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Motivation: Network Security

e Current networks are huge and dynamic
—=>vulnerable to Security risks (Attacks)

o Attackers:
e Vviruses, worms, trojan horses or eavesdroppers
e damage a node if it not secured
e wish to avoid being caught by the security
mechanism
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Motivation: Network Security

e A defense mechanism:

e a security software or a firewall

e cleans from attackers a limited part of the network:
e asingle link

e It wants to protect the network as much as possible
— catches as many attackers as possible
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A formal Model: A Strategic Game

e A non-cooperative strategic same on a graph with
two kinds of players:

— the vertex players <« attackers
— the edge player <> defender

e An attacker selects a node to damage if unsecured
e The defender selects a single edge to clean from

attackers on it
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/A formal Model: A Strategic Game
(cont.)

e Attacker's (Expected) Individual Profit:
the probability not caught by the defender

e Defender’s (Expected) Individual Profit
(expected) number of attackers it catches
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A Strategic Game: Definition (cont.)

[Mavronicolas et al. ISAAC2005]
o Associated with G(V, E), is a strategic game:

N(G) = (N, {S;i}ien {IP}ien)

o N = va UNep
e vattackers (set Ny ) or vertex players vp.

e Strategy set: Syp =V
e a defender or the edge player ep

\ e Strategy set:. Sep = E /
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Individual Profits

e Pure Profile: each player plays one strategy
e Inapure profile s =(s1,...,5v,8ep) €S
e Vertex player vp,’s Individual Profit:
°* IP;(s) =0¢1if s; € sep or 1 otherwise

1 if it selected node is not incident to the edge selected
by the edge player, and O otherwise

e Edge player’s ep Individual Profit:

* IPep(s) = [{i 1 si € sep}
the number of attackers placed on the endpoints of its

\ selected edge /
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Example

e agraph G
e v=4 vertex players
e edge player ep G

S =V

\'J

* IP(ep)=3

* IPs(vpy)=0

{Pswpozl v
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Mixed Strategies

o Mixed strategy s; for player |
e a probability distribution over its strategy set
e Mixed profile s
e a collection of mixed strategies for all players
e Support (Support_(i)) of player i
e set of pure strategies that it assigns positive probability

\_ /
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Nash Equilibria

e No player can unilaterally improve its Individual Profit
by switching to another profile

\_ /
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Notation

In a profile s,

e Support (vp)= the supports of all vertex players

e P (Hit(v)) = Probability the edge player chooses an edge
Incident to vertex v

e VP, (v) = expected number of vps choosing vertex v

e VP ,(e) = VP,(v)+ VP,(u), for an edge e=(u, v)

\_ /
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Notation (cont.)

e Uniform profile:

If each player uses a uniform probability distribution on
Its support. l.e., for each player i,

[
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e Attacker Symmetric profile:
All vertex players use the same probability distribution

\_ /
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Expected Individual Profits

e vertex players vp;:

Ps(i) = 3 si(v) - (1 — Po(Hit(v)))
veV

e edge player ep:
IPs(ep) = ) sep(e) - VPs(e)

eck

e S;(v)= probabillity that vp, chooses vertex v

e Sgp(e)= probability that the ep chooses edge e
e [Edges (v) ={edges € Support(ep) incident to vertex v

\_ /
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Defense Ratio and Price of the Defense

e The Defense Ratio DR, of a profile s is
— the optimal profit of the defender (which is v)
— over its profit in profile s

— 1Pg (Vep)

e The Price of the Defense is
e the worst-case (maximum) value, over all Nash equilibria

s, of Defense Ratio DR
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Algorithmic problems

e CLASS NE EXISTENCE
Instance: A graph G(V, E)
Question: Does I1(G) admit a CLASS Nash equilibrium?

e FIND CLASS NE
Instance: A graph G(V, E).

Output: A CLASS Nash equilibrium of I1(G) or No if such
does not exist.

where,
CLASS : a class of Nash equilibria

\_ /
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/ Background on Graph Theory \

e Vertex cover of G(V,E)
— set V' < V that hits (incident to) all edges of G
— Minimum Vertex Cover size = o' (G)

e Edge cover
— set E'c E that hits (incident to) all vertices of G
— Minimum Edge Cover size = ' (G)

\_ /
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Background on Graph Theory

e Independent Set
— A set IS < V7 of non-adjacent vertices of G
— Maximum Independent Set size = o(G)
e Matching
— A set M c F of non-adjacent edges
— Maximum Matching size = o' (G)

\_
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Graph Theory Notation

~

e In agraph G,

* o(G) < B'(G)
e A Graph G is Konig-Egenvary if a(G) = B'(G).

e Foravertex set UC V,

\_

e (G(U) = the subgraph of G induced by vertices of U
For the edge set FC F,

e (G(F) =the subgraph of G induced by edges of F

J
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Summary of Results

~

\_

Graph Theoretic
Computational Complexity
Game Theoretic
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/Summary of Results (1/6): \

Graph-Theoretic, Complexity Results

Useful Graph-Theoretic Results:

e Negative Results:

e UNDIRECTED PARTITION INTO HAMILTONIAN
CYRCUITS OF SIZE AT LEAST 6

e is NP-complete.
e Positive Results
o KONIG-EGENVARY MAX INDEPENDENT SET
can be solved in polynomial time.

e MAX INDEPENDENT SET EQUAL HALF ORDER
can be solved in polynomial time.

\_ /

MFCS, 29" August 2006 20




Summary of Results (2/6):
General Nash equilibria

e A general Nash equilibrium
® can be computed in Polynomial time

But,

®* No guarantee on the Defense Ratio of such an
equilibrium computed.

\_
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@mmary of Results (3/6): \
Structured Nash equilibria

Structured Nash equilibria:
— Matching Nash equilibria [Mavronicolas et al. ISAACO5]

e A graph-theoretic characterization of graphs admitting
them

e A polynomial time algorithm to compute them on any
graph

e using the KONIG-EGENVARY MAX INDEPENDENT SET
problem

e The Defense Ratio for them is a(G)

\_ /
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@mmary of Results (5/6): \
Perfect Matching Nash equilibria

e |[ntroduce Perfect Matching Nash equilibria

e A graph-theoretic characterization of graphs admitting
them

e A polynomial time algorithm to compute them on
any graph
e using the MAX INDEPENDENT SET EQUAL
HALF ORDER problem

e The Defense Ratio for themis |V] /2

\_ /
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/Summary of Results (5/6): \
Defender Uniform Nash equilibria

e Introduce Defender Uniform Nash equilibria

e A graph-theoretic characterization of graphs
admitting them

e The existence problem for them is NP-complete

e The Defense Ratio themis (5 +1) - |V
for some 1<t < 1.

\_ /
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/Summary of Results (6/6): \

Attacker Symmetric Uniform Nash equilibria

e Introduce Attacker Symmetric Uniform Nash equilibria

e A graph-theoretic characterization of graphs admitting
them

e The problem to find them can be solved in polynomial
time.

e The Defense Ratio for them is |_‘2/_| or a(G).

\_ /
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/ Complexity Results (1/2): \

A new NP-completeness proof

For the problem:

e UNDIRECTED PARTITION INTO HAMILTONIAN CIRCUITS
OF SIZE AT LEAST 6

Input: An undirected graph G(V,E)

Question: Can the vertex set V be gartitioned Into disjoint
sets V, A, V,, such that each |V;|> 6 and G(V)) Is

Hamiltonian?

\_ /
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ﬂ:omplexity Results (2/2):
A new NP-completeness proof

~

We provide the first published proof that:
e Theorem 1.

UNDIRECTED PARTITION INTO HAMILTONIAN
SUBGRAPHS OF SIZE AT LEAST 6 is NP-complete.

Proof.
Reduce from

e the directed version of the problem for circuits of
size at least 3 which is known to be

e NP-complete in [GJ79]

\_

/
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Graph-Theoretic Results (1/3)

e KONIG-EGENVARY MAX INDEPENDENT SET

Instance: A graph G(V, E).

Output: A Max Independent Set of G is Konig-Egenvary (a(G) =
B'(G)) or No otherwise.

e Previous Results for Konig-Egenvary graphs

e (Polynomial time) characterizations [Deming 79, Sterboul
79, Korach et. al, 06]

e Here we provide:

e anew polynomial time algorithm for solving the KONIG-
K EGENVARY MAX INDEPENDENT SET problem. /
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Graph-Theoretic Results (2/3)

e Proposition 1.

KONIG-EGENVARY MAX INDEPENDENT SET can be
solved in polynomial time.

Proof.
e Compute a Min Edge Cover EC of G
e From EC construct a 2SAT instance ¢ such that

e G has an Independent Set of size |EC|='(G)
(so, a(G) = B'(G)) if and only if ¢ is satisfiable.

\_ /
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Graph-Theoretic Results (3/3)

e MAX INDEPENDENT SET EQUAL HALF ORDER
Instance: A graph G(V, E).
Output: A Max Independent Set of G of size |V|
f a(@)= |V| ,or No if a(G@) #'% Vi, 2

® Proposition 2.
MAX INDEPENDENT SET EQUAL HALF ORDER can be

solved in polynomial time.

Proof.
Similar to the KONIG-EGENVARY MAX INDEPENDENT SET

Qroblem. D/
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Game Theory- Previous Work
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/Game Theory - Previous Work (1/4) \

Mavronicolas et al. ISAACO5:

e Pure Nash Equilibria: The graph G admits no pure
Nash equilibria (unless it is trivial).

e Mixed Nash Equilibria: An algebraic (non-polynomial)
characterization.

\_ /
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/Game Theory - Previous Work (3/5): \
Covering Profiles

e Definition. [Mavronicolas et al. ISAACO05]
Covering profile is a profile s such that
e Supports(ep)is an Edge Cover of G
e Supports(vp) Is a Vertex Cover of the graph
G(Supports(ep)). P

Supports(ep) -

Supports(vp) —

e Proposition. [Mavr. et al. ISAACO5]

v Nash equilibrium is a Covering profile. /
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Game Theory - Previous Work (4/5): \
Independent Covering Profiles

e Definition. [Mavronicolas et al. ISAACO05]

An Independent Covering profile s is a uniform, Attacker
Symmetric Covering profile s such that:

1. Support,(vp) is an Independent Set of G.

2. Each vertex in Support,(vp) Is incident to exactly one
edge in Support (ep).

Supports(ep)

\ Supports(vp)
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Game Theory - Previous Work (5/5): \
Matching Nash equilibria

e Proposition. [Mavronicolas et al. ISAACO05]

An Independent Covering profile is a Nash equilibrium,
called Matching Nash equilibrium

e Theorem. [Mavronicolas et al. ISAACO05]
A graph G admits a

Matching Nash equilibrium AN
fand only if G contains /|
an Expanding Independent Set.

\_

MFCS, 29t August 2006




\_

Game Theoretic Results
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/General Nash Equilibria: \

Computation

e Consider a two players variation of the game I1(G):
— 1 attacker, 1 defender
e Show that it Is a constant-sum game
e Compute a Nash equilibrium s on the two players game
(in polynomial time)
e Construct from s” a profile s for the many players game:
—> which is Attacker Symmetric
— show that it is a Nash equilibrium
Theorem 2.
FIND GENERAL NE can be solved in polynomial time.

\_

/
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Matching Nash Equilibria:
Graph Theoretic Properties

~

e Proposition 3.
In a Matching Nash equilibrium s,
e Support,(vp) is a Maximum Independent Set of G.
e Support(ep)is a Minimum Edge Cover of G.

\_
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A new Characterization of Matching \
Nash Equilibria

e Theorem 3. The graph G admits a Matching Nash
equilibrium if and it is Kdnig-Egenvary graph (a(G) = B'(G)).
Proof.
e Assume that o(G) = B'(G)
e |S =Max Independent Set
e EC= Min Edge Cover
e Construct a Uniform, Attackers Symmetric profile s with:
e Support,(vp) = IS and Support (ep) = EC.
e We prove that s is an Independent Covering profile
—> a Nash equilibrium.

\_ /
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Proof of Theorem 7 (cont.)

e Assume now that G admits a Matching Nash equilibrium s.
e By Proposition 3,
= | Supports(vp)| = | Supports(ep) |
e by the definition of Matching Nash equilibria
= o(G) = B'(G).
) []
Since KONIG-EGENVARY MAX INDEPENDENT SET & ®

— Theorem 4.
FIND MATCHING NE can be solved in time

) Y

MFCS, 29t August 2006 42




4 h

The Defense Ratio

e Proposition 5.

In a Matching Nash equilibrium, the Defense Ratio is a(G).

\_ /
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Perfect Matching Nash Equilibria: \
Graph Theoretic Properties

e A Perfect Matching Nash equilibrium s is a Matching NE
s.t. Support (ep) is a Perfect Matching of G.

e Proposition 6.

For a Perfect Matching Nash equilibrium s,

|Supports(vp)| = J—g—l

\_ /
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/Perfect Matching Nash Equilibria: \
Graph Theoretic Properties

e Theorem 5.

A graph G admits a Perfect Matching Nash equilibrium if
and only if it
e it has a Perfect Matching and
o o(G) = |V|/2.
Proof.

Similarly to Matching Nash equilibria. B

\_ /
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Computation and the Defense Ratio

o Sinqge MAXIMUM INDEPENDENT EQUAL HALF ORDER
& &,

— Theorem 6.
FIND PERFECT MATCHING NE can be solved in

polynomial time 2
@, (\/ﬁlE[ . Iog|V| JIKEll—) .

e Proposition 7. In a Perfect Matching Nash equilibrium,
the Defense Ratio is |V| / 2.

\_ /
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/Defender Uniform Nash Equilibria: \
A Characterization

e Theorem 7. A graph G admits a Defender Uniform Nash equilibrium if
and only if there are non-empty sets V' €V and E'C E and an integer

r>1 such that:

(L/a) ForeachveV', dggy(v) =T.

(1/b) Foreach veV\V', dgg(v) > 1.

(2) V'can be partitioned into two disjoint sets V', and V', such that:
(2/a) For each ve V', for any uc Neighg(v), it holds thatu ¢ V'
(2/b) The graph ( V', Edges; (V') AE') is an r-regular graph.
(2/c) The graph (VU (V\V'), Edges.V,U(V\V'))AE') isa

(V' , V\V')-bipartite graph.
(2/d) The graph (V' UV \V'), Edgess( V' UV\V')AE') isa (V

\ V') - Expander graph.

\_ /
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Characterization of
Defender Uniform Nash Equilibria

~

r-regular graph —

\_ N

ent Set
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Complexity anf the Defense Ratio

e Theorem 8.

DEFENDER UNIFORM NE EXISTENCE is NP-complete.
Proof.

Reducing from

e UNDIRECTED PARTITION INTO HAMILTONIAN
CYRCUITS
]

e Theorem 9. In a Defender Uniform Nash equilibrium, the
Defense Ratio is gg +1)-|V]
for some O0< 7 <1

\_ /
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/Attacker Symmetric Uniform Nash\
Equilibria: A characterization

e Theorem 10.

A graph G admits an Attacker Symmetric Uniform Nash
equilibrium if and only if:
1. There Is a probability distribution p:E — [0,1] such that:

) zeEEdgesG('v) p(e) = 2, €Edgesq(v') p(e),
Vv, o' €V
b) ZeEEdgest('u) p(e) >0VveV
OR

2. a(G) = B(G).

\_ /
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Computation and the Defense Ratio

e Computation

Theorem 11. FIND ATTACKER SYMMETRIC UNIFORM
NE can be solved in polynomial time.

e Defense Ratio

Theorem 12. In a Attacker Symmetric Uniform Nash
equilibrium, the Defense Ratio is

J—g—l or a(G).

\_ /
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Thank you !
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