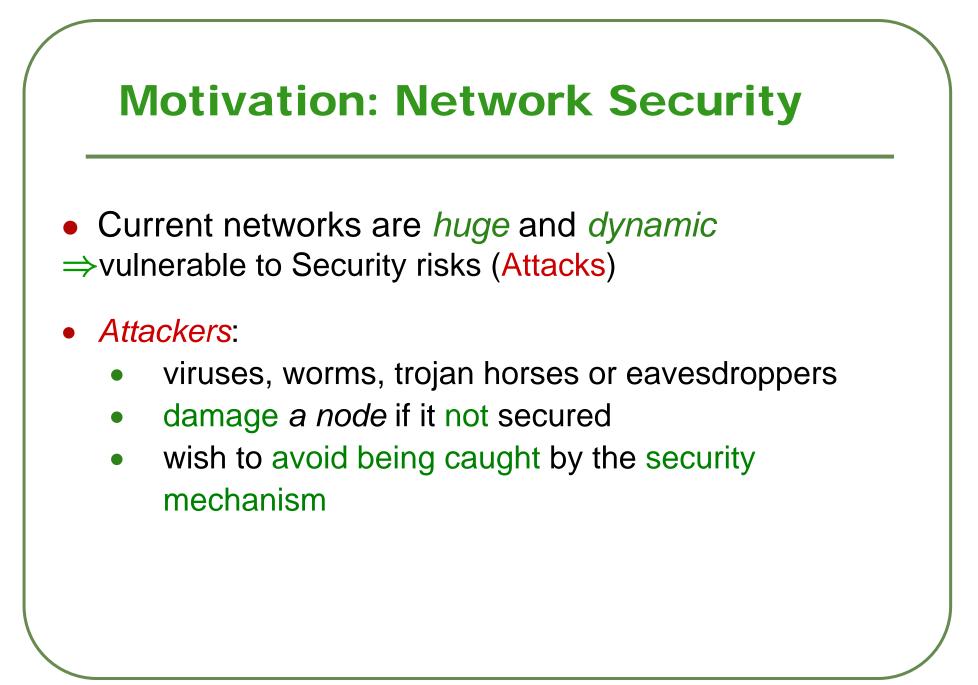
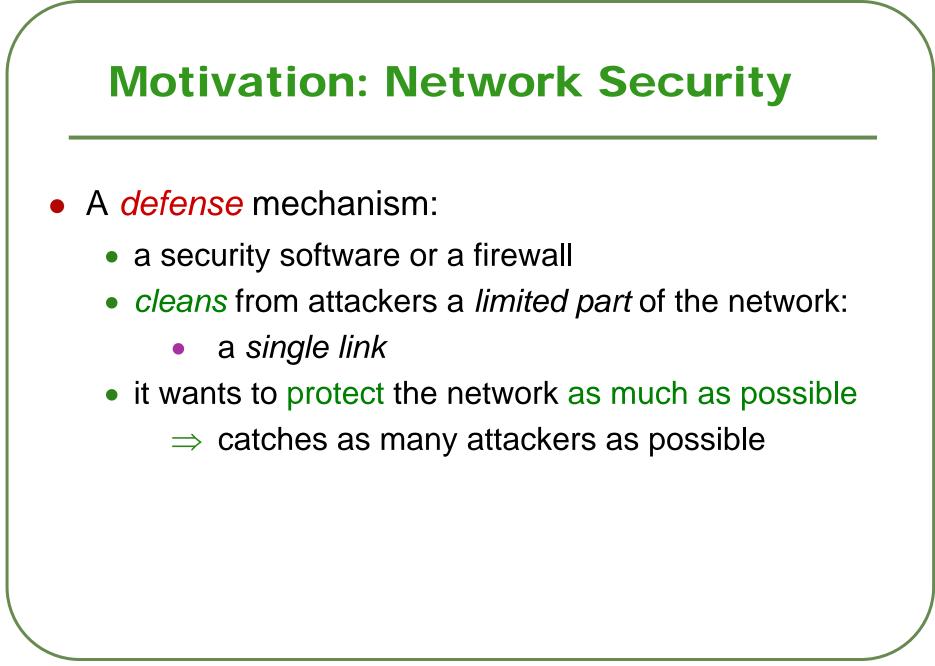
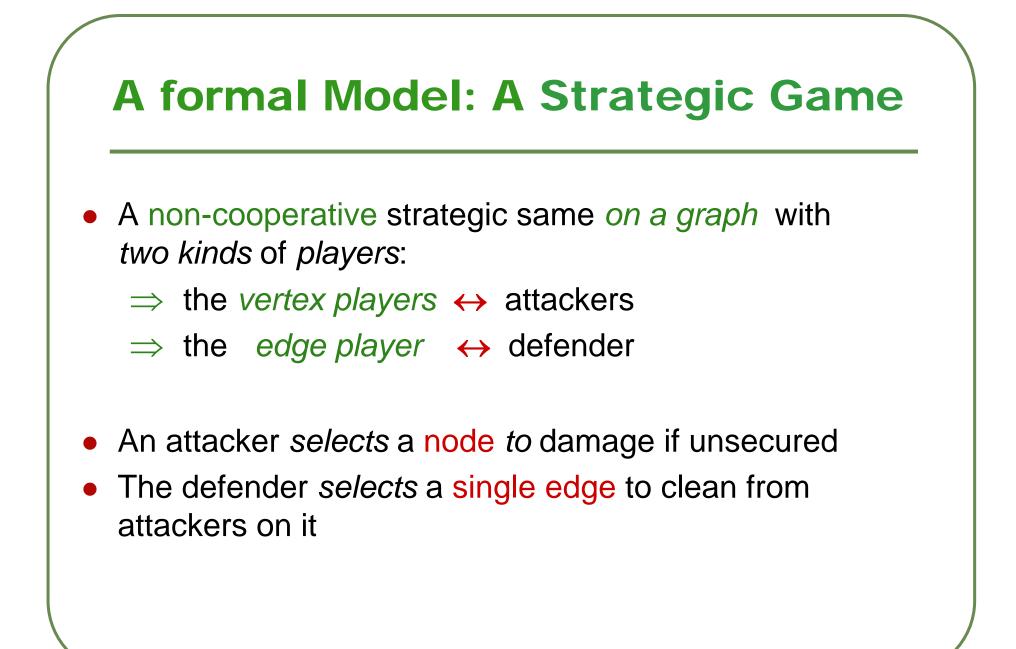
The Price of Defense

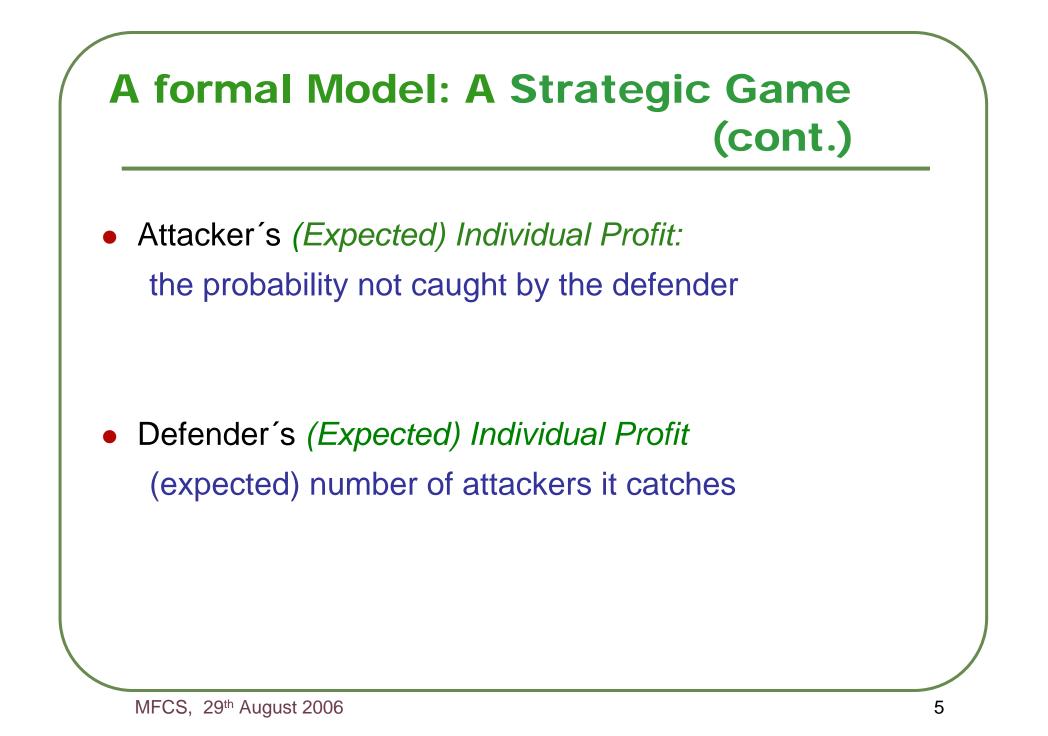
M. Mavronicolas*, V. Papadopoulou*, L. Michael[¥], A. Philippou*, P. Spirakis[§]

University of Cyprus, Cyprus* University of Patras and RACTI, Greece[§] Division of Engineering and Applied Sciences, Harvard University, Cambridge[¥]









A Strategic Game: Definition (cont.)

[Mavronicolas et al. ISAAC2005]

• Associated with G(V, E), is a strategic game:

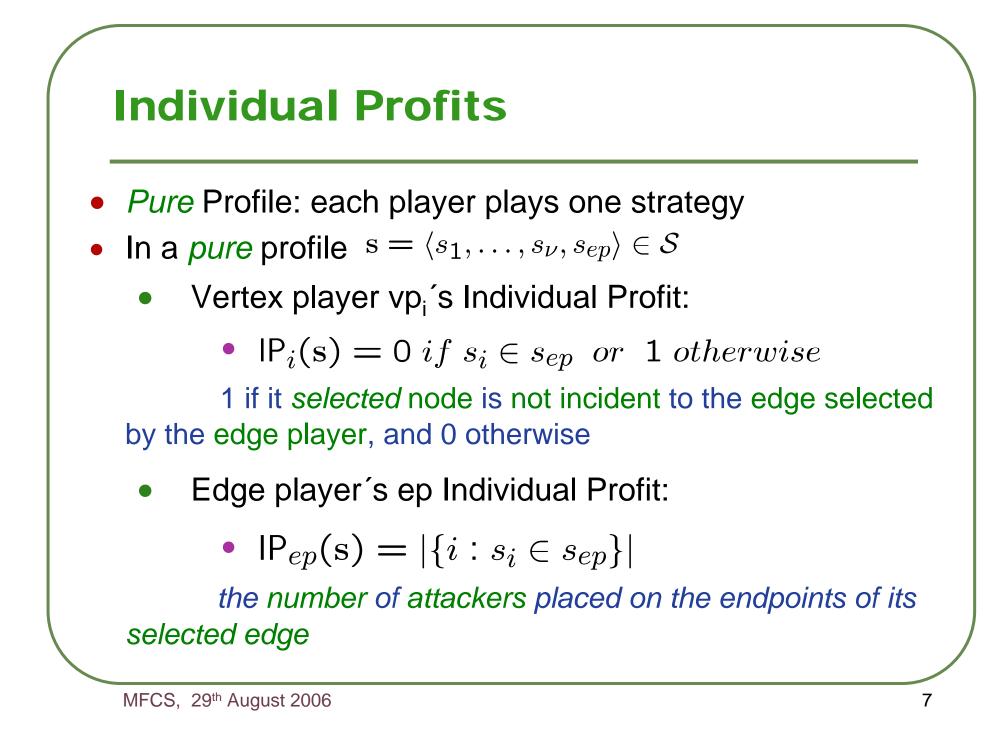
$\Pi(G) = \langle \mathcal{N}, \{S_i\}_{i \in \mathcal{N}}, \{\mathsf{IP}\}_{i \in \mathcal{N}} \rangle$

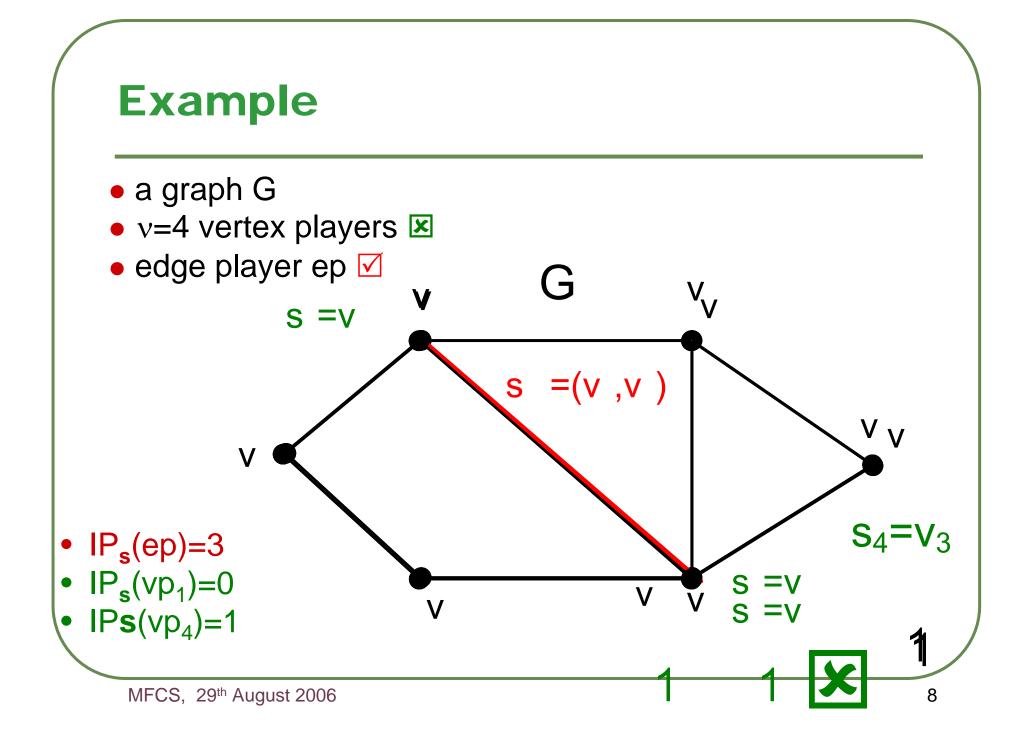
•
$$\mathcal{N} = \mathcal{N}_{vp} \cup \mathcal{N}_{ep}$$

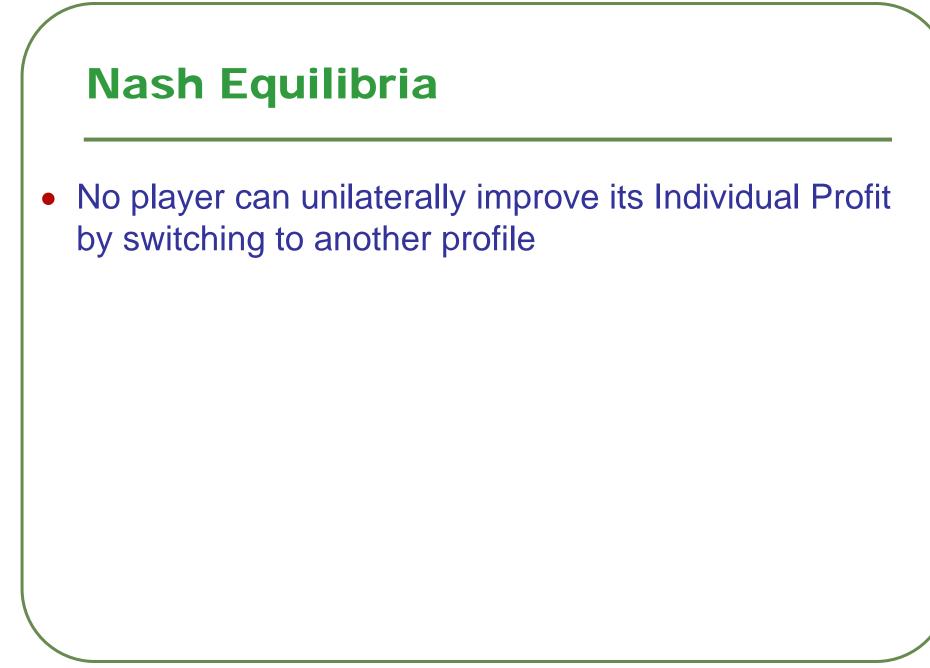
• v attackers (set N_{vp}) or vertex players vp_i

• Strategy set : $S_{vp_i} = V$

- a defender or the edge player *ep*
 - Strategy set : S_{ep} = E







Notation

In a profile s,

- Support_s(*vp*)= the supports of all vertex players
- P_s(Hit(υ)) = Probability the edge player chooses an edge incident to vertex υ
- $VP_s(v)$ = expected number of vps choosing vertex v
- $VP_s(e) = VP_s(v) + VP_s(u)$, for an edge e=(u, v)



vertex players vp;

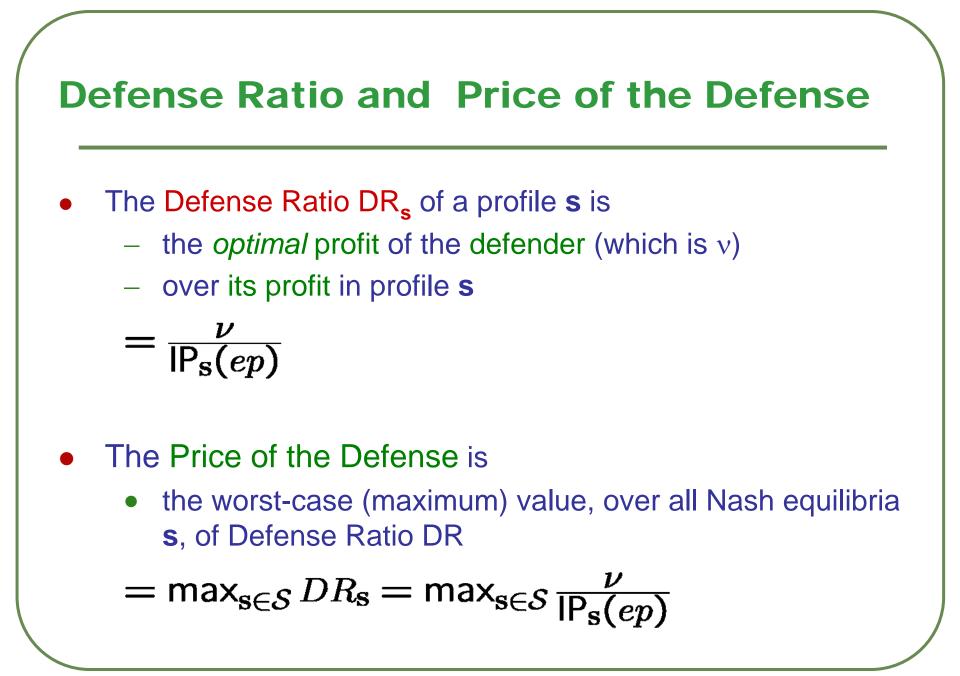
$$\mathsf{P}_{\mathbf{s}}(i) = \sum_{v \in V} s_i(v) \cdot (1 - P_{\mathbf{s}}(\mathsf{Hit}(v)))$$

• edge player *ep*:

$$\mathsf{IP}_{\mathbf{s}}(ep) = \sum_{e \in E} s_{ep}(e) \cdot \mathsf{VP}_{\mathbf{s}}(e)$$

where,

- $s_i(v)$ = probability that vp_i chooses vertex v
- $s_{ep}(e)$ = probability that the ep chooses edge e
- $Edges_s(v) = \{edges \in Support_s(ep) \text{ incident to vertex } v \}$



Algorithmic problems

CLASS NE EXISTENCE

Instance: A graph G(V, E)

Question: Does $\Pi(G)$ admit a CLASS Nash equilibrium?

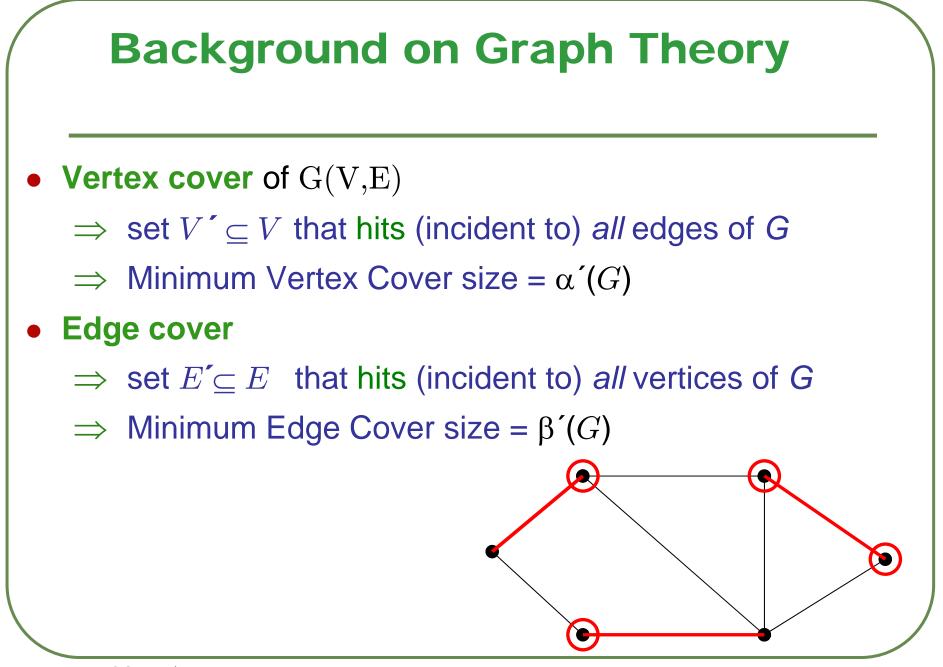
• FIND CLASS NE

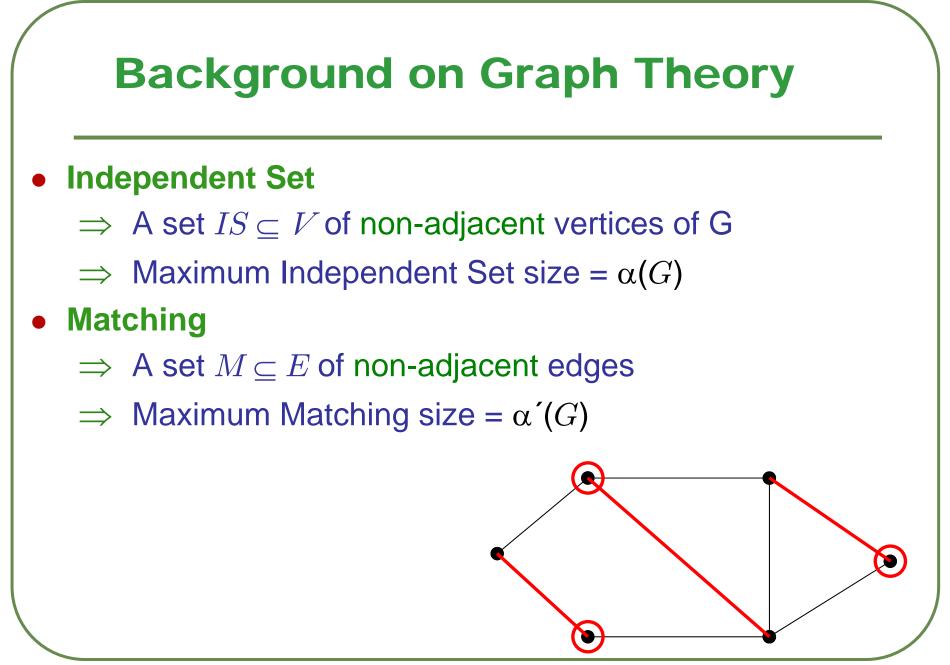
Instance: A graph G(V, E).

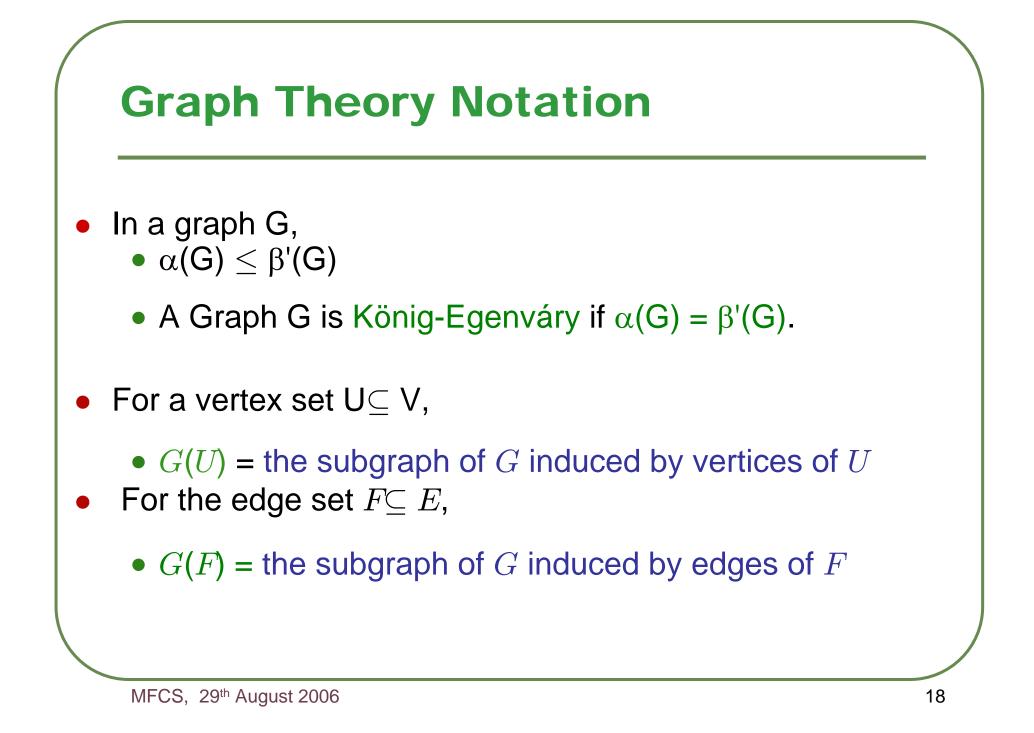
Output: A CLASS Nash equilibrium of $\Pi(G)$ or No if such does not exist.

where,

CLASS : a class of Nash equilibria







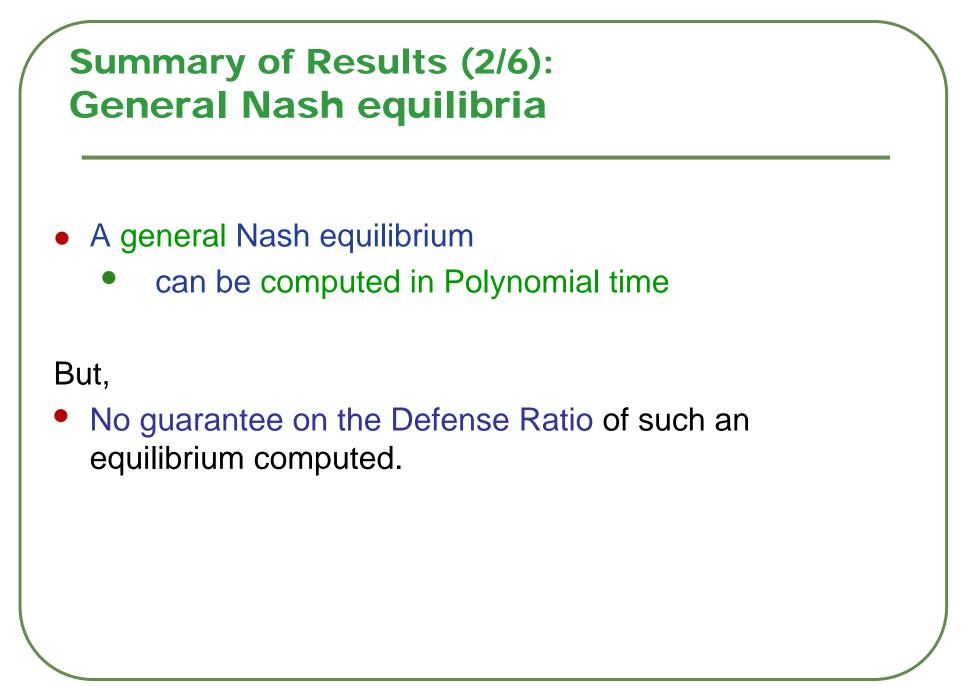
Summary of Results

- Graph Theoretic
- Computational Complexity
- Game Theoretic

Summary of Results (1/6): Graph-Theoretic, Complexity Results

Useful Graph-Theoretic Results:

- Negative Results:
 - UNDIRECTED PARTITION INTO HAMILTONIAN CYRCUITS OF SIZE AT LEAST 6
 - is NP-complete.
- Positive Results
 - KÖNIG-EGENVÁRY MAX INDEPENDENT SET can be solved in polynomial time.
 - MAX INDEPENDENT SET EQUAL HALF ORDER can be solved in polynomial time.

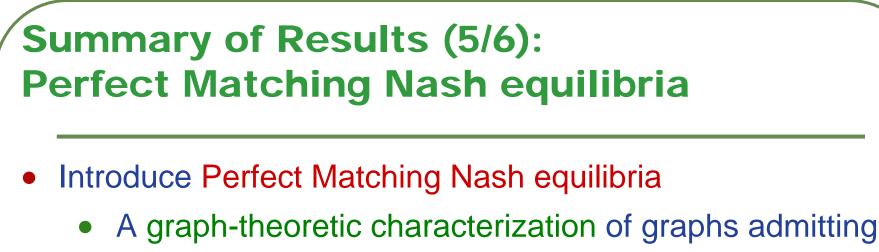


Summary of Results (3/6): Structured Nash equilibria

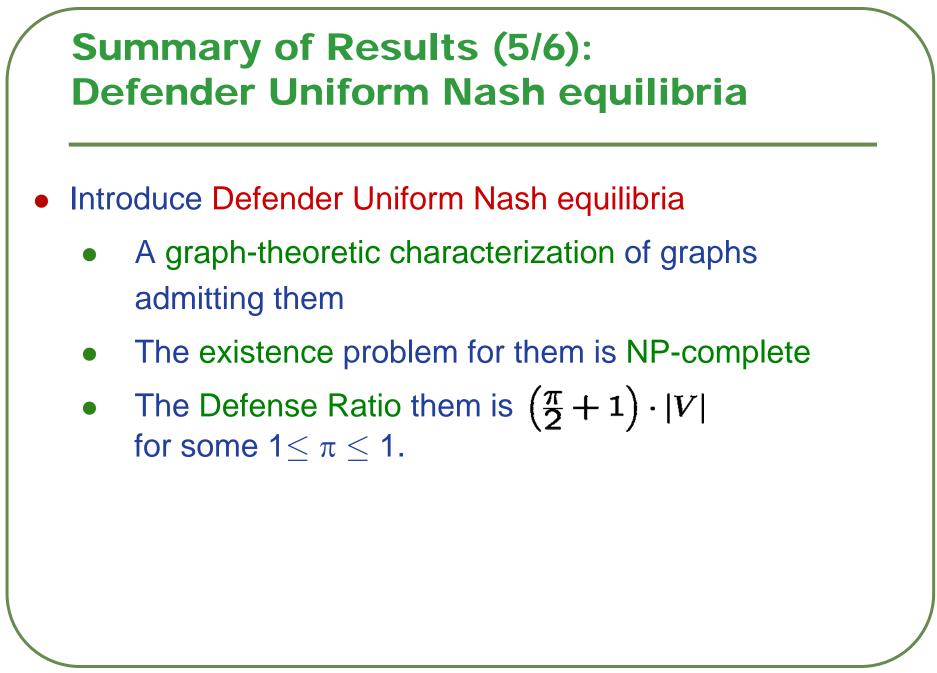
Structured Nash equilibria:

⇒ Matching Nash equilibria [Mavronicolas et al. ISAAC05]

- A graph-theoretic characterization of graphs admitting them
- A polynomial time algorithm to compute them on any graph
 - using the KÖNIG-EGENVÁRY MAX INDEPENDENT SET problem
- The Defense Ratio for them is $\alpha(G)$

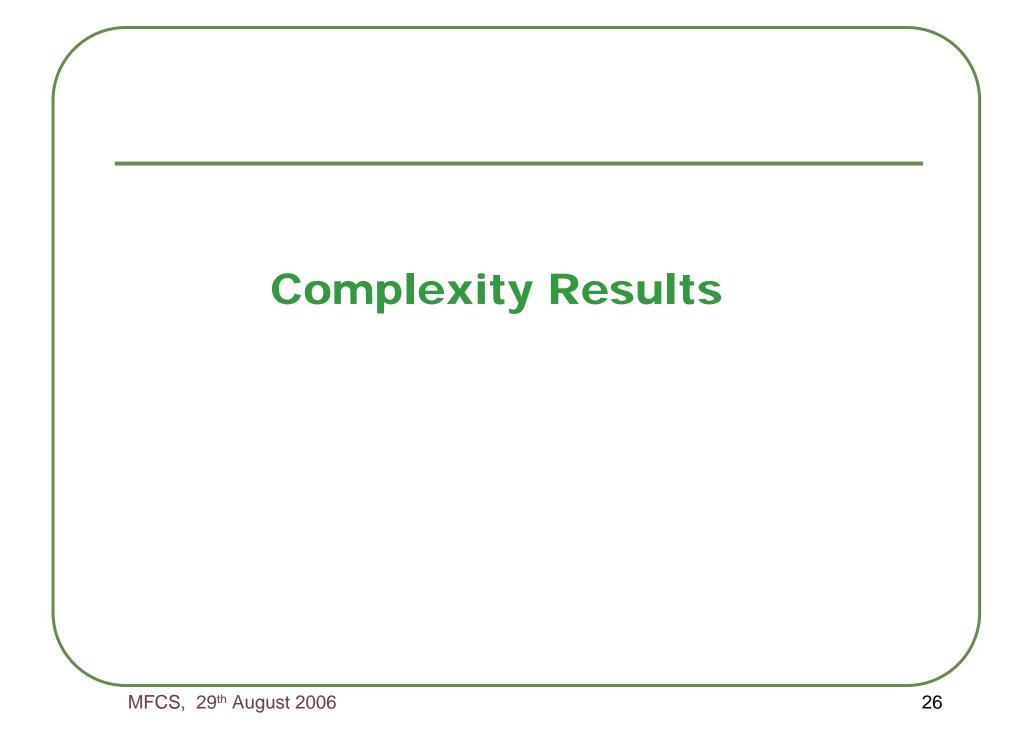


- A graph-theoretic characterization of graphs admitting them
 - A polynomial time algorithm to compute them on any graph
 - using the MAX INDEPENDENT SET EQUAL HALF ORDER problem
- The Defense Ratio for them is |V| / 2



Summary of Results (6/6): Attacker Symmetric Uniform Nash equilibria

- Introduce Attacker Symmetric Uniform Nash equilibria
 - A graph-theoretic characterization of graphs admitting them
 - The problem to find them *can be solved in polynomial time.*
 - The Defense Ratio for them is $\frac{|V|}{2}$ or $\alpha(G)$.



Complexity Results (1/2): A new NP-completeness proof

For the problem:

 UNDIRECTED PARTITION INTO HAMILTONIAN CIRCUITS OF SIZE AT LEAST 6

Input: An undirected graph G(V,E)

Question: Can the vertex set V be partitioned into disjoint sets V_1 , Λ , V_k , such that each $|V_i| \ge 6$ and $G(V_i)$ is

Hamiltonian?

Complexity Results (2/2): A new NP-completeness proof

We provide the *first* published proof that:

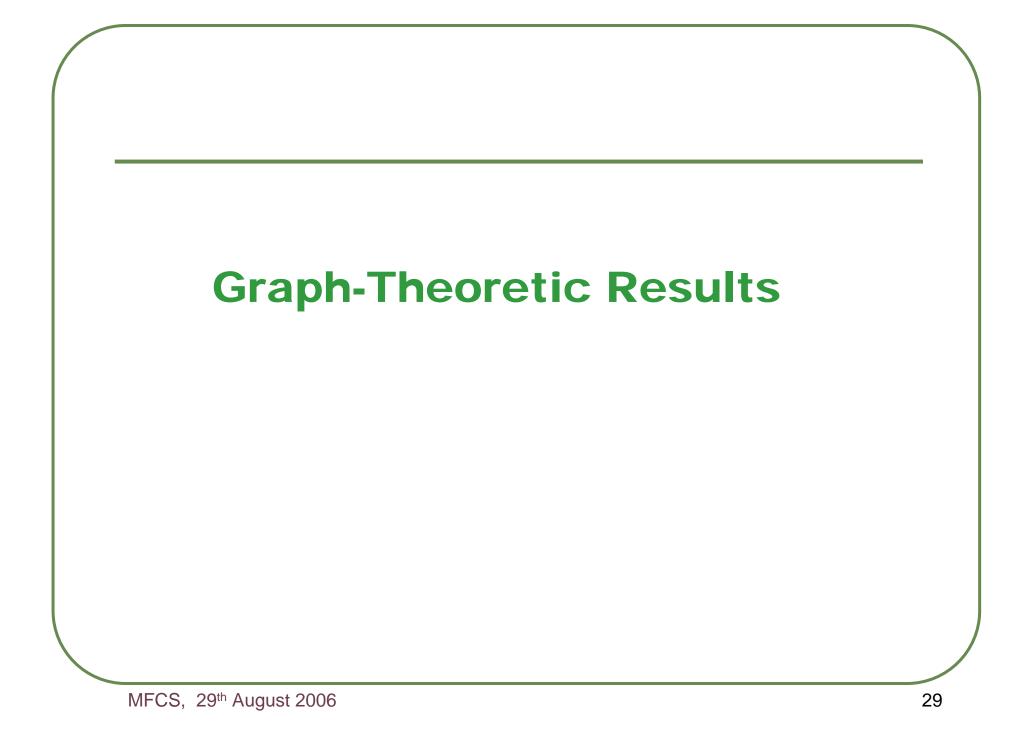
• Theorem 1.

UNDIRECTED PARTITION INTO HAMILTONIAN SUBGRAPHS OF SIZE AT LEAST 6 is NP-complete.

Proof.

Reduce from

- the *directed* version of the problem for circuits of size at least 3 which is known to be
 - NP-complete in [GJ79]



• KÖNIG-EGENVÁRY MAX INDEPENDENT SET

Instance: A graph G(V, E).

Output: A Max Independent Set of G is König-Egenváry (α (G) = β '(G)) or No otherwise.

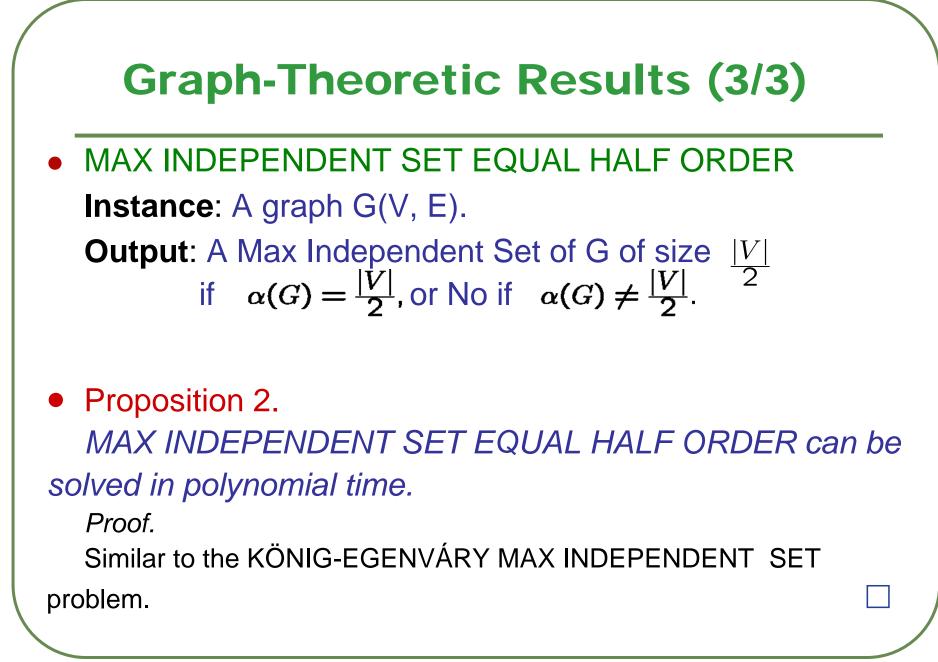
- Previous Results for König-Egenváry graphs
 - (Polynomial time) characterizations [Deming 79, Sterboul 79, Korach et. al, 06]
- Here we provide:
 - a new polynomial time algorithm for solving the KÖNIG-EGENVÁRY MAX INDEPENDENT SET problem.

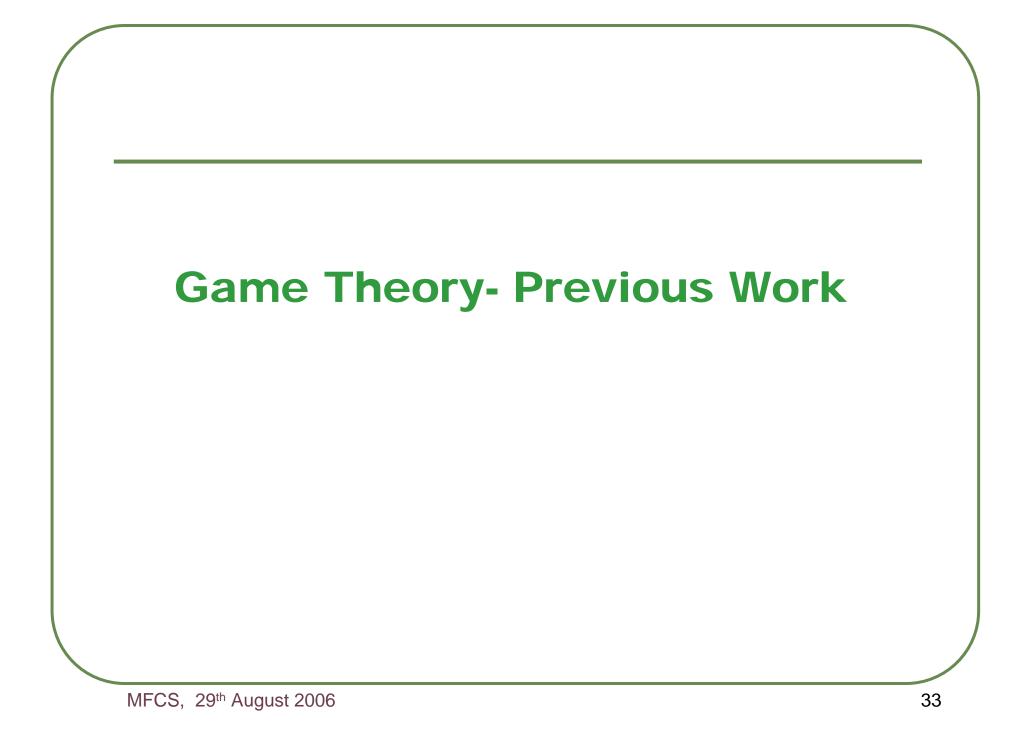
• Proposition 1.

KÖNIG-EGENVÁRY MAX INDEPENDENT SET can be solved in polynomial time.

Proof.

- Compute a Min Edge Cover EC of G
- From EC construct a 2SAT instance ϕ such that
 - G has an Independent Set of size |EC|=β'(G) (so, α(G) = β'(G)) if and only if φ is satisfiable.

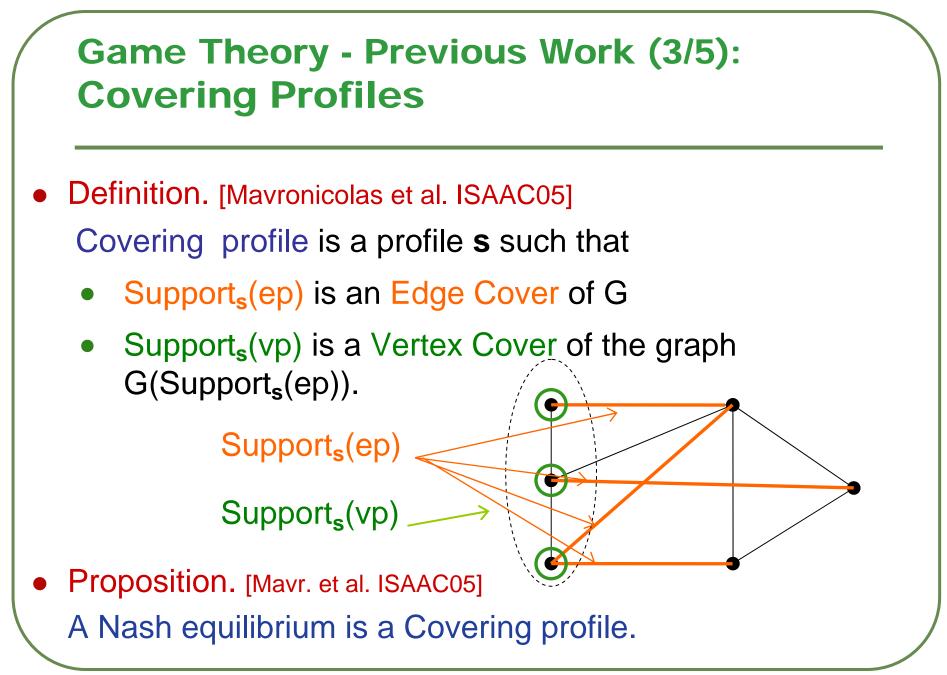


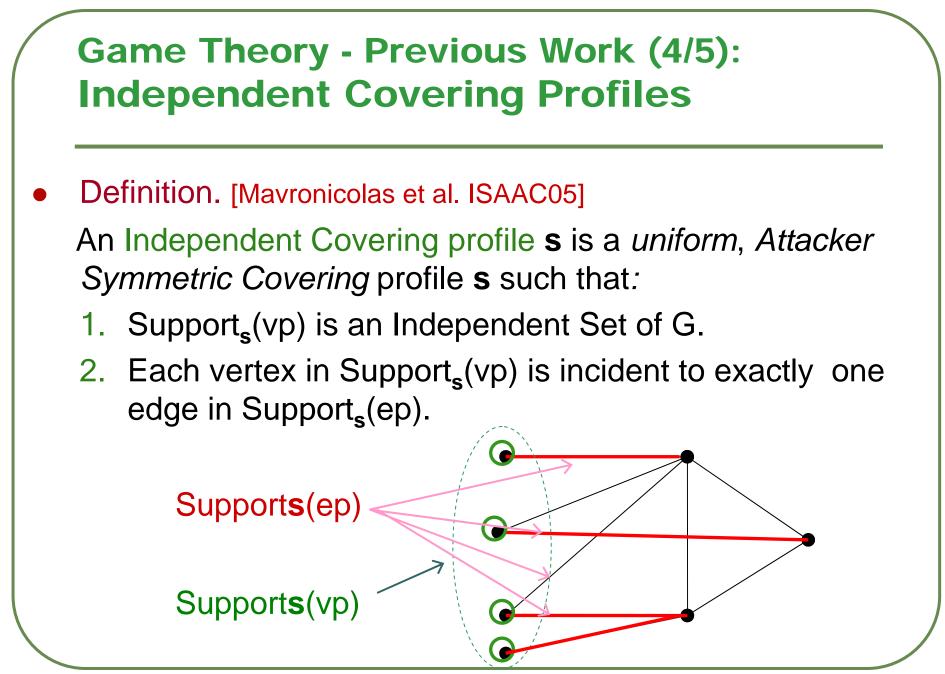


Game Theory - Previous Work (1/4)

Mavronicolas et al. ISAAC05:

- Pure Nash Equilibria: The graph G admits no pure Nash equilibria (unless it is trivial).
- Mixed Nash Equilibria: An algebraic (non-polynomial) characterization.





Game Theory - Previous Work (5/5): Matching Nash equilibria

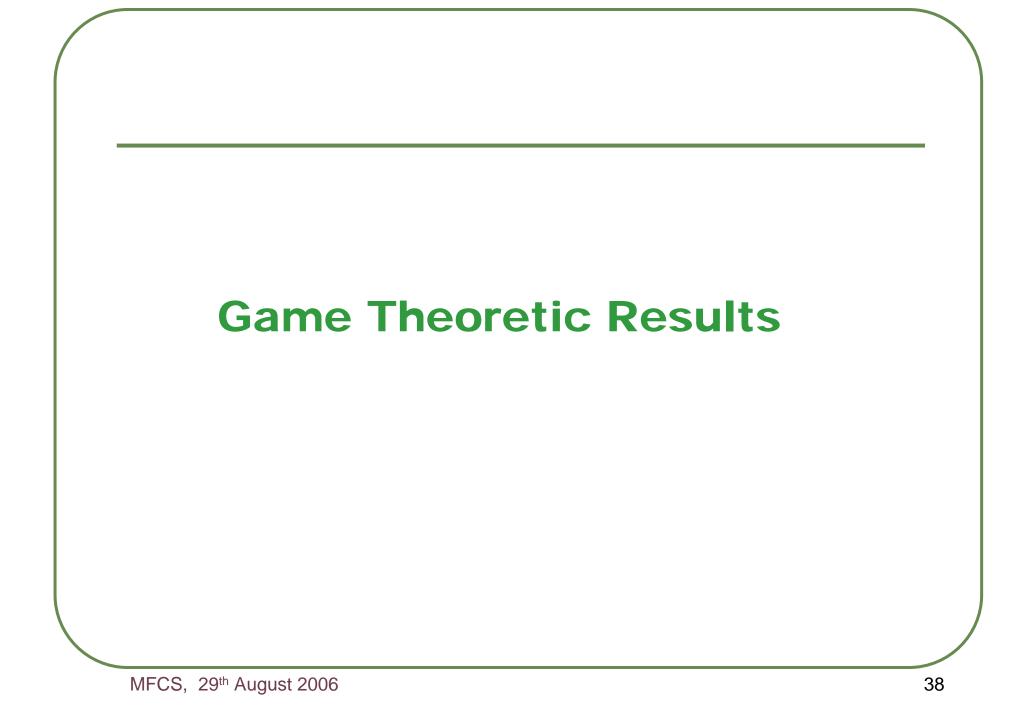
 Proposition. [Mavronicolas et al. ISAAC05]
 An Independent Covering profile is a Nash equilibrium, called Matching Nash equilibrium

V١

•Theorem. [Mavronicolas et al. ISAAC05]

A graph G admits a Matching Nash equilibrium if and only if G contains an Expanding Independent Set.

Neigh(U)



General Nash Equilibria: Computation

• Consider a **two players** variation of the game $\Pi(G)$:

 \Rightarrow 1 attacker, 1 defender

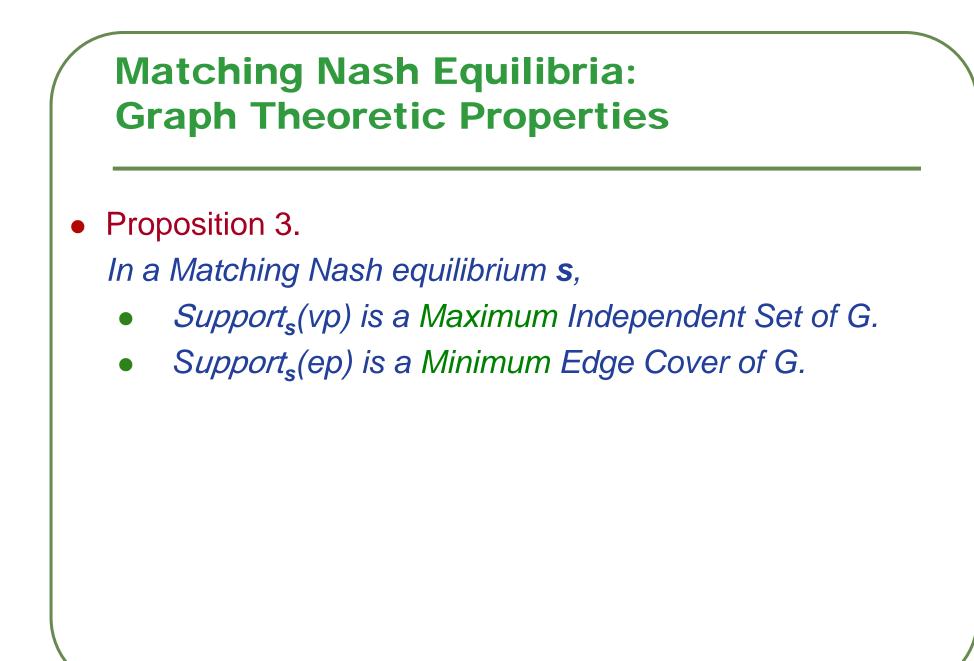
- Show that it is a constant-sum game
- Compute a Nash equilibrium s[´] on the two players game (in polynomial time)
- Construct from s' a profile s for the many players game:

 \Rightarrow which is Attacker Symmetric

 \Rightarrow show that it is a Nash equilibrium

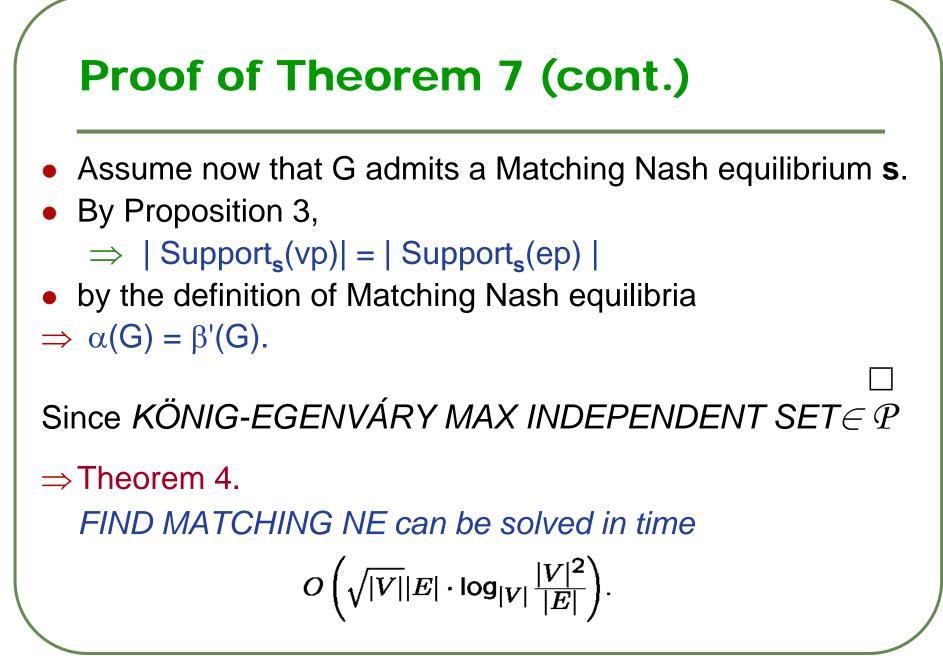
Theorem 2.

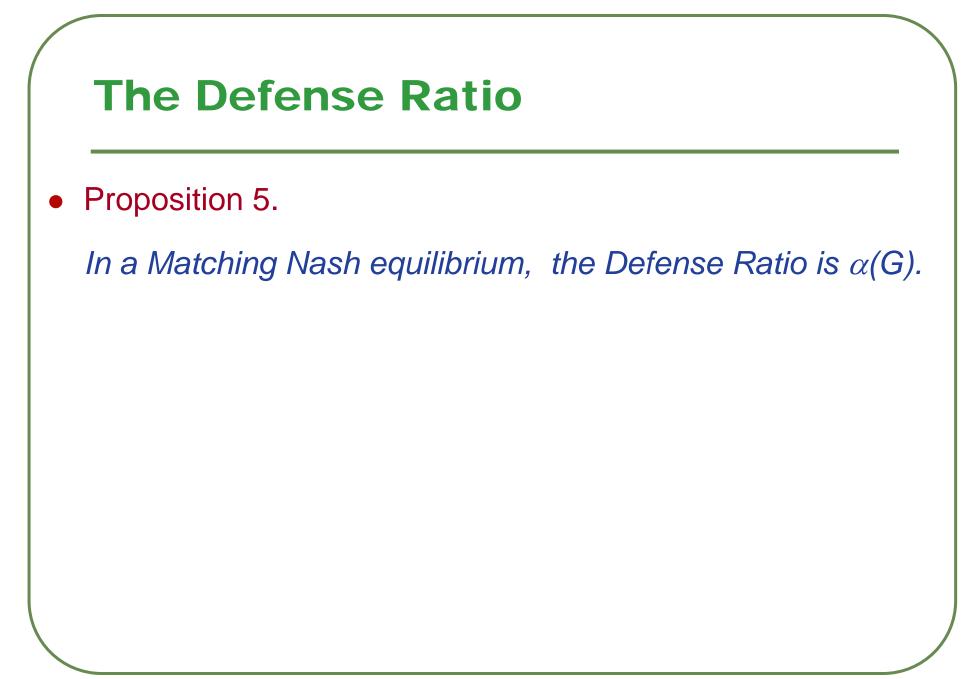
FIND GENERAL NE can be solved in polynomial time.

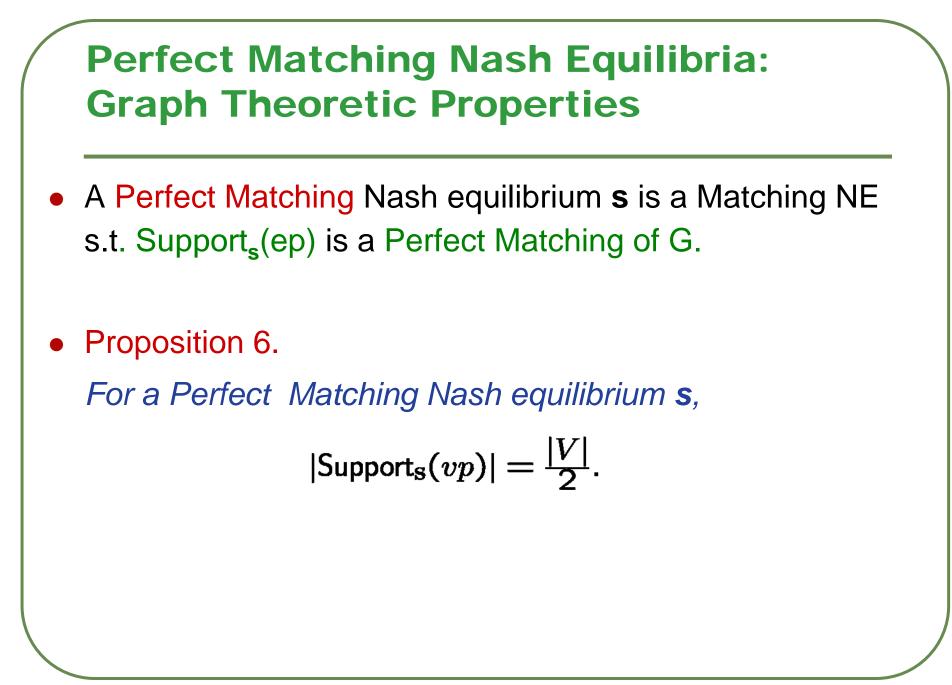


A new Characterization of Matching Nash Equilibria

- Theorem 3. The graph G admits a Matching Nash equilibrium if and it is König-Egenváry graph (α(G) = β'(G)).
 Proof.
- Assume that $\alpha(G) = \beta'(G)$
- IS = Max Independent Set
- EC= Min Edge Cover
- Construct a Uniform, Attackers Symmetric profile **s** with:
 - Support_s(vp) = IS and Support_s(ep) = EC.
- We prove that **s** is an Independent Covering profile
 - \Rightarrow a Nash equilibrium.







Perfect Matching Nash Equilibria: Graph Theoretic Properties

• Theorem 5.

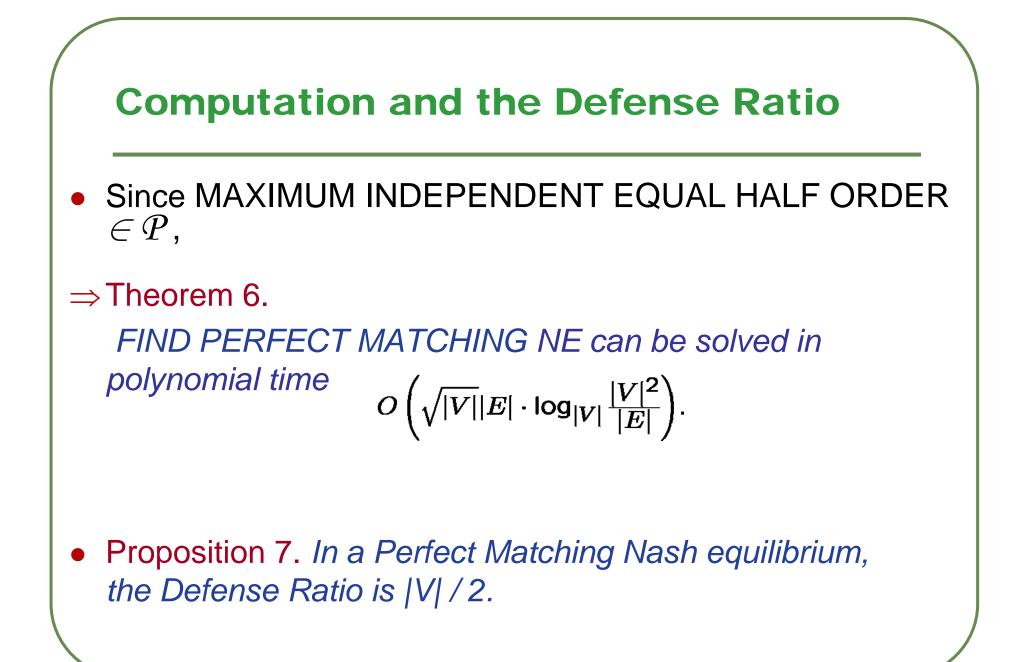
A graph G admits a Perfect Matching Nash equilibrium if and only if it

• *it has a Perfect Matching and*

•
$$\alpha(G) = |V|/2.$$

Proof.

Similarly to Matching Nash equilibria.



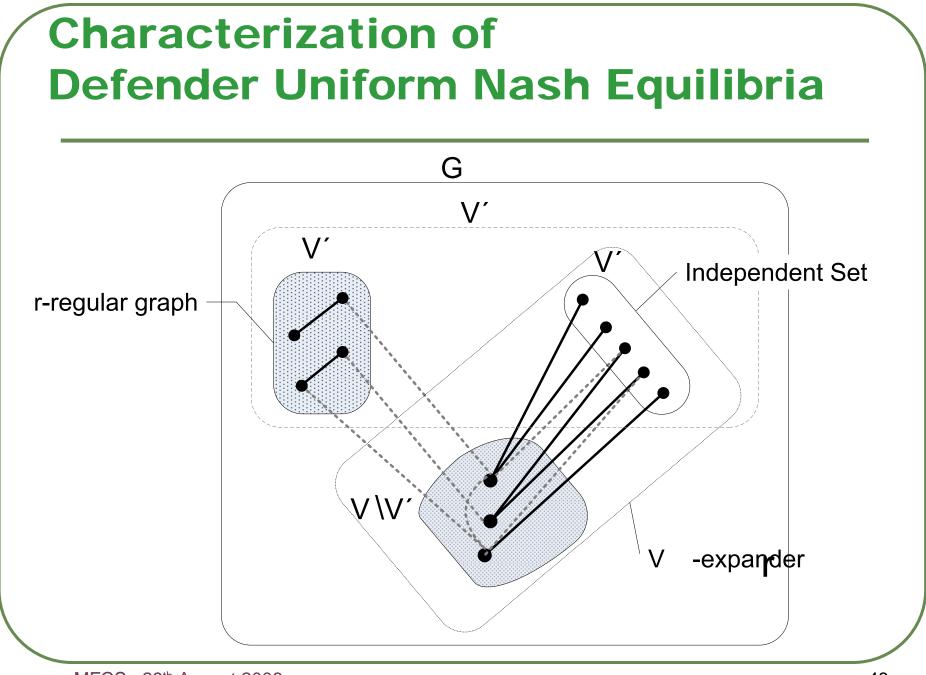
Defender Uniform Nash Equilibria: A Characterization

 Theorem 7. A graph G admits a Defender Uniform Nash equilibrium if and only if there are non-empty sets V' ⊆ V and E'⊆ E and an integer r≥ 1 such that:

(1/a) For each $v \in V'$, $d_{G(E')}(v) = r$.

(1/b) For each $v \in V \setminus V'$, $d_{G(E')}(v) \ge r$.

(2) V' can be partitioned into two disjoint sets V'_i and V'_r such that:
(2/a) For each v∈ V'_i, for any u∈ Neigh_G(v), it holds that u ∉ V'.
(2/b) The graph 〈 V'_r, Edges_G (V'_r) Å E' 〉 is an r-regular graph.
(2/c) The graph 〈 V'₁ ∪ (V \ V'), Edges_GV'₁ ∪ (V \ V')) ÅE' 〉 is a
(V'_i, V \ V')-bipartite graph.
(2/d) The graph 〈V'_i ∪V \V'), Edges_G(V'_i ∪V \ V') ÅE' 〉 is a (V
\V') - Expander graph.



Complexity anf the Defense Ratio

• Theorem 8.

DEFENDER UNIFORM NE EXISTENCE is NP-complete.

Proof.

Reducing from

- UNDIRECTED PARTITION INTO HAMILTONIAN CYRCUITS
- Theorem 9. In a Defender Uniform Nash equilibrium, the Defense Ratio is $\left(\frac{\pi}{2}+1\right) \cdot |V|$ for some $0 \le \pi \le 1$.

Attacker Symmetric Uniform Nash Equilibria: A characterization

• Theorem 10.

A graph G admits an Attacker Symmetric Uniform Nash equilibrium if and only if:

1. There is a probability distribution $p:E \rightarrow [0,1]$ such that:

a)
$$\sum_{e \in \mathsf{Edges}_G(v)} p(e) = \sum_{e' \in \mathsf{Edges}_G(v')} p(e'),$$

 $\forall v, v' \in V$
b) $\sum_{e \in \mathsf{Edges}_G(v)} p(e) > 0 \forall v \in V$
or $q(G) = \beta'(G)$

