
The Power of the Defender
∗

Marina Gelastou†, Marios Mavronicolas†, Vicky Papadopoulou†, Anna Philippou†,

and Paul Spirakis ‡

Abstract

We consider a network security problem involving harmful procedures, (e.g. viruses) and a
defender procedure (e.g. a system security software). Harmful entities choose a network node
and damage it, if it is not protected by the security software. The security software is able to
scan a limited part of the network and clean it from possible harmful entities. In [7], a basic
case of the problem, called the Edge model, where the defender protects a single link of the
network, was modelled and studied as a non-cooperative strategic game. Here, we consider a
more general case where the defender is able to scan a set of k links of the network, which we
call the Tuple model. It is natural to expect that this increased power of the defender should
result in a better quality of protection for the network. Ideally, this would be achieved at little
expense on the existence and complexity of Nash equilibria in the model, that is configurations
where no entity can unilaterally improve its local objective. We derive the following results:

• We show that the existence problem of pure Nash equilibria is solvable in polynomial
time.

• We provide a graph-theoretic characterization of mixed Nash equilibria.

• Inspired by a class of polynomial-time Nash equilibria, called matching, introduced in
the Edge model, we introduce k-matching configurations that generalize matching con-
figurations.

• We provide a polynomial-time reduction for transforming any matching Nash equilibrium
of any instance of the Edge model to a k-matching Nash equilibrium on a corresponding
instance of the Tuple model and vice versa.

• Using the polynomial-time reduction, we provide a characterization of graphs admitting
k-matching Nash equilibria. We develop a polynomial-time algorithm for computing
k-matching Nash equilibria on graphs satisfying the characterization. We exhibit the
applicability of the algorithm for bipartite graphs.

• We establish that the increased power of the defender results in an improved quality
of protection of the network. In particular, for the case of matching Nash equilibria,
we obtain that the gain of the defender, which amounts to the expected number of the
arrested harmful procedures, is linear to the parameter k, that is, the number of network
links the defender is able to scan and protect.

∗This work was partially supported by the IST Programs of the European Union under contract numbers IST-
2004-001907 (DELIS).

†Department of Computer Science, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus. {gelastoum,

mavronic,viki,annap}@ucy.ac.cy
‡Department of Computer Engineering and Informatics, University of Patras, 265 00 Patras, Greece, & Research

and Academic Computer Technology Institute, 261 10 Patras, Greece. spirakis@cti.gr

1 Introduction

1.1 Motivation

The recent huge growth of public networks (e.g. the Internet) has given Network Security, an issue
of great importance in computer networks, an even more critical role [10]. This work considers a
dimension of this area related to the protection of a system from harmful entities (e.g. viruses,
worms, trojan horses, eavesdroppers [3]), when the power of the security software is limited. We
consider an information network where the nodes of the network are insecure and vulnerable to
infection by attackers such as viruses, Trojan horses, eavesdroppers. In particular, at any time,
a number of harmful entities is known (or an upper bound of this number) to be present in the
network. Each harmful entity targets a location (i.e. a node) of the network via a probability
distribution; the node is damaged unless it is cleaned by the system security software. A defender,
i.e. a system security software, is available in the system but it can guarantee security only to
a limited part of the network, such as a link or a set of links, which it may choose using a
probability distribution. Such limitations are due to financial costs, e.g. the cost of purchasing a
global security software or due to performance reasons, e.g. the reduced efficiency or usability of
the protected network part.

Obviously, the network entities involved in this scenario have opposite objectives; the system
security software seeks to protect the network as much as possible, while the harmful entities
wish to avoid being caught by the software so as to be able to damage the network. Thus, it is
reasonable to view the problem as a non-cooperative game with players of conflicting interests.
In [7] a basic case of this scenario, is modelled as a non-cooperative multi-player strategic game.
The game is played on a graph with two kinds of players: the vertex players, which can choose a
node of the network representing the harmful entities, and the defender, called the edge player,
which can choose a single edge of the network, representing the system security software. The
defender player seeks to maximize the expected number of vertex players it catches, while each
vertex player seeks to maximize the probability of escaping the defender. The resulting game is
called the Edge model. Such a modelling captures a simple case of the problem. At the same
time, its simplicity enables a relative ease for exploring the problem using Graph-Theoretic tools.
However, the Edge model considers only a restricted case for the system security software, where
it can clean only a single link of the network each time.

In this work, we generalize the model of [7] by giving the defender player increased power.
Specifically, it may choose a set of k edges instead of only one. We call the resulting game as
the Tuple model. Note that the Edge model is a special case of the Tuple model for k = 1.
We are interested in the Nash equilibria [5, 6] associated with this game, where no player can
unilaterally improve its individual objective by switching to a more advantageous probability
distribution. Further, we investigate the trade-offs between the gains in system protection and
the characterization and efficient computation of Nash equilibria caused by this increase in the
defender’s power.

1.2 Summary of Results

Our contribution in this work is summarized as follows:

• We provide a graph-theoretic characterization of pure Nash equilibria of the Tuple model
(Theorem 3.1). This result implies that the existence problem of pure Nash equilibria of the
Tuple model is solvable in polynomial time (Corollary 3.2). The same result implies also
that for non-trivial cases of graphs, i.e when the number of vertices of the related graph is

1

at least 2k+1, the instance contains no pure Nash equilibria (Corollary 3.3). A consequence
of this result is that the increase in the defender’s power results in a greater class of graphs
admitting pure Nash equilibria.

• Next, we provide a graph-theoretic characterization of mixed Nash equilibria of the problem
(Theorem 3.4). Interestingly, the characterization suggests similar properties as the corre-
sponding characterization of the Edge model of [7], indicating the extensibility of the latter
model.

• Inspired by a class of polynomial-time Nash equilibria introduced in the Edge model, called
matching, we investigate whether their variations can be useful to the more general game
studied here. In particular, we introduce k-matching configurations for the Tuple model, that
generalize matching configurations. We provide sufficient conditions for such a configuration
to be a Nash equilibrium, called k-matching Nash equilibrium (Lemma 4.1).

• Furthermore, we discover a strong relationship between matching Nash equilibria of the
Edge model and k-matching Nash equilibria introduced here: From any k-matching mixed
Nash equilibrium of the Tuple model, a matching mixed Nash equilibrium of the Edge
model can be computed in polynomial time and vice versa (Theorem 4.5). This, implies
that the Tuple model is polynomial-time reducible to the Edge model with respect to k-
matching Nash equilibria. The same result answers positively a conjecture stated in [7]
about the applicability of matching equilibria in various network games suggesting them as
a candidate Nash equilibrium for polynomial-time computation in various settings.

• The polynomial-time reduction between k-matching and matching Nash equilibria provided
here (Theorem 4.5) implies a characterization of graphs admitting k-matching Nash equi-
libria (Corollary 4.11). Furthermore, it enables us to develop a polynomial-time algorithm
for computing k-matching Nash equilibria for graph instances of the Tuple model that sat-
isfy the characterization (Theorems 4.12, 4.13). In particular, the algorithm utilizes as a
subroutine an algorithm of [7] for computing a matching Nash equilibrium of a correspond-
ing graph. Then, it transforms it, using the proof of Theorem 4.5, to a k-matching Nash
equilibrium of the graph, in time O(k · n), where n is the number of nodes in the network.

• Finally, our study demonstrates the impact of the power of the defender, the parameter k,
on the security of the network. We show that the gain of the defender depends linearly on
the parameter k in the Nash equilibria considered.

1.3 Related Work

This work contributes in the area of the quite broad field of Network Security, related to the
protection of a network from harmful entities (e.g. viruses, worms, malicious procedures, or
eavesdroppers). However, it differentiates from previous relative works, therefore becoming inno-
vative, in that it considers a security problem from an alternative point of view than the usual.
It considers a network security problem exploring tools of a new area, Algorithmic Game Theory
and a quite developed field, Graph Theory. Network security problems have been first modelled
as strategic games and associated Nash equilibria were studied on them in [4, 2, 7, 8].

[2] and [4] studied Interdependent Security games. In such a game, a large number of players
must make individual investment decisions related to security, in which the ultimate safety of
each participant may depend in a complex way on the actions of the entire population. In [2], the
authors establish connections of the game considered with variants of a Graph Partition problem.
Using them they provide polynomial-time Nash equilibria and prove NP-hardness of finding best
equilibria of the game studied.

2

[7] considers networks vulnerable to viral infection, where the system security software can
guarantee safety only to a limited part of the network. In [7] the problem is modeled, for the first
time, as a non-cooperative game with two kinds of players; the attackers and a defender entity. A
basic case of the problem is considered, where the defender is able to guarantee safety to a single
link of the network. Such problems differentiate from Interdependent Security problems in that the
gain of an attacker player does not depend on the actions of any players other than the defender.
[7] provides a non-existence result for pure Nash equilibria of the model. It introduces a family
of structural Nash equilibria for the model, i.e., matching, it provides a characterization for their
existence and a polynomial-time algorithm for their computation. Bipartite graphs are shown
to possess such equilibria, thus the algorithm is applicable on such instances. In a subsequent
work [8], we consider other families of structural Nash equilibria for the same problem in some
practical families of graphs, such as regular graphs, graphs with perfect matchings and trees. We
prove their existence and polynomial-time computation on corresponding instances. In the same
work, we study also pure Nash equilibria for a generalized variation of the Edge model, where the
defender is able to clean a path of the graph.

Another work which employs Game Theory on related problems is that of [3]. There, the
study concerns the feasibility and computational complexity of two privacy tasks in distributed
environments with mobile eavesdroppers; of distributed database maintenance and message trans-
mission. A mobile eavesdropper is a computationally unbounded adversary that moves its bugging
equipment within the system. However, [3] does not utilize Graph-Theoretic tools. In contrast, [1]
employs Graph-Theoretic tools to study a two-player game on a graph. It establishes connections
of the problem with the k-server problem and provides an approximate solution for the simple
network design problem. However, this study does not concern network security problems.

2 The Model

We consider an undirected graph G(V, E), with no isolated vertices, with |V (G)| = n and |E(G)| =
m, and an integer 1 ≤ k ≤ m. When there is no confusion we omit G in V (G) and E(G). For a
set of vertices X ⊆ V , denote NeighG(X) = {u 6∈ X : (u, v) ∈ E(G)}. Let Ek be the set of all
tuples of k distinct edges of the graph G. When there is no confusion, we refer to a tuple of k
edges simply as a tuple. For any t ∈ Ek, let V (t) = {v ∈ V : (v, u) ∈ t} be the set of the distinct
endpoints of edges of the tuple t. Similarly, for any t ∈ Ek, let E(t) = {e ∈ E : e ∈ t}. Also, for
any T ⊆ Ek, let V (T) =

⋃

t∈T V (t) and E(T) =
⋃

t∈T E(t). For any T ⊆ Ek, the graph obtained
by T , denoted by GT , has V (GT) = V (T) and E(GT) = E(T). Let GCD(i, j) and LCM(i, j) be
the greatest common divisor and the least common multiple of the integers i and j, respectively.

Definition 2.1 (Tuple Model) An information network is represented as an undirected, con-
nected graph G(V, E). The vertices represent the network hosts and the edges represent the com-
munication links. We define a non-cooperative game Πk(G) = 〈N , {Si}i∈N , {IP}i∈N 〉 on a graph
G where k is an integer 1 ≤ k ≤ m, as follows:

• The set of players is N = NV P ∪ NTP , where NV P is a finite set of ν vertex players, vpi,
1 ≤ i ≤ ν, and NTP is a singleton set of the tuple player, tp. We let x range over N .

• The strategy set Si of each player vpi ∈ NV P , is V . The strategy set Stp of the tuple player
is Ek, that is a strategy of tp is any tuple containing k edges of G. Thus, the strategy set of
the game S = V ν × Ek.

• Take any strategy profile ~s = 〈s1, . . . , sν , stp〉 ∈ S, called a configuration.

3

– The Individual Profit of vertex player vpi is a function IPi : S → {0, 1} such that

IPi(~s) =

{

0, si ∈ V (stp)
1, si 6∈ V (stp)

; intuitively, vpi receives 1 if it is not caught by the tuple

player, and 0 otherwise.

– The Individual Profit of the tuple player is a function IPtp : S → N such that IPtp(~s) =
|{si : si ∈ V (stp)}|.

Remark. For k = 1, the Tuple model coincides with the Edge model. Thus, for any graph G,
Π1(G) refers to an instance of the Edge model or an instance of the Tuple model for k = 1.

The configuration ~s is a pure Nash equilibrium [5, 6] (abbreviated as pure NE) if, for each player
x ∈ N , it maximizes IPx over all configurations ~t that differ from ~s only with respect to the
strategy of player x. A mixed strategy profile or a mixed configuration for player x ∈ N is a
probability distribution over its strategy set Sx; thus, a mixed configuration for a vertex player is
a probability distribution over vertices of G. A mixed strategy for the tuple player is a probability
distribution over tuples of k edges of G. A mixed configuration ~s is a collection of mixed strategies,
one for each player. Denote P~s(tp, t) the probability that the tuple player chooses the tuple of k
edges t ∈ Ek in ~s; denote P~s(vpi, v) the probability that player vpi chooses vertex v ∈ V in ~s.
Note that

∑

v∈V P~s(vpi, v) = 1 for each player vpi; similarly,
∑

t∈Ek P~s(tp, t) = 1.

The support of a player x ∈ N in a configuration ~s, denoted D~s(x), is the set of pure strate-
gies in its strategy set to which x assigns strictly positive probability in ~s. Denote D~s(V P) =
⋃

vpi∈NV P
D~s(vpi). Let also Tuples~s(v) = {t : v ∈ V (t), t ∈ D~s(tp)}, i.e. set Tuples~s(v) contains

all tuples t in the support of player tp such that v ∈ V (t). Given a configuration ~s, we denote
(~s−x, [y]) the configuration obtained by ~s, where all but player x play as in ~s and player x plays
the pure strategy y.

Fix a mixed configuration ~s. For each vertex v ∈ V , denote Hit(v) the event that the tuple
player hits vertex v. So, the probability of Hit(v) is P~s(Hit(v)) =

∑

t∈Tuples~s(v) P~s(tp, t). For
each vertex v ∈ V , denote m~s(v) the expected number of vertex players choosing v. For each
edge e = (u, v) ∈ E, denote m~s(e) the expected number of vertex players choosing either u or v;
so, m~s(e) = m~s(u) + m~s(v). Moreover, for a tuple t ∈ Ek(G) denote m~s(t) the expected number
of vertex players over the vertices of tuple t; so m~s(t) =

∑

v∈V (t) m~s(v). It is easy to see that for
each vertex v ∈ V , m~s(v) =

∑

vpi∈NV P
P~s(vpi, v).

A mixed configuration~s induces an Expected Individual Profit IPx for each player x ∈ N , which
is the expectation, according to ~s, of its corresponding Individual Profit (defined previously for
pure configurations). The mixed configuration ~s is a mixed Nash equilibrium [5, 6] (abbreviated
as mixed NE) if for each player x ∈ N , it maximizes IPx over all configurations ~t that differ from
~s only with respect to the mixed strategy of player x.

We proceed to calculate the Expected Individual Profit. Clearly, for the vertex player vpi ∈
NV P ,

IPi(~s) =
∑

v∈V (G)

P~s(vpi, v) · (1 − P~s(Hit(v))

=
∑

v∈V (G)

P~s(vpi, v) · (1 −
∑

t∈Tuples~s(v)

P~s(tp, t))

 (1)

4

For the tuple player tp,

IPtp(~s) =
∑

t∈D~s(tp)

P~s(tp, t) · m~s(t) =
∑

t∈D~s(tp)

P~s(tp, t) ·
∑

v∈V (t)

m~s(v)

=
∑

t∈D~s(tp)

P~s(tp, t) ·
∑

v∈V (t)

∑

vpi∈NV P

P~s(vpi, v)

 (2)

2.1 Background

A graph G(V, E) is a bipartite graph if its vertex set can be partitioned as V = V1 ∪ V2 such that
each edge e ∈ E has one of its vertices in V1 and the other in V2. Fix a set of vertices S ⊆ V .
The graph G is an S-expander graph if for every set X ⊆ S, |X| ≤ |NeighG(X)|. A set M ⊆ E
is a matching of G if no two edges in M share a vertex. Given a matching M , say that set S ⊆ V
is matched in M if for every vertex v ∈ S, there is an edge (v, u) ∈ M . A vertex cover of G is
a set V ′ ⊆ V such that for every edge (u, v) ∈ E either u ∈ V ′ or v ∈ V ′. An edge cover of G
is a set E′ ⊆ E such that for every vertex v ∈ V , there is an edge (v, u) ∈ E′. Say that an edge
(u, v) ∈ E (resp., a vertex v ∈ V) is covered by the vertex cover V ′ (resp., the edge cover E′) if
either u ∈ V ′ or v ∈ V ′ (resp., if there is an edge (u, v) ∈ E′). Otherwise, the edge (resp., the
vertex) is not covered by the vertex cover (resp., the edge cover). A set IS ⊆ V is an independent
set of G if for all vertices u, v ∈ IS, (u, v) /∈ E. Clearly, IS ⊆ V is an independent set of G if and
only if the set V C = V \ IS is a vertex cover of G.

Our study utilizes the notion of matching NE defined for the Edge model in [7] and some related
Theorems presented there. As explained in Remark 2, for any G, Π1(G) is both an instance of
the Edge model and an instance of the Tuple model for k = 1. Thus, matching configurations of
the Edge model can be defined in terms of the Tuple model as follows:

Definition 2.2 ([7]) A matching configuration ~s of Π1(G) satisfies: (1) D~s(vp) is an indepen-
dent set of G and (2) each vertex v of D~s(vp) is incident to only one edge of D~s(tp).

Lemma 2.1 ([7]) For any graph G, if (i) there exists a matching configuration ~s in Π1(G), (ii)
D~s(tp) is an edge cover of G and (iii) D~s(vp) is a vertex cover of the graph obtained by D~s(tp),
then, the strategy profile consisting of the uniform probability distribution on D~s(vp) for every
vertex player, and the uniform probability distribution on D~s(tp) for the tuple (edge) player, gives
rise to a mixed Nash equilibrium for Π1(G) which is called a matching NE.

Theorem 2.2 ([7]) For any graph G, Π1(G) contains a matching mixed Nash equilibrium if and
only if the vertices of the graph G can be partitioned into two sets IS and V C (V C = V \IS),
such that IS is an independent set of G and G is a V C-expander graph.

3 Nash Equilibria

For pure Nash equilibria we prove:

Theorem 3.1 For any graph G, Πk(G) has a pure Nash equilibrium if and only if G contains an
edge cover of size k.

5

Proof. Consider any graph G that contains an edge cover EC of size k. Consider any pure
configuration ~s of Πk(G) such that ~stp = EC and the pure strategy of each one of the vertex
players is any v ∈ V . Note that V (~stp) = V , thus, the Individual Profit of the tuple player tp is
IPtp(~s) = |{~si : ~si ∈ V (~stp)}| = ν. Obviously this value is the maximum possible of IPtp. On the
other hand, the Individual Profit of any vertex player on any v ∈ V is 0, since v ∈ V (~stp). This
implies that, for every vpi ∈ Nvp there is no ~s∗ = (~s−vpi

, u), u 6= ~si ∈ V such that IPi(~s
∗) > IPi(~s).

Thus, ~s is a pure NE.

Next, we prove that if Πk(G) has a pure NE, then G contains an edge cover of size k. Assume
the contrary, i.e., that any edge cover of G has size at least k+1. Consider any pure configuration
~s of Πk(G) that is a pure NE. Since ~stp consists of only k edges, there is at least one vertex of
G that is not covered by ~stp. Let NC be the set of vertices not covered by ~stp. Then, for all
vpi ∈ Nvp, ~si ∈ NC because these actions give the vertex players zero probability to be caught by
the tp. But, in such a case, IPtp = 0 since for all vpi ∈ Nvp, ~si 6∈ D~s(tp). This implies that there
is at least one ~s∗ = (~s−tp, t

′), t′ ∈ Ek such that IPtp(~s
∗) > IPtp(~s). Thus, ~s is not a pure NE, a

contradiction to our initial assumption.

The above theorem implies that,

Corollary 3.2 For any graph G, the existence of pure Nash equilibria on Πk(G) can be solved in
polynomial time.

Proof. For any graph G and any integer k, one can check whether G contains an edge cover of
size k, and if so, compute such an edge cover, in polynomial time [11, chapter 3, pp. 115]. Thus,
by Theorem 3.1, one can check if Πk(G) contains a pure NE and if so compute one, in polynomial
time.

By Theorem 3.1, when n ≥ 2k + 1 and since any edge cover of G is of size at least n/2 > k,
we get,

Corollary 3.3 If |V (G)| ≥ 2k + 1, then Πk(G) has no pure Nash equilibrium.

Theorem 3.4 (Characterization) For any graph G, a mixed configuration ~s is a Nash equilib-
rium for any Πk(G) if and only if:

1. E(D~s(tp)) is an edge cover of G and D~s(V P) is a vertex cover of the graph obtained by
E(D~s(tp)).

2. The probability distribution of the tuple player over Ek, is such that, (a) P~s(Hit(v)) =
P~s(Hit(u)) = minvP~s(Hit(v)), ∀ u, v ∈ D~s(V P) and (b)

∑

t∈D~s(tp) P~s(tp, t) = 1.

3. The probability distributions of the vertex players over V are such that, (a) m~s(t1) =
m~s(t2) = maxtm~s(t), ∀ t1, t2 ∈ D~s(tp) and (b)

∑

v∈V (D~s(tp)) m~s(v) = ν.

Proof. We proceed to prove three claims relevant to the proof of the theorem.

Claim 3.5 In any mixed NE ~s∗ of Πk(G), E(D~s∗(tp)) is an edge cover of G.

Proof. Assume the contrary. Let NC be a set of vertices of G not covered by E(D~s∗(tp)). Then,
for all vpi ∈ NV P , D~s∗(vpi) ⊆ NC since these strategies give to the vertex players zero probability
to be caught by the tuple player. This implies that IPtp(~s

∗) = 0 which can be improved if the tuple
player selects any tuple of edges containing at least one vertex player. Thus, this configuration is
not a NE, a contradiction. Henceforth, the initial assumption is false.

6

Claim 3.6 In any mixed NE ~s∗ of Πk(G), D~s∗(V P) is a vertex cover of the graph obtained by
D~s∗(tp).

Proof. Assume the contrary, i.e. w.l.g. let t = 〈e1, . . . , ek〉 ∈ D~s∗(tp) such that ek = (v, u),
v, u 6∈ D~s∗(V P). Consider an alternative tuple t′ = 〈e1, . . . , ek−1, e

′
k〉 ∈ D~s∗(tp), such that e′k =

(v′, u,), e′k ∈ E(D~s∗(tp)) and u′ or v′ ∈ D~s∗(V P), assume v′. Note that such a tuple exists
since |E(D~s∗(tp))| ≥ k + 1. But then, m~s∗(t

′) =
∑

u′∈V ({e1,...,ek−1})
m~s∗(u

′) + m~s∗(v
′) > m~s∗(t) =

∑

u′∈V ({e1,...,ek−1})
m~s∗(u

′) + m~s∗(v) + m~s∗(u) =
∑

u′∈V ({e1,...,ek})
m~s∗(u

′). Thus, tp can gain more

by moving the probability of choosing tuple t to tuple t′. Henceforth, ~s∗ is not a mixed NE, a
contradiction. First, note that |E(D~s∗(tp))| ≥ k + 1, otherwise ~s∗ is a pure configuration.

Claim 3.7 In any mixed configuration ~s∗, of Πk(G)
∑

v∈V (D~s∗ (tp)) m~s∗(v) = ν.

Proof.
∑

v∈V (D~s∗ (tp))

m~s∗(v) =
∑

v∈V (D~s∗(tp))

∑

vpi∈NV P

P~s∗(vpi, v) =
∑

vpi∈NV P

∑

v∈V (D~s∗(tp))

P~s∗(vpi, v)

(Claim 3.5)
=

∑

vpi∈NV P

∑

v∈V

P~s∗(vpi, v) =
∑

vpi∈NV P

1 = ν

Returning to the proof of Theorem 3.4, next we prove that if ~s∗ is a mixed NE for Πk(G) then
conditions 1-3 hold.
1.: By Claims 3.5 and 3.6.
2.(a): By equation (1) and since ~s∗ is a Nash equilibrium, for any vpi ∈ NV P and u, v ∈ D~s∗ ,
we get IPi(~s

∗) = IPi(~s
∗
−vpi

, [v]) = IPi(~s
∗
−vpi

, [u]) = 1 − P~s∗(Hit(v)) = 1 − P~s∗(Hit(u)). Hence,
P~s∗(Hit(v)) = P~s∗(Hit(u)). Moreover, for any u′ ∈ V , u′ /∈ D~s∗(V P), we get IPi(~s

∗
−i, [v]) ≥

IPi(~s
∗
−i, [u

′]). Thus, by equation (1), 1 − P~s∗(Hit(v)) ≥ 1 − P~s∗(Hit(u′)) and P~s∗(Hit(v)) ≤
P~s∗(Hit(u′)). So P~s(Hit(v)) = P~s(Hit(u)) = minv P~s(Hit(v)), for all u, v ∈ D~s∗ .
2.(b): Obvious, since P~s∗(tp) is a probability distribution over tuples of edges in Ek(G).
3.(a): By equation (2) and the fact that~s∗ is a Nash equilibrium, we get IPtp(~s

∗) = IPtp(~s
∗
−tp, [t1]) =

IPtp(~s
∗
−tp, [t2]) = m~s∗(t1) = m~s∗(t2), for all t1, t2 ∈ D~s∗(tp). Moreover, for any t /∈ D~s∗(tp),

t1 ∈ D~s∗(tp), we get IPtp(~s
∗
−tp, [t1]) ≥ IPtp(~s

∗
−tp, [t]). Thus, m~s∗(t1) ≥ m~s∗(t). So m~s∗(t1) =

m~s∗(t2) = maxt m~s∗(t), for any t1, t2 ∈ D~s∗(tp).
3.(b): by Claim 3.7.

Next, we prove that if conditions 1-3 hold for a mixed strategy profile ~s then ~s is a Nash
equilibrium. Consider first the vertex players. For any player vpi; by 2.(a), any v ∈ D~s(vpi), has
minimum hitting probability in ~s. Thus, any of these vertices is a best response ([9], chapter 3)
choice for player vpi. Hence, player vpi is satisfied in ~s. Consider now the tuple player. By 3.(a),
any t ∈ D~s(tp), has a maximum expected number of vertex players located on it. Thus, t is a
best response choice for tp in ~s and henceforth tp is also satisfied in ~s.

4 k-Matching Nash Equilibria

In [7] a special class of polynomial-time Nash equilibria is introduced for the Edge model, called
matching Nash equilibrium, based on the notion of matching configurations. In this section, we
extend this class of equilibria to the Tuple model. We begin by defining k-matching configurations
which generalize matching configurations and we provide sufficient conditions for such configura-
tions to also form Nash equilibria, which we call k-matching Nash equilibria. Furthermore, we

7

develop a polynomial-time reduction that, given a matching mixed Nash equilibrium of an instance
of the Edge model, computes a k-matching mixed Nash equilibrium of a corresponding instance
of the Tuple model, and vice versa. The reduction implies a characterization of graphs admitting
k-matching Nash equilibria. We utilize this reduction to develop a polynomial-time algorithm for
computing k-matching Nash equilibria for graph instances that satisfy the characterization. We
proceed with the definition of k-matching configurations.

Definition 4.1 A k-matching configuration ~s of Πk(G) satisfies: (1) D~s(V P) is an indepen-
dent set of G, (2) each vertex v of D~s(V P) is incident to only one edge of the edge set E(D~s(tp))
and (3) each edge e ∈ E(D~s(tp)) belongs to an equal number of distinct tuples in D~s(tp).

Observation 4.1 For k = 1, k-matching configurations on Πk(G) coincide with matching con-
figurations of the Edge model on Π1(G).

Proof. Obviously, an 1-matching configuration ~s of Π1(G) is also a matching configuration of
Π1(G). We show that if ~s is a matching configuration of Π1(G), then ~s is also an 1-matching
configuration of Π1(G). Conditions (1) and (2) of a matching configuration are identical with
conditions (1) and (2) of an 1-matching configuration, thus they are both satisfied. Lastly, an
edge e ∈ E(D~s(tp)) may belong to exactly one pure strategy, since in the edge model strategies are
tuples of size one (i.e. edges), and Condition (3) of an 1-matching configuration is also satisfied.

Lemma 4.1 For any graph G, if in Πk(G) there exists a k-matching configuration ~s which addi-
tionally satisfies condition 1 of Theorem 3.4, then there exist polynomial-time computable prob-
ability distributions for the players on ~s, such that the resulting configuration is a mixed Nash
equilibrium for Πk(G).

Proof. Consider any configuration ~s as stated by the Lemma, assuming that there exists one.
Let the following probability distributions of the vertex players and the tuple player:

tp : ∀ t ∈ D~s(tp), P~s(tp, t) := 1/|D~s(tp)| and ∀ t′ ∈ Ek, t′ /∈ D~s(tp), P~s(tp, t′) := 0 (3)

For any vpi ∈ NVP : ∀ v ∈ D~s(V P), P~s(vpi, v) := 1
|D~s(vp)| and

∀ u ∈ V, u /∈ D~s(V P), P~s(vpi, u) := 0.
(4)

We proceed with a sequence of claims utilized next in the proof.

Claim 4.2

∀ v ∈ D~s(V P), m~s(v) =
ν

|D~s(V P)| and ∀ u ∈ V, u 6∈ D~s(V P), m~s(u) = 0

Proof.

∀ v ∈ D~s(V P), m~s(v) =
∑

vpi∈NV P

P~s(vpi, v) =
∑

vpi∈NV P

1

|D~s(V P)| =
ν

|D~s(V P)|

by equation (4). In contrast, for any other vertex u ∈ V , u 6∈ D~s(V P), by the same equation,
m~s(u) = 0.

Claim 4.3 P~s(Hit(v)) = k
|E(D~s(tp))| , ∀ v ∈ D~s(V P).

8

Proof.

∀ v ∈ D~s(V P), P~s(Hit(v)) =
∑

t∈Tuples~s(v)

P~s(tp, t) = |Tuples~s(v)| · 1

|D~s(tp)| (5)

by equation (3).

Next, we compute Tuples~s(v). According to condition (2) of the definition of a k-matching
configuration, each vertex v ∈ D~s(V P) is incident to only one edge of E(D~s(tp)), i.e., there exists
exactly one edge e = (v, u) ∈ E(D~s(tp)). Thus, |Tuples~s(v)| is equal to the number of tuples
t ∈ D~s(tp) containing edge e. Let α be the number of the tuples t ∈ D~s(tp) containing edge e.
Then, by equation (5)

P~s(Hit(v)) =
α

|D~s(tp)| (6)

According to condition (3) of the definition of a k-matching configuration, each edge e ∈
E(D~s(tp)) belongs to an equal number of tuples in D~s(tp). Thus, this number is equal to α.
Henceforth, P~s(Hit(v)) = P~s(Hit(u)), for any v, u ∈ D~s(V P). Moreover, α · |E(D~s(tp))| is the
size of the multiset of edges contained in D~s(tp) which is also equal to |D~s(tp)| · k. This implies

that |D~s(tp)| = α·|E(D~s(tp))|
k . Hence, equation (6) gives,

P~s(Hit(v)) =
α

α·|E(D~s(tp))|
k

=
k

|E(D~s(tp))| , ∀ v ∈ D~s(V P).

Claim 4.4 P~s(Hit(u)) ≥ k
|E(D~s(tp))| = P~s(Hit(v)), ∀ u /∈ D~s(V P) and v ∈ D~s(V P).

Proof. As in the previous claim,

∀ u /∈ D~s(V P), P~s(Hit(u)) =
∑

t∈Tuples~s(u)

P~s(tp, t) = |Tuples~s(u)| · 1

|D~s(tp)| (7)

by equation (3).

Consider such a vertex u /∈ D~s(V P). Consider v ∈ D~s(V P) such that (v, u) ∈ t, t ∈ D~s(tp).
According to condition (2) of the definition of a k-matching configuration, vertex v is incident
to only one edge of the edge set E(D~s(tp)), assume edge (v, u). Thus, each t ∈ Tuples~s(v) is of
the form 〈(v, u), . . . , (v′, u′)〉, since all tuples containing vertex v, contain actually edge (v, u). So,
for all t ∈ Tuples~s(v) it holds that t ∈ Tuples~s(u). Henceforth, Tuples~s(v) ⊆ Tuples~s(u) and
|Tuples~s(v)| ≤ |Tuples~s(u)|. From equation (7) and Claim 4.3, we get

P~s(Hit(u)) ≥ P~s(Hit(v)) ⇔ P~s(Hit(u)) ≥ Tuples~s(v)

|E(D~s(tp))| =
k

|E(D~s(tp))| = P~s(Hit(v)) (8)

Returning to the proof of the lemma, we show that ~s satisfies all conditions of Theorem 3.4,
thus it is a mixed NE.

1.: By assumption.
2.(a): By Claims 4.3 and 4.4.
2.(b):

∑

t∈D~s(tp) P~s(tp, t) =
∑

t∈D~s(tp)
1

|D~s(tp)| = 1.

3.(a): m~s(t1) =
∑

v∈V (t1) m~s(v), for any t1 ∈ D~s(tp). By condition (2) of a k-matching con-

figuration, t1 covers exactly k distinct vertices v1
1, . . . , v

1
k ∈ D~s(V P) and at most k vertices

9

u1
1, . . . , u

1
k /∈ D~s(V P). By Claim 4.2, we get that m~s(v

1
1) = . . . = m~s(v

1
k) = ν

|D~s(V P)| and

m~s(u
1
1) = . . . = m~s(u

1
k) = 0. Thus, m~s(t1) = k·ν

|D~s(V P)| . Moreover, m~s(t2) =
∑

v∈V (t2) m~s(v) for all

t2 /∈ D~s(tp). Note that t2 covers at most k vertices v2
1, . . . , v

2
k ∈ D~s(V P). By Claim 4.2 again, we

get that m~s(v
2
1) = . . . = m~s(v

2
k) = ν

|D~s(V P)| . Thus m~s(t2) ≤ k·ν
|D~s(V P)| +

∑

u∈V (t2), u/∈D~s(V P) m~s(u).

Note that the latter sum equals to 0 according to Claim 4.2. Henceforth, m~s(t2) ≤ k·ν
|D~s(V P)| =

m~s(t1) for all t1 ∈ D~s(tp), t2 /∈ D~s(tp).

3.(b): Since Dtp(~s) is an edge cover of G (by assumption), by Claim 4.2, we have
∑

v∈V (D~s(tp))

m~s(v) =
∑

v∈V

ν

|D~s(V P)| = |D~s(V P)| · ν

|D~s(V P)| = ν

Note that the probability distributions for the vertex players and the tuple player can be
computed in polynomial time.

Definition 4.2 A k-matching configuration which additionally satisfies condition 1 of Theorem
3.4 is called a k-matching mixed NE.

Theorem 4.5 For any G, from any matching mixed Nash equilibrium ~s′ of Π1(G) we can compute
in polynomial time a k-matching mixed Nash equilibrium ~s of Πk(G) and vice versa. Further, for
~s and ~s′ it holds that IPtp(~s) = k · IPtp(~s

′).

Proof.

Lemma 4.6 For any G, from any k-matching mixed NE ~s of Πk(G), we can compute a matching
mixed NE ~s′ of Π1(G), in polynomial time.

Proof. Let ~s be a k-matching mixed NE of Πk(G). We construct a configuration ~s′ of Π1(G) as
follows: D~s′(V P) = D~s(V P), D~s′(vpi) := D~s(V P), ∀vpi ∈ Nvp, D~s′(tp) := E(D~s(tp)). Apply the
uniform probability distribution for all players. Next, we show that configuration ~s′ is a matching
configuration of Π1(G).

Observe that the definition of a k-matching configuration differs from a matching configuration
(Definition 2.2) only in condition (2) and in that it was supplemented with condition (3). Thus,
condition (1) of the definition of a matching configuration is fulfilled in the constructed config-
uration ~s′. In the definition of a matching configuration (Definition 2.2), condition (2) requires
that each vertex v ∈ D~s′(V P) to be incident only to one edge of the D~s′(tp). In the definition of
a k-matching configuration (Definition 4.1), condition (2) requires that each vertex v ∈ D~s(V P)
is incident to only one edge of set E(D~s(tp)). However, D~s′(tp) = E(D~s(tp)). Since ~s satisfies
condition (2) of the definition of a k-matching configuration, we get that condition (2) of the
definition of a matching configuration is also fulfilled in ~s′. Hence, ~s′ is a matching configuration
of Π1(G).

Next, we show that ~s′ satisfies also condition (ii) of Lemma 2.1, i.e., that D~s′(tp) is an edge
cover of G and that D~s′(vp) is a vertex cover of the graph obtained by D~s(tp). Since D~s′(tp) =
E(D~s(tp)) and E(D~s(tp)) is an edge cover of G in instance Πk(G) (recall that ~s is a mixed NE),
D~s′(tp) is an edge cover of G in instance Π1(G). Moreover, the subgraph of G obtained by D~s′(tp)
in Π1(G) is equal to the subgraph of G obtained by E(D~s(tp)) in Πk(G). D~s(V P) is a vertex
cover of the graph obtained by E(D~s(tp)) and D~s′(V P) = D~s(V P). Thus, D~s′(V P) is a vertex
cover of the graph obtained by D~s′(tp). Henceforth, ~s′ satisfies condition (ii) of Lemma 2.1 on
Π1(G). Moreover, ~s′ uses the uniform probability distribution as required by Lemma 2.1. Thus,
by the lemma, it is a matching NE of Π1(G). Finally, note that, ~s′ is constructed in polynomial
time.

10

Corollary 4.7 In configurations ~s of Πk(G) and ~s′ of Π1(G) of Lemma 4.6 it holds that, m~s(tp) =
k · m~s′(tp).

Proof. Consider any k-matching Nash equilibrium ~s. Since ~s is a Nash equilibrium, for any
t ∈ D~s(tp), we get IPtp(~s) = IPtp(~s−tp, t) = m~s(t). By Claim 4.2, m~s(t) =

∑

v∈V (t) m~s(v) =
∑

v∈V (t)
ν

|D~s(V P)| . Moreover, since D~s(V P) is an independent set of G (condition (1) of a k-

matching configuration), we get,

IPtp(~s) =
∑

v∈V (t)

ν

|D~s(V P)| = k · ν

|D~s(V P)| (9)

Now, consider the matching configuration ~s′ constructed by ~s according to Lemma 4.6. Since ~s′ is
a Nash equilibrium, for any e = (v, u) ∈ D~s′(tp), v ∈ D~s′(V P), IPtp(~s

′) = IPtp(~s
′
−tp, e) = m~s′(e).

Moreover, since D~s′(V P) is an independent set of G (condition (1) of a matching configuration),
we have m~s′(e) = m~s′(v). Moreover, since ~s′ uses a uniform distribution, we get,

IPtp(~s
′) = m~s′(v) =

∑

i∈NV P

P~s′(vpi, v) = ν · 1

|D~s′(V P)| =
ν

|D~s′(V P)| (10)

Lemma 4.8 For any matching mixed NE ~s′ of Π1(G) we can compute a k-matching mixed NE
~s of Πk(G) in polynomial time.

Proof. We compute a set of tuples of k edges as follows: We label the edges in set D~s′(tp)
with consecutive numbers, starting 0 to Enum − 1, where Enum = |D~s(tp)|. Then we construct
consecutive tuples ti, i ≥ 1 by letting

ti = 〈e[(i−1)·k]mod(Enum), . . . , e(i·k−1)mod(Enum)〉

This construction allows us to move cyclically around the edges and choose consecutive k-tuples
as we proceed. Let set T = {t1, t2, . . . , tδ} be the set of the δ first tuples we construct. Letting
δ = Enum

GCD(Enum,k) , the last edge of tuple tδ is edge

e(Enum
GCD(Enum,k)

·k−1)mod(Enum) = e(LCM(Enum,k)−1)mod(Enum) = eEnum−1

i.e., is the last edge of set D~s′(tp). Since we start creating tuples starting from the first edge of
D~s′(tp), we visit each edge of D~s′(tp) and add it to T , the same number of times. Moreover, by
our choice of δ, since δ · k = Enum

GCD(Enum,k) · k = LCM(Enum, k), T contains the least number of
tuples containing each edge an equal number of times. Furthermore, we can compute this number:

Claim 4.9 Each edge e ∈ E(D~s(tp)) belongs to exactly k
GCD(Enum,k) tuples.

Proof. The set T constructed in the previous lemma, contains δ = Enum

GCD(Enum,k) tuples, in which
each edge appears an equal number of times. The size of the multiset of edges contained in T is

Enum

GCD(Enum,k) · k, since each tuple contains k edges. Hence, each edge e ∈ E(D~s(tp)) belongs to
exactly

Enum

GCD(Enum,k) · k
Enum

=
k

GCD(Enum, k)

tuples.

11

Now we are ready to construct the following configuration ~s on Πk(G): Set D~s(V P) :=
D~s′(V P), D~s(vpi) := D~s′(V P), ∀vpi ∈ NV P and D~s(tp) := T .

We first show that ~s is a k-matching configuration of Πk(G). Condition (1) of a k-matching
configuration is fulfilled because condition (1) of a matching configuration is fulfilled in ~s′ and
D~s′(V P) = D~s(V P). Condition (2) of a k-matching configuration is also fulfilled in ~s because
condition (2) of a matching configuration is fulfilled in ~s′ and E(D~s(tp)) = D~s′(tp). Moreover, by
Claim 4.9, each edge e ∈ E(D~s(tp)) belongs to an equal number of tuples, thus, condition (3) of
the definition of k-matching configuration is also fulfilled. Hence, ~s is a k-matching configuration
of Πk(G).

We next show that condition 1 of Theorem 3.4 is satisfied by ~s. We first show that E(D~s(tp))
is an edge cover of G. This is true because E(D~s(tp)) = D~s′(tp) and D~s′(tp) is an edge cover
of G, by condition (1) of a matching configuration (Definition 2.2). Thus, E(D~s(tp)) is an edge
cover of the graph G. We next show that D~s(V P) is a vertex cover of the subgraph of G obtained
by E(D~s(tp)). Since E(D~s(tp)) = D~s′(tp), the subgraph of G obtained by E(D~s(tp)) is equal
to the subgraph of G obtained by D~s′(tp). Moreover, D~s(V P) = D~s′(V P) and D~s′(V P) is a
vertex cover of the subgraph obtained by D~s′(tp), by condition (1) of a matching configuration.
Hence, D~s(V P) is a vertex cover of the subgraph of G obtained by E(D~s(tp)). We conclude that
condition 1 of Theorem 3.4 is satisfied by ~s. Thus, ~s is a k-matching mixed NE of Πk(G) according
to Lemma 4.1. Moreover, note that configuration ~s is computed in polynomial time.

Corollary 4.10 In configurations ~s of Πk(G) and ~s′ of Π1(G) of Lemma 4.8 it holds that,
m~s(tp) = k · m~s′(tp).

Proof. Consider any matching NE ~s′ of Π1(G). Since ~s′ is a Nash equilibrium, for any e =
(v, u) ∈ D~s′(tp), v ∈ D~s′(V P), IPtp(~s

′) = IPtp(~s
′
−tp, e) = m~s′(e). Moreover, since D~s′(V P) is an

independent set of G (condition (1) of a matching configuration) and ~s′ is a uniform distribution,
we get,

IPtp(~s
′) = m~s′(v) =

∑

i∈NV P

P~s′(vpi, v) = ν · 1

|D~s′(V P)| =
ν

|D~s′(V P)| (11)

Now, consider the k-matching Nash equilibrium ~s constructed by ~s′, according to Lemma 4.8.
Since ~s is a Nash equilibrium, for any t ∈ D~s(tp), we get IPtp(~s) = IPtp(~s−tp, t) = m~s(t). Moreover,
since ~s is a unform distribution, for any v ∈ D~s(V P), m~s(v) =

∑

i∈NV P
P~s(vpi, v) = ν · 1

|D~s(V P)| .

Thus, recalling that D~s(V P) is an independent set of G (condition (1) of a k-matching NE) and
by the construction of ~s, we get,

IPtp(~s) = m~s(t) =
∑

v∈V (t)

m~s(v) = k · ν · 1

|D~s(V P)| (12)

Lemmas 4.6 and 4.8 prove the first statement of the Theorem and Corollaries 4.7 and 4.10, the
second.

We proceed to characterize graphs that admit k-matching Nash equilibria.

Corollary 4.11 (characterization of k-matching NE) For any graph G, Πk(G) contains a
matching mixed Nash equilibrium if and only if the vertices of the graph G can be partitioned into
two sets IS, V C (V C = V \IS), such that IS is an independent set of G and G is a V C-expander
graph.

Proof. By Theorem 4.5, for any graph G, Πk(G) contains a k-matching mixed Nash equilibrium
if and only if Π1(G) contains a matching Nash equilibrium. Henceforth, by Theorem 2.2 we get
the claim.

12

4.1 A Polynomial Time Algorithm

We utilize the proof of Theorem 4.5 to develop a polynomial-time algorithm for finding k-matching
mixed NE for any Πk(G), assuming such an equilibrium exists. The algorithm, called Atuple, uses
as a subroutine, an algorithm of [7] for computing matching NE of the Edge model. This algorithm,
denoted by A(Π(G), IS, V C), assumes the existence of a partition of the vertices of G into sets
IS and V C, as in Theorem 2.2. Algorithm Atuple is described in pseudocode in Figure 1.

Algorithm Atuple(Πk(G), IS, V C)

Input: A game Πk(G), a partition of V (G) into sets IS, V C = V \IS, such that IS is an
independent set of G and G is a V C-expander graph.
Output: A mixed NE ~s for Πk(G).

1. ~s′ := A(Π1(G), IS, V C).

2. Label the edges of set D~s′(tp) with consecutive integers starting from 0, i.e., e0, e1

3. Compute a set T of tuples as follows:

(a) Initialization: Set T := ∅, CurrentEdge := 0 (label of current edge of D~s′(tp)) and
Enum = |D~s′(tp)|.

(b) While TRUE do:

i. Set tuple := 〈〉
ii. for (i = 1; i ≤ k; i ++)

A. tuple := tuple ∪ 〈eCurrentEdge〉.
B. CurrentEdge = (CurrentEdge + 1)mod(Enum)

iii. T := T ∪ {tuple}
iv. If CurrentEdge mod(Enum) == 0 then Exit While loop

4. Define a configuration ~s with the following support: D~s(V P) := IS, D~s(tp) := T .

5. Apply on ~s the probabilities distributions specified by equations (3) and (4) of Lemma 4.1,
for respective players.

Figure 1: Algorithm Atuple

Theorem 4.12 (Correctness) Algorithm Atuple computes a k-matching mixed Nash equilibrium
of Πk(G).

Proof. We first show that Πk(G) contains a k-matching NE. Recall that algorithm Atuple takes
as input sets IS and V C such that IS is an independent set of G, V C = V \IS and G is a
V C-expander graph. When such sets are given as input for the algorithm, by Theorem 4.11, we
get that Πk(G) contains a k-matching NE. We proceed to show that the algorithm computes such
an equilibrium.

Recall that sets IS and V C given as inputs in algorithm Atuple satisfy the requirements of
corresponding sets of Lemma 2.2 applied on instance Π1(G) for the existence of a matching NE.
Thus, Step 1, i.e. the call of algorithm A on Π1(G), terminates successfully computing a matching
mixed NE of Π1(G), ~s′.

13

Now, recall the computation of a k-matching NE for Πk(G) from a matching NE of Π1(G) in the
proof of Theorem 4.5. Note that the construction of set T in step 3 of the algorithm is the same as
the construction of set T in the proof of the theorem. Furthermore, the support of configuration ~s
constructed in the proof of the theorem is the same as that of configuration~s computed here. Thus,
using the same arguments as in the theorem, we can prove that configuration~s constructed here, is
a k-matching configuration of Πk(G). Also, note that the probabilities assignment of configuration
~s in step 4 of the algorithm, is the same as the probability assignment of configuration~s of Theorem
4.5. Henceforth, ~s is a k-matching mixed NE of Πk(G).

Theorem 4.13 (Time Complexity) Algorithm Atuple terminates in time O(k · n).

Proof. Step 1 of algorithm Atuple requires O(n) time [8]. Step 2 labels the edges of the set D~s′(tp).
Since configuration ~s′ is a matching configuration, by condition (2) of Definition 2.2, each vertex
v of D~s(V P) is incident to only one edge of E(D~s(tp)). Recall that E(D~s(tp)) = D~s′(tp). Thus,
it holds that |E(D~s(tp))| = |D~s(V P)| and |E(D~s(tp))| ≤ n. Hence, step 2 takes O(n) time. The
inner loop (for loop) of step 3(b) iterates k times in every iteration of the outer loop (while loop).
The outer loop terminates after exactly Enum

GCD(Enum,k) iterations (Claim 4.9 of Theorem 4.5). In

the worst case, Enum

GCD(Enum,k) = Enum. Thus, step 3(b) takes time O(k · Enum). Since k ≤ n and

Enum = |E(D~s(tp))|, step 3 takes time O(k · n). Steps 4 and 5 are simple assignments and take
time O(1). We conclude that Algorithm Atuple needs O(k · n) time to be completed.

5 Applications

We demonstrate the applicability of k-matching NE on a quite broad family of graphs, that of
bipartite graphs. We next show that bipartite graphs possess such equilibria and one can compute
them in polynomial time.

Theorem 5.1 For any Πk(G), for which G is a bipartite graph, a k-matching mixed Nash equi-
librium of Πk(G) can be computed in polynomial time, max{O(k · n), O(m

√
n), O(n2.5/

√
log n)},

using Algorithm Atuple.

Proof. We first show that any bipartite graph G posses a k-matching NE. In [8] it was proved
that for any bipartite graph G, Π1(G) contains a matching mixed NE. Thus, by Theorem 4.5,
Πk(G) contains a k-matching mixed NE.

Next, we show that a k-matching NE of Πk(G) can be computed in polynomial time. Apply
algorithm Atuple(Πk(G), IS, V C), where V C is a minimum vertex cover and IS = V \V C is an
independent set of G. In [8], it was proved that a minimum vertex cover of a bipartite graph can
be computed in polynomial time, max{O(m

√
n), O(n2.5/

√
log n)}. It was also proved that such

sets IS, V C satisfies the requirements of the parameters of algorithm A, i.e. A(Π1(G), IS, V C) is
applicable. Henceforth, step (1) of Atuple terminates successfully. Thus, algorithm Atuple can be
accomplished successfully, producing a k-matching NE of Πk(G) in O(k ·n) time (Theorem 4.13).
So, in total, we used max{O(k · n), O(m

√
n), O(n2.5/

√
log n)} time.

References

[1] N. Alon, R. M. Karp, D. Peleg and D. West. A Graph-Theoretic Game and its Application
to the k-Server Problem. SIAM Journal on Computing, 24(1):78-100, 1995.

14

[2] J. Aspnes, K. Chang and A. Yampolskiy. Inoculation Strategies for Victims of Viruses and
the Sum-of-Squares Problem. In Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 43-52, 2005.

[3] M. Franklin, P. Alto, Z. Galil and M. Yung. Eavesdropping Games: a Graph-Theoretic
Approach to Privacy in Distributed Systems. Journal of the ACM, 47(2):225-243, 2000.

[4] M. Kearns and L. Ortiz. Algorithms for Interdependent Security Games. In Proceedings of
the 16th Annual Conference on Neural Information Processing Systems. MIT Press, 2004.

[5] J. F. Nash. Equilibrium Points in n-Person Game. In Proceedings of the National Academy
of Sciences of the United States of America, 36:48-49, 1950.

[6] J. F. Nash. Non-cooperative Games. Annals of Mathematics, 54(2):286-295, 1951.

[7] M. Mavronicolas, V. Papadopoulou, A. Philippou and P. Spirakis. A Network Game with
Attacker and Protector Entities. Proceedings of the 16th Annual International Symposium
on Algorithms and Computation, 2005, to appear.

[8] M. Mavronicolas, V. Papadopoulou, A. Philippou and P. Spirakis. A Graph-Theoretic Net-
work Security Game. Proceedings of the 1st Workshop on Internet and Network Economics,
2005, to appear.

[9] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.

[10] W. Stallings. Cryptography and Network Security: Principles and Practice. Prentice Hall,
3rd Edition, 2003.

[11] D. B. West. Introduction to Graph Theory. Prentice Hall, 2nd edition, 2001.

15

