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Motivation and the Problem studied

Problem:

• m non-cooperative users

• n processing machines

• task: assign an unsplittable unit job to each user.

• Objective: stable assignment of users jobs
⇒ modelled as a Nash Equilibrium

• Users & Machines Interaction exploits locality: Each user has access to
only two machines.

Representation: interaction Graph
vertices ←→ machines
edges ←→ users
Any assignment of users corresponds to an orientation of the graph.
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Framework

• Pure Nash Equilibria (pure NE): each user assigns its load exactly to one
of its pair of machines.

• Mixed Nash Equilibrium (Mixed NE): Probability distribution on the
pair of machines.
In a mixed NE, the Social Cost (SC) = expected makespan= max of
total load over all machines. =⇒

best mixed NE = min makespan

worst mixed NE = max makespan
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Summary of Results

3-regular interaction Graphs:

• SC of a fully mixed NE of any d-regular graph is d − f(d, n), where
asymptotically tends to zero.

• Standard fully mixed NE: all probabilities assignments are 1/2. ⇐⇒
The best 3-regular interaction graph for this case is
the 3-regular parallel links graph.

Bound on the Coordination Ratio:

• For the more general case of restricted parallel links, a tight bound of
Θ( log n

log log n) is known for pure NE [M. Gairing et all, STOC’ 04]

=⇒ O( log n
log log n) for our model.

– We construct an Ω( log n
log log n) interaction graph with this ratio, thus the

bound is tight for our model.
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Summary of Results (Cont.)

Fully Mixed NE:

• There exists counterexample interaction graphs for which fully mixed
Nash Equilibria many not exist.

Let a fully mixed Nash dimension = the dimension d of the smallest
d-dimensional space that can contain all fully mixed NE.

• Complete bipartite graphs, we prove a dichotomy theorem characterizing
unique existence.
Hybercubes, we prove that fully mixed Nash dimension is the hybercube
dimension for hybercubes of dimension 2 or 3.
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Related Work

• Our model of interaction graphs is a special case of restricted parallel
links introduced in [M. Gairing et al. MFCS04].

• [Awerbuch et al, WAOA04]: Coordination ratio for the model of re-
stricted parallel links is Θ( log n

log log log n) (tight), for all mixed NE. This im-
plies the same bound for our model.

• The model of restricted parallel links is a generalization of the KP -model
for selfish routing of [Koutsoupias, Papadimitriou, STACS’99].
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Definitions

Let [k] = {1, · · · , }, k ≥ 1.

• interaction Graphs: G(V, E). edges←→users, vertices←→machines.
Assume m users, n machines.
⇒ An edge connects two vertices if and only if the user can place his job
onto the two machines.

• Strategies and Assignments: Pure Assignment: each users plays only
one strategy.
Pure assignment L = 〈l1, · · · , lm〉.
Mixed strategy: probability distribution over strategies.
Mixed assignment P = (pij)i∈[n],j∈[m].
Fully mixed assignment F : all probabilities are strictly positive.
Standard Fully mixed assignment F̃ : all probabilities are 1/2.
Fully mixed Nash dimension of a graph G = the dimension d of the
smallest d-dimensional space that can contain all fully mixed NE of G.
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Definitions (Cont.): Cost measures

• In a pure assignment L,
load of a machine j, λj is the number of users assigned to j.
Individual cost of user i is λi = |k :k= li|, the load of the machine it
chooses.

• Mixed assignment L, the expected load of a machine j, is the expected
number of users assigned to j.
Expected individual cost of user i on machine j is λij = 1+∑

k∈[m],k 	=i pkj.
The Expected Individual Cost for user i ∈ [m], is λi

∑
j∈[n]pijλij

.

• Social Cost in a mixed assignment P , SC(G,P ), is the maximum load
over all machines of G.
The optimum OPT (G) is the least possible social cost over all pure
assignments.

• Coordination Ratio, CRG is the maximum over all NE P of the ratio
SC(G,P )
OPT (G) . CR is the maximum CRG over all graphs G.
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Definitions (Cont.): Graph Orientations

• Cr: a cycle of r vertices, Kr,s: bipartite graph, Hr: hybercube of di-
mension r, necklace is a graph conststing of 2 vertices and 3 paralel
edges, G||(n) are the parallel links graph, i.e. the graph consisting of
n/2 necklaces.

• An orientation of G: directions of its edges.
The makespan of a vertex in an orientation α (makespan of an orienta-
tion) is the (maximum) in-degree of it (of all vertices) in α.
d-orientation is an orientation with makespan d in the graph G.
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3-Regular Graphs: Rough Estimation

Consider a standard fully mixed NE, F̃ . Let qd(G) the probability such a
random orientation has makespan at most d− 1.

Lemma 1. Let I an independent set of G. Then qd(G) ≤ (1− 1
2d)
|I|.

Theorem 1. For a d-regular graph G with n vertices,
SC(F̃ , G) = d− f(d, n), f(d, n)→ 0 as n→∞.

Proof. Every maximal ind. set I = � n
d+1
. By Lemma 1,

⇒ qd(G) ≤ (1 − 1
2d)

n
d+1 . Thus, SC(F̃ , G) ≥ qd(G) + d(1 − qd(G)) =

d− f(n, d), where f(n, d) asymptotically tends to zero.

�
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3-Regular Graphs: Catroids and the Two-Sisters Lemma

• Definition 1.(Cactoids) A cactoid is a pair Ĝ = 〈V, Ê〉, V is the
vertices, Ê consists of undirected edges between vertices and pointers to
vertices, i.e. loose edges incident to one single vertex.

• Let an arbitrary orientation of G, σ, called standard.
xα(e)→ {0, 1} for each e ∈ Ê in any possible orientation α: is 1 (or 0)
if e and the same orientation in α as in σ (otherwise).
Assume two vertices u, v, called two-sisters, with incident pointers πu, πv,
pointing away of u, v in σ.
Let PĜ(i, j) the probability that an α with xα(u) = i and xα(v) = j,
i, j ∈ {0, 1} is a 2-orientation.

• Clearly, PĜ(1, 1) ≥ PĜ(0, 0), PĜ(0, 1), PĜ(1, 0).

•We prove that PĜ(1, 1) is upper bounded by their sum..
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3-Regular Graphs: The Two-Sisters Lemma

Lemma 2. (Two-sisters) For any 3-regular cactoid Ĝ = 〈V, Ê〉 and
any two sisters u, v ∈ V ,
it holds that, PĜ(0, 0) + PĜ(0, 1) + PĜ(1, 0) ≥ PĜ(1, 1).

Proof. Let b1, b2 and b3, b4, the other edges incident to the sisters u, v,
respectively.
Let Ĝ′ obtained by Ĝ by deleting u, v and their pointers πu, πv.
Let PĜ′(x1, x2, x3, x4) the probability a random orientation α of Ĝ′ with
xα(bi) = xi, 1 ≤ i ≤ 4 is a 2-orientation.

1. We express PĜ(i, j) i, j ∈ {0, 1} as functions of PĜ′(x1, x2, x3, x4).

2. By, induction on the number of vertices of Ĝ, we prove that, the
statement holds for Ĝ′.

3. Using 1. , we return to Ĝ and get the same statement.

�

11



3-Regular Graphs: Orientations and Social Costs

Theorem 2. For every 3-regular graph G, with n vertices it holds that
|3−or(G)| ≥ |3−or(G||(n))|, where or(H) is the number of orientations of
a graph H .

Proof.

•We start from the graph G0 = G = (V, E0) and iteratively define Gi =
(V, Ei), 1 ≤ i ≤ r, r ≤ n s.t.
Gr equals G||(n) and |3−or(Gi)| ≥ |3−or(G||(Gi+1))|.
• Note: Each connected component of any regular graph, is either

isomorphic to a necklace or
it contains a path of length 3 connecting four different vertices, such that
only the middle edge of this path can be a parallel edge.

• If in Gi all connected components are necklaces, then Gi = G||(n).
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Proof of Theorem 2. (Cont. 2/5)

• Otherwise, some component of Gi contains a path c, a, b, d with 4 differ-
ent vertices a, b, c, d.
Construct a new graph Gi+1 = (V, Ei+1) by deleting edges {a, c}, {b, d}
from Ei and adding edges {a, b}, {c, d} to the graph as follows:

e5

Gi

e2
a c

e4

e1

b d
e3

e6

e7

e8

e9

e2

a c
e4

e1

b de5

e6

e7

e8

e9

Gi+1 e3

Figure 1: Construction of graph Gi+1 from graph Gi.

• In the figure, all edges are different. This is not always the case.

• At each iteration, the number of single edges is decreased by at least one.
Thus, # of iterations is at most n.
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Proof of Theorem 2. (Cont. 3/5)

We prove the statement when,
Case 1: All edges e1, · · · e9 are different.
Case 2: Some of the edges are equal.

Here we present only the Case 1:

• Consider the graphs G1, G2. There exists an one-to-one correspondence
between their edges. Thus, an orientation of G1⇔ an orientation of G2.

•We define an injective mapping F : 3−or(G2)→ 3−or(G1)
Set C2= {α; α ∈ 3−or(G2), α; /∈ 3−or(G1)} and
C1= {α; α ∈ 3−or(G1), α; /∈ 3−or(G2)}.
Define F (α) = α for α ∈ 3−or(G2)\G2 and F : C2→ C1 is injective.
Thus, the mapping F is injective.

•We will show that F always exists in Case 1..
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Proof of Theorem 2: Case 1 (Cont. 4/5)

• Let α an arbitrary orientation. All u /∈ {a, b, c, d} have the makespan
in G1 and G2 with respect to α.

•We can show that vertices a, b, c, d have all makespan 3 in G1.

• Using above info, we construct C2:

C2 = {α /∈ 3−(G1); x1 = x2 = x3 = 0 ∧ x5 = 1 ∧ x6 · x7 = x8 · x9 = 0}
∪{α /∈ 3−(G1); x2 = x3 = x6 = x7 = 1∧x1·x4 = 0∧(x1 = 1∨x5 = 0)}

• Similarly, we construct C1:

C1 = {α /∈ 3−(G2); x1 = 0 ∧ x2 = x3 = x5 = 1 ∧ x6 · x7 = 0}
∪{α /∈ 3−(G2); x2 = x3 = 0∧x6 = x7 = 1∧x8·x9 = 0∧((x1 = 1∨x5 = 0)}
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Proof of Theorem 2: Case 1 (Cont. 5/5)

We define F by considering four cases about orientations α ∈ C2:

1. Consider α ∈ C2 with x2 = x3 = x6 = x7 = 1 ∧ x1 · x4 = 0 ∧ x8 · x9 =
0 ∧ (x1 = 1 ∨ x5 = 0)

Set F (x1, 1, 1, x4, x5, 1, 1, x8, x9, . . .) = (x1, 0, 0, x4, x5, 1, 1, x8, x9, . . .))

Note: vertices {a, b, c, d} have the same connections to vertices outside
{a, b, c, d}; therefore α /∈ 3−or(G1), thus F (α) /∈ 3−or(G2).
Thus, F (α) ∈ C1.

2-4. More complicated... prove the same result.

�

16



Theorem 2 consequences

Corollary 1. For an 3-regular graph G with n vertices, SC(G, F̃ ) ≥
SC(G||(n), F̃ ) = 3− (3/4)n/2.

• Equality does not hold in Corollary 1: there exist a 3-regular graph for
which the SC of its fully mixed NE is larger than for the corresponding
parallel links graph.
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Coordination Ratio

Theorem 3. Restricted to pure NE, CR = Θ
(

log n
log log n

)
.

Proof. Upper bound: Our model is a special case of the restricted
parallel links. ⇒ The upper bound O( log n

log log n) of [M. Gairing et all,

MFCS04] also holds for our model.

Lower bound: Let G a complete tree with height k, where each vertex
in layer l of the tree has k − l children.
Let kl = k(k − 1)

.. . . ..
.
(k − 1) the l-th falling factorial of k. Then

n = ∑
0≤l≤k kl < (k + 1)! = Γ(k + 2). This implies k > Γ−1(n)− 2.

1. Denote L1 the pure assignment in which all users are assigned toward
the root.
Then the individual cost of user in layer l is k− l. Also, the user can
not improve by moving its vertex in layer (l + 1).
Thus, L1 is a pure NE with Social Cost k.
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Theorem 3 proof. (Cont.)

2. Denote L2 the pure assignment in which all users are assigned toward
the leaves.
Then the individual cost of all users is 1.
Thus, the Social Cost of L2 is 1.

⇒ maxG,L
SC(G,L)
OPT (G)

≥ SC(G,L1)
SC(G,L2)

= k > Γ1(n)− 2 = Ω( log n
log log n

).

�
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The fully Mixed Nash Equilibrium

Consider a fully Mixed NE, P . For each edge jk ∈ E, let jk the user
corresponding to the edge jk.
Denote p̂jk and p̂kj the probabilities according to P that user jk chooses
machines j and k, resp.
For each machine j ∈ V , the expected load of machine j excluding a set
of edges Ẽ, denoted by πP\Ẽ = ∑

kj∈E\Ẽ p̂kj.

Lemma 3. (The 4-Cycle Lemma) Take any 4-cycle C4 in a graph G
and any two vertices u, v ∈ C4 that are non-adjacent in C4. Consider a
NE P for G. Then, πP (u)\C4 = πP (v)\C4.

Counterexample 1. There is no fully mixed NE for trees and meshes.

Counterexample 2. For each graph in Figure 1, there is no fully
mixed NE.
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Fully mixed NE: Uniqueness and Dimensional Results

Theorem 4. Consider the complete bipartite graph Kr,s, where s ≥
r ≥ 2 and s ≥ 3. Then the fully mixed NE F for Kr,s exists uniquely
if and only if r > 2. Moreover, in case r = 2, the fully mixed Nash
dimension of Kr,s is s− 1.

Observation 2. Consider a hybercube Hr, for any r ≥ 2. Then, the
fully mixed Nash dimension of Hr is at least r.

Theorem 4. Consider the hybercube Hr, where r ∈ {2, 3} Then the
fully mixed Nash dimension is r.

Worst-Case NE
Counterexample 3. There is an interaction graph for which no fully
mixed NE has worst Social Cost.

Counterexample 4. There is an interaction graph for which there exists
a fully mixed NE with worst Social Cost.
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