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Motivation: Network Security

Current networks are huge and dynamic
⇒vulnerable to Security risks (Attacks)

• Attackers: 
• viruses, worms, trojan horses or eavesdroppers  
• damage a node if it not secured
• wish to avoid being caught by the security

mechanism
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Motivation: Network Security

A defense mechanism: 
• a security software or a firewall
• cleans from attackers a limited part of the network: 

• a single link
• it wants to protect the network as much as possible

⇒ catches as many attackers as possible
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A formal Model: A Strategic Game

A non-cooperative strategic same on a graph with       
two kinds of players: 
⇒ the vertex players  ↔ attackers 
⇒ the   edge player    ↔ defender

An attacker selects a node to damage if unsecured
The defender selects a single edge to clean from 
attackers on it
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A formal Model: A Strategic Game
(cont.)

Attacker´s (Expected) Individual Profit:
the probability not caught by the defender 

Defender´s (Expected) Individual Profit
(expected) number of attackers it catches
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A Strategic Game: Definition (cont.)

Associated with G(V, E), is a strategic game:

•
• ν attackers (set       )  or  vertex players vpi

• Strategy set :  Svpi = V
• a defender or the edge player ep

• Strategy set :  Sep = E

[Mavronicolas et al. ISAAC2005]
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Individual Profits

• Pure Profile: each player plays one strategy
• In a pure profile 

• Vertex player vpi´s Individual Profit:
•

1 if it selected node is not incident to the edge selected
by the edge player, and 0 otherwise

• Edge player´s ep Individual Profit:

•

the number of attackers placed on the endpoints of its 
selected edge
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Example

a graph G
ν=4 vertex players 
edge player ep

• IPs(ep)=3
• IPs(vp1)=0
• IPs(vp4)=1
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Mixed Strategies

• Mixed strategy si for player i
• a probability distribution over its strategy set

• Mixed profile s
• a collection of mixed strategies for all players 

• Support (Supports(i)) of player i
• set of pure strategies that it assigns positive probability
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Nash Equilibria

• No player can unilaterally improve its Individual Profit  
by switching to another profile
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Notation

In a profile s, 

Supports(vp)= the supports of all vertex players

Ps(Hit(υ)) = Probability the edge player chooses an edge 
incident to vertex υ

VPs(υ) = expected number of vps choosing vertex υ

VPs(e) = VPs(υ) + VPs(u), for an edge e=(u, υ)
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Notation (cont.)

Uniform profile:
if each player uses a uniform probability distribution on 

its support. I.e., for each player i,

Attacker Symmetric profile:
All vertex players use the same probability distribution
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Expected Individual Profits

vertex players vpi:

edge player ep:

where, 

si(υ)= probability that vpi chooses vertex υ

sep(e)= probability that the ep chooses edge e
Edgess(υ) ={edges ∈ Supports(ep) incident to vertex υ
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Defense Ratio and  Price of the Defense

The Defense Ratio DRs of a profile s is 
− the optimal profit of the defender (which is ν)
− over its profit in profile s

The Price of the Defense is 
• the worst-case (maximum) value, over all Nash equilibria 

s, of Defense Ratio DR               
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Algorithmic problems

CLASS NE EXISTENCE
Instance: A graph G(V, E)
Question: Does Π(G) admit a CLASS Nash equilibrium? 

FIND CLASS NE
Instance: A graph G(V, E).
Output: A CLASS Nash equilibrium of Π(G) or No if such 

does not exist.
where, 

CLASS : a class of Nash equilibria
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Background on Graph Theory

Vertex cover of G(V,E)

⇒ set V ´ ⊆ V that hits (incident to) all edges of G
⇒ Minimum Vertex Cover size = α´(G) 

Edge cover
⇒ set E´⊆ E that hits (incident to) all vertices of G
⇒ Minimum Edge Cover size = β´(G) 
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Background on Graph Theory

Independent Set
⇒ A set IS ⊆ V of non-adjacent vertices of G 
⇒ Maximum Independent Set size = α(G) 

Matching
⇒ A set M ⊆ E of non-adjacent edges
⇒ Maximum Matching size = α´(G) 



MFCS, 29th August 2006 18

Graph Theory Notation

In a graph G, 
• α(G) ≤ β'(G)

• A Graph G is König-Egenváry if α(G) = β'(G).

For a vertex set U⊆ V, 

• G(U) = the subgraph of G induced by vertices of U
For the edge set F⊆ E,  

• G(F) = the subgraph of G induced by edges of F
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Summary of Results

Graph Theoretic 
Computational Complexity
Game Theoretic
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Summary of Results (1/6): 
Graph-Theoretic, Complexity Results

Useful Graph-Theoretic Results:
Negative Results:
• UNDIRECTED PARTITION INTO HAMILTONIAN 

CYRCUITS OF SIZE AT LEAST 6
• is NP-complete.

Positive Results
• KÖNIG-EGENVÁRY MAX INDEPENDENT SET

can be solved in polynomial time.
• MAX INDEPENDENT SET EQUAL HALF ORDER

can be solved in polynomial time.
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Summary of Results (2/6): 
General Nash equilibria

A general Nash equilibrium 
• can be computed in Polynomial time 

But,
• No guarantee on the Defense Ratio of such an 

equilibrium computed.
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Summary of Results (3/6): 
Structured Nash equilibria

Structured Nash equilibria:
⇒Matching Nash equilibria [Mavronicolas et al. ISAAC05]

• A graph-theoretic characterization of graphs admitting 
them  

• A polynomial time algorithm to compute them on any 
graph

• using the KÖNIG-EGENVÁRY MAX INDEPENDENT SET
problem

• The Defense Ratio for them is α(G)
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Summary of Results (5/6): 
Perfect Matching Nash equilibria

• Introduce Perfect Matching Nash equilibria
• A graph-theoretic characterization of graphs admitting 

them
• A polynomial time algorithm to compute them on 

any graph
• using the MAX INDEPENDENT SET EQUAL 

HALF ORDER problem
• The Defense Ratio for them is |V| / 2
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Summary of Results (5/6): 
Defender Uniform Nash equilibria

Introduce Defender Uniform Nash equilibria 

A graph-theoretic characterization of graphs 
admitting them

The existence problem for them is NP-complete

The Defense Ratio them is                         
for some 1≤ π ≤ 1.
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Summary of Results (6/6): 
Attacker Symmetric Uniform Nash equilibria

Introduce Attacker Symmetric Uniform Nash equilibria

A graph-theoretic characterization of graphs admitting 
them

The problem to find them can be solved in polynomial 
time.

The Defense Ratio for them is
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Complexity Results
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Complexity Results (1/2):
A new NP-completeness proof

For the problem:
UNDIRECTED PARTITION INTO HAMILTONIAN CIRCUITS 
OF SIZE AT LEAST 6
Input: An undirected graph G(V,E)
Question: Can the vertex set V be partitioned into disjoint 
sets V1, Λ, Vk, such that each |Vi|≥ 6 and G(Vi) is 
Hamiltonian?
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We provide the first published proof that:
Theorem 1.
UNDIRECTED PARTITION INTO HAMILTONIAN 
SUBGRAPHS OF SIZE AT LEAST 6 is NP-complete.

Proof.
Reduce from 
• the directed version of the problem for circuits of 

size at least 3 which is known to be
• NP-complete in [GJ79]                                            �

Complexity Results (2/2):
A new NP-completeness proof
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Graph-Theoretic Results
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Graph-Theoretic Results (1/3)

KÖNIG-EGENVÁRY MAX INDEPENDENT SET 
Instance: A graph G(V, E).

Output: A Max Independent Set of G is König-Egenváry (α(G) = 
β'(G)) or No otherwise.

Previous Results for König-Egenváry graphs
• (Polynomial time) characterizations [Deming 79, Sterboul

79, Korach et. al, 06]
• Here we provide:

• a new polynomial time algorithm for solving the KÖNIG-
EGENVÁRY MAX INDEPENDENT SET problem.
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Graph-Theoretic Results (2/3)

Proposition 1. 
KÖNIG-EGENVÁRY MAX INDEPENDENT SET can be 
solved in polynomial time.

Proof.
Compute a Min Edge Cover EC of G
From EC construct a 2SAT instance φ such that
• G has an Independent Set of size |EC|=β'(G)

(so, α(G) = β'(G)) if and only if φ is satisfiable.
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Graph-Theoretic Results (3/3)

MAX INDEPENDENT SET EQUAL HALF ORDER
Instance: A graph G(V, E). 
Output: A Max Independent Set of G of size 

if                      or No if

• Proposition 2. 
MAX INDEPENDENT SET EQUAL HALF ORDER can be 

solved in polynomial time.
Proof.
Similar to the KÖNIG-EGENVÁRY MAX INDEPENDENT  SET  

problem.
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Game Theory- Previous Work
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Game Theory - Previous Work (1/4) 

Mavronicolas et al. ISAAC05:
Pure Nash Equilibria: The  graph G admits no pure 
Nash equilibria (unless it is trivial).
Mixed Nash Equilibria: An algebraic (non-polynomial) 
characterization.
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Proposition. [Mavr. et al. ISAAC05]

A Nash equilibrium is a Covering profile.

Game Theory - Previous Work (3/5):
Covering Profiles

Definition. [Mavronicolas et al. ISAAC05]

Covering profile is a profile s such that 
• Supports(ep) is an Edge Cover of G
• Supports(vp) is a Vertex Cover of the graph 

G(Supports(ep)).

Supports(ep)

Supports(vp)
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Game Theory - Previous Work (4/5):
Independent Covering Profiles

Definition. [Mavronicolas et al. ISAAC05]

An Independent Covering profile s is a uniform, Attacker 
Symmetric Covering profile s such that:
1. Supports(vp) is an Independent Set of G.
2. Each vertex in Supports(vp) is incident to exactly  one 

edge in Supports(ep).

Supports(ep)

Supports(vp)
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Proposition. [Mavronicolas et al. ISAAC05]
An Independent Covering profile is a Nash equilibrium, 
called Matching Nash equilibrium
Theorem. [Mavronicolas et al. ISAAC05]
A graph G admits a 
Matching Nash equilibrium 
if and only if G contains
an Expanding Independent Set.

Game Theory - Previous Work (5/5):
Matching Nash equilibria
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Game Theoretic Results
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General Nash Equilibria:
Computation

Consider a two players variation of the game Π(G):
⇒1 attacker, 1 defender

Show that it is a constant-sum game
Compute a Nash equilibrium s´ on the two players game 
(in polynomial time)
Construct from s´ a profile s for the many players game:
⇒which is Attacker Symmetric
⇒show that it is a Nash equilibrium

Theorem 2.
FIND GENERAL NE can be solved in polynomial time.
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Matching Nash Equilibria:
Graph Theoretic Properties 

Proposition 3.
In a Matching Nash equilibrium s, 

Supports(vp) is a Maximum Independent Set of G.
Supports(ep) is a Minimum Edge Cover of G. 
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A new Characterization of Matching 
Nash Equilibria

Theorem 3. The graph G admits a Matching Nash 
equilibrium if and it is König-Egenváry graph (α(G) = β'(G)).

Proof.
Assume that α(G) = β'(G)
IS = Max Independent Set
EC= Min Edge Cover 
Construct a Uniform, Attackers Symmetric profile s with:
• Supports(vp) = IS and Supports(ep) = EC. 

We prove that s is an Independent Covering profile
⇒ a Nash equilibrium.
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Proof of Theorem 7 (cont.)

Assume now that G admits a Matching Nash equilibrium s. 
By Proposition 3, 
⇒ | Supports(vp)| = | Supports(ep) |

by the definition of Matching Nash equilibria
⇒ α(G) = β'(G). 

Since KÖNIG-EGENVÁRY MAX INDEPENDENT SET∈ Р
⇒Theorem 4.

FIND MATCHING NE can be solved in time
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The Defense Ratio

Proposition 5.

In a Matching Nash equilibrium, the Defense Ratio is α(G).
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Perfect Matching Nash Equilibria:
Graph Theoretic Properties

A Perfect Matching Nash equilibrium s is a Matching NE
s.t. Supports(ep) is a Perfect Matching of G.

Proposition 6.
For a Perfect  Matching Nash equilibrium s,   
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Perfect Matching Nash Equilibria:
Graph Theoretic Properties

Theorem 5.
A graph G admits a Perfect Matching Nash equilibrium if 
and only if it
• it has  a Perfect Matching and 
• α(G) = |V|/2.

Proof.

Similarly to Matching Nash equilibria. �
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Computation and the Defense Ratio

Since MAXIMUM INDEPENDENT EQUAL HALF ORDER 
∈ Р , 

⇒Theorem 6.
FIND PERFECT MATCHING NE can be solved in 
polynomial time

Proposition 7. In a Perfect Matching Nash equilibrium, 
the Defense Ratio is |V| / 2.
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Defender Uniform Nash Equilibria:
A Characterization

Theorem 7. A graph G admits a Defender Uniform  Nash equilibrium if 
and only if there are non-empty sets V' ⊆ V and E'⊆ E and an integer 
r≥ 1 such that: 
(1/a) For each v∈ V',  dG(E')(v) = r.
(1/b) For each  v∈ V \ V',  dG(E')(v) ≥ r .

(2) V' can be partitioned into two disjoint sets V'i and V'r such that:
(2/a) For each v∈ V'i, for any u∈ NeighG(v), it holds that u    V'.
(2/b) The graph  h V'r, EdgesG (V'r) Å E' i is an  r-regular graph.
(2/c) The graph  h V'I ∪ (V \ V'), EdgesGV'I∪  ( V \V' ) ) ÅE' i is a    

(V'i , V \ V' )-bipartite graph.
(2/d) The graph h V'i∪  V \V‘ ), EdgesG( V'i∪  V \ V‘ ) ÅE' i is a       ( V 

\ V' ) - Expander graph.
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Characterization of 
Defender Uniform Nash Equilibria
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Complexity anf the Defense Ratio

• Theorem 8.
DEFENDER UNIFORM NE EXISTENCE is NP-complete.
Proof.
Reducing from

• UNDIRECTED PARTITION INTO HAMILTONIAN 
CYRCUITS

�
Theorem 9. In a Defender Uniform Nash equilibrium, the
Defense Ratio is
for some 0≤ π ≤ 1. 
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Attacker Symmetric Uniform Nash 
Equilibria: A characterization
Theorem 10.
A graph G admits an Attacker Symmetric Uniform Nash 
equilibrium if and only if:

1. There is a probability distribution  p:E → [0,1] such that:

a)

b)
OR
2. α(G) = β'(G).
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Computation and the Defense Ratio

Computation
Theorem 11. FIND ATTACKER SYMMETRIC UNIFORM 
NE can be solved in polynomial time.

Defense Ratio 
Theorem 12. In a Attacker Symmetric Uniform Nash 
equilibrium, the Defense Ratio is
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Thank you !


