A simple Graph-Theoretic Model for Selfish Restricted Scheduling

R. Elsässer¹, M. Gairing¹, T. Lücking¹, M. Mavronicolas², B. Monien¹

¹ University of Paderborn, Germany.
 ² University of Cyprus, Cyprus.

Motivation and the Problem studied

Problem:

- m non-cooperative users
- n processing machines
- **task:** assign an unsplittable *unit* job to each user.
- Objective: stable assignment of users jobs
 ⇒ modelled as a Nash Equilibrium
- Users & Machines Interaction exploits locality: Each user has access to only *two* machines.

Representation: interaction Graph

vertices \longleftrightarrow machines edges \longleftrightarrow users Any assignment of users corresponds to an *orientation* of the graph.

Framework

• Pure Nash Equilibria (pure NE): each user assigns its load exactly to *one* of its pair of machines.

Mixed Nash Equilibrium (Mixed NE): Probability distribution on the pair of machines.
In a mixed NE, the Social Cost (SC) = expected makespan= max of total load over all machines. ⇒
best mixed NE = min makespan

worst mixed NE = max makespan

Summary of Results

3-regular interaction Graphs:

- SC of a fully mixed NE of any *d*-regular graph is d f(d, n), where asymptotically tends to zero.
- Standard fully mixed NE: all probabilities assignments are 1/2. \iff The best 3-regular interaction graph for this case is the 3-regular parallel links graph.

Bound on the Coordination Ratio:

• For the more general case of restricted parallel links, a tight bound of $\Theta(\frac{\log n}{\log \log n})$ is known for pure NE [M. Gairing et all, STOC' 04] $\implies O(\frac{\log n}{\log \log n})$ for our model.

- We construct an $\Omega(\frac{\log n}{\log \log n})$ interaction graph with this ratio, thus the bound is *tight* for our model.

Summary of Results (Cont.)

Fully Mixed NE:

• There exists counterexample interaction graphs for which fully mixed Nash Equilibria many not exist.

Let a fully mixed Nash dimension = the dimension d of the smallest d-dimensional space that can contain all fully mixed NE.

• *Complete bipartite* graphs, we prove a dichotomy theorem characterizing unique existence.

Hybercubes, we prove that fully mixed Nash dimension is the hybercube dimension for hybercubes of dimension 2 or 3.

Related Work

- Our model of interaction graphs is a special case of restricted parallel links introduced in [M. Gairing et al. MFCS04].
- [Awerbuch et al, WAOA04]: Coordination ratio for the model of restricted parallel links is $\Theta(\frac{\log n}{\log \log \log n})$ (tight), for all mixed NE. This implies the same bound for our model.
- The model of restricted parallel links is a generalization of the *KP*-model for selfish routing of [Koutsoupias, Papadimitriou, STACS'99].

Definitions

Let $[k] = \{1, \dots, \}, k \ge 1.$

• interaction Graphs: G(V, E). edges \longleftrightarrow users, vertices \longleftrightarrow machines. Assume *m* users, *n* machines.

 \Rightarrow An edge connects two vertices if and only if the user can place his job onto the two machines.

• Strategies and Assignments: *Pure Assignment*: each users plays only one strategy.

Pure assignment $L = \langle l_1, \cdots, l_m \rangle$.

Mixed strategy: probability distribution over strategies.

Mixed assignment $P = (p_{ij})_{i \in [n], j \in [m]}$.

Fully mixed assignment F: all probabilities are strictly positive.

Standard Fully mixed assignment \widetilde{F} : all probabilities are 1/2.

Fully mixed Nash dimension of a graph G = the dimension d of the smallest d-dimensional space that can contain all fully mixed NE of G.

Definitions (Cont.): Cost measures

- In a pure assignment L, load of a machine j, λ_j is the number of users assigned to j. Individual cost of user i is $\lambda_i = |k|_k = l_i|$, the load of the machine it chooses.
- Mixed assignment L, the expected load of a machine j, is the expected number of users assigned to j. Expected individual cost of user i on machine j is $\lambda_{ij} = 1 + \sum_{k \in [m], k \neq i} p_{kj}$. The Expected Individual Cost for user $i \in [m]$, is $\lambda_i \sum_{j \in [n] p_{ij} \lambda_{ij}}$.
- Social Cost in a mixed assignment P, SC(G, P), is the maximum load over all machines of G.
 The optimum OPT(G) is the least possible social cost over all pure assignments.
- Coordination Ratio, CR_G is the maximum over all NE P of the ratio $\frac{SC(G,P)}{OPT(G)}$. CR is the maximum CR_G over all graphs G.

Definitions (Cont.): Graph Orientations

- C_r : a cycle of r vertices, $K_{r,s}$: bipartite graph, H_r : hybercube of dimension r, necklace is a graph conststing of 2 vertices and 3 parallel edges, $G_{\parallel}(n)$ are the parallel links graph, i.e. the graph consisting of n/2 necklaces.
- An orientation of G: directions of its edges. The makespan of a vertex in an orientation α (makespan of an orientation) is the (maximum) in-degree of it (of all vertices) in α. d-orientation is an orientation with makespan d in the graph G.

3-Regular Graphs: Rough Estimation

Consider a standard fully mixed NE, \widetilde{F} . Let $q_d(G)$ the probability such a random orientation has makespan at most d-1.

Lemma 1. Let *I* an independent set of *G*. Then $q_d(G) \leq (1 - \frac{1}{2^d})^{|I|}$.

Theorem 1. For a *d*-regular graph *G* with *n* vertices, $SC(\widetilde{F}, G) = d - f(d, n), \quad f(d, n) \to 0 \text{ as } n \to \infty.$

Proof. Every maximal ind. set $I = \lceil \frac{n}{d+1} \rceil$. By Lemma 1, $\Rightarrow q_d(G) \leq (1 - \frac{1}{2^d})^{\frac{n}{d+1}}$. Thus, $SC(\widetilde{F}, G) \geq q_d(G) + d(1 - q_d(G)) = d - f(n, d)$, where f(n, d) asymptotically tends to zero.

3-Regular Graphs: Catroids and the Two-Sisters Lemma

- Definition 1.(Cactoids) A cactoid is a pair G
 = (V, Ê), V is the vertices, Ê consists of undirected edges between vertices and pointers to vertices, i.e. loose edges incident to one single vertex.
- Let an arbitrary orientation of G, σ, called standard.
 x_α(e) → {0,1} for each e ∈ Ê in any possible orientation α: is 1 (or 0) if e and the same orientation in α as in σ (otherwise).
 Assume two vertices u, v, called two-sisters, with incident pointers π_u, π_v, pointing away of u, v in σ.
 Let P_G(i, j) the probability that an α with x_α(u) = i and x_α(v) = j, i, j ∈ {0,1} is a 2-orientation.
- Clearly, $P_{\widehat{G}}(1,1) \ge P_{\widehat{G}}(0,0), P_{\widehat{G}}(0,1), P_{\widehat{G}}(1,0).$
- We prove that $P_{\widehat{G}}(1,1)$ is upper bounded by their sum..

3-Regular Graphs: The Two-Sisters Lemma

Lemma 2. (Two-sisters) For any 3-regular cactoid $\widehat{G} = \langle V, \widehat{E} \rangle$ and any two sisters $u, v \in V$, it holds that, $P_{\widehat{G}}(0,0) + P_{\widehat{G}}(0,1) + P_{\widehat{G}}(1,0) \ge P_{\widehat{G}}(1,1)$.

Proof. Let b_1, b_2 and b_3, b_4 , the other edges incident to the sisters u, v, respectively.

Let \widehat{G}' obtained by \widehat{G} by deleting u, v and their pointers π_u, π_v . Let $P_{\widehat{G}'}(x_1, x_2, x_3, x_4)$ the probability a random orientation α of \widehat{G}' with $x_{\alpha}(b_i) = x_i, 1 \leq i \leq 4$ is a 2-orientation.

- 1. We express $P_{\widehat{G}}(i,j) \ i,j \in \{0,1\}$ as functions of $P_{\widehat{G'}}(x_1,x_2,x_3,x_4)$.
- 2. By, induction on the number of vertices of \widehat{G} , we prove that, the statement holds for $\widehat{G'}$.

3. Using 1. , we return to \widehat{G} and get the same statement.

3-Regular Graphs: Orientations and Social Costs

Theorem 2. For every 3-regular graph G, with n vertices it holds that $|3-or(G)| \ge |3-or(G_{||}(n))|$, where or(H) is the number of orientations of a graph H.

Proof.

- We start from the graph $G_0 = G = (V, E_0)$ and iteratively define $G_i = (V, E_i), 1 \le i \le r, r \le n$ s.t. G_r equals $G_{||}(n)$ and $|3-or(G_i)| \ge |3-or(G_{||}(G_{i+1}))|$.
- Note: Each connected component of any regular graph, is either isomorphic to a necklace or it contains a path of length 3 connecting four different vertices, such that only the middle edge of this path can be a parallel edge.
- If in G_i all connected components are necklaces, then $G_i = G_{||}(n)$.

Proof of Theorem 2. (Cont. 2/5)

• Otherwise, some component of G_i contains a path c, a, b, d with 4 different vertices a, b, c, d.

Construct a new graph $G_{i+1} = (V, E_{i+1})$ by deleting edges $\{a, c\}, \{b, d\}$ from E_i and adding edges $\{a, b\}, \{c, d\}$ to the graph as follows:

Figure 1: Construction of graph G_{i+1} from graph G_i .

- In the figure, all edges are different. This is *not always* the case.
- At each iteration, the number of single edges is decreased by at least one. Thus, # of iterations is at most n.

Proof of Theorem 2. (Cont. 3/5)

We prove the statement when, **Case 1:** All edges $e_1, \dots e_9$ are different. **Case 2:** Some of the edges are equal.

Here we present only the **Case 1**:

- Consider the graphs G_1 , G_2 . There exists an one-to-one correspondence between their edges. Thus, an orientation of $G_1 \Leftrightarrow$ an orientation of G_2 .
- We define an injective mapping $F : 3-or(G_2) \to 3-or(G_1)$ Set $C_2 = \{\alpha; \alpha \in 3-or(G_2), \alpha; \notin 3-or(G_1)\}$ and $C_1 = \{\alpha; \alpha \in 3-or(G_1), \alpha; \notin 3-or(G_2)\}.$ Define $F(\alpha) = \alpha$ for $\alpha \in 3-or(G_2) \setminus G_2$ and $F : C_2 \to C_1$ is injective. Thus, the mapping F is *injective*.
- We will show that F always exists in **Case 1**...

Proof of Theorem 2: Case 1 (Cont. 4/5)

- Let α an arbitrary orientation. All $u \notin \{a, b, c, d\}$ have the makespan in G_1 and G_2 with respect to α .
- We can show that vertices a, b, c, d have all makespan 3 in G_1 .
- Using above info, we construct C_2 :

$$C_{2} = \{ \alpha \notin 3 - (G_{1}); x_{1} = x_{2} = x_{3} = 0 \land x_{5} = 1 \land x_{6} \cdot x_{7} = x_{8} \cdot x_{9} = 0 \}$$
$$\cup \{ \alpha \notin 3 - (G_{1}); x_{2} = x_{3} = x_{6} = x_{7} = 1 \land x_{1} \cdot x_{4} = 0 \land (x_{1} = 1 \lor x_{5} = 0) \}$$

• Similarly, we construct C_1 :

 $C_{1} = \{ \alpha \notin 3 - (G_{2}); x_{1} = 0 \land x_{2} = x_{3} = x_{5} = 1 \land x_{6} \cdot x_{7} = 0 \}$ $\cup \{ \alpha \notin 3 - (G_{2}); x_{2} = x_{3} = 0 \land x_{6} = x_{7} = 1 \land x_{8} \cdot x_{9} = 0 \land ((x_{1} = 1 \lor x_{5} = 0)) \}$

Proof of Theorem 2: Case 1 (Cont. 5/5)

We define F by considering four cases about orientations $\alpha \in C_2$:

- 1. Consider $\alpha \in C_2$ with $x_2 = x_3 = x_6 = x_7 = 1 \land x_1 \cdot x_4 = 0 \land x_8 \cdot x_9 = 0 \land (x_1 = 1 \lor x_5 = 0)$ Set $F(x_1, 1, 1, x_4, x_5, 1, 1, x_8, x_9, \ldots) = (x_1, 0, 0, x_4, x_5, 1, 1, x_8, x_9, \ldots))$ Note: vertices $\{a, b, c, d\}$ have the same connections to vertices outside $\{a, b, c, d\}$; therefore $\alpha \notin 3$ -or (G_1) , thus $F(\alpha) \notin 3$ -or (G_2) . Thus, $F(\alpha) \in C_1$.
 - **2-4**. More complicated... prove the same result.

Theorem 2 consequences

Corollary 1. For an 3-regular graph G with n vertices, $SC(G, \widetilde{F}) \geq SC(G_{\parallel}(n), \widetilde{F}) = 3 - (3/4)^{n/2}$.

• Equality does not hold in Corollary 1: there exist a 3-regular graph for which the *SC* of its fully mixed NE is larger than for the corresponding parallel links graph.

Coordination Ratio

Theorem 3. Restricted to pure NE, $CR = \Theta\left(\frac{\log n}{\log \log n}\right)$.

Proof. Upper bound: Our model is a special case of the restricted parallel links. \Rightarrow The upper bound $O(\frac{\log n}{\log \log n})$ of [M. Gairing et all, MFCS04] also holds for our model.

Lower bound: Let G a complete tree with height k, where each vertex in layer l of the tree has k - l children.

Let $k^{\underline{l}} = k(k-1)^{-1} \dots^{-1} (k-1)$ the *l*-th falling factorial of *k*. Then $n = \sum_{0 \le l \le k} k^{\underline{l}} < (k+1)! = \Gamma(k+2)$. This implies $k > \Gamma^{-1}(n) - 2$.

1. Denote L_1 the pure assignment in which all users are assigned toward the root.

Then the individual cost of user in layer l is k - l. Also, the user can not improve by moving its vertex in layer (l + 1). Thus, L_1 is a pure NE with Social Cost k.

Theorem 3 proof. (Cont.)

2. Denote L_2 the pure assignment in which all users are assigned toward the leaves.

Then the individual cost of all users is 1.

Thus, the Social Cost of L_2 is 1.

$$\Rightarrow \max_{G,L} \frac{SC(G,L)}{OPT(G)} \ge \frac{SC(G,L_1)}{SC(G,L_2)} = k > \Gamma^1(n) - 2 = \Omega(\frac{\log n}{\log \log n}).$$

The fully Mixed Nash Equilibrium

Consider a fully Mixed NE, P. For each edge $jk \in E$, let jk the user corresponding to the edge jk.

Denote \hat{p}_{jk} and \hat{p}_{kj} the probabilities according to P that user jk chooses machines j and k, resp.

For each machine $j \in V$, the expected load of machine j excluding a set of edges \widetilde{E} , denoted by $\pi_P \setminus \widetilde{E} = \sum_{kj \in E \setminus \widetilde{E}} \widehat{p}_{kj}$.

Lemma 3. (The 4-Cycle Lemma) Take any 4-cycle C_4 in a graph Gand any two vertices $u, v \in C_4$ that are non-adjacent in C_4 . Consider a NE P for G. Then, $\pi_P(u) \setminus C_4 = \pi_P(v) \setminus C_4$.

Counterexample 1. There is no fully mixed NE for trees and meshes.

Counterexample 2. For each graph in Figure 1, there is no fully mixed NE.

Fully mixed NE: Uniqueness and Dimensional Results

Theorem 4. Consider the complete bipartite graph $K_{r,s}$, where $s \ge r \ge 2$ and $s \ge 3$. Then the fully mixed NE F for $K_{r,s}$ exists uniquely if and only if r > 2. Moreover, in case r = 2, the fully mixed Nash dimension of $K_{r,s}$ is s - 1.

Observation 2. Consider a hybercube H_r , for any $r \ge 2$. Then, the fully mixed Nash dimension of H_r is at least r.

Theorem 4. Consider the hybercube H_r , where $r \in \{2, 3\}$ Then the fully mixed Nash dimension is r.

Worst-Case NE Counterexample 3. There is an interaction graph for which no fully mixed NE has worst Social Cost.

Counterexample 4. There is an interaction graph for which there exists a fully mixed NE with worst Social Cost.