A simple Graph-Theoretic Model for Selfish Restricted Scheduling

R. Elsässer ${ }^{1}$, M. Gairing ${ }^{1}$, T. Lücking ${ }^{1}$, M. Mavronicolas ${ }^{2}$, B. Monien ${ }^{1}$

${ }^{1}$ University of Paderborn, Germany.
${ }^{2}$ University of Cyprus, Cyprus.

Motivation and the Problem studied

Problem:

- m non-cooperative users
- n processing machines
- task: assign an unsplittable unit job to each user.
- Objective: stable assignment of users jobs
\Rightarrow modelled as a Nash Equilibrium
- Users \& Machines Interaction exploits locality: Each user has access to only two machines.

Representation: interaction Graph
vertices \longleftrightarrow machines
edges \longleftrightarrow users
Any assignment of users corresponds to an orientation of the graph.

Framework

- Pure Nash Equilibria (pure NE): each user assigns its load exactly to one of its pair of machines.
- Mixed Nash Equilibrium (Mixed NE): Probability distribution on the pair of machines.
In a mixed NE, the Social Cost $(S C)=$ expected makespan $=$ max of total load over all machines. \Longrightarrow
best mixed $\mathrm{NE}=$ min makespan
worst mixed $\mathrm{NE}=$ max makespan

Summary of Results

3-regular interaction Graphs:

- SC of a fully mixed NE of any d-regular graph is $d-f(d, n)$, where asymptotically tends to zero.
- Standard fully mixed NE: all probabilities assignments are $1 / 2 \Longleftrightarrow$ The best 3 -regular interaction graph for this case is the 3-regular parallel links graph.

Bound on the Coordination Ratio:

- For the more general case of restricted parallel links, a tight bound of $\Theta\left(\frac{\log n}{\log \log n}\right)$ is known for pure NE [M. Gairing et all, STOC' 04] $\Longrightarrow O\left(\frac{\log n}{\log \log n}\right)$ for our model.
- We construct an $\Omega\left(\frac{\log n}{\log \log n}\right)$ interaction graph with this ratio, thus the bound is tight for our model.

Summary of Results (Cont.)

Fully Mixed NE:

- There exists counterexample interaction graphs for which fully mixed Nash Equilibria many not exist.

Let a fully mixed Nash dimension $=$ the dimension d of the smallest d-dimensional space that can contain all fully mixed NE.

- Complete bipartite graphs, we prove a dichotomy theorem characterizing unique existence.
Hybercubes, we prove that fully mixed Nash dimension is the hybercube dimension for hybercubes of dimension 2 or 3 .

Related Work

- Our model of interaction graphs is a special case of restricted parallel links introduced in [M. Gairing et al. MFCS04].
- [Awerbuch et al, WAOA04]: Coordination ratio for the model of restricted parallel links is $\Theta\left(\frac{\log n}{\log \log \log n}\right)$ (tight), for all mixed NE. This implies the same bound for our model.
- The model of restricted parallel links is a generalization of the $K P$-model for selfish routing of [Koutsoupias, Papadimitriou, STACS'99].

Definitions

$\operatorname{Let}[k]=\{1, \cdots\},, k \geq 1$.
\bullet interaction Graphs: $G(V, E)$. edges \longleftrightarrow users, vertices \longleftrightarrow machines. Assume m users, n machines.
\Rightarrow An edge connects two vertices if and only if the user can place his job onto the two machines.

- Strategies and Assignments: Pure Assignment: each users plays only one strategy.
Pure assignment $L=\left\langle l_{1}, \cdots, l_{m}\right\rangle$.
Mixed strategy: probability distribution over strategies.
Mixed assignment $P=\left(p_{i j}\right)_{i \in[n], j \in[m]}$.
Fully mixed assignment F : all probabilities are strictly positive.
Standard Fully mixed assignment \widetilde{F} : all probabilities are $1 / 2$.
Fully mixed Nash dimension of a graph $G=$ the dimension d of the smallest d-dimensional space that can contain all fully mixed NE of G.

Definitions (Cont.): Cost measures

- In a pure assignment L, load of a machine j, λ_{j} is the number of users assigned to j. Individual cost of user i is $\lambda_{i}=\left|k:_{k}=l_{i}\right|$, the load of the machine it chooses.
- Mixed assignment L, the expected load of a machine j, is the expected number of users assigned to j.
Expected individual cost of user i on machine j is $\lambda_{i j}=1+\Sigma_{k \in[m], k \neq i} p_{k j}$. The Expected Individual Cost for user $i \in[m]$, is $\lambda_{i} \Sigma_{j \in[n] p_{i j}} \lambda_{i j}$.
- Social Cost in a mixed assignment $P, S C(G, P)$, is the maximum load over all machines of G.
The optimum $\operatorname{OPT}(G)$ is the least possible social cost over all pure assignments.
- Coordination Ratio, $C R_{G}$ is the maximum over all NE P of the ratio $\frac{S C(G, P)}{O P T(G)} . C R$ is the maximum $C R_{G}$ over all graphs G.

Definitions (Cont.): Graph Orientations

- C_{r} : a cycle of r vertices, $K_{r, s}$: bipartite graph, H_{r} : hybercube of dimension r, necklace is a graph conststing of 2 vertices and 3 paralel edges, $G_{\|}(n)$ are the parallel links graph, i.e. the graph consisting of $n / 2$ necklaces.
- An orientation of G : directions of its edges.

The makespan of a vertex in an orientation α (makespan of an orientation) is the (maximum) in-degree of it (of all vertices) in α. d-orientation is an orientation with makespan d in the graph G.

3-Regular Graphs: Rough Estimation

Consider a standard fully mixed NE, \widetilde{F}. Let $q_{d}(G)$ the probability such a random orientation has makespan at most $d-1$.

Lemma 1. Let I an independent set of G. Then $q_{d}(G) \leq\left(1-\frac{1}{\left.2^{d}\right)^{|I|}}\right.$.

Theorem 1. For a d-regular graph G with n vertices, $S C(\widetilde{F}, G)=d-f(d, n), \quad f(d, n) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Every maximal ind. set $I=\left\lceil\frac{n}{d+1}\right\rceil$. By Lemma 1,
$\Rightarrow q_{d}(G) \leq\left(1-\frac{1}{2^{d}}\right)^{\frac{n}{d+1}}$. Thus, $S C(\widetilde{F}, G) \geq q_{d}(G)+d\left(1-q_{d}(G)\right)=$ $d-f(n, d)$, where $f(n, d)$ asymptotically tends to zero.

3-Regular Graphs: Catroids and the Two-Sisters Lemma

- Definition 1. (Cactoids) A cactoid is a pair $\widehat{G}=\langle V, \widehat{E}\rangle, V$ is the vertices, \widehat{E} consists of undirected edges between vertices and pointers to vertices, i.e. loose edges incident to one single vertex.
- Let an arbitrary orientation of G, σ, called standard. $x_{\alpha}(e) \rightarrow\{0,1\}$ for each $e \in \widehat{E}$ in any possible orientation α : is 1 (or 0) if e and the same orientation in α as in σ (otherwise).
Assume two vertices u, v, called two-sisters, with incident pointers π_{u}, π_{v}, pointing away of u, v in σ.
Let $P_{\widehat{G}}(i, j)$ the probability that an α with $x_{\alpha}(u)=i$ and $x_{\alpha}(v)=j$, $i, j \in\{0,1\}$ is a 2 -orientation.
- Clearly, $P_{\widehat{G}}(1,1) \geq P_{\widehat{G}}(0,0), P_{\widehat{G}}(0,1), P_{\widehat{G}}(1,0)$.
- We prove that $P_{\widehat{G}}(1,1)$ is upper bounded by their sum..

3-Regular Graphs: The Two-Sisters Lemma

Lemma 2. (Two-sisters) For any 3-regular cactoid $\widehat{G}=\langle V, \widehat{E}\rangle$ and any two sisters $u, v \in V$,
it holds that, $P_{\widehat{G}}(0,0)+P_{\widehat{G}}(0,1)+P_{\widehat{G}}(1,0) \geq P_{\widehat{G}}(1,1)$.
Proof. Let b_{1}, b_{2} and b_{3}, b_{4}, the other edges incident to the sisters u, v, respectively.
Let \widehat{G}^{\prime} obtained by \widehat{G} by deleting u, v and their pointers π_{u}, π_{v}.
Let $P_{\overline{G^{\prime}}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ the probability a random orientation α of $\widehat{G^{\prime}}$ with $x_{\alpha}\left(b_{i}\right)=x_{i}, 1 \leq i \leq 4$ is a 2 -orientation.

1. We express $P_{\widehat{G}}(i, j) i, j \in\{0,1\}$ as functions of $P_{\widehat{G}^{\prime}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.
2. By, induction on the number of vertices of \widehat{G}, we prove that, the statement holds for $\overline{G^{\prime}}$.
3. Using 1., we return to \widehat{G} and get the same statement.

3-Regular Graphs: Orientations and Social Costs

Theorem 2. For every 3-regular graph G, with n vertices it holds that $|3-\operatorname{or}(G)| \geq\left|3-\operatorname{or}\left(G_{\|}(n)\right)\right|$, where $\operatorname{or}(H)$ is the number of orientations of a graph H.

Proof.

- We start from the graph $G_{0}=G=\left(V, E_{0}\right)$ and iteratively define $G_{i}=$ $\left(V, E_{i}\right), 1 \leq i \leq r, r \leq n$ s.t. G_{r} equals $G_{\|}(n)$ and $\left|3-o r\left(G_{i}\right)\right| \geq\left|3-o r\left(G_{\|}\left(G_{i+1}\right)\right)\right|$.
- Note: Each connected component of any regular graph, is either isomorphic to a necklace or it contains a path of length 3 connecting four different vertices, such that only the middle edge of this path can be a parallel edge.
- If in G_{i} all connected components are necklaces, then $G_{i}=G_{\|}(n)$.

Proof of Theorem 2. (Cont. 2/5)

- Otherwise, some component of G_{i} contains a path c, a, b, d with 4 different vertices a, b, c, d.
Construct a new graph $G_{i+1}=\left(V, E_{i+1}\right)$ by deleting edges $\{a, c\},\{b, d\}$ from E_{i} and adding edges $\{a, b\},\{c, d\}$ to the graph as follows:

Figure 1: Construction of graph G_{i+1} from graph G_{i}.

- In the figure, all edges are different. This is not always the case.
- At each iteration, the number of single edges is decreased by at least one. Thus, \# of iterations is at most n.

Proof of Theorem 2. (Cont. 3/5)

We prove the statement when,
Case 1: All edges $e_{1}, \cdots e_{9}$ are different.
Case 2: Some of the edges are equal.
Here we present only the Case 1:

- Consider the graphs G_{1}, G_{2}. There exists an one-to-one correspondence between their edges. Thus, an orientation of $G_{1} \Leftrightarrow$ an orientation of G_{2}.
- We define an injective mapping $F: 3-\operatorname{or}\left(G_{2}\right) \rightarrow 3-o r\left(G_{1}\right)$

Set $C_{2}=\left\{\alpha ; \alpha \in 3-\operatorname{or}\left(G_{2}\right), \alpha ; \notin 3-o r\left(G_{1}\right)\right\}$ and
$C_{1}=\left\{\alpha ; \alpha \in 3-\operatorname{or}\left(G_{1}\right), \alpha ; \notin 3-\operatorname{or}\left(G_{2}\right)\right\}$.
Define $F(\alpha)=\alpha$ for $\alpha \in 3-o r\left(G_{2}\right) \backslash G_{2}$ and $F: C_{2} \rightarrow C_{1}$ is injective.
Thus, the mapping F is injective.

- We will show that F always exists in Case 1..

Proof of Theorem 2: Case 1 (Cont. 4/5)

- Let α an arbitrary orientation. All $u \notin\{a, b, c, d\}$ have the makespan in G_{1} and G_{2} with respect to α.
- We can show that vertices a, b, c, d have all makespan 3 in G_{1}.
- Using above info, we construct C_{2} :

$$
\begin{aligned}
C_{2}= & \left\{\alpha \notin 3-\left(G_{1}\right) ; x_{1}=x_{2}=x_{3}=0 \wedge x_{5}=1 \wedge x_{6} \cdot x_{7}=x_{8} \cdot x_{9}=0\right\} \\
& \cup\left\{\alpha \notin 3-\left(G_{1}\right) ; x_{2}=x_{3}=x_{6}=x_{7}=1 \wedge x_{1} \cdot x_{4}=0 \wedge\left(x_{1}=1 \vee x_{5}=0\right)\right\}
\end{aligned}
$$

- Similarly, we construct C_{1} :

$$
\begin{aligned}
& C_{1}=\left\{\alpha \notin 3-\left(G_{2}\right) ; x_{1}=0 \wedge x_{2}=x_{3}=x_{5}=1 \wedge x_{6} \cdot x_{7}=0\right\} \\
& \cup\left\{\alpha \notin 3-\left(G_{2}\right) ; x_{2}=x_{3}=0 \wedge x_{6}=x_{7}=1 \wedge x_{8} \cdot x_{9}=0 \wedge\left(\left(x_{1}=1 \vee x_{5}=0\right)\right\}\right.
\end{aligned}
$$

Proof of Theorem 2: Case 1 (Cont. 5/5)

We define F by considering four cases about orientations $\alpha \in C_{2}$:

1. Consider $\alpha \in C_{2}$ with $x_{2}=x_{3}=x_{6}=x_{7}=1 \wedge x_{1} \cdot x_{4}=0 \wedge x_{8} \cdot x_{9}=$ $0 \wedge\left(x_{1}=1 \vee x_{5}=0\right)$

Set $\left.F\left(x_{1}, 1,1, x_{4}, x_{5}, 1,1, x_{8}, x_{9}, \ldots\right)=\left(x_{1}, 0,0, x_{4}, x_{5}, 1,1, x_{8}, x_{9}, \ldots\right)\right)$
Note: vertices $\{a, b, c, d\}$ have the same connections to vertices outside $\{a, b, c, d\}$; therefore $\alpha \notin 3-o r\left(G_{1}\right)$, thus $F(\alpha) \notin 3-o r\left(G_{2}\right)$.
Thus, $F(\alpha) \in C_{1}$.
2-4. More complicated... prove the same result.

Theorem 2 consequences

Corollary 1. For an 3-regular graph G with n vertices, $S C(G, \widetilde{F}) \geq$ $S C\left(G_{\|}(n), \widetilde{F}\right)=3-(3 / 4)^{n / 2}$.

- Equality does not hold in Corollary 1: there exist a 3-regular graph for which the $S C$ of its fully mixed NE is larger than for the corresponding parallel links graph.

Coordination Ratio

Theorem 3. Restricted to pure NE, $C R=\Theta\left(\frac{\log n}{\log \log n}\right)$.

Proof. Upper bound: Our model is a special case of the restricted parallel links. \Rightarrow The upper bound $O\left(\frac{\log n}{\log \log n}\right)$ of [M. Gairing et all, MFCS04] also holds for our model.

Lower bound: Let G a complete tree with height k, where each vertex in layer l of the tree has $k-l$ children.
Let $k^{l}=k(k-1) \ddots \ldots(k-1)$ the l-th falling factorial of k. Then $n=\Sigma_{0 \leq l \leq k} k^{l}<(k+1)!=\Gamma(k+2)$. This implies $k>\Gamma^{-1}(n)-2$.

1. Denote L_{1} the pure assignment in which all users are assigned toward the root.
Then the individual cost of user in layer l is $k-l$. Also, the user can not improve by moving its vertex in layer $(l+1)$.
Thus, L_{1} is a pure NE with Social Cost k.

Theorem 3 proof. (Cont.)

2. Denote L_{2} the pure assignment in which all users are assigned toward the leaves.
Then the individual cost of all users is 1 .
Thus, the Social Cost of L_{2} is 1 .
$\Rightarrow \max _{G, L} \frac{S C(G, L)}{O P T(G)} \geq \frac{S C\left(G, L_{1}\right)}{S C\left(G, L_{2}\right)}=k>\Gamma^{1}(n)-2=\Omega\left(\frac{\log n}{\log \log n}\right)$.

The fully Mixed Nash Equilibrium

Consider a fully Mixed NE, P. For each edge $j k \in E$, let $j k$ the user corresponding to the edge $j k$.
Denote $\widehat{p}_{j k}$ and $\widehat{p}_{k j}$ the probabilities according to P that user $j k$ chooses machines j and k, resp.
For each machine $j \in V$, the expected load of machine j excluding a set of edges \widetilde{E}, denoted by $\pi_{P} \backslash \widetilde{E}=\Sigma_{k j \in E \backslash \widetilde{E}} \widehat{p}_{k j}$.

Lemma 3. (The 4-Cycle Lemma) Take any 4-cycle C_{4} in a graph G and any two vertices $u, v \in C_{4}$ that are non-adjacent in C_{4}. Consider a NE P for G. Then, $\pi_{P}(u) \backslash C_{4}=\pi_{P}(v) \backslash C_{4}$.

Counterexample 1. There is no fully mixed NE for trees and meshes.
Counterexample 2. For each graph in Figure 1, there is no fully mixed NE.

Fully mixed NE: Uniqueness and Dimensional Results

Theorem 4. Consider the complete bipartite graph $K_{r, s}$, where $s \geq$ $r \geq 2$ and $s \geq 3$. Then the fully mixed NE F for $K_{r, s}$ exists uniquely if and only if $r>2$. Moreover, in case $r=2$, the fully mixed Nash dimension of $K_{r, s}$ is $s-1$.

Observation 2. Consider a hybercube H_{r}, for any $r \geq 2$. Then, the fully mixed Nash dimension of H_{r} is at least r.

Theorem 4. Consider the hybercube H_{r}, where $r \in\{2,3\}$ Then the fully mixed Nash dimension is r.

Worst-Case NE

Counterexample 3. There is an interaction graph for which no fully mixed NE has worst Social Cost.

Counterexample 4. There is an interaction graph for which there exists a fully mixed NE with worst Social Cost.

