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EFFICIENCY OF OBLIVIOUS VERSUS NONOBLIVIOUS
SCHEDULERS FOR OPTIMISTIC, RATE-BASED FLOW CONTROL∗

PANAGIOTA FATOUROU† , MARIOS MAVRONICOLAS‡ , AND PAUL SPIRAKIS§

Abstract. Two important performance parameters of distributed, rate-based flow control al-
gorithms are their locality and convergence complexity. The former is characterized by the amount
of global knowledge that is available to their scheduling mechanisms, while the latter is defined as
the number of update operations performed on rates of individual sessions until max-min fairness
is reached. Optimistic algorithms allow any session to intermediately receive a rate larger than its
max-min fair rate; bottleneck algorithms finalize the rate of a session only if it is restricted by a
certain, highly congested link of the network. In this work, we present a comprehensive collection of
lower and upper bounds on convergence complexity, under varying degrees of locality, for optimistic,
bottleneck, rate-based flow control algorithms.

Say that an algorithm is oblivious if its scheduling mechanism uses no information of either the
session rates or the network topology. We present a novel, combinatorial construction of a capaci-
tated network, which we use to establish a fundamental lower bound of dn

4 + n
2 on the convergence

complexity of any oblivious algorithm, where n is the number of sessions laid out on a network, and
d, the session dependency, is a measure of topological dependencies among sessions. Moreover, we
devise a novel simulation proof to establish that, perhaps surprisingly, the lower bound of dn

4 + n
2

on convergence complexity still holds for any partially oblivious algorithm, in which the scheduling
mechanism is allowed to use information about session rates, but is otherwise unaware of network
topology.

On the positive side, we prove that the lower bounds for oblivious and partially oblivious algo-
rithms are both tight. We do so by presenting optimal oblivious algorithms, which converge after
dn
2 + n

2 update operations are performed in the worst case. To complete the picture, we show that
linear convergence complexity can indeed be achieved if information about both session rates and
network topology is available to schedulers. We present a counterexample, a nonoblivious algorithm,
which converges within an optimal number of n update operations.

Our results imply a surprising convergence complexity collapse of oblivious and partially oblivious
algorithms, and a convergence complexity separation between (partially) oblivious and nonoblivious
algorithms for optimistic, bottleneck rate-based flow control.
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1. Introduction. In many modern communication networks, a connection be-
tween different users is established by a session, a virtual circuit of infinite duration
that involves a fixed path between a source and a destination. The role of flow control
algorithms is to alleviate throughput degradation, unfairness, deadlocks, and failures
by preventing buffer overflow from arising in situations where the externally injected
load is larger than what can be accommodated even with optimal routing (see, e.g.,
[2, Chapter 6] or [3, 6, 12, 14, 15, 16, 17, 22]). In particular, rate-based flow control al-
gorithms adjust transmission rates of different sessions in an end-to-end manner, with
the objective to optimize network utilization while still maintaining fairness between
different sessions (see, e.g., [1, 2, 4, 5, 11, 13, 16, 18]).

For a range of settings including both high-speed networks and Internet applica-
tions, max-min fairness [1, 2, 5, 6, 7, 13, 14, 15, 16, 17, 19] has emerged as a widely
accepted formulation of fairness for flow control; roughly speaking, max-min fairness
requires that it be impossible for any session to receive an infinitesimally larger rate
on the account of a session with a smaller or equal rate [15, 16, 17, 21]. Call max-min
fair rates those achieving max-min fairness.

Any rate-based flow control algorithm can be classified as one of two broad classes,
conservative and optimistic, according to the way in which rates of sessions are ad-
justed. Conservative algorithms (see, e.g., [2, Chapter 6]) do not provide for decreases
to the rates of sessions; in contrast, optimistic algorithms allow decreases, so that rates
may go up and down and a session can intermediately receive a rate larger than its
final. Afek, Mansour, and Ostfeld [1] introduced optimistic algorithms and advocated
them to fit better than the conservative ones into real dynamic networks; indeed, in
such networks, new sessions may join in, so that it is desirable to incrementally adjust
rates by decreasing the rates of some of them.

A crucial component of a rate-based flow control algorithm is its scheduler, the
abstract mechanism it uses to decide which session’s rate to adjust next. Apparently,
it is desirable that the scheduler does not require global knowledge of either the session
rates or the network topology. Clearly, no-knowledge schedulers are not only more
efficient in terms of communication and computation, but they also adjust more easily
to dynamic changes in network topology. So, one important performance parameter
of a rate-based flow control algorithm is its locality, measured by the amount of global
knowledge required by the scheduler.

Call a scheduler that uses no information of either the session rates or the network
topology an oblivious scheduler. On the opposite extreme, a nonoblivious scheduler
requires full knowledge of both session rates and network topology. There is, in
addition, an important middle ground between oblivious and nonoblivious schedulers:
schedulers which, although unaware of network topology, do have access to session
rates; call these schedulers partially oblivious. Clearly, a partially oblivious scheduler
is superior to a nonoblivious scheduler in terms of robustness to dynamic changes
in network topology, while it is surpassed by an oblivious scheduler. Afek et al.
[1, sections 4 and 5] presented two interesting, partially oblivious schedulers called
GlobalMinSched and LocalMinSched, respectively; these schedulers always choose for
an increase the session whose rate is the globally and locally smallest, respectively.

A second crucial component of a rate-based flow control algorithm is its termi-
nator, the abstract mechanism it uses to decide which sessions to terminate at each
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specific instant.1 Bottleneck terminators [16] finalize the rate of a session, thereby
terminating the session, only if its rate is restricted on some particular network link
that allows for the least possible share of bandwidth to each session traversing it; call
such a link a bottleneck edge [16].

When a session is scheduled for an increase, its rate is increased by the minimum
possible share of bandwidth along its path; this may involve possible decreases to
the rates of crossing sessions (see, e.g., [5, 6, 7, 18, 19]). The convergence complexity
of a rate-based flow control algorithm is the number of individual rate adjustments
performed in the worst case until the algorithm quiesces and rates have reached max-
min fairness (so that they do not change any further). Thus, convergence complexity
models the number of rounds of communication and local computation needed for con-
vergence to max-min fairness, so that it is another significant performance parameter
of such distributed algorithms.

We measure convergence complexity in terms of a particular, simple abstraction
of rate adjustments, called update operation, which was introduced in [1, section 2.1].
In essence, an update operation atomically adjusts the rates of a group of neigh-
boring sessions in a fair and optimistic way.2 We note that some of the essential
intricacies encountered when designing practical, distributed flow-control algorithms
[4, 5, 6, 7, 18, 19, 22] include scheduling the rate adjustments, minimizing the com-
munication, and converging to fairness quickly. Although we do not address in this
work implementation issues for the model used, we feel that it captures most of these
intricacies. (For a discussion of such issues for this model, see [9].)

This work presents a comprehensive collection of bounds on convergence com-
plexity under varying degrees of locality for optimistic, bottleneck, rate-based flow
control algorithms; more specifically, we show upper and lower bounds (sections 5
and 7, respectively) on convergence complexity for oblivious, partially oblivious, and
nonoblivious such algorithms. The lower bounds demonstrate that achieving oblivi-
ous, or even partially oblivious, scheduling, and therefore locality, necessarily imposes
a nonconstant, multiplicative overhead on convergence complexity. These are the first
general lower bounds ever shown on the convergence of rate-based flow control algo-
rithms. In addition, our algorithms span a wide spectrum of convergence complexity
bounds and locality properties, while they improve significantly upon all previous opti-
mistic algorithms with respect to the combination of these two performance measures.
To establish these upper bounds, we offer several new basic properties and tools for
the design and analysis of optimistic, bottleneck, rate-based flow control algorithms
(section 4); these properties significantly extend and strengthen the corresponding
ones shown in [1].

Our bounds are expressed in terms of n, the total number of sessions laid out
on the network, and a new parameter d, called session dependency, through which
we derive more accurate bounds on convergence complexity. Specifically, d is the
maximum number of sessions that share an edge either directly or indirectly. In the

1In all of our discussion, a terminated session is meant to be one that has reached its final
(max-min fair) rate, so that its rate value will not change any further.

2In more detail, an update operation increases, if possible, the rate of one session, so that
it becomes the session with the maximum rate on some particular link that allows the minimum
possible increase. The new value is a function of the link capacity and the rates of other sessions
traversing the link. Conflicting sessions whose rates exceed the new value have their rates decreased
to the new value, while rates of other sessions remain unchanged. These adjustments saturate that
particular link.
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rest of this paper, we will focus on optimistic and bottleneck algorithms; we sometimes
refer to them simply as algorithms.

Our first major result is a fundamental lower bound on the convergence com-
plexity of oblivious algorithms. Its proof relies on constructing, given any arbitrary
oblivious algorithm, a specific network, as a function of the algorithm’s scheduler, so
that if sessions are scheduled on this network according to the scheduler and the al-
gorithm computes the max-min fair rates, then Ω(dn) update operations are required
before convergence (section 6). The construction is novel, purely combinatorial, and
of independent interest. We rely on the algorithm being optimistic and bottleneck for
showing that convergence is slow.

Although intuition may suggest that knowledge of session rates can be crucial
to performance, we surprisingly establish that the lower bound of Ω(dn) that we
show on the convergence complexity of oblivious algorithms applies also to partially
oblivious algorithms. We use a powerful simulation proof to simulate any partially
oblivious scheduler on some network by an oblivious scheduler on the same network.
The simulation inherits the Ω(dn) lower bound shown for oblivious algorithms down
to partially oblivious algorithms.

We show a matching upper bound on the convergence complexity of oblivious
and partially oblivious algorithms. We present a class of oblivious algorithms, called
d-Epoch, with convergence complexity Θ(dn); an example is algorithm RoundRobin,
which uses the simple and natural idea of scheduling sessions in a round-robin order.
We note that the partially oblivious algorithms GlobalMin and LocalMin from [1, sec-
tions 4 and 5] also achieve convergence complexity Θ(dn), which implies the tightness
of our lower bound for partially oblivious algorithms; however, any d-Epoch algorithm
improves over these two algorithms since it is oblivious.

At this point, it is only natural to ask whether it is possible to overcome the
Θ(dn) barrier on convergence complexity achievable by oblivious or partially oblivious
algorithms, possibly at the cost of sacrificing locality. Perhaps not very surprisingly,
it turns out that the locality enjoyed by oblivious and partially oblivious algorithms
comes at a multiplicative in d overhead on convergence complexity. We present a
counterexample—nonoblivious and optimistic algorithm called Linear—that achieves
an exact bound of n on convergence complexity; Linear follows the earlier idea of
selecting and conservatively increasing the rate of any session that traverses the most
highly congested link in the network (see, e.g., [2, section 6.4.2] or [15]). We emphasize
that Linear, although theoretically efficient, is clearly impractical.

Our work differs at first from earlier work on rate-based flow control carried out
in the data networks community (see, e.g., [2, 3, 11, 12, 15, 16, 17, 22]) in adopting the
optimistic approach introduced in [1]. We have been able to show that certain classical
scheduling policies, such as round-robin [13, 14] or scheduling a session that traverses
the most congested link [15], are correctly applicable in the optimistic framework.
Most interestingly, we have shown the first general lower bounds on the convergence
complexity of rate-based flow control algorithms; these imply that some scheduling
policies are provably superior over some other policies, in terms of either convergence
complexity or locality (or both), and even optimal.

2. Model. Many of our definitions formalize and refine those from [1] and [2,
Chapter 6]. A communication network is a graph G = (V, E), where vertices and
edges represent switches and links, respectively. A set S of n ≥ 1 sessions is laid
out on G. Each session Si (also denoted as i) passes through a sequence of edges
and has a rate r(Si). The vector r = 〈r(S1), . . . , r(Sn)〉 is the rate vector. Each
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edge has a capacity c(e) > 0, which the sum of the rates of the sessions traversing it
cannot exceed; when this sum equals the capacity, the edge is saturated. In a max-min
fair rate vector [15, 16, 17, 21], an increase to the rate of any session requires either
exceeding an edge capacity or decreasing the rate of another session with equal or
lower rate.

The communication network is abstracted as a state machine. Each state Q =
〈rQ, AQ〉 consists of a rate vector rQ and a set AQ ⊆ S of active sessions. Intuitively,
an active session is one that has not yet reached its max-min fair rate. Denote by
DQ = S \ AQ the set of done sessions in state Q. In the initial state Qin, all sessions
are active and have zero rates. A state is final if all sessions have reached their
max-min fair rates.

An operation defines a procedure to compute new rates for a set of sessions on
the basis of their old rates. Formally, an operation is a function operation that takes
as input a session Si and a state Q, and outputs new rates for Si and all sessions Sj

sharing edges with Si. Say that operation is conservative if it decreases no individual
rate; else operation is optimistic.

We will consider a specific optimistic operation, called update, which we describe
below. For a state Q and each edge e traversed by Si, ∆Q(i, e) is the maximum
amount by which rQ(Si) can be increased (without exceeding the capacity of e) while
decreasing down to the increased rate of Si the rates of other active sessions pass-
ing through e and exceeding the increased rate. Notice that these rate adjustments
saturate e. Intuitively, ∆Q(i, e) is the maximum amount by which rQ(Si) can be
increased in a fair manner if edge e were the only edge constraining Si. Finally, Si’s
rate is increased by ∆Q(i), called the increase for Si in Q, which is the minimum
of these maximum amounts over all edges that Si passes through. In addition, each
(active) session Sj sharing an edge with Si has its rate decreased down to the new
rate r(Si) (unless it is already less). We remark that the rates computed by update
saturate the edge(s) realizing ∆Q(i), but no other edges. Notice also that the update
operation uses only local information with respect to session Si [17, section IV]. From
now on, we will consider only optimistic algorithms that employ the update opera-
tion.

A scheduler decides the order of sessions on which to perform the update oper-
ation. Formally, a scheduler (cf. [1]) is a function Sched that maps a pair 〈G, S〉, a
state Q, and a state index l ≥ 1 to a session i = Sched (〈G, S〉 , Q, l). A termina-
tor is a function Term that maps a pair 〈G, S〉 and a state Q to a set of sessions
T = Term (〈G, S〉 , Q) ⊆ AQ; intuitively, Term decides which active sessions will be
terminated (and their rates will not change any further). An algorithm is a pair
Alg = 〈Sched, Term〉. The classification of operations into conservative and optimistic
leads to the corresponding classification of algorithms in a natural way.

An oblivious scheduler uses no knowledge of either the topology of the network
or the rates and statuses (active or done) of sessions. Thus, an oblivious scheduler
is a (finite or infinite) sequence Sched = i1, i2, . . . , where for each l ≥ 1, il ∈ [n]. A
partially oblivious scheduler uses no knowledge of the topology of the network, while
it may use knowledge of the rates (and statuses) of sessions. Notice that any oblivious
scheduler is also partially oblivious, but not vice versa. A nonoblivious scheduler is a
scheduler that is not partially oblivious. The classification of schedulers into oblivi-
ous, partially oblivious, and nonoblivious leads to the corresponding classification of
algorithms in a natural way.

For any edge e ∈ E and state Q, the allotted capacity of e in Q [1, section 2.1],
denoted allotQ(e), is the total rate already allocated to done sessions passing through
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the edge. Clearly,
∑

S∈AQ|e rQ(S) ≤ c(e) − allotQ(e), where AQ | e denotes the set of
active sessions traversing e in Q. For any state Q and for any edge e with |AQ | e| > 0
active sessions, the fair share of e in state Q [1, section 2.1], denoted FSQ(e), is
defined to be FSQ(e) = c(e)− allotQ(e)

|AQ | e| ; intuitively, FSQ(e) is the per session share of
the portion of the capacity of edge e which has not yet been allocated to sessions done
in state Q that traverse the edge. For any state Q, a bottleneck edge for Q [16] is an
edge e such that for each active session passing through e, FSQ(e) is the minimum
fair share over all edges traversed by the session.

A terminator Term is bottleneck [16] if for any state Q and session S, S ∈
Term (〈G, S〉, Q) if (and only if) there exists an edge e traversed by S such that
(1) e is a bottleneck edge for Q, and (2) rQ(S) = FSQ(e). Whenever such an edge e
exists for state Q and Term is bottleneck, we will say that e causes the termination
of session S in Q. Say that an algorithm Alg is bottleneck if Term is.

The execution α of Alg on 〈G, S〉 is an infinite sequence of alternating states and
session indices α = Q0, i1, Q1, . . . , il, Ql, . . . , satisfying the following conditions:

(1) Q0 = Qin and AQ0 = AQ1 = S;
(2) for each l ≥ 1, il = Sched (〈G, S〉 , Ql−1, l − 1);
(3) for each l ≥ 1, if il ∈ DQl

or ∆Ql−1(il) = 0, then rQl
= rQl−1 and AQl+1 =

AQl
; else

(a) (i) rQl
(il) := rQl−1(il) + ∆Ql−1(il);

(ii) for each session i ∈ AQl
, i �= il, such that Si ∩ Sil

�= ∅,

rQl
(i) := min{rQl−1(i), rQl−1(il) + ∆Ql−1(il)};

(b) AQl+1 = AQl
\ Term (〈G, S〉 , Ql).

Call each state Ql in an execution α, where l ≥ 1, a reachable state. Say that Alg
computes the max-min fair rate vector if for each execution of Alg a final state Q is
reachable such that rQ is a max-min fair rate vector.

The number of update operations in any execution α of Alg is the number of
state indices l ≥ 1 such that il ∈ AQl−1 . The convergence complexity of Alg on
network G with session set S, denoted UAlg (〈G, S〉), is the number of operations in
the execution of Alg on G with S. The convergence complexity of Alg, denoted UAlg,
is the maximum, over all pairs 〈G, S〉, of the convergence complexity of Alg on G
with S.

3. Notation. We collect here some notation that will be used in most of the
following sections. For each edge e and for any set of sessions S ′ ⊆ S, denote S ′ | e to
be the set of sessions in S ′ traversing e. We will sometimes treat a session Si as the
set of its links; so, for any edge e traversed by Si, we will write e ∈ Si. For an edge
e and for a rate vector r, denote by r | e the restriction of r to sessions traversing e.
We will sometimes abuse notation by writing rAQ

and rDQ
to denote the restriction

of rQ to active and done sessions, respectively, in Q.
Define the share-an-edge relation on S, denoted ‖S , as follows. For any pair of

sessions Si, Sj ∈ S, Si ‖S Sj if Si and Sj traverse a common edge. The transitive
closure of ‖S is an equivalence relation on S, which partitions S into equivalence
classes S1, . . . ,Sc, called clusters, where 1 ≤ c ≤ n. The session dependency d is the
maximum size of a cluster. Call a cluster Sj an active cluster in state Q if it contains
at least one session that remains active in Q.

The set of active edges of the cluster Sj in state Q, denoted AEQ(Sj), contains all
edges of the network traversed by at least one active session in Q that belongs to Sj .
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The set of active edges of the network in state Q, denoted AEQ, contains all edges
of the network traversed by at least one active session in Q. The residual capacity of
edge e in state Q, denoted residQ(e), is the difference between the capacity of e and
the total rate of sessions traversing e in Q.

The set of edges with minimum fair share for cluster Sj in state Q is defined as
MFSEQ(Sj) = {e ∈ AEQ(Sj) | FSQ(e) ≤ FSQ(e′) for each e′ ∈ AEQ(Sj)}. The
set of edges with minimum fair share in state Q, denoted MFSEQ, is defined to be
MFSEQ =

⋃
1≤j≤c MFSEQ(Sj).

An execution fragment α of Alg is a contiguous subsequence of some execution of
Alg starting with the state first(α); if α is finite, it ends with the state last(α). For
each execution (resp., execution fragment) α of Alg, the schedule σ(α) is the sequence
of session indices in α. If α is a finite execution fragment and α′ is any execution
fragment such that first(α′) = last(α), then α · α′ is the concatenation of α and α′,
eliminating the duplicate occurrence of last(α) = first(α′).

For any index l ≥ 1, the preceding state of Ql in execution α, denoted
←−
Ql , is the

state Ql−1; for any index l ≥ 0, the successor state of Ql in α, denoted
−→
Ql , is the state

Ql+1. For any indices l and l′ > l, write Ql
α−→ Ql′ to denote that Ql precedes Ql′ ;

moreover, write Ql
α�−→ Ql′ if additionally Ql and Ql′ may coincide. For any index

l ≥ 1, we will sometimes abuse language and say that session l is scheduled in front
of state Ql. For any state Q, denote iQ the session scheduled in front of Q. The least
schedule for Ql in α, denoted l̂, is the index of the earliest state following Ql by which
all sessions that remain active in Ql have been scheduled at least once, or infinite if
no such state exists. Define l̂ | e in the natural way.

4. Bottleneck algorithms. In this section, we present basic properties of bot-
tleneck algorithms, which will be useful in what follows. These properties refer to an
execution α = Q0, i1, Q1, . . . , il, Ql, . . . of any bottleneck algorithm. To prove these
properties, some more general properties are also proved in section 4.1.

4.1. Preliminaries. We study how several quantities of interest change during
an execution. We first state an immediate consequence of the definitions of allotted
capacity and execution; we then prove a similar simple fact that will be helpful in
later proofs.

Lemma 4.1. For each integer l ≥ 1, and for any edge e,

allotQl
(e) = allotQl−1(e) +

∑
i∈(AQl−1\AQl

)|e
rQl−1(i).

Lemma 4.2. For any integers l0 and l, 0 ≤ l0 < l, and for any edge e,

∑
i∈(AQl0

\AQl
)|e

rQl0
(i) = allotQl

(e) − allotQl0
(e).

Proof. Clearly, i ∈ (AQl0
\ AQl

) | e if and only if i ∈ (DQl
\ DQl0

) | e. Hence, it
follows that
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i∈(AQl0

\AQl
)|e

rQl
(i)

=
∑

i∈(DQl
\DQl0

)|e
rQl

(i)

=
∑

i∈DQl
|e

rQl
(i) −

∑
i∈DQl0

|e
rQl

(i)(since DQl0
⊆ DQl

)

= allotQl
(e) − allotQl0

(e),

as needed.

We continue to prove that the saturation of an edge depends in a critical way on
how rates of sessions traversing the edge compare to each other.

Lemma 4.3. For any integer l0 ≥ 0, assume that edge e is active in state Ql0 .
Then, for each integer l ≥ l0, the following hold:

(1) if for each session i ∈ AQl0
| e, rQl

(i) = FSQl0
(e), then e is saturated in Ql;

(2) if for each session i ∈ AQl0
| e, rQl

(i) < FSQl0
(e), then e is not saturated

in Ql;
(3) there exists no session k ∈ AQl0

| e such that rQl
(k) > FSQl0

(e), while for
each session i ∈ AQl0

| e, i �= k, rQl
(i) ≥ FSQl0

(e).

Proof. We start by proving (1). Clearly,

∑
i∈AQl

|e
rQl

(i)

=
∑

i∈AQl0
|e

rQl
(i) −

∑
i∈(AQl0

\AQl
)|e

rQl
(i) (since AQl

| e ⊆ AQl0
| e)

=
∑

i∈AQl0
|e

FSQl0
(e) −

(
allotQl

(e) − allotQl0
(e)

)
(by assumption and Lemma 4.2)

=
∣∣AQl0

| e
∣∣ · FSQl0

(e) − (allotQl
(e) − allotQl0

(e))

= c(e) − allotQl0
(e) − (allotQl

(e) − allotQl0
(e)) (by definition of fair share)

= c(e) − allotQl
(e),

as needed to establish that e is saturated in state Ql.

Condition (2) is proved in an almost identical way. (The only difference is
that now the assumption for (2) and Lemma 4.2 imply that

∑
i∈AQl0

|e rQl
(Si) −∑

i∈(AQl0
\AQl

)|e rQl
(Si) <

∑
i∈AQl0

|e FSQl0
(e) − (allotQl

(e) − allotQl0
(e).)

We finally prove (3). Assume otherwise; so, there exists some session k ∈ AQl0
| e

such that rQl
(k) > FSQl0

(e), while for each i ∈ AQl0
| e, i �= k, rQl

(i) ≥ FSQl0
(e).
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Then∑
i∈AQl

|e
rQl

(i)

=
∑

i∈AQl0
|e
rQl

(i) −
∑

i∈(AQl0
\AQl

)|e
rQl

(i) (since AQl
|e ⊆ AQl0

| e)

=
∑

i∈AQl0
|e
rQl

(i) − (allotQl
(e) − allotQl0

(e)) (by Lemma 4.2)

= rQl
(k) +

∑
i∈AQl0

|e,i �=k

rQl
(i) − allotQl

(e) + allotQl0
(e)

>FSQl0
(e) +

∑
i∈AQl0

|e,i �=k

FSQl0
(e) −allotQl

(e) + allotQl0
(e) (by assumption)

=
∑

i∈AQl0
|e

FSQl0
(e) − allotQl

(e) + allotQl0
(e))

=
∣∣AQl0

| e
∣∣ · FSQl0

(e) − allotQl
(e) + allotQl0

(e)
= c(e) − allotQl0

(e) − allotQl
(e) + allotQl0

(e) (by definition of fair share)
= c(e) − allotQl

(e),

so that
∑

i∈AQl
|e rQl

(i) > c(e) − allotQl
(e). This is a contradiction.

The next claim follows directly from the definitions of bottleneck edge and fair
share.

Lemma 4.4. Let e and e′ be bottleneck edges for state Q such that AQ | e
⋂

AQ |
e′ �= ∅. Then FSQ(e) = FSQ(e′).

The following (easy to prove) claim is a direct consequence of the definitions of a
bottleneck edge and a minimum fair share edge for some particular cluster.

Lemma 4.5. For any state Q and cluster Sj, consider an edge e ∈ MFSEQ(Sj).
Then e is a bottleneck edge for Q.

We are interested in algorithms for which a final state is reachable for each possible
execution. Bottleneck algorithms (whether conservative or optimistic) enjoy a related,
interesting property [15].

Proposition 4.6 (Hayden [15]). Assume that Alg is a bottleneck algorithm.
Then, for any reachable final state Q of Alg, rQ is a max-min fair rate vector.

Proposition 4.6 implies that in order to show that any given bottleneck algorithm
computes the max-min fair rate vector, it suffices to prove that it reaches a final state.
We continue with an interesting monotonicity property of fair share.

Lemma 4.7 (Afek, Mansour, and Ostfeld [1]). Assume that Alg is a bottleneck
algorithm. Then, for each integer l ≥ 1 and for any edge e ∈ AEQl

, FSQl
(e) ≥

FSQl−1(e).

4.2. Properties of bottleneck edges. We strengthen Lemma 4.7 for the spe-
cial case of bottleneck edges. We present a collection of invariant properties for any
edge that becomes bottleneck in the course of an execution of a bottleneck algorithm
(whether conservative or optimistic).

Proposition 4.8 (invariants of bottleneck edge). Assume that Alg is bottleneck.
For any integer l0 ≥ 0, fix any edge e that is a bottleneck edge for Ql0 . Then, for any
integer l ≥ l0 such that e ∈ AEQl

, the following hold:
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(1) FSQl
(e) = FSQl0

(e);
(2) e is a bottleneck edge for Ql;
(3) for any session i ∈ (AQl0

\ AQl+1) | e, rQl
(i) = FSQl0

(e).
Roughly speaking, Proposition 4.8 establishes that no change in the fair share of

an active edge occurs once the edge has become bottleneck, so that the edge remains
bottleneck; moreover, the final rate of any active session traversing it is equal to this
constant fair share.

Proof. The proof is by induction on l. For the basis case where l = l0, condition (1)
holds trivially, condition (2) holds by assumption, and condition (3) holds by definition
of a bottleneck algorithm. Assume inductively that for some integer l ≥ l0, the claims
hold for any integer l′ where l0 ≤ l′ < l. For the induction step, we show that the
claims hold for integer l. We start by proving condition (1). Clearly,

FSQl
(e)

=
c(e) − allotQl

(e)
|AQl

| e|

=
c(e) − allotQl−1(e) −

∑
i∈(AQl−1\AQl

)|e rQl−1(i)

|AQl
| e| (by Lemma 4.1)

=

∣∣AQl−1 | e
∣∣ FSQl−1(e) −

∑
i∈(AQl−1\AQl

)|e rQl−1(i)

|AQl
| e| (by definition of fair share).

Consider any session i ∈ (AQl−1 \ AQl
) | e. Since AQl−1 ⊆ AQl0

, this implies that
i ∈ (AQl0

\ AQl
) | e, so that by the induction hypothesis (condition (3)), rQl−1(i) =

FSQl0
(e). So,

FSQl
(e)

=

∣∣AQl−1 | e
∣∣ FSQl−1(e) −

∑
i∈(AQl−1\AQl

)|e FSQl0
(e)

|AQl
| e|

=

∣∣AQl−1 | e
∣∣ FSQl0

(e) −
∑

i∈(AQl−1\AQl
)|e FSQl0

(e)

|AQl
| e| (by the induction hypothesis)

=

∣∣AQl−1 | e
∣∣ FSQl0

(e) −
∣∣(AQl−1 \ AQl

) | e
∣∣ FSQl0

(e)
|AQl

| e|

=
(
∣∣AQl−1 | e

∣∣ −
∣∣(AQl−1 \ AQl

) | e
∣∣)FSQl0

(e)
|AQl

| e|

=
|AQl

| e| FSQl0
(e)

|AQl
| e|

= FSQl0
(e),

which completes the proof of condition (1).
We continue to prove condition (2). Take any session i ∈ AQl

| e. Clearly,
i ∈ AQl0

| e. Since e is a bottleneck edge for Ql0 , FSQl0
(e) = MFSQl0

(i) =
mine′∈Si

FSQl0
(e′). Consider any edge e′ ∈ Si. Since i ∈ AQl

| e, it follows that
e′ ∈ AEQl

; thus, by Lemma 4.7, FSQl
(e′) ≥ FSQl0

(e′). Since e′ was chosen ar-
bitrarily, this implies that mine′∈Si FSQl

(e′) ≥ mine′∈Si FSQl0
(e′). It follows that

mine′∈Si FSQl
(e′) ≥ FSQl0

(e). By condition (1) shown above, this implies that



EFFICIENT SCHEDULERS FOR RATE-BASED FLOW CONTROL 11

mine′∈Si
FSQl

(e′) ≥ FSQl
(e). Since e ∈ Si, mine′∈Si FSQl

(e′) ≤ FSQl
(e). It fol-

lows that FSQl
(e) = mine′∈Si FSQl

(e′). Since i was chosen arbitrarily, this implies
that e is a bottleneck edge for Ql, which completes the proof of condition (2).

We finally prove condition (3). Take any session i ∈ (AQl0
\ AQl+1) | e. Since

i �∈ AQl+1 , there exists some integer l′, l0 < l′ ≤ l, such that i ∈ Term(Ql′). Since
Term is bottleneck, there exists some edge e′ ∈ Si such that e′ is a bottleneck edge
for Ql′ , and rQl′ (i) = FSQl′ (e

′).
Either l0 < l′ < l or l′ = l. If l0 < l′ < l, then the induction hypothesis

(condition (2)) implies that e is a bottleneck edge for Ql′ ; if, on the other hand, l′ = l,
then condition (2) shown above implies that e is a bottleneck edge for Ql′ . Thus, in
either case, e is a bottleneck edge for Ql′ . Since both e and e′ are bottleneck edges
for state Q′l and Si ∈ (AQl′ | e)

⋂
(AQl′ | e′), Lemma 4.4 implies that FSQl′ (e) =

FSQl′ (e
′). Since rQl′ (i) = FSQl′ (e

′), this implies that rQl′ (i) = FSQl′ (e). Since l ≥ l′

and i ∈ Term(Ql′), rQl
(i) = rQl′ (i). Either l0 < l′ < l or l′ = l. If l0 < l′ < l, then

the induction hypothesis (condition (1)) implies that FSQl′ (e) = FSQl0
(e); if, on the

other hand, l′ = l, then condition (1) shown above implies that FSQl′ (e) = FSQl0
(e).

Thus, in either case, FSQl′ (e) = FSQl0
(e). Hence, it follows that rQl

(i) = FSQl0
(e),

which completes the proof of condition (3).

4.3. Properties of minimum fair share edges. We start by proving a simple
invariant property for any edge that becomes a minimum fair share edge for any
particular cluster in the course of an execution of a bottleneck algorithm. We establish
that the edge remains a minimum fair share edge (as long as it is active).

Proposition 4.9 (invariant of minimum fair share edge). Assume that Alg is
bottleneck. For any integer l0 ≥ 0, fix any edge e ∈ MFSEQl0

(Sj) for some active
cluster Sj in Ql0 . Then, for any integer l ≥ l0 such that e ∈ AEQl

, e ∈ MFSEQl
(Sj).

Proof. Consider any edge e′ ∈ AEQl
(Sj); clearly, e′ ∈ AEQl0

(Sj). Since e ∈
MFSEQl0

(Sj), it follows that FSQl0
(e) ≤ FSQl0

(e′). By Lemma 4.5, e is a bottleneck
edge for Ql0 ; thus, by Proposition 4.8 (condition (2)), FSQl

(e) = FSQl0
(e). By

Lemma 4.7, FSQl0
(e′) ≤ FSQl

(e′). So, FSQl
(e) ≤ FSQl

(e′). Since e′ is arbitrary, it
follows that e ∈ MFSEQl

(Sj).
Similarly to Proposition 4.8, Proposition 4.9 holds for any bottleneck algorithm

(whether conservative or optimistic) as well. However, the rest of the properties
established in this section require the assumption of optimistic, bottleneck algorithms.
We first prove a safety property for any edge that becomes a minimum fair share edge
for any particular cluster during the execution of an optimistic, bottleneck algorithm.

Proposition 4.10 (safety property of minimum fair share edge). Assume that
Alg is optimistic and bottleneck. For any integer l0 ≥ 0, fix any edge e ∈ MFSEQl0

(Sj)
for some active cluster Sj in Ql0 . Consider any session i ∈ AQl0

| e such that
rQl0

(i) ≥ FSQl0
(e). Then, for any integer l ≥ l0, rQl

(i) ≥ FSQl0
(e).

Proposition 4.10 considers any (active) session traversing a minimum fair share
edge; roughly speaking, it establishes that no decrease to its rate below this particular
minimum fair share is possible if the rate is initially no less than the minimum fair
share.

Proof. The proof is by induction on l. For the basis case where l = l0, the
claim holds by our assumption. Assume inductively that for some integer l > l0,
rQl−1(i) ≥ FSQl0

(e). For the induction step, we show that rQl
(i) ≥ FSQl0

(e).
Assume first that rQl

(i) ≥ rQl−1(i). By the induction hypothesis, this implies
that rQl

(i) ≥ FSQl0
(e), as needed. So assume that rQl

(i) < rQl−1(i). By definition
of execution and update operation, this implies that Si intersects the session Sil

,
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scheduled in front of state Ql; moreover, rQl
(i) = rQl

(il). Let e′ be an edge such that
∆Ql−1(il) = ∆Ql−1(il, e

′). We prove the following.
Lemma 4.11. rQl

(il) ≥ FSQl
(e′).

Proof. Assume otherwise; so, rQl
(il) < FSQl

(e′). By definition of the update
operation, e′ is saturated in Ql; moreover, for any session k ∈ AQl0

| e′, rQl
(il) ≥

rQl
(k). Thus, FSQl

(e′) > rQl
(k). Lemma 4.3 (condition (2)) implies that e′ is not

saturated in Ql—a contradiction.
Since rQl

(i) = rQl
(il), Lemma 4.11 implies that rQl

(i) ≥ FSQl
(e′). Also, by

Lemma 4.7, FSQl
(e′) ≥ FSQl0

(e′), so that rQl
(i) ≥ FSQl0

(e′). Since e ∈ MFSEQl0
(Sj),

FSQl0
(e′) ≥ FSQl0

(e). It follows that rQl
(i) ≥ FSQl0

(e), as needed.
The next claim complements Proposition 4.10 by giving a corresponding liveness

property.
Proposition 4.12 (liveness property of minimum fair share edge). Assume that

Alg is optimistic and bottleneck. For any integer l0 ≥ 0, fix any edge e ∈ MFSEQl0
(Sj)

for some active cluster Sj in Ql0 , such that l̂0 | e < ∞. Consider any session
i ∈ AQl0

| e. Then, for any integer l ≥ l̂0 | e, rQl
(i) ≥ FSQl0

(e).
Proposition 4.12 considers any active session traversing a minimum fair share

edge; roughly speaking, it establishes that eventually, once all active sessions travers-
ing this minimum fair share edge have been scheduled at least once, the rate of the
session will be no less than this particular minimum fair share.

Proof. We start with an informal outline of the proof. We consider the point
of the execution following state Ql0 where session i is scheduled; clearly, that point
comes no later than when all sessions have been scheduled at least once. We establish
that at this point, the rate of Si is no less than the fair share of edge e in state Ql0 .
We also argue that e remains a minimum fair share edge beyond state Ql0 ; this allows
us to exploit the safety property of minimum fair share edges in order to argue that
the rate of Si will subsequently remain no less than the fair share of e in state Ql0 .
We now present the details of the formal proof.

Since e ∈ MFSEQl0
(Sj), Lemma 4.5 implies that e is a bottleneck edge for state

Ql0 . Since i ∈ AQl0
| e, it follows by definition of l̂0 | e that there exists a least index

l′, l0 < l′ ≤ l̂0 | e, such that i is scheduled in front of state Ql′ . We proceed by case
analysis.

1. Assume first that i is not active in state Ql′ . Since i ∈ AQl0
, there exists

an index l′′, l0 ≤ l′′ < l′, such that i ∈ Term(Ql′′). Since Term is bottle-
neck, it follows that there exists some edge e′ traversed by session i that is
a bottleneck edge for state Ql′′ , and rQl′′ (i) = FSQl′′ (e

′). Since i ∈ AQl′′
and i traverses e, e is an active edge at Ql′′ . By Proposition 4.8 (conditions
(1) and (2)), FSQl′′ (e) = FSQl0

(e), and e is a bottleneck edge for Ql′′ . By
Lemma 4.4, FSQl′′ (e

′) = FSQl′′ (e), so that FSQl′′ (e
′) = FSQl0

(e). It follows
that rQl′′ (i) = FSQl0

(e). Now take any integer l ≥ l̂0 | e. Clearly, l ≥ l′′.
Since i ∈ Term(Ql′′), rQl

(i) = rQl′′ (i) = FSQl0
(e), which establishes the

claim in this case.
2. Assume now that i is active in state Ql′ . Since i traverses edge e, it follows

that e is active in state Ql′ . By Proposition 4.8 (conditions (1) and (2)),
FSQl′ (e) = FSQl0

(e), and e is a bottleneck edge for Ql′ . We prove the
following.
Lemma 4.13. rQl′ (i) ≥ FSQl0

(e).
Proof. Assume, by way of contradiction, that rQl′ (i) < FSQl0

(e). Let e′ be
an edge such that ∆Ql′ (i) = ∆Ql′ (i, e

′). By definition of update operation,
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e′ is saturated in state Ql′ . Since e is a bottleneck edge for state Ql′ , and i
traverses both e and e′, FSQl′ (e) ≤ FSQl′ (e

′). Since FSQl′ (e) = FSQl0
(e),

this implies that FSQl0
(e) ≤ FSQl′ (e

′). Since rQl′ (i) < FSQl0
(e), it follows

that rQl′ (i) < FSQl′ (e
′). By definition of the update operation, for any

session k ∈ AQl′ | e, rQl′ (k) ≤ rQl′ (i), so that rQl′ (k) < FSQl′ (e
′). It follows

by Lemma 4.3 (condition (2)) that e′ is not saturated in state Ql′ . This is a
contradiction.
Now take any integer l ≥ l̂0 | e. Clearly, l ≥ l′. Since e is a minimum fair
share edge for Ql0 , Proposition 4.9 implies that e is a minimum fair share
edge for Ql′ as well. Moreover, by Lemma 4.13, rQl′ (i) ≥ FSQl0

(e). Since
FSQl′ (e) = FSQl0

(e), this implies that rQl′ (i) ≥ FSQl′ (e). It follows by
Proposition 4.10 (taking l′ for l0) that rQl

(i) ≥ FSQl0
(e), which establishes

the claim in this case.
The proof of Proposition 4.12 is now complete.

4.4. Termination properties. The first property considers active sessions in
any particular cluster that traverse a minimum fair share edge; it is established that
once each such session has been scheduled at least once, all of these sessions must
have become done.

Proposition 4.14 (termination of all sessions). Assume that Alg is optimistic
and bottleneck. For any integer l0 ≥ 0, fix any edge e ∈ MFSEQl0

(Sj) for some active
cluster Sj in Ql0 such that l̂0 | e < ∞. Then, for any session i ∈ AQl0

| e, i ∈ D −→
Q

l̂0|e
.

Proof. We start with an informal outline of the proof. We consider any session
active in state Ql0 , and we argue that after all sessions have been scheduled at least
once, the session will receive rate equal to the fair share of e in Ql0 . We will exploit
the fact that e is a bottleneck edge for Ql0 in order to argue that e remains bottleneck
subsequently, and that its fair share does not change. Since Alg is a bottleneck
algorithm, this will be sufficient for deducing that the session has reached its final
rate. We now present the details of the formal proof.

Fix any session i ∈ AQl0
| e. We start by proving the following.

Lemma 4.15. rQ
l̂0|e

(i) = FSQl0
(e).

Proof. Assume, by way of contradiction, that rQ
l̂0|e

(i) �= FSQl0
(e). By Proposi-

tion 4.12, rQ
l̂0|e

(i) ≥ FSQl0
(e). It follows that rQ

l̂0|e
(i) > FSQl0

(e). We proceed by
case analysis.

Assume first that there exists no session k ∈ AQl0
| e with k �= i; thus, AQl0

| e =
{i}. Denote by Ql the latest state in execution α, such that Ql0

α�−→ Ql
α�−→ Ql̂0|e,

and AQl
�= ∅. Thus, AQl

| e = AQl0
| e and allotQl

(e) = allotQl0
(e). Clearly,∑

k∈AQl
|e

rQl
(k)

= rQl
(i) (since AQl0

| e = {i})
= rQ

l̂0|e
(i) (by definition of state Ql)

> FSQl0
(e) (by assumption)

= c(e) − allotQl0
(e) (by definition of fair share and since

∣∣AQl0
| e

∣∣ = 1)
= c(e) − allotQl

(e).

This is a contradiction.
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Assume now that there exists some session k ∈ AQl0
| e with k �= i. By Propo-

sition 4.12, rQ
l̂0|e

(k) ≥ FSQl0
(e). Together with rQ

l̂0|e
(i) > FSQl0

(e), this implies a
contradiction to Lemma 4.3 (condition (3)), and the proof is now complete.

We continue with the proof of Proposition 4.14. In case i ∈ DQl
for some state

Ql in α such that Ql0
α−→ Ql

α�−→ Ql̂0|e, the definition of execution implies that

i ∈ D −→
Q

l̂0|e
. So, assume that for each state Ql in execution α such that Ql0

α−→

Ql
α�−→ Ql̂0|e, i ∈ AQl

. Denote by Ql the latest state in execution α such that both

Ql0
α−→ Ql

α�−→ Ql̂0|e and rQl
(i) = rQ

l̂0|e
(i).

Since e ∈ MFSEQl0
, Lemma 4.5 implies that e is a bottleneck edge for Ql0 . Since

i ∈ AQl
and i traverses edge e, it follows that AQl

| e �= ∅. Hence, Proposition 4.8
(conditions (1) and (2)) implies that FSQl

(e) = FSQl0
(e), and e is a bottleneck edge

for Ql. By Lemma 4.15, rQ
l̂0|e

(i) = FSQl0
(e). It follows that rQl

(i) = FSQl
(e).

In total, e is a bottleneck edge for state Ql, traversed by session i for which

rQl
(i) = FSQl

(e). Since Alg is bottleneck, it follows that i ∈ D−→
Ql

. Since Ql →
−→

Ql̂0|e,
it follows that i ∈ D −→

Q
l̂0|e

.

The final termination property is a direct consequence of Proposition 4.14. In
essence, we establish that scheduling any sequence of sessions that includes all cur-
rently active ones must result in finalizing the rate of at least one active session per
cluster.

Proposition 4.16 (termination of at least one session per cluster). Assume
that Alg is optimistic and bottleneck. For any integer l0 ≥ 0 such that AQl0

�= ∅ and
l̂0 < ∞, fix any active cluster Sj in Ql0 . Then there exists some session Si ∈ Sj ∩AQl0

such that Si ∈ D−→
Q

l̂0

.

Proof. Since Sj is active in QAQl0
, it follows that MFSEQl0

(Sj) �= ∅. Fix any
edge e ∈ MFSEQl0

(Sj), and consider any session i ∈ AQl0
| e. By Proposition 4.14,

i ∈ D−→
Q

l̂0

.

5. Upper bounds.

5.1. Oblivious algorithms. This section presents the algorithm RoundRobin
and shows the following.

Theorem 5.1 (upper bound for oblivious algorithms). RoundRobin computes the
max-min fair rate vector within dn

2 + n
2 update operations.

The scheduler of RoundRobin conducts scheduling rounds. In each round, each of
the n sessions is scheduled in round-robin order. Moreover, RoundRobin is bottleneck.
By definition of RoundRobin, each session is scheduled once in each round. Thus,
Proposition 4.16 implies that at least one session per cluster becomes done in each
round. Since each cluster contains at most d sessions, all sessions are done after d
rounds, whence the network enters a final state. So, Proposition 4.6 immediately
implies that RoundRobin computes the max-min fair rate vector.

We now establish an upper bound on the convergence complexity of RoundRobin.
Since at least one session per cluster becomes done in each round, at most |Sj |− l +1
update operations are executed in round l, 1 ≤ l ≤ |Sj |, on sessions in any cluster Sj .
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Summing up over all clusters and rounds yields that

URoundRobin ≤
∑
j≥1

∑
1≤l≤d

min {0, (|Sj | − l + 1)}

≤
∑
j≥1

∑
1≤l≤|Sj |

(|Sj | − l + 1)

=
∑
j≥1

|Sj |(Sj + 1)
2

≤ dn

2
+

n

2
.

RoundRobin extends naturally to a class of bottleneck algorithms d-Epoch. The
scheduler d-EpochSched = d-EpochSched1 . . . d-EpochSchedd d-EpochSched′, of algo-
rithm d-Epoch is a sequence such that for each index r, 1 ≤ r ≤ d, all sessions are
included in d-EpochSchedr. An argument identical to the one applied to RoundRobin
immediately implies the following.

Theorem 5.2 (upper bound for oblivious algorithms). d-Epoch computes the
max-min fair rate vector within dn

2 + n
2 update operations.

5.2. Nonoblivious algorithms. This section presents the algorithm Linear and
shows the following.

Theorem 5.3 (upper bound for nonoblivious algorithms). Linear computes the
max-min fair rate vector within exactly n update operations.

The scheduler of Linear maintains an active edge of minimum fair share and
schedules all active sessions traversing it in any order. Once it finishes, it chooses any
other (active) edge of minimum fair share, and so on. Moreover, Linear is bottleneck.

Consider any state Ql0 and an arbitrary edge e ∈ MFSEQl0
. Clearly, e ∈

MFSEQl0
(Sj) for some cluster Sj . By definition of Linear, each session traversing

e is scheduled exactly once, so that the state Ql̂0|e is reached; by Proposition 4.14,
each such session is done in state Ql̂0|e. It follows that all sessions eventually become
done and a final state is reached. Hence, Proposition 4.6 immediately implies that
Linear computes the max-min fair rate vector.

Linear incurs n update operations. Recall that all rates are initially zero. Since
all capacities exceed zero, all rates in a max-min fair rate vector exceed zero as well.
Since each update increases the rate of exactly one session, it follows that at least n
update operations are needed, so that UAlg ≥ n for every Alg. Thus, Linear is optimal.

6. Network construction. We present a generic, combinatorial construction
of a network associated with any sequence Seq = i1, i2, . . . , where for each l ≥ 1,
il ∈ [n]. For any sequence Seq, denote |Seq| to be the length of Seq; an infinite
sequence has infinite length. For a sequence Seq of session indices, and for any set
of sessions S ′ ⊆ S, denote by Seq | S ′ the restriction of Seq to indices of sessions
in S ′. Denote by Seq ↑ S ′ the shortest prefix of Seq | S ′ that includes the indices
of all sessions in S ′, in the order they appear in this prefix of Seq | S ′ and with no
repetitions; in case no such prefix exists, Seq ↑ S ′ results from Seq | S ′ by removing
repetitions, while, however, preserving the order of the indices. Denote by Seq ↓ S ′
the remaining suffix of Seq | S ′. For example, if Seq = 1, 5, 4, 2, 1, 3, 3, 3, 5, 4 and
S ′ = {1, 3, 4} ⊂ {1, 2, 3, 4, 5}, then Seq | S ′ = 1, 4, 1, 3, 3, 3, 4, Seq ↑ S ′ = 1, 4, 3, and
Seq ↓ S ′ = 3, 3, 4.
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Fix any even integer d, and choose any integer n that is a multiple of d.3 We
construct a network G = G(Seq) = (V (Seq) , E (Seq)), as a function of Seq, with a
set of sessions S = {S1, S2, . . . , Sn} laid out on G. For assigning capacities to network
edges, we will use two (finite) sequences of real numbers, b and p (for bottom and
potential, resp.), each of length d

2 , defined recursively as follows.
• b0 = p0 = 0, b1 = 0, and p1 = 2p for some integer p ≥ d;
• for each index r, 1 < r ≤ d

2 , br = br−1 + pr−1
2 and pr = pr−1

4 .
Partition S into n

d clusters S1, S2, . . . ,Sn/d so that for each j, 1 ≤ j ≤ n
d , Sj

contains sessions S(j−1)d+1, S(j−1)d+2, . . . , S(j−1)d+d; notice that |Sj | = d. For each
cluster Sj , we construct a network Gj = Gj (Seq | Sj) = (Vj (Seq | Sj) , Ej (Seq | Sj)),
with Sj laid out on Gj (Seq | Sj), so that

G (Seq) =

 ⋃
1≤j≤n/d

Vj (Seq | Sj) ,
⋃

1≤j≤n/d

Ej (Seq | Sj)

;

thus, each individual network Gj is a function of the sequence Seq | Sj , and the
network G is the resulting composition.

The construction of the network Gj proceeds in a sequence of d
2 epochs; in

epoch r, 1 ≤ r ≤ d
2 , the network G

(r)
j = (V (r)

j , E
(r)
j ) is constructed, so that Gj =

(
⋃

1≤r≤d/2 V
(r)
j ,

⋃
1≤r≤d/2 E

(r)
j ); thus, the network Gj is the composition of the indi-

vidual networks G
(r)
j .

For each r, 1 ≤ r ≤ d
2 , the construction of G

(r)
j uses br and pr as parameters. It

also uses the following sets and sequences:
• a set of indices I(r)

j ⊆ Sj such that |I(r)
j | = d − 2(r − 1);

• a sequence Seq(r)
j , which is a suffix of Seq | Sj ;

• a set {i
(r)
f , i

(r)
l } ⊆ I(r)

j ; roughly speaking, i
(r)
f and i

(r)
l will be defined to be

the first and last indices, respectively, of Seq(r)
j ↑ I(r)

j , or some of them will

be set to arbitrary indices from I(r)
j in case |Seq(r)

j ↑ I(r)
j | < 2.

These sets and sequences are inductively defined as follows. For the basis case where
r = 1, I(1)

j := Sj , Seq(1)
j := Seq | Sj , and the set {i

(1)
f , i

(1)
l } is defined as follows:

(1) Assume first that Seq(1)
j = λ, the empty sequence, so that Seq(1)

j ↑ I(1)
j = λ;

then fix i
(1)
f and i

(1)
l to be any arbitrary indices in I(1)

j .

(2) Now assume that Seq(1)
j �= λ, so that Seq(1)

j ↑ I(1)
j �= λ; there are two cases

to consider.
(a) First, take |Seq(1)

j ↑ I(1)
j | = 1; then i

(1)
f := Seq(1)

j ↑ I(1)
j and fix i

(1)
l to

be any arbitrary index in I(1)
j \ {i

(1)
f }.

(b) Finally, take |Seq(1)
j ↑ I(1)

j | > 1, so that Seq(1)
j ↑ I(1)

j = if , . . . , il; then

i
(1)
f := if and i

(1)
l := il.

Informally, I(1)
j contains indices of all sessions in cluster Sj , while Seq(1)

j is the

restriction of Seq to indices of sessions in cluster Sj ; moreover, i
(1)
f and i

(1)
l are the

indices of sessions in cluster Sj appearing first and last, respectively, in Seq(1)
j ↑ I(1)

j

3Standard “padding” techniques can be used to handle the case where n is not a multiple of d.
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or some of them will be set to be arbitrary indices if Seq(1)
j ↑ I(1)

j misses any such
indices.

Assume inductively that we have defined I(r−1)
j , Seq(r−1)

j , and {i
(r−1)
f , i

(r−1)
l }

for some integer r, where 2 ≤ r ≤ d
2 . For the induction step, we show how to

construct I(r)
j , Seq(r)

j , and {i
(r)
f , i

(r)
l }. Define I(r)

j := I(r−1)
j \{i

(r−1)
f , i

(r−1)
l }, Seq(r)

j :=

(Seq(r−1)
j ↓ I(r−1)

j ) | I(r)
j , and the set {i

(r)
f , i

(r)
l } is defined through a case analysis

identical to the one for the basis case.
(1) Assume first that Seq(r)

j = λ, so that Seq(r)
j ↑ I(r)

j = λ; then fix i
(r)
f , i

(r)
l to

be any arbitrary indices in I(r)
j .

(2) Now assume that Seq(r)
j �= λ, so that Seq(r)

j ↑ I(r)
j �= λ; there are two cases

to consider.
(a) First, take |Seq(r)

j ↑ I(r)
j | = 1; then i

(r)
f := Seq(r)

j ↑ I(r)
j and fix i

(r)
l to

be any arbitrary index in I(r)
j ;

(b) Finally, take |Seq(r)
j ↑ I(r)

j | > 1, so that Seq(r)
j ↑ I(r)

j = if , . . . , il; then

i
(r)
f := if and i

(r)
l := il.

Informally, I(r)
j is obtained by removing i

(r−1)
f and i

(r−1)
l from I(r−1)

j , while Seq(r)
j

results from Seq(r−1)
j by chopping off its shortest prefix that includes all indices in

I(r−1)
j , and restringing the remaining suffix to indices in I(r)

j ; moreover, i
(r)
f and i

(r)
l

are the indices of sessions in I(r)
j that appear first and last, respectively, in this suffix,

or some of them will be set to arbitrary indices in case this suffix misses any such
indices.

Since two different sessions are extracted from Sj in each of the d
2 epochs, all d

sessions in Sj will eventually be extracted. We now describe the construction of G
(r)
j ,

1 ≤ r ≤ d
2 :

• sessions i
(r)
f and i

(r)
l traverse some edge e

(r)
il

with c(e(r)
il

) = 2br + pr

2 ;

• for each i ∈ I(r)
j \ {i

(r)
f , i

(r)
l }, sessions i

(r)
f and i traverse some edge e

(r)
i with

c(e(r)
i ) = 2br + pr.

Informally, i
(r)
f shares an edge with every other session in I(r)

j ; the capacity of the

edge shared with i
(r)
l is the smallest, while all other capacities are equal. All other

sessions traverse only the edge shared with i
(r)
f . We finally state an easy to prove

property of the construction.
Lemma 6.1. For each integer r, where 1 < r ≤ d

2 , for each index r′ where

1 ≤ r′ < r, let e(r) and e(r′) be any edges in E
(r)
j and E

(r′)
j , respectively. Then

c(e(r)) > c(e(r′)).
Example. Fix d = 6 and choose n = 12. Consider the (infinite) elevator sequence

ElevSched = 1, 2, . . . , 11, 12, 12, 11, . . . , 2, 1, . . . , 1, 2, . . . , 11, 12, 12, 11, . . . , 2, 1, . . . .

We construct the network G = G (ElevSched) = (V (ElevSched) , E (ElevSched)) as
a function of ElevSched, with a set of sessions S = {S1, . . . , S12} laid out on G.
Partition S into 12

6 = 2 clusters S1 and S2, each containing six sessions, so that S1 =
{S1, . . . , S6} and S2 = {S7, . . . , S12}. Fix p = 10, so that b1 = 0 and p1 = 210 = 1024.
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For the basis case where r = 1, which corresponds to the first epoch, I(1)
1 = S1,

and

ElevSched(1)
1 = ElevSched | S1

= 1, 2, . . . , 6, 6, 5, . . . , 1, . . . , 1, 2, . . . , 6, 6, 5, . . . , 1, . . . .

Thus, ElevSched(1)
1 ↑ S(1)

1 = 1, 2, . . . , 6, so that i
(1)
f = 1 and i

(1)
l = 6. We continue

to describe the construction of the network G
(1)
1 :

• sessions 1 and 6 traverse edge e
(1)
6 with c(e(1)

6 ) = 2b1 + p1
2 = 512;

• for each i ∈ {2, 3, 4, 5}, sessions 1 and i traverse e
(1)
i with c(e(1)

i ) = 2b1 + p1 =
1024.
The construction of the network G

(1)
2 is similar; it can be found in Figure 1. We

proceed to the case r = 2, corresponding to the second epoch, where I(2)
1 = I(1)

1 \
{1, 6} = {2, 3, 4, 5} and

ElevSched(2)
1 =

(
ElevSched(1)

1 ↓ I(1)
1

)
| I(2)

1

= 5, 4, 3, 2, 2, 3, 4, 5, . . . , 5, 4, 3, 2, 2, 3, 4, 5, . . . .

Thus, ElevSched(2)
1 ↑ I(2)

1 = 5, 4, 3, 2, so that i
(2)
f = 5 and i

(2)
l = 2. We continue to

describe the construction of G
(2)
1 :

• sessions 5 and 2 traverse edge e
(2)
2 with c(e(2)

2 ) = 2b2 + p2
2 = 1152;

• for each i ∈ {3, 4}, sessions 5 and i traverse edge e
(2)
i with c(e(2)

i ) = 2b2 + p2 =
1280.
The construction of the network G

(2)
2 is similar; it can be found in Figure 1. We

proceed to the case r = 3, corresponding to the third epoch, where I(3)
1 = I(2)

1 \
{2, 5} = {3, 4} and

ElevSched(3)
1 =

(
ElevSched(2)

1 ↓ I(2)
1

)
| I(3)

1

= 3, 4, 4, 3, . . . , 3, 4, 4, 3, . . . .

Thus, ElevSched(3)
1 ↑ I(3)

1 = 3, 4, so that i
(3)
f = 3 and i

(3)
l = 4. We continue to describe

the construction of G
(3)
1 :

• sessions 3 and 4 traverse edge e
(3)
4 with c(e(3)

4 ) = 2b3 + p3
2 = 2 ·640+ 64

2 = 1312.
The construction of the network G

(3)
2 is similar; it can be found in Figure 1, which

also depicts the complete network G(ElevSched).

7. Lower bounds.

7.1. Oblivious algorithms. We present a lower bound of Ω(dn) on the con-
vergence complexity of any optimistic, oblivious, and bottleneck algorithm Alg =
〈Sched, Term〉 that computes the max-min fair rate vector. The proof uses the net-
work G (Sched) constructed in section 6. We start with two immediate technical
lemmas that quantify ∆Q(i, e) in case edge e is traversed by only two sessions that
remain active in state Q. (These lemmas will be used for Proposition 7.3.)

Lemma 7.1. For an edge e traversed only by sessions i, i′ ∈ AQ | e, ∆Q(i, e) =
c(e) − rQ(i) − min{ c(e)

2 , rQ(i′)}.
Since in the setting of Claim 7.1, c(e) − rQ(i) − rQ (i′) = residQ(e), Lemma 7.2

follows.
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Fig. 1. The network G(ElevSched).

Lemma 7.2. For an edge e traversed only by sessions i, i′ ∈ AQ | e, ∆Q(i, e) ≥
residQ(e).

We restrict our attention to the execution α of Alg on the network G(Sched | Sj)
with any particular cluster Sj ; for notational simplicity, we shall abuse notation and
use G (Sched) to denote G(Sched | Sj) and S to denote Sj .
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For an execution α, for any indices l1 and l2, 0 ≤ l1 ≤ l2, define the set S |α
(Ql1 , Ql2 ] ⊆ S to be S |α (Ql1 , Ql2 ] =

{
il | l1 < l ≤ l2 and il ∈ AQl1

}
; roughly

speaking, S |α (Ql1 , Ql2 ] contains indices of all sessions active in Ql1 that are scheduled
in front of any state following Ql1 and up to and including Ql2 . Notice that if l1 = l2,
S |α (Ql1 , Ql2 ] = ∅. For an execution α, for any index l1 ≥ 0, define the set S |α
(Ql1 , ∞) ⊆ S to be S |α (Ql1 , ∞) =

{
il | l1 < l and il ∈ AQl1

}
; roughly speaking,

S |α (Ql1 , ∞) contains indices of all sessions active in Ql1 that are scheduled in front
of any state following Ql1 . Define S |α (Ql1 , Ql2 ] | e and S |α (Ql1 , ∞) | e in the
natural way. Recall that for any state Ql, l̂ is the least integer l′ ≥ l such that
S |α (Ql, Ql′ ] = AQl

, or infinite if no such integer exists.
Define inductively the index sequence l0, l1, . . . as follows. For the basis case,

l0 = 0. Assume inductively that for any integer r ≥ 1, we have defined l1, . . . , lr−1. For
the induction step, define lr = l̂r−1. Define also the execution fragments α(1), α(2), . . . ,
where for any integer r ≥ 1, α(r) = Qlr−1 , . . . , ilr , Qlr . Call each α(r), r ≥ 1, an
execution epoch in α. Note that in case lr = ∞, for any integer r ≥ 1, α(r) is the
infinite suffix of α following state Qlr−1 . Thus, write α = α(1) · α(2) . . . . We remark
that in case α is infinite, the number of execution epochs in α can still be finite if
(and only if) there exists some integer r ≥ 0 such that lr = ∞. To simplify notation,
denote each state Qlr , r ≥ 0, as Q(r). Thus, Q(r) is the latest state in execution epoch
α(r) of α. (Note that Q(r) exists if and only if lr < ∞.)

The backbone of our analysis is a technical proposition (Proposition 7.3) that
describes the states of execution α. The first part of Proposition 7.3 (part (A)) deals
with each state starting from Q(r−1), 1 ≤ r ≤ d

2 , such that not all active sessions

in
−→

Q(r−1) have yet been scheduled until this state. Thus, Q(r) would be the state
immediately following this sequence of states; we will later show that Q(r) is well
defined. Observe that the states considered in part (A) for any particular integer
r, 1 ≤ r ≤ d

2 , are precisely the states in execution epoch α(r) excluding state Q(r).
Part (B) explores properties of state Q(r).

Proposition 7.3 (properties of execution α). For each integer r, 1 ≤ r ≤ d
2 ,

the following hold for states in execution epoch α(r):

(A) (properties of states from Q(r−1) to
←−
Q(r)) Consider any state Q such that

Q(r−1) α�−→ Q and A −→
Q(r−1)

�⊆ S |α
(
Q(r−1), Q

]
. Then the following conditions

hold:
(1) for each session i ∈ A −→

Q(r−1)
,

rQ(i) =
{

br + pr

2 if i ∈ S |α
(
Q(r−1), Q

]
,

br−1 + pr−1
2 otherwise;

(2) for each session i ∈ A −→
Q(r−1)

,

FSQ(e(r)
i ) =

{
br + pr

2 if i �∈
{

i
(r)
f , i

(r)
l

}
,

br + pr

4 if i = i
(r)
l ;

(3) for the edges of G(Sched), it holds, for Q �= Q(r−1), that
(a) edge e

(r)

i
(r)
l

is a bottleneck edge for state Q;
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(b) for each session i ∈ A −→
Q(r−1)

\ {i
(r)
f , i

(r)
l },

FSQ(e(r)
i ) �= MFSQ(i(r)f ),

so that edge e
(r)
i is not a bottleneck edge for state Q;

(c) for any integer r′, 1 ≤ r′ < r, and for any edge e(r′) ∈ E(r′) (Sched)
traversed by session i ∈ A −→

Q(r−1)
, FSQ(e(r′)) �= MFSQ(i), so that

edge e(r′) is not a bottleneck edge for state Q;
(d) for any integer r′, r < r′ ≤ d

2 , and for any edge e(r′) ∈ E(r′) (Sched)
traversed by session i ∈ A −→

Q(r−1)
\ {i

(r)
f , i

(r)
l },

FSQ(e(r′)) �= MFSQ(i),

so that e(r′) is not a bottleneck edge for state Q;
(4) for each session i ∈ A −→

Q(r−1)
, i /∈ Term(Q);

(5) for each session i ∈ A −→
Q(r−1)

\S |α
(
Q(r−1), Q

]
scheduled in front of state

−→
Q ,

∆Q(i) =

{
pr

2 if i �= i
(r)
l ,

pr

4 otherwise.

(B) (properties of state Q(r)) The following conditions hold for state Q(r):
(1) lr < ∞;
(2) for each session i ∈ A −→

Q(r−1)
,

rQ(r)(i) =

 br + pr

4 if i ∈
{

i
(r)
f i

(r)
l

}
,

br + pr

2 if i ∈ A −→
Q(r−1)

\
{

i
(r)
f , i

(r)
l

}
;

(3) for each session i ∈ A −→
Q(r−1)

, i ∈ {i
(r)
f , i

(r)
l } if and only if i ∈ Term(Q(r));

(4) for each session i ∈ A −→
Q(r−1)

\ {i
(r)
f , i

(r)
l } and for any integer r′, 1 ≤ r′ ≤

r, for any edge e
(r′)
i ,

(a) residQ(r)(e(r′)
i ) ≥ pr

4 ;

(b) FS −→
Q(r)

(e(r′)
i ) ≥ br + 3 pr

4 .

Proposition 7.3 deals mainly with sessions active in state
−→

Q(r−1) for any index
r, 1 ≤ r ≤ d

2 . We start with an informal description of the conditions in part (A).
Condition (A/1) determines rates of active sessions in state Q. Condition (A/2)
determines the fair shares of all edges in epoch r; condition (A/3) establishes that
edge e

(r)

i
(r)
l

is the only bottleneck edge for state Q. Condition (A/4) guarantees that

no session is terminated in state Q. Finally, condition (A/5) determines the increase

in state Q for sessions active in
−→

Q(r−1) that are not yet scheduled. We now continue
with the conditions in part (B). Condition (B/1) asserts that all active sessions in
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state
−→

Q(r−1) must be scheduled in execution epoch α(r); condition (B/2) specifies
their rates upon completion of α(r). Moreover, condition (B/3) determines which of
these sessions are terminated upon completion of α(r). Condition (B/4) provides lower
bounds on the residual capacity and fair share of some edges from previous epochs
upon completion of α(r).

We note that conditions (B/1) and (B/3) will suffice by themselves to imply the
lower bound. However, the rather technical remaining conditions are necessary to
assume inductively in the proof of conditions (B/1) and (B/3). To simplify notation,
we will denote e

(r)

i
(r)
l

as e
(r)
l .

Proof. The proof is by induction on r. For the sake of shortening the proof, we
merge the proof for the basis case (where r = 1) and the proof for the induction step;
thus, the case r = 1 will be treated separately (where needed) along the proof of the
induction step.

We assume, as our induction hypothesis, that the claims hold for all integers less
than some fixed integer r, 1 ≤ r ≤ d

2 . Notice that if r = 1, the induction hypothesis
is empty. We proceed to the induction step, where we prove the claims for r.

Proof of part (A). The proof is by induction on Q. For the sake of shortening the
proof, we merge again the proof for the basis case (where Q = Q(r−1)) and the proof
for the induction step; thus, the case Q = Q(r−1) will be treated separately (where
needed) along the proof for the induction step (on states).

Fix any state Q such that Q(r−1) α�−→ Q and A −→
Q(r−1)

�⊆ S |α
(
Q(r−1), Q

]
, and

assume that for each state Q′ such that Q(r−1) α�−→ Q′ α−→ Q, the claims of part (A)
hold for Q′; thus, we assume, as our induction hypothesis, that the claims of part (A)
hold for all states from Q(r−1) through but not including state Q. Notice that if
Q = Q(r−1), the induction hypothesis is empty. We now proceed with the induction
step, where we prove the claims for Q.

Proof of (A/1). There are two cases to consider.

(1) Assume first that Q = Q(r−1). Then S |α
(
Q(r−1), Q

]
= ∅. In case r = 1, Q =

Q0, and condition (A/1) holds trivially since all session rates are initially zero
and b0 = p0 = 0. So assume r > 1. By the induction hypothesis of induction
on r (condition (B/3)), A −→

Q(r−1)
= A −→

Q(r−2)
\ {i

(r−1)
f , i

(r−1)
l }. Hence, condition

(A/1) follows from the induction hypothesis of induction on r (condition
(B/2)).

(2) Now assume that Q �= Q(r−1). We proceed by case analysis on iQ (the session
scheduled in front of state Q).
(a) Assume first that iQ /∈ A −→

Q(r−1)
. (Notice that this case need not be

considered when r = 1, since all sessions are active in
−→
Q(0)= Q1.) Then

S |α
(
Q(r−1), Q

]
= S |α (Q(r−1),

←−
Q ]. Since, in addition, no session rates

change from
←−
Q to Q, the claim follows inductively. So we proceed to

the cases where iQ ∈ A −→
Q(r−1)

.

(b) Next assume that iQ = i
(r)
f . There are two subcases to consider.

(i) First, take i
(r)
f �∈ S |α (Q(r−1),

←−
Q ]; that is, i

(r)
f has not been

scheduled in front of any state between Q(r−1) and Q. Recall that
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i
(r)
f is the session scheduled first (following state Q(r−1)) among

active sessions in
−→

Q(r−1); so, for each session i ∈ A −→
Q(r−1)

, i �∈

S |α (Q(r−1), Q]. Thus, by the induction hypothesis of induction
on states (condition (A/1)), r←−

Q
(i) = br−1 + pr−1

2 = br (by recursive

definition of br). In particular, r←−
Q

(i(r)f ) = br. By the induction hy-

pothesis of induction on states (condition (A/5)), ∆←−
Q

(i(r)f ) = pr

2 .

Thus, by the update operation, rQ(i(r)f ) = r←−
Q

(i(r)f ) + ∆←−
Q

(i(r)f ) =

br + pr

2 .
Since pr �= 0, it follows that for each session i ∈ A −→

Q(r−1)
\ {i

(r)
f },

r←
Q

(i) < rQ(i(r)f ). Thus, by the update operation, rQ(i) = r←
Q

(i) =

br−1 + pr−1
2 . Since S |α (Q(r−1), Q] = {i

(r)
f }, it follows that for each

session i ∈ A −→
Q(r−1)

,

rQ(i) =

{
br + pr

2 if i ∈ S |α
(
Q(r−1), Q

]
,

br−1 + pr−1
2 otherwise.

(ii) Now take i
(r)
f ∈ S |α (Q(r−1),

←−
Q ]. Then S |α (Q(r−1), Q] =

S |α (Q(r−1),
←
Q]. Clearly, i

(r)
l �∈ S |α (Q(r−1),

←−
Q ], while i

(r)
f ∈

S |α (Q(r−1),
←−
Q ]. By construction of G(Sched), session i

(r)
f tra-

verses edge e
(r)
l with c(e(r)

l ) = 2br + pr

2 , as does session i
(r)
l . By

the induction hypothesis of induction on states (condition (A/1)),
r←−

Q
(i(r)f ) = br + pr

2 , while r←−
Q

(i(r)l ) = br−1 + pr−1
2 = br. By

Lemma 7.1,

∆←−
Q

(i(r)f , e
(r)
l )

= c(e(r)
l ) − r←−

Q
(i(r)f ) − min

{
c(e(r)

l )
2

, r←−
Q

(i(r)l )

}
= 2 br +

pr

2
−

(
br +

pr

2

)
− min

{
br +

pr

2
, br

}
= 0,

so that ∆←−
Q

(i(r)f ) = 0. Thus, by the update operation, for each

session i ∈ A←
Q

, rQ(i) = r←−
Q

(i). By the induction hypothesis of

induction on states (condition (A/4)), it follows that A←
Q

= A −→
Q(r−1)

.

Hence, the induction hypothesis of induction on states (condition
(A/1)) implies that for each session i ∈ A −→

Q(r−1)
,

rQ(i) =

{
br + pr

2 if i ∈ S |α
(
Q(r−1), Q

]
,

br−1 + pr−1
2 otherwise.
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(c) Assume now that iQ �= i
(r)
f . There are two subcases to consider.

(i) First consider the case where iQ /∈ S |α (Q(r−1),
←−
Q ]. By the

induction hypothesis of induction on states (condition (A/1)), it
follows that r←

Q
(iQ) = br−1 + pr−1

2 = br; moreover, by condition

(A/5), ∆←
Q

(iQ) = pr

2 . Thus, by the update operation, rQ(iQ) =

r←−
Q

(iQ) + ∆←−
Q

(iQ) = br + pr

2 .

By induction hypothesis of induction on states (condition (A/1)),
it follows that for each session i ∈ A −→

Q(r−1)
\ {iQ}, r←

Q
(i) ≤ br + pr

2 ;

hence, r←
Q

(i) ≤ rQ(iQ). Thus, by the update operation, rQ(i) =

r←
Q

(i). Since S |α (Q(r−1), Q] = S |α (Q(r−1),
←
Q]

⋃
{iQ}, the in-

duction hypothesis of induction on states (condition (A/1)) implies
now that for each session i ∈ A −→

Q(r−1)
,

rQ(i) =

{
br + pr

2 if i ∈ S |α
(
Q(r−1), Q

]
,

br−1 + pr−1
2 otherwise.

(ii) Finally, consider the case where iQ ∈ S |α (Q(r−1),
←
Q] \ {i

(r)
f }.

Then S |α (Q(r−1), Q] = S |α (Q(r−1),
←
Q]. Clearly, both iQ, i

(r)
f ∈

S |α (Q(r−1),
←
Q]. Thus, by the induction hypothesis of induc-

tion on states (condition (A/1)), r←−
Q

(iQ) = r←−
Q

(i(r)f ) = br + pr

2 .

By construction of G(Sched), c(e(r)
iQ

) = 2 br + pr. It follows that

r←−
Q

(iQ) = r←−
Q

(i(r)f ) =
c(e(r)

iQ
)

2 . Hence, Lemma 7.1 implies that

∆←
Q

(iQ, e
(r)
iQ

) = 0, so that ∆←
Q

(iQ) = 0. Thus, by the update op-

eration, for each session i ∈ A←
Q

, rQ(i) = r←
Q

(i). By the induction

hypothesis of induction on states (condition (A/4)), it follows that
A←

Q
= A −→

Q(r−1)
. Hence, the induction hypothesis of induction on

states (condition (A/1)) implies that for each session i ∈ A −→
Q(r−1)

,

rQ(i) =

{
br + pr

2 if i ∈ S |α
(
Q(r−1), Q

]
,

br−1 + pr−1
2 otherwise.

Proof of (A/2). First consider edge e
(r)
i for any session i ∈ A −→

Q(r−1)
\ {i

(r)
f , i

(r)
l },

with capacity c(e(r)
i ) = 2 br + pr, which is traversed by sessions i

(r)
f and i. Either

by definition of Q0 in case Q = Q(r−1) and r = 1, or by the induction hypothesis of
induction on r (condition (B/3)) in case Q = Q(r−1) and r �= 1, or by the induction
hypothesis of induction on states (condition (A/4)) in case Q �= Q(r−1), it follows that
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both i
(r)
f , i ∈ AQ, so that AQ | e

(r)
i = {i

(r)
f , i}. Hence,

FSQ(e(r)
i ) =

c(e(r)
i ) − allotQ(e(r)

i )

|AQ | e
(r)
i |

=
c(e(r)

i )
2

= br +
pr

2
.

Now consider edge e
(r)
l with capacity c(e(r)

l ) = 2br + pr

2 , which is traversed by
sessions i

(r)
f and i

(r)
l . Either by definition of Q0 in case Q = Q(r−1) and r = 1, or

by the induction hypothesis of induction on r (condition (B/3)) in case Q = Q(r−1)

and r �= 1, or by the induction hypothesis of induction on states (condition (A/4)) in
case Q �= Q(r−1), it follows that both i

(r)
f , i

(r)
l ∈ AQ, so that AQ | e

(r)
l = {i

(r)
f , i

(r)
l }.

Hence,

FSQ(e(r)
l ) =

c(e(r)
l ) − allotQ(e(r)

l )∣∣∣AQ | e
(r)
l

∣∣∣
=

c(e(r)
l )
2

= br +
pr

4
.

Proof of (A/3/a). By construction of G(Sched), edge e
(r)
l is traversed by sessions

i
(r)
f and i

(r)
l . We prove that each of them receives its minimum fair share on edge e

(r)
l .

(1) First, take session i
(r)
f , which traverses the following:

• edge e
(r)
l ; by condition (A/2) shown above, FSQ(e(r)

l ) = br + pr

4 ;
• edge e

(r)
i for each session i ∈ A −→

Q(r−1)
\ {i

(r)
f , i

(r)
l }; by condition (A/2)

shown above, FSQ(e(r)
i ) = br + pr

2 ;
• edge e(r′) ∈ E(r′) (Sched) for each integer r′, 1 ≤ r′ < r, in case r > 1.

By the induction hypothesis of induction on r (condition (B/4/b)),
FS −→

Q(r−1)
(e(r′)) ≥ br−1 + 3 pr−1

4 = br + pr (by recursive definition of

br and pr). Since Q �= Q(r−1), the induction hypothesis of induction on
states (condition (A/4)) is nonempty and implies that AQ = A −→

Q(r−1)
. It

follows that FSQ(e(r′)) = FS −→
Q(r−1)

(e(r′)), so that FSQ(e(r′)) ≥ br + pr.

Hence, MFSQ(i(r)f ) = br + pr

4 , so that MFSQ(i(r)f ) = FSQ(e(r)
l ).

(2) Now take session i
(r)
l , which traverses the following:

• edge e
(r)
l ; by condition (A/2) shown above, FSQ(e(r)

l ) = br + pr

4 ;
• edge e(r′) ∈ E(r′) (Sched) for each integer r′, 1 ≤ r′ < r, in case r > 1.

By the induction hypothesis of induction on r (condition (B/4/b)),
FS −→

Q(r−1)
(e(r′)) ≥ br−1 + 3 pr−1

4 = br + pr. Since Q �= Q(r−1), the in-

duction hypothesis of induction on states (condition (A/4)) implies that
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AQ = A −→
Q(r−1)

. It follows that FSQ(e(r′)) = FS −→
Q(r−1)

(e(r′)), so that

FSQ(e(r′)) ≥ br + pr.
These imply that MFSQ(i(r)l ) = br + pr

4 , so that MFSQ(i(r)l ) = FSQ(e(r)
l ).

Hence MFSQ(i(r)f ) = MFSQ(i(r)l ) = FSQ(e(r)
l ), so that e

(r)
l is a bottleneck edge

for Q.
Proof of (A/3/b). Consider edge e

(r)
i for any session i ∈ A −→

Q(r−1)
\ {i

(r)
f , i

(r)
l },

which is traversed by sessions i
(r)
f and i. By condition (A/3/a) shown above, edge

e
(r)
l , traversed by session i

(r)
f , is a bottleneck edge for state Q, so that MFSQ(i(r)f ) =

FSQ(e(r)
l ). By condition (A/2) shown above, FSQ(e(r)

l ) = br + pr

4 and FSQ(e(r)
i ) =

br + pr

2 . Since pr �= 0, it follows that FSQ(e(r)
l ) < FSQ(e(r)

i ), so that MFSQ(i(r)f ) <

FSQ(e(r)
i ). It follows that e

(r)
i is not a bottleneck edge for Q.

Proof of (A/3/c). The claim holds vacuously in case r = 1. So assume r > 1.
Consider any edge e(r′) ∈ E(r′) (Sched) for any integer r′, 1 ≤ r′ < r, traversed by
some session i ∈ A −→

Q(r−1)
. By the induction hypothesis of induction on r (condition

(B/4/b)), FS −→
Q(r−1)

(e(r′)) ≥ br−1+ 3 pr−1
4 . Since Q �= Q(r−1), the induction hypothesis

of induction on states (condition (A/4)) is nonempty and implies that AQ = A −→
Q(r−1)

.

It follows that FSQ(e(r′)) = FS −→
Q(r−1)

(e(r′)), so that FSQ(e(r′)) ≥ pr−1 + 3 pr−1
4 = br +

pr. Session i also traverses edge e
(r)
i . By condition (A/2) shown above, FSQ(e(r)

i ) ≤
br + pr

2 .

Since pr �= 0, it follows that FSQ(e(r′)) > FSQ(e(r)
i ), so that FSQ(e(r′)) >

MFSQ(i). It follows that e(r′) is not a bottleneck edge for Q.
Proof of (A/3/d). Consider any edge e(r′) ∈ E(r′)(Sched) for any integer r′,

r < r′ ≤ d
2 . Take any session i traversing e(r′); by construction of G(Sched), i ∈

A −→
Q(r−1)

\ {i
(r)
f , i

(r)
l }, and i traverses also e

(r)
i with c(e(r)

i ) = 2 br + pr. By condition

(A/2) shown above, FSQ(e(r)
i ) = br + pr

2 = c(e(r)
i )
2 . Since Q �= Q(r−1), the induction

hypothesis of induction on states (condition (A/4)) is nonempty and implies that both

sessions traversing e(r′) are active in Q. So, FSQ(e(r′)) = c(e(r′))
2 .

By Lemma 6.1, c(e(r)
i ) < c(e(r′)). So, FSQ(e(r)

i ) < FSQ(e(r′)). By definition of
minimum fair share, MFSQ(i) < FSQ(e(r′)). Hence, e(r′) is not a bottleneck edge
for Q.

Proof of (A/4). If Q = Q(r−1), the claim holds trivially. So assume Q �= Q(r−1).
By condition (A/3/b) shown above, any edge e

(r)
i with i ∈ A −→

Q(r−1)
\ {i

(r)
f , i

(r)
l } is not

a bottleneck edge for Q. Moreover, by conditions (A/3/c) and (A/3/d) shown above,
neither is any edge e(r′) ∈ E(r′)(Sched) with 1 ≤ r′ < r or r < r′ ≤ d

2 . Since Alg
is bottleneck, none of these edges causes the termination of a session in Q. Thus, it
remains to prove only that edge e

(r)

i
(r)
l

does not cause either the termination of any of

the sessions i
(r)
f and i

(r)
l traversing it.

Since pr �= 0, conditions (A/1) and (A/2) shown above imply that rQ(i(r)f ) �=
FSQ(e(r)

l ) and rQ(i(r)l ) �= FSQ(e(r)
l ). Since Alg is bottleneck, it follows that i

(r)
f , i

(r)
l /∈

Term (Q).
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Proof of (A/5). The proof is obtained by case analysis on i.
1. Assume first that i = i

(r)
f . We first prove by case analysis on Q that, in this

case, for each session k ∈ A −→
Q(r−1)

, rQ(k) = br. (This will be useful for some

later calculations.)
• First take Q = Q(r−1). In case r = 1 where Q = Q0, all session rates

are zero in Q0. Since b0 = p0 = 0, it follows that rQ(k) = br−1 + pr−1
2 .

Assume now that r > 1. Since k ∈ A −→
Q(r−1)

, by construction of G(Sched)

and by the induction hypothesis of induction on r (condition (B/3)),
k �∈ {i

(r−1)
f , i

(r−1)
l }. Thus, the induction hypothesis of induction on r

(condition (B/2)) implies that rQ(k) = br−1 + pr−1
2 .

• Now take Q �= Q(r−1). Since i
(r)
f ∈ A −→

Q(r−1)
\ S |α

(
Q(r−1), Q

]
, k ∈

A −→
Q(r−1)

\ S |α
(
Q(r−1), Q

]
as well. So, by condition (A/1) shown above,

rQ(k) = br−1 + pr−1
2 .

So, in all cases, rQ(k) = br−1 + pr−1
2 = br. By construction of G(Sched), i

(r)
f

traverses
• edge e

(r)
l with c(e(r)

l ) = 2br + pr

2 ;
• edge e

(r)
k for each session k ∈ A −→

Q(r−1)
\{i

(r)
f , i

(r)
l }, with c(e(r)

k ) = 2br+pr;

• edge e(r′) ∈ E(r′) (Sched) for each index r′, 1 ≤ r′ < r, in case r > 1.
We next calculate separately the increases for i

(r)
f in Q allowed by these edges.

(a) First consider edge e
(r)
l , which is also traversed by i

(r)
l ∈ A −→

Q(r−1)
. By

Lemma 7.1,

∆Q(i(r)f , e
(r)
l ) = c(e(r)

l ) − rQ(i(r)f ) − min

{
c((e(r)

l )
2

, rQ(i(r)l )

}
= 2br +

pr

2
− br − min

{
br +

pr

4
, br

}
=

pr

2
.

(b) Next consider any edge e
(r)
k for any session k ∈ A −→

Q(r−1)
\ {i

(r)
f , i

(r)
l },

which is also traversed by session k. By Lemma 7.1,

∆Q(i(r)f , e
(r)
k ) = c(e(r)

k ) − rQ(i(r)f ) − min{c(e(r)
k ), rQ(k)}

= 2 br + pr − br − min
{

br +
pr

2
, br

}
= pr.

(c) Finally, consider edge e(r′) for any integer r′, 1 ≤ r′ < r, in case r >
1. By the induction hypothesis of induction on r (condition (B/4/a)),
residQ(r−1)(e(r′)) ≥ pr−1

4 . Recall that i
(r)
f is the session scheduled first

(following state Q(r−1)) among active sessions in
−→

Q(r−1). Since i
(r)
f ∈

A −→
Q(r−1)

\S |α
(
Q(r−1), Q

]
, it follows that for each session i ∈ A −→

Q(r−1)
, i ∈

A −→
Q(r−1)

\S |α
(
Q(r−1), Q

]
. Thus, rates of all sessions are preserved from
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state Q(r−1) to Q. Hence, residQ(e(r′)) = residQ(r−1)(e(r′)) ≥ pr−1
4 = pr.

By Lemma 7.2, it follows that ∆Q(i(r)f , e(r′)) ≥ residQ(e(r′)) ≥ pr.

Thus, by definition of increase, it follows that ∆Q(i(r)f ) = pr

2 .

2. Now assume that i �∈ {i
(r)
f , i

(r)
l }. Since i ∈ A −→

Q(r−1)
\S |α

(
Q(r−1), Q

]
, by con-

dition (A/1) shown above, we have that rQ(i) = br−1 + pr−1
2 . By construction

of G(Sched) i traverses
• edge e

(r)
i with c(e(r)

i ) = 2 br + pr;
• edge e(r′) ∈ E(r′) (Sched) for each integer r′, 1 ≤ r′ < r, in case r > 1;
• edge e(r′′) ∈ E(r′′) (Sched) for any integer r′′, r < r′′ ≤ d

2 .
We next calculate separately the increases for i in Q allowed by these edges.
(a) First consider edge e

(r)
i , which is also traversed by i

(r)
f . Since i is sched-

uled in front of state
−→
Q , it follows that i

(r)
f ∈ S |α

(
Q(r−1), Q

]
. Thus,

condition (A/1) shown above implies that rQ(i(r)f ) = br + pr

2 = c(e(r)
i )
2 .

By Lemma 7.1,

∆Q(i, e(r)
i ) = c(e(r)

i ) − rQ(i) − min

{
c(e(r)

i )
2

, rQ(i(r)f )

}

= c(e(r)
i ) − rQ(i) − c(e(r)

i )
2

=
c(e(r)

i )
2

−
(
br−1 +

pr−1

2

)
.

Alternatively, we derive that ∆Q(i, e(r)
i ) = br + pr

2 −(br−1 + pr−1
2 ) = pr

2 .4

(b) Next consider edge e
(r′)
i for any integer r′, 1 ≤ r′ < r, in case r > 1,

which is also traversed by i
(r′)
f �∈ {i

(r)
f , i

(r)
l }. Induction hypothesis of

induction on r (condition (B/3)) implies that i
(r′)
f /∈ A −→

Q(r−1)
; hence,

i
(r′)
f /∈ AQ. So, rQ(r−1)(i(r

′)
f ) = rQ(i(r

′)
f ). Recall that rQ(i) = br−1 +

pr−1
2 . On the other hand, by the induction hypothesis of induction on r

(condition (B/2)), rQ(r−1)(i) = br−1 + pr−1
2 . Hence, rQ(i) = rQ(r−1)(i).

It now follows that residQ(e(r′)
i ) = residQ(r−1)(e(r′)

i ). By the induction

hypothesis of induction on r (condition (B/4/a)), residQ(r−1)(e(r′)
i ) ≥

pr−1
4 , so that residQ(e(r′)

i ) ≥ pr−1
4 . By Lemma 7.2, ∆Q(i, e(r′)

i ) ≥ pr−1
4 =

pr.
(c) Finally, consider edge e(r′′) for any integer r′′, r < r′′ ≤ d

2 , which is also
traversed by some other session k ∈ A −→

Q(r−1)
\ {i

(r)
f , i

(r)
l }. By condition

(A/1) shown above and by recursive definition of br, rQ(k) ≤ br + pr

2 =
c(e(r)

i )
2 . By Lemma 6.1, c(e(r′′)) > c(e(r)

i ). By Lemma 7.1,

4Both expressions provided for ∆Q(i, e(r)
i ) will be needed in the rest of the proof.
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∆Q(i, e(r′′)) = c(e(r′′)) − rQ(i) − min

{
c(e(r′′))

2
, rQ(k)

}

≥ c(e(r′′)) − rQ(i) − min

{
c(e(r′′))

2
,
c(e(r)

i )
2

}

≥ c(e(r′′)) − rQ(i) − c(e(r′′))
2

=
c(e(r′′))

2
−

(
br−1 +

pr−1

2

)
.

Since c(e(r′′)) > c(e(r)
i ), comparing the first expression for ∆Q(i, e(r)

i ) to
∆Q(i, e(r′′)) implies that ∆Q(i, e(r′′)) > ∆Q(i, e(r)

i ).
Thus, by definition of increase, it follows that ∆Q(i) = pr

2 .
3. Finally, assume that i = i

(r)
l . Since i

(r)
l ∈ A −→

Q(r−1)
\ S |α

(
Q(r−1), Q

]
, by

condition (A/1) shown above, we have that rQ(i(r)l ) = br−1 + pr−1
2 = br. By

construction of G(Sched), i
(r)
l traverses

• edge e
(r)
l with capacity c(e(r)

l ) = 2 br + pr

2 ;
• edge e(r′) ∈ E(r′) (Sched) for each integer r′, 1 ≤ r′ < r, in case r > 1.

We next calculate separately the increases for i
(r)
l in Q allowed by these

edges.
(a) First consider edge e

(r)
l , which is also traversed by session i

(r)
f . Since

i
(r)
l is scheduled in front of

−→
Q , it follows that i

(r)
f ∈ S |α

(
Q(r−1), Q

]
.

Thus, condition (A/1) shown above implies that rQ(i(r)f ) = br + pr

2 . By
Lemma 7.1,

∆Q(i(r)l , e
(r)
l ) = c(e(r)

l ) − rQ(i(r)l ) − min

{
c(e(r)

l )
2

, rQ(i(r)f )

}

= 2 br +
pr

2
− br − min

{
br +

pr

4
, br +

pr

2

}
=

pr

4
.

(b) Finally, consider any edge e(r′) for some integer r′, 1 ≤ r′ < r, in
case r > 1, which is also traversed by session i

(r′)
f �∈ {i

(r)
f , i

(r)
l }. In-

duction hypothesis of induction on r (condition (B/3)) implies that
i
(r′)
f /∈ A −→

Q(r−1)
, so that i

(r′)
f /∈ AQ. It follows that rQ(r−1)(i(r

′)
f ) =

rQ(i(r
′)

f ). Recall that rQ(i(r)l ) = br−1 + pr−1
2 . On the other hand,

by the induction hypothesis of induction on r (condition (B/2)), we
have that rQ(r−1)(i(r)l ) = br−1 + pr−1

2 . Hence, rQ(i(r)l ) = rQ(r−1)(i(r)l ).
It now follows that residQ(e(r′)) = residQ(r−1)(e(r′)). By the induc-
tion hypothesis of induction on r (condition (B/4/a)), residQ(r−1)(e(r′))
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≥ pr−1
4 , so that residQ(e(r′)) ≥ pr−1

4 as well. By Lemma 7.2, it follows
that ∆Q(i(r)l , e(r′)) ≥ pr−1

4 = pr.
Thus, by definition of increase, it follows that ∆Q(i(r)l ) = pr

4 .
The proof of part (A) is now complete. We continue with the proof of part (B).

Proof of part (B).
Proof of (B/1). Assume, by way of contradiction, that lr = ∞. Then there

exists some session i ∈ A −→
Q(r−1)

which is not scheduled in front of any state following

Q(r−1). By condition (A/5) shown above, it follows that for any state Q such that
Q(r−1) α�−→ Q, ∆Q(i) ≥ pr

4 > 0 (since pr > 0). Thus, by the update operation, the
rate of session i can be increased without causing any decrease to the rate of any
other session with smaller rate. This is in contradiction to max-min fairness.

Condition (B/1) establishes that state Q(r) is well defined. Recall that in part (A)

we considered all states from Q(r−1) through
←−
Q(r). We now explore further properties

of Q(r).

Proof of (B/2). Recall that session i
(r)
l is scheduled in front of Q(r). By condition

(A/1) shown above, r ←−
Q(r)

(i(r)f ) = br + pr

2 , while r ←−
Q(r)

(i(r)l ) = br−1 + pr−1
2 = br.

Moreover, by condition (A/5) shown above, ∆ ←−
Q(r)

(i(r)l ) = pr

4 . Thus, by the update

operation, rQ(r)(i(r)l ) = r ←−
Q(r)

(i(r)l ) + ∆ ←−
Q(r)

(i(r)l ) = br + pr

4 ; moreover, rQ(r)(i(r)f ) =

min{rQ(r)(i(r)l ), r ←−
Q(r)

(i(r)f )} = min
{
br + pr

4 , br + pr

2

}
= br + pr

4 .

Consider now any session i ∈ A −→
Q(r−1)

\ {i
(r)
f , i

(r)
l }. By definition of Q(r), i ∈ S |α

(Q(r−1),
←−
Q(r)]. Thus, condition (A/1) shown above implies that r ←−

Q(r)
(i) = br + pr

2 .

Since, by construction of G(Sched), i ∩ i
(r)
l = ∅, the update operation implies that

rQ(r)(i) = r ←−
Q(r)

(i) = br + pr

2 .

Proof of (B/3). By condition (A/4) shown above, it follows that fair shares of

all active edges are preserved from
←−
Q(r) to Q(r). Since Alg is bottleneck and the

termination condition for bottleneck algorithms is a predicate on session rates and
fair shares, it follows that the only sessions that are candidates to be terminated in
state Q(r) are those whose rates are changed in Q(r); by conditions (A/1) and (B/1)
shown above, these are sessions i

(r)
f and i

(r)
l .

By condition (A/3/a) shown above, edge e
(r)
l is a bottleneck edge for

←−
Q(r). Con-

dition (A/4) shown above implies that both i
(r)
f , i

(r)
l ∈ AQ(r) , so that e

(r)
l ∈ AEQ(r) .

Thus, Proposition 4.8 (condition (2)) implies that e
(r)
l is a bottleneck edge for Q(r).

Recall that FSQ(r)(e(r)
l ) = FS ←−

Q(r)
(e(r)

l ). Thus, by condition (A/2) shown above, it

follows that FSQ(r)(e(r)
l ) = br + pr

4 . By condition (B/2) shown above, this implies
that rQ(r)(i(r)f ) = rQ(r)(i(r)l ) = FSQ(r)(e(r)

l ). Since Alg is bottleneck, it follows that

i
(r)
f , i

(r)
l ∈ Term

(
Q(r)

)
.

Proof of (B/4). Take any session i ∈ A −→
Q(r−1)

\ {i
(r)
f , i

(r)
l }, and fix any integer r′,

1 ≤ r′ ≤ r. The proof is by case analysis on r′.
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1. First consider the case where r′ = r. By construction of G(Sched), edge e
(r)
i

with capacity c(e(r)
i ) = 2 br + pr is traversed by sessions i

(r)
f and i. So,

residQ(r)(e(r)
i )

= c(e(r)
i ) − rQ(r)(i(r)f ) − rQ(r)(i)

= 2 br + pr −
(
br +

pr

4

)
−

(
br +

pr

2

)
(by condition (B/2) shown above)

=
pr

4
,

which establishes condition (B/4/a) in this case.
We continue with condition (B/4/b). By condition (B/3) shown above, i

(r)
f /∈

A −→
Q(r)

, while i ∈ A −→
Q(r)

, so that |A −→
Q(r)

| e| = 1. Thus,

FS −→
Q(r)

(e(r)
i )

=
c(e(r)

i ) − allot −→
Q(r)

(e(r)
i )∣∣∣∣A −→

Q(r−1)
| e

(r)
i

∣∣∣∣
=

2br + pr − (br + pr

4 )
1

(by conditions (B/1) and (B/3) shown above)

= br +
3
4

pr,

which establishes condition (B/4/b) in this case.
2. Now consider the case where r′ < r. Clearly, r > 1 in this case, so that the

induction hypothesis of induction on r is nonempty. Fix any edge e
(r′)
i ∈

E(r′)(Sched). Condition (B/3) shown above implies that i
(r′)
f /∈ A −→

Q(r−1)
, so

that rQ(r)(i(r
′)

f ) = rQ(r−1)(i(r
′)

f ). By condition (B/2) shown above, rQ(r)(i) =
br+ pr

2 , while by the induction hypothesis of induction on r (condition (B/2)),
rQ(r−1)(i) = br−1 + pr−1

2 = br. Thus,

residQ(r−1)(e(r′)
i ) − residQ(r)(e(r′)

i )

= (c(e(r′)
i ) − rQ(r−1)(i(r

′)
f ) − rQ(r−1)(i))

− (c(e(r′)
i ) − rQ(r)(i(r

′)
f ) − rQ(r)(i))

= (rQ(r)(i) − rQ(r−1)(i)) − (rQ(r)(i(r
′)

f ) − rQ(r−1)(i(r
′)

f ))

=
(
br +

pr

2

)
− br − 0

=
pr

2
.

By the induction hypothesis of induction on r (condition (B/4/a)), it follows
that residQ(r−1)(e(r′)

i ) ≥ pr−1
4 = pr. Thus, residQ(r)(e(r′)

i ) ≥ pr − pr

2 > pr

4 ,
which establishes condition (B/4/a) in this case.
We continue with condition (B/4/b). Recall that i

(r′)
f /∈ A −→

Q(r−1)
, so that

i
(r′)
f /∈ A −→

Q(r)
, and r −→

Q(r−1)
(i(r

′)
f ) = r −→

Q(r)
(i(r

′)
f ); on the other hand, i ∈ A −→

Q(r)
,
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so that i ∈ A −→
Q(r−1)

. It follows that FS −→
Q(r−1)

(e(r′)
i ) = FS −→

Q(r)
(e(r′)

i ). By the

induction hypothesis of induction on r (condition (B/4/b)), it follows that
FS −→

Q(r−1)
(e(r′)

i ) ≥ br−1 + 3 pr−1
4 = br + pr. Thus, FS −→

Q(r)
(e(r′)

i ) ≥ br + pr >

br + 3 pr

4 , which establishes condition (B/4/b) in this case.
The proof of Proposition 7.3 is now complete.

We are now ready to prove the following.
Theorem 7.4 (lower bound for oblivious algorithms). Assume that Alg is opti-

mistic, oblivious, and bottleneck, and that it computes the max-min fair rate vector.
Then UAlg ≥ dn

4 + n
2 .

Proof. We will show that UAlg(〈G(Sched), S〉) = dn
4 +n

2 , where Alg = 〈Sched, Term〉
and G (Sched) is the network constructed in section 6. To do so, we calculate
UAlg(〈G (Sched) , Sj〉) for any particular cluster Sj , j ≥ 1, and we add up over all n

d
clusters. By Proposition 7.3 (condition (B/1)), the execution of Alg on G (Sched | Sj)
is divided into d

2 execution epochs α(1), . . . , α(d/2) such that all active sessions are
scheduled at least once in each epoch; condition (B/3) implies that only two such
sessions are terminated in each epoch. Thus, at least d − 2 (r − 1) update operations
are executed in α(r), 1 ≤ r ≤ d

2 . Summing up over all clusters and execution epochs
yields that UAlg (G, S) ≥

∑n/d
j=1

∑d/2
r=1(d − 2(r − 1)) = nd

4 + n
2 , as needed.

7.2. Partially oblivious algorithms. In this section, we present a lower bound
of Ω(dn) on the convergence complexity of any optimistic, partially oblivious, and
bottleneck algorithm that computes the max-min rate vector.

For the sake of clarity of presentation, we first consider the special case where
d = n. (We remark that this is the case where the lower bound to be shown is
maximum over all possible values of d, 1 ≤ d ≤ n.) The backbone of our proof for
this case will be a simulation lemma that establishes a correspondence between the
executions of any partially oblivious algorithm and a suitable oblivious algorithm on
the network constructed from the latter as in section 6 (assuming d = n). We will
then use the simulation lemma to prove a lower bound of Ω(n2) for this case. We
finally consider the general case of arbitrary d; we state the Ω(dn) lower bound for
it and discuss its proof, which relies on a generalization of the simulation lemma to
general d. We start with the simulation lemma for the case d = n.

Proposition 7.5 (simulation lemma). Assume that Alg is optimistic, partially
oblivious, and bottleneck, and that it computes the max-min fair rate vector. Then
there exists some optimistic, oblivious, and bottleneck algorithm OAlg = 〈OSched,
OTerm〉 such that there exist execution prefixes α = α1 · α2 · . . . · αd/2 of OAlg and
β = β1 · β2 · . . . · βd/2 of Alg, on network G (OSched), such that for each integer r,
1 ≤ r ≤ d

2 , the following conditions hold:
(1) αr and βr are identical;
(2) all sessions active in first (βr) are scheduled at least once in βr and only two

of them terminate in βr.
We first provide an informal, high-level outline of our proof. Given any partially

oblivious algorithm, we derive some oblivious algorithm such that the executions of the
two algorithms on the network constructed from the oblivious one in section 6 are iden-
tical. The execution of the oblivious algorithm is described by Proposition 7.3; since
the two executions are shown to be identical, this will eventually imply the claimed
lower bound for the partially oblivious algorithm. In order to derive the oblivious
algorithm with the required properties, we start with the set of all n-epoch, oblivious
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algorithms; we inductively restrict this set until it contains only algorithms that are
compatible with the partially oblivious algorithm (with respect to their schedulers)
and perform sufficiently many update operations. All intermediate sets of oblivious
algorithms contain only algorithms that induce executions identical to the partially
oblivious algorithm up to each intermediate point. In more detail, the partial execu-
tion of each oblivious algorithm in any intermediate set on the network constructed
from the algorithm in section 6 is identical to the partial execution of the partially
oblivious algorithm on the same network. Each individual intermediate step is ex-
tended progressively by considering the session scheduled next by the partially obliv-
ious algorithm and restricting the intermediate set of oblivious algorithms to those
that schedule the same session next. (The construction follows an outer induction on
execution epochs and an inner induction on states within each epoch.)

Proof. For each index r, 1 ≤ r ≤ d
2 , we will construct a set A(r) of opti-

mistic, oblivious, and bottleneck algorithms that compute the max-min fair rate
vector such that for each algorithm OAlg ∈ A(r), there exist execution prefixes
α (OAlg) = α1 (OAlg) . . . αr (OAlg) of OAlg and β (OAlg) = β1 (OAlg) . . . βr (OAlg)
of Alg on network G (OSched) so that

(1) for each algorithm OAlg ∈ A(r) for each integer r′, 1 ≤ r′ ≤ r, αr′ (OAlg) and
βr′ (OAlg) are identical;

(2) α (OAlg) is identical over all algorithms OAlg ∈ A(r);
(3) β (OAlg) is identical over all algorithms OAlg ∈ A(r);
(4) for each algorithm OAlg ∈ A(r) for each integer r′, 1 ≤ r′ ≤ r, all sessions

active in state first (βr′ (OAlg)) are scheduled at least once in βr′ (OAlg), but
only two of them terminate in βr′ (OAlg).

Any algorithm OAlg in the final set A(d/2) will satisfy the claim due to conditions (1)
and (4) guaranteed by the construction.

The construction will be by induction on r, 1 ≤ r ≤ d
2 . The construction employs

the set of all optimistic, oblivious, bottleneck, n-epoch algorithms, which we denote
as A(0). By Theorem 5.2, any algorithm from A(0) computes the max-min fair rate
vector. Our construction will progressively restrict the set A(0) so that A(d/2) ⊆
· · · ⊆ A(r) ⊆ · · · ⊆ A(0). Hence, for each integer r, 1 ≤ r ≤ d

2 , any algorithm
from A(r) computes the max-min fair rate vector. This property will be needed later,
whenever we use Proposition 7.3, which assumes it. For each algorithm OAlg ∈ A(0),
consider the initial state Q0 (OAlg) of network G (OSched) (with all rates zero and
all sessions active). Set α0 (OAlg) := Q0 (OAlg) and β0 (OAlg) := Q0 (OAlg). For
the sake of shortening the construction, we merge the construction for the basis case
(where r = 1) and the construction for the induction step. Thus, the case r = 1 will
be treated separately (where needed) along the construction for the induction step.

Fix any integer r, 1 ≤ r ≤ d
2 , and assume inductively that we have constructed

a set A(r−1) with the required properties. Notice that if r = 1, then A(r−1) = A(0)

and the induction hypothesis is empty.
For the induction step, we construct a set A(r) ⊆ A(r−1) with the required prop-

erties. This construction is progressive and uses induction on states, starting with
last (β (OAlg)) for any algorithm OAlg ∈ A(r−1). We will prove that conditions (1),
(2), and (3) are preserved along the inductive construction on states, while (4) holds
when the construction of A(r) is complete.

For the basis case (of induction on states), take A(r) := A(r−1); for any al-
gorithm OAlg = 〈OSched, OTerm〉 ∈ A(r−1), set αr (OAlg) = last (αr−1 (OAlg)) and
βr (OAlg) = last (βr−1 (OAlg)). In case r = 1, by definition of initial state (Q0 (OAlg)),
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α1 (OAlg) (resp., β1 (OAlg)) is identical for all algorithms OAlg ∈ A(1), implying (2)
and (3). By construction, for each algorithm OAlg ∈ A(1), it trivially holds that
α1 (OAlg) and β1 (OAlg) are identical, which implies (1). In case r > 1, by the induc-
tion hypothesis of induction on r, conditions (1), (2), and (3) hold.

We now continue with the induction step (induction on states) of the inductive
construction of A(r). Take any algorithm OAlg ∈ A(r) and consider α (OAlg). (By the
induction hypothesis of induction on states (condition (2)), the choice of OAlg does not
matter.) In case r = 1, all sessions are active in state last (βr−1 (OAlg)) = Q0 (OAlg).
In case r > 1, since r − 1 < d

2 , Proposition 7.3 (condition (B/3)) implies that the set
of active sessions in state last (αr−1 (OAlg)) is nonempty; the induction hypothesis
of induction on states (condition (1)) implies now that the set of active sessions in
state last (βr−1 (OAlg)) is nonempty as well. If all such sessions have been scheduled
at least once in αr (OAlg), then the inductive construction of A(r) is complete and
conditions (1), (2), and (3) hold by the induction hypothesis of induction on states.
(Condition (4) will be shown later.) So assume that there exists at least one such active
session i (OAlg) that has not been scheduled in βr (OAlg). By the induction hypothesis
of induction on states (condition (1)), αr (OAlg) and βr (OAlg) are identical. It follows
that i (OAlg) has not been scheduled in αr (OAlg) either. Proposition 7.3 (condition
(A/5)) implies that the increase for session i (OAlg) in state last (αr (OAlg)) is nonzero.
By the induction hypothesis of induction on states (condition (1)), it follows that
the increase for session i (OAlg) in state last (βr (OAlg)) is nonzero as well. By the
update operation, it follows that an increase to the rate of i (OAlg) in last (βr (OAlg))
is possible without decreasing the rate of any other session. So, max-min fairness
has not been reached yet and some session rate must change. However, a session
rate changes only when an active session is scheduled. Since Alg computes the max-
min fair rate vector, it follows that at least one active session in last (βr (OAlg)) is
scheduled after last (βr (OAlg)). An inductive application of this argument implies
that all sessions active in first (βr (OAlg)) are scheduled at least once in βr (OAlg). It
follows that the inductive construction of A(r) eventually terminates.

Denote by i′ (OAlg) the session scheduled by Alg immediately after last (βr (OAlg))
on network G (OSched). By the induction hypothesis of induction on states (condi-
tion (3)), it follows that last (βr (OAlg)) is identical for all OAlg ∈ A(r). Since Alg
is partially oblivious, this implies that i′ (OAlg) is identical for all OAlg ∈ A(r) as
well; so, denote it i′. Fix any algorithm OAlg ∈ A(r) and restrict A(r) to the set of
all optimistic, oblivious, bottleneck, n-epoch algorithms whose schedulers have prefix
σ (αr (OAlg)) i′.

We now argue that A(r) is nonempty and unique. Any sequence of sessions
σ (βr (OAlg)) i′ can be extended to an n-epoch scheduler (by appropriate padding).
This implies that A(r) is nonempty. By the induction hypothesis of induction on
states (condition (3)), βr (OAlg) is identical over all algorithms OAlg ∈ A(r), so that
σ (βr (OAlg)) i′ is also identical over all OAlg ∈ A(r). It follows that the constructed
A(r) is unique.

Take any algorithm OAlg = 〈OSched, OTerm〉 ∈ A(r).
• Define Q (OAlg) to be the state that results when Alg, starting from state

last (βr (OAlg)) of the network G (OSched), schedules session i′ on G (OSched)
and set βr (OAlg) := βr (OAlg), i′, Q (OAlg).

• Similarly, define Q′ (OAlg) to be the state that results when OAlg, start-
ing from last (αr (OAlg)) of the network G (OSched), schedules session i′ on
G (OSched) and set αr (OAlg) := αr (OAlg), i′, Q′ (OAlg).
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We now prove the required properties for the sets

α (OAlg) =
{

α1 (OAlg) · . . . · αr (OAlg) | OAlg ∈ A(r)
}

and

β (OAlg) =
{

β1 (OAlg) · . . . · βr (OAlg) | OAlg ∈ A(r)
}

of execution prefixes.
We start by proving (1). Take any algorithm OAlg = 〈OSched, OTerm〉 ∈ A(r).

By the induction hypothesis of induction on states (condition (1)), Alg and OAlg start
from identical states of the network G (OSched); hence, scheduling the same session
(i′) on the network G (OSched) results in identical states, which inductively extends
the claim.

We now treat (2) and (3). Since i′ (OAlg) is identical over all OAlg ∈ A(r), the
induction hypothesis of induction on states (condition (2)) implies that the set of
sessions scheduled in αr (OAlg) is identical over all OAlg ∈ A(r). So, Proposition 7.3
(conditions (A/1) and (A/4)) implies that Q′ (OAlg) is identical over all OAlg ∈ A(r).
Induction hypothesis of induction on states (condition (2)) and the fact that i′ (OAlg)
is identical over all OAlg ∈ A(1) imply that αr (OAlg) is identical over all OAlg ∈ A(r),
which proves (2). Now (3) follows from (1) and (2).

We finally prove (4) for the set A(r) constructed when the induction on states
is complete. Fix any algorithm OAlg ∈ A(r). Recall that all sessions active in
first (βr (OAlg)) are scheduled at least once in βr (OAlg); moreover, the termination
condition used in the construction of A(r) implies that βr (OAlg) is the shortest such
fragment. By condition (1) shown above, this implies that αr (OAlg) is the short-
est execution fragment such that all sessions active in first (αr (OAlg)) are scheduled
at least once in αr (OAlg). So, by Proposition 7.3 (condition (B/3)), only two ses-
sions terminate in αr (OAlg). Hence, the induction hypothesis of induction on states
(condition (1)) implies that only two sessions terminate in βr (OAlg), as needed.

The proof of the simulation lemma is now complete.
We are now ready to prove the lower bound for the case where d = n.
Theorem 7.6 (lower bound for partially oblivious algorithms). Assume that Alg

is optimistic, partially oblivious, and bottleneck, and that it computes the max-min
rate vector. Then UAlg ≥ n2

4 + n
2 .

Proof. Proposition 7.5 implies that there exists some optimistic, oblivious, and
bottleneck algorithm OAlg = 〈OSched, OTerm〉 such that there exists an execution
prefix β = β1 · β2 · . . . · βd/2 of Alg on network G (OSched) such that for each integer
r, 1 ≤ r ≤ d

2 , all sessions active in first (βr) are scheduled at least once in βr and
only two of them terminate in βr. Hence, at least n − 2 (r − 1) update operations are
executed in βr, 1 ≤ r ≤ n

2 . Summing up over all r epochs, 1 ≤ r ≤ n
2 , yields that

UAlg (G (OSched) , S) ≥
∑n/2

r=1 (n − 2 (r − 1)) = n2

4 + n
2 .

As a direct generalization of the simulation lemma for the case d = n, we obtain
the following.

Proposition 7.7 (simulation lemma). Assume that Alg is optimistic, partially
oblivious, and bottleneck, and that it computes the max-min fair rate vector. Partition
S into disjoint clusters S1, . . . ,Sn/d with d sessions each. Then there exists some
optimistic, oblivious, and bottleneck algorithm OAlg = 〈OSched, OTerm〉 such that
there exist execution prefixes α of OAlg and β of Alg, on network G (OSched), such
that for each cluster Sj, 1 ≤ j ≤ n

d , α and β can be written as α = α1 · α2 · . . . · α d
2
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and β = β1 ·β2 · . . . ·β d
2

so that for each integer r, 1 ≤ r ≤ d
2 , the following conditions

hold:
(1) αr and βr are identical;
(2) all sessions from Sj active in first (βr) are scheduled at least once in βr and

only two of them terminate in βr.
The execution prefixes α and β in Proposition 7.7 are constructed in a similar

inductive manner to the corresponding prefixes in Proposition 7.5. The additional
complications stem from the fact that the execution fragments αr and βr, 1 ≤ r ≤ d

2 ,
may now be different for each cluster; thus, the inductive construction in the proof
of Proposition 7.5 needs to be adjusted in order to accommodate chopping off α and
β into the suitable execution fragments αr and βr, 1 ≤ r ≤ d

2 , for each particular
cluster. We finally use Proposition 7.7 to show our final lower bound; its proof is
similar to the one of Theorem 7.6 that used Proposition 7.5.

Theorem 7.8 (lower bound for partially oblivious algorithms). Assume that Alg
is optimistic, partially oblivious, and bottleneck, and that it computes the max-min
rate vector. Then UAlg ≥ dn

4 + n
2 .

Consider the partially oblivious algorithm GlobalMinSched introduced by Afek,
Mansour, and Ostfeld [1, section 4], whose scheduler chooses, for each state Q, the
active session with the minimum rate. We note that [1, Theorem 4.3] implies an
upper bound |Sj | (|Sj |+1)

2 on the number of update operations executed by GlobalMin
on network G with session set Sj for any particular cluster Sj . So, UGlobalMin ≤∑

j≥1
|Sj | (|Sj |+1)

2 ≤ maxj≥1|Sj |+1
2

∑
j≥1 |Sj | = dn

2 + n
2 . This implies that the lower

bound established in Theorem 7.8 is tight (within a factor of 2).

8. Discussion and directions for further research. We have presented a
comprehensive collection of lower and upper bounds on the convergence complexity
of optimistic, bottleneck, rate-based flow control algorithms, under varying degrees of
the knowledge used by the scheduling component of the algorithms. In particular, we
have defined and studied oblivious, partially oblivious, and nonoblivious algorithms.
We have shown that, perhaps surprisingly, the classes of oblivious algorithms and
partially oblivious algorithms collapse with respect to convergence complexity; we
have also shown a convergence complexity separation between (partially) oblivious
algorithms and nonoblivious algorithms. A more complete presentation of results for
the model studied in this paper (and extensions of it) can be found in [8].

For the sake of completeness and comparison, we summarize in Table 1 all known
lower and upper bounds on the convergence complexity of optimistic, bottleneck algo-
rithms for rate-based flow control, established in this work and in the preceding work
by Afek, Mansour, and Ostfeld [1]. We remark that RoundRobin represents an expo-
nential improvement over the previous algorithm Arbitrary [1, section 6] for the class
of oblivious algorithms we introduced. (The algorithm Arbitrary schedules sessions in
any arbitrary way.)

Table 1

Summary of known lower and upper bounds on convergence complexity for optimistic, bottleneck
rate-based flow control algorithms.

Scheduler types Lower bounds Upper bounds

Oblivious dn
4 + n

2
dn
2 + n

2 (RoundRobin)
Θ(2n) (Arbitrary [1])

Partially oblivious dn
4 + n

2
dn
2 + n

2 (LocalMin or GlobalMin [1])
Nonoblivious n n (Linear)
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Our work leaves open several important questions. The most obvious open ques-
tion would be to close the gap between the lower bound of dn

4 + n
2 and the upper bound

of dn
2 + n

2 we have shown on the convergence complexity of oblivious algorithms.
The model considered in this work is simple and elegant, yet structured enough

to capture several significant ingredients of distributed rate-based flow control; there
remain, however, a number of significant practical issues untouched by our model and
analysis. In the first place, we feel that the max-min fairness criterion may be undue in
some realistic situations, where sessions have different demands. (Some results in this
direction have been obtained in [10].) Second, the limitation to static sets of sessions
is somehow restrictive; it would be significant to extend our model and techniques to
handle set-up and take-down of sessions. Third, practical considerations may demand
that rate-based flow control algorithms avoid too small or too large adjustments to
session rates. Encompassing such practical considerations, and analyzing their impact
on convergence complexity, into the framework of rate-based flow control algorithms
is an interesting research problem.

Kleinberg, Rabani, and Tardos [20] formulated some natural approximations to
max-min fairness and advocated them as suitable fairness conditions for certain rout-
ing and load balancing applications. It would be interesting to study the convergence
complexity of such approximations within the framework of rate-based flow control
algorithms.
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