 �������� May ����	

��� H	 Attiya and N	 Lynch� �Time Bounds for Real

Time Process Control in the Presence of Tim

ing Uncertainty�� in Proceedings of the ��th IEEE
Real�Time Systems Symposium� pp	 ������ De

cember ���	

��� H	 Attiya and M	 Mavronicolas� �E�ciency of
Semi
Synchronous vs	 Asynchronous Networks��
in Proceedings of the 	th Annual Allerton Con�
ference on Communication� Control and Comput�
ing� pp	 ������ October ����	 Expanded ver

sion� TR ��
��� Aiken Computation Laboratory�
Harvard University� September ����	

��� H	 Attiya and J	 Welch� �Sequential Consistency
versus Linearizability�� in Proceedings of the 
rd
ACM Symposium on Parallel Algorithms and Ar�
chitectures� pp	 �������� July ����	

��� J	 Burns and N	 Lynch� �The Byzantine Fir

ing Squad Problem�� Advances in Computing Re�
search� vol	 �� pp	 �������� ���	

��� M	 Fischer� N	 Lynch� J	 Burns and A	 Borodin�
�Distributed FIFO Allocation of Identical Re

sources Using Small Shared Space�� ACM Trans�
actions on Programming Languages and Systems�
Vol	 ��� No	�� pp	 ������� January ���	

��� J	 Halpern� N	 Megiddo and A	 Munshi� �Optimal
Precision in the Presence of Uncertainty�� Journal
of Complexity� Vol	 �� No	 �� pp	 �������� Decem

ber ���	

�� L	 Lamport� �Time� clocks and the ordering of
events in a distributed system�� Communications
of the ACM�Vol	 ��� No	 �� pp	 ������� July ���	

��� J	 Lundelius and N	 Lynch� �An Upper and Lower
Bound for Clock Synchronization�� Information
and Control� Vol	 ��� No	 ���� pp	 �������� Au

gust�September ���	

���� J	 Lundelius and N	 Lynch� �A New Fault

Tolerant Algorithm for Clock Synchronization��
Information and Computation� Vol	 ��� No	 �� pp	
����� April ��	

���� N	 Lynch and H	 Attiya� �Using Mappings to
Prove Timing Properties�� in Proceedings of the
�th Annual ACM Symposium on Principles of Dis�
tributed Computing� pp	 ������� August ����	

���� M	 Mavronicolas� E�ciency of Semi�Synchronous
versus Asynchronous Systems� Atomic Shared
Memory� Technical Report TR
��
��� Center for
Research in Computing Technology� Aiken Com

putation Laboratory� Harvard University� ����	 To
appear in Computers and Mathematics with Appli�
cations	

���� M	 Mavronicolas and D	 Roth� �E�cient�
Strongly Consistent Implementations of Shared
Memory�� to appear in the �th International
Workshop on Distributed Algorithms� November
����	 Also� Technical Report TR
��
��� Center for
research in Computing Technology� Aiken Compu

tation Laboratory� Harvard University� ����	

���� M	 Merritt� F	 Modugno and M	 Tuttle� �Time
Constrained Automata�� in Proceedings of the
	nd International Conference on Concurrency� pp	
������� Lecture Notes in Computer Science �Vol	
����� Springer
Verlag� August ����	

���� S	 Ponzio� �Consensus in the Presence of Timing
Uncertainty� Omission and Byzantine Failures�� in
Proceedings of the ��th Annual ACM Symposium
on Principles of Distributed Computing� pp	 ����
��� August ����	

���� I	 Rhee and J	 Welch� �The Impact of Time on
the Session Problem�� to appear in the ��th An�
nual ACM Symposium on Principles of Distributed
Computing� August ����	



���� B	 Simons� J	 L	 Welch and N	 Lynch� An
overview of clock synchronization� IBM Technical
Report RJ ����� October ��	


