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Abstract

We present a novel counting network construction, where the number of input wires
w is smaller than or equal to the number of output wires t. The depth of our network
is Θ(lg2 w), which depends only on w. In contrast, the amortized contention of the
network depends on the number of concurrent processes n and the parameters w and t.
This offers more flexibility than all previously known networks, with the same number
w of input and output wires, whose contention depends only on two parameters, w
and n. As a result, when choosing n, t ≥ w lg w, the contention of our network is
O(n lg w/w), which improves by a logarithmic factor of w over all previously known
networks with w wires.

1 Introduction

1.1 Background

A fundamental problem in distributed computing is the efficient implementation of a shared
counter. In the shared counter problem, the distributed processes access the counter
through Fetch&Increment operations in order to obtain successive integer values from a
given range. Distributed problems such as load balancing and barrier synchronization can
be expressed and solved as counting problems. In a seminal work, Aspnes, Herlihy and
Shavit [5] introduced counting networks as a class of distributed data structures used to
construct concurrent, low-contention implementations of distributed counters that support
the Fetch&Increment operation.1

∗A preliminary version of this work appears in the Proceedings of the 1st Merged International Parallel
Processing Symposium and Symposium on Parallel and Distributed Processing (IPPS/SPDP’98), pp. 380–
384, Orlando, Florida, March/April 1998.

†Supported by funds for the promotion of research at University of Cyprus.
1See [2] for an extention to counting networks which support also Fetch&Decrement operations.
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Figure 1: Left: a (4, 6)-balancer; Right: a balancing network of input width 4 and output
width 8

Counting networks are constructed from p-input q-output asynchronous switches called
(p, q)-balancers [1, 5, 10, 11]; p is the balancer’s input width, while q is its output width. As
illustrated in Figure 1, a balancer accepts a stream of tokens on its p input wires. The tokens
arrive asynchronously to the balancer and the balancer processes a token at a time in an
atomic operation so that the i-th token to be processed by the balancer leaves on output
wire i mod q (where i = 0, 1, . . .). In the same figure, we show the number of tokens that
enter on each input wire and leave from each output wire. A balancer for which p = q will
be called regular, while a balancer for which p 6= q will be called irregular.

A balancing network [5], denoted B, is an acyclic network of balancers, where the output
wires of the balancers are linked to input wires of others; see Figure 1 for an illustration.
The network’s input wires are those input wires not linked to any balancer’s output, and
similarly for the network’s output wires. The number of input wires is called the network’s
input width, denoted w; the number of output wires is called the network’s output width,
denoted t.

A balancing network in which each balancer is regular will be called a regular network.
In a regular network it holds that the input width is equal to the output width, that is,
w = t. If a network uses irregular balancers, it will called irregular. Note that in irregular
networks it may be that w 6= t. For example the network in Figure 1, is irregular. Examples
of regular balancing networks are shown in Figure 2.

Tokens enter the balancing network on the input wires, typically several per wire, propa-
gate asynchronously through the balancers, and leave on the output wires, typically several
per wire. The depth of the balancing network is the maximum number of balancers that
any token has to traverse from an input wire to an output wire. The depth of a balanc-
ing network determines its latency which is a delay due to the physical characteristics of a
balancing network. A significant source of delay are token collisions (contention) which we
discuss below.
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Figure 2: Regular balancing networks of width 4 and 8 built from (2, 2)-balancers

A balancing network is a counting network [5] if the overall distribution of output tokens
across the output wires satisfies the step property : exiting tokens are divided uniformly
among the output wires, while any excess tokens emerge on the upper wires. The balancing
networks illustrated in Figures 1, 2, and 3 are all counting networks. In Figure 1, we show a
particular distribution of tokens on the input and output wires; note that the step property
holds on the distribution of tokens across the output wires.

The primary purpose of a counting network is to support distributed Fetch&Increment
operations. Each token corresponds to a request by a process to increment a distributed
counter. Suppose that the output width of a counting network is t. At each output wire i
on the counting network there is variable vi that assigns counter values to the tokens. The
initial value of vi is i. If a token τ exits on wire i, in an atomic operation, τ is assigned the
value vi, and the value of vi is increased by t. If in total m tokens traverse the network, each
token is assigned a counter value between 0 and m− 1. In figure 1, we show the respective
counter value that it assigned for each token that exits from the counting network and the
(p, q)-balancer.

1.2 Contention

On an MIMD shared memory multiprocessor machine, the balancing network B is imple-
mented as a shared data structure. Each balancer is a memory location shared by all the
processes; wires are pointers from one memory location to another. The memory location of
the balancer contains the necessary information that determines the wire the next token will
exit from; this information may be accessed by any process’s token. Each of the machine’s
n asynchronous processes runs a program that repeatedly traverses the data structure from
some input pointer to some output pointer, each time shepherding a new token through the
network.

Call n the concurrency. Tokens generated by process pl, l ∈ {0, . . . , n − 1}, enter the
network on input wire l mod w, where w is the input width of the network. Since each
process can have at most one token traversing the network at any time, the total number of
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tokens simultaneously traversing the network is no more than n. Note that in an execution,
the total number of tokens that will traverse the network may exceed n, since a process may
issue a token several times.

Contention in balancing network B occurs when two or more tokens are trying to access
the same balancer simultaneously. In such a case, the tokens content for which one will
atomically access the memory location of the balancer; all unsuccessful tokens must wait
and try again. Each time a token passes through a balancer, it incurs a stall step or stall
for short [9] to all other tokens pending at the balancer; equivalently, every time a token is
bypassed by another token, a stall is incurred to it.

The number of stalls has been proposed by Dwork et al. [9] as a complexity-theoretic
measure of contention in shared memory algorithms. Roughly speaking, the contention
incurred by the traversal of m tokens through the network B at concurrency n, denoted
cont(B, n,m), is the maximum number of stalls, over all possible executions, induced by an
adversary scheduler. Furthermore, the amortized contention of the network B at concurrency
n, denoted cont(B, n), is the limit supremum of cont(B, n, m) divided by m, as m goes to
infinity.

Naturally, the higher the (amortized) contention, the smaller the network’s throughput,
since a token is delayed less time in the network when tokens abound, and vice versa.
Clearly, amortized contention is an appropriate measure of the average delay experienced
by any token traversing a network. The amortized contention measure is both simple and
practical in the sense that the only parameters that turned out to be needed for its analysis
are the concurrency n and the width of the network. Even more so, it does not require
any timing information on the arrival and departure time of tokens, as more complicated
queueing theory models do.

1.3 Contribution

Almost all known counting network constructions are regular and they are built from regular
balancers (see, e.g., [1, 5, 7, 8, 10]). The prime example of such networks is the bitonic
counting network [5, Section 3]; built from (2, 2)-balancers, it achieves input and output
width w = 2k, for any integer k > 0. The depth of the bitonic network is Θ(lg2 w), while
its amortized contention is Θ(n lg2 w/w) [9, Section 3.2]. Figure 2 depicts two instances of
the bitonic counting network, one of width 4 and the other of width 8. Another notable
construction with similar performance characteristics is the periodic counting network [5,
Section 4], which achieves amortized contention O(n lg3 w/w) [9, Section 3.4].

In this work, we depart from the regular approach to counting networks, and we built
irregular counting networks. The principal motivation for our study is to improve the ef-
ficiency of counting networks by relaxing regularity. More specifically, we are interested in
understanding whether, and by how much, irregular networks may improve on efficiency re-
garding amortized contention, at the same level of latency (network depth) and concurrency,
over their regular counterparts. We are able to provide an affirmative, quantitative answer
to this question.
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1.3.1 Bounds

We present a novel construction of an irregular counting network C(w, t), where the input
width w is smaller than or equal to the output width t. Specifically, w = 2k and t = p2l,
for some integers k, l, p > 0, so that w ≤ t. Our network is constructed from (2, 2)-balancers
and (2, 2t/w)-balancers. For example, the network C(4, 8) is illustrated in Figures 1 and 3,
while the network C(8, 48) appears in Figure 3.

The depth of network C(w, t), depends solely on the input width w; it is Θ(lg2 w). We
would like to note that the depth of C(w, t) is exactly the same with the depth of a bitonic
network of width w.

We discover that the amortized contention of the network C(w, t) depends on all three
parameters w, t and n:

cont (C(w, t), n) = O

(
n lg w

w
+

n lg2 w

t
+

w lg3 w

t
+ lg2 w

)
.

Since the amortized contention is now determined by three parameters, we expect this to
offer some more flexibility and trade-offs when one must choose the right network for the
specific needs of any particular counting problem. Apparently, our network provides more
options than previous (regular) networks, like the bitonic and the periodic, whose contention
depends only on two parameters (w and n).

To demonstrate this additional flexibility, but also to compare our network against pre-
vious constructions, we adjust the output width t for achieving efficiency.

• When t = w, we obtain a new regular counting network C(w, w), with depth Θ(lg2 w)
and amortized contention O(n lg2 w/w + lg3 w). For n ≥ w lg w, the amortized con-
tention becomes O(n lg2 w/w) which is the same as in the bitonic network of width
w.

• By increasing the output width t the contention of network C(w, t) decreases, while its
depth remains the same (since it only depends on w).

– Specifically, by taking t = w lg w the amortized contention becomes O(n lg w/w +
lg2 w). For n ≥ w lg w the amortized contention becomes O(n lg w/w) which is
better by a logarithmic factor of w over the amortized contention of the bitonic
counting network with the same depth and width w. Therefore, out network can
handle better higher concurrency.

Since our network achieves a decreased amortized contention as a function of the concur-
rency n, we naturally expect that it offers the option of a higher throughput for the same
latency. No such options were available for any of the previously known networks.
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1.3.2 Structural Interpretation

We attribute the improved performance characteristics enjoyed by our network construction
to some features of its unique structure, as we argue below.

When we look inside the structure of our network, we identify three series blocks, Na,
Nb, and Nc, as illustrated in Figure 3:

• Block Na has input and output width w and depth lg w − 1; it is built from (2, 2)-
balancers. This block is regular.

• Block Nb has input width w, output width t, and depth 1; it is built from (2, 2t/w)-
balancers. This block serves as a transition block from block A to block C. This block
is irregular.

• Block Nc has input and output width t, and depth Θ(lg2 w); it is built from (2, 2)-
balancers. This block is regular.

The dominant block with respect to depth is block Nc. Thus, intuitively, tokens spend
most of their time in this block of the network. It is therefore expected that contention will
be heavily influenced from parameters of this block. By increasing the output width t, block
Nc becomes wider and fatter with respect to the number of balancers, so that tokens will
then have there less chance to collide at the same balancer. Consequently, as t increases,
the contention in block Nc decreases, so that the contention of the entire network decreases.
Even more so, by unboundedly increasing t, the contention in block Nc approaches lg2 w
(independent of the concurrency n). However, for a fixed w, as t becomes large, block Na

remains the same; thus, block Na will be the one to determine the network’s contention
when w ¿ t. Nevertheless, since the depth of block Na is only Θ(lg w), block Na cannot
affect the performance of the entire network very much, so that the gain in contention due
to increasing t is preserved.

1.3.3 Remarks and Comparison

We remark that increasing t causes a corresponding increase to the number of balancers
in block Nc. For really large values of t, this may seem to cause a resource burden when
implementing the network in a real shared memory multiprocessor system. Thus, there is
an implementation tradeoff between the two cases w = t and w ¿ t. This tradeoff will have
to depend on the particular intricacies and requirements of the counting problem in hand.
A compromise where t = w lg w seems to provide a reasonable solution.

There are only two other known irregular counting networks. The first one, called a
diffracting tree, is given by Shavit and Zemach [13]; built from (1, 2)-balancers, it has the form
of a binary tree with 1 input wire, w output wires, and depth lg w. This construction employs
randomization to implement a diffraction scheme, which allows a pair of colliding tokens to
combine and eliminate themselves. Experiments have revealed some nice performance results
for this construction; similar results have also been in [14] for the steady state, and under
certain probabilistic assumptions on the frequency of traversals. Nevertheless, the amortized
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contention of the diffracting tree is Θ(n), since it is possible for an adversary scheduler to
accumulate all tokens at the root of the tree.

The second irregular construction is given by Aiello et al. [3]; it has input width w, output
width w lg w, and depth O(lg w); it is built from (2, 2)-balancers and (1, 2)-balancers. This
construction uses as a building block the AKS sorting network [4], whose depth is O(log n),
but the asymptotic depth notation hides huge constant factors which makes this counting
network construction to be of no practical interest. On the other hand, our construction has
small constants in the asymptotic notation of its depth and can be easily implemented in
practice.

1.4 Road Map

In Section 2, we offer some necessary preliminaries for integer sequences, and give some
definitions and basic results for balancing networks. We give in Section 3 the construction
of a merging network, which is a major building block for the construction of our counting
network in Section 4. In Section 5, we give the butterfly network, which is a special network
that will be useful for the analysis of the amortized contention of our counting network in
Section 6. Finally, in Section 7 we discuss our results and give some open problems.

2 Preliminaries

2.1 Step Sequences

The number of tokens that enter of exit a balancing network will be represented with se-
quences. We denote an integer sequence of length w with a boldface letter such as x(w). The
elements of the sequence are denoted with small letters; so, x(w) = x0, x1, . . . , xw−1. The sum
of the elements of the sequence is denoted as

∑
(x(w)) = x0 +x1 + · · ·+xw−1. The maximum

value is maxi(xi), while the minimum value is mini(xi).
A subsequence of x(w) is any sequence of elements xi0 , xi2 , . . . , xik−1

, such that ij < iij+1
,

for all 0 ≤ j ≤ k − 1. The even subsequence of x(w) is x(w/2)
e = x0, x2, . . ., while the

odd subsequence is x(w/2)
o = x1, x3, . . .. If w is even, the first half of x(w) is subsequence

x0, x1, . . . , xw/2−1, while the second half of y(w) is subsequence yw/2, yw/2+1, . . . , yw−1.
A sequence x(w) has the step property [5] if 0 ≤ xi − xj ≤ 1, for any pair of indices i and

j such that 0 ≤ i < j < w; alternatively, we say that the sequence x(w) is step. For a step
sequence x(w), its step point is either the unique index i such that xi < xi−1, or w if all xi

are equal; that is, 1 ≤ i ≤ w, For any element xi of a step sequence x(w), it holds that [5]:

xi =

⌈∑
(x(w))− i

w

⌉
. (1)

We continue with two basic results for step sequences.

Lemma 2.1 Any subsequence of a step sequence is step.
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Proof: Suppose that x(w) is a step sequence. Let x̂(m) = xi0 , xi2 , . . . , xim−1 be a subsequence
of x(w). We have that 0 ≤ xij − xik ≤ 1, for all 0 ≤ j < k < m, since x(w) is step. Therefore,

x̂(m) is step too.

Lemma 2.2 Consider a pair of step sequences x(w) and y(w), where w ≥ 2, with maximum
values a and b, respectively. If there is an integer δ such that

0 ≤ ∑ (
x(w)

)
−∑ (

y(w)
)
≤ δ,

then,

0 ≤ a− b ≤
⌊

δ

w

⌋
+ 1.

Proof: Since a and b represent the maximum values of the step sequences x(w) and y(w),
respectively, it holds that

w(a− 1) <
∑ (

x(w)
)
≤ wa,

and
w(b− 1) <

∑ (
y(w)

)
≤ wb.

By subtracting these two inequalities, we get

w(a− b− 1) <
∑ (

x(w)
)
−∑ (

y(w)
)

< w(a− b + 1).

By inequality
0 ≤ ∑ (

x(w)
)
−∑ (

y(w)
)
≤ δ

we get that
w(a− b− 1) < δ,

and,
w(a− b + 1) > 0.

Since w ≥ 2, it follows that

a− b <
δ

w
+ 1,

and
a− b > −1.

Since a and b are integers, this implies that

0 ≤ a− b ≤
⌊

δ

w

⌋
+ 1,

as needed.

Next, we give properties for the even and odd subsequences of step sequences.
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Lemma 2.3 If x(w) is a step sequence, and w is even with w ≥ 2, then

0 ≤ ∑ (
x
(w

2 )
e

)
−∑ (

x
(w

2 )
o

)
≤ 1 .

Proof: Let a be the maximum value of x(w). Let k be the step point of x(w). All the
elements xi with i < k have value a, while the remaining elements have value a − 1. Thus,
all elements x0, . . . , xk−1 have value a, while all elements in xk, . . . , xw−1 have value a− 1.

If k is even, we have x2i = x2i+1 = a, for i < k/2, while x2i = x2i+1 = a− 1, for i ≥ k/2.
Thus, x(w)

e = x(w)
o , which implies

∑ (
x
(w

2 )
e

)
−∑ (

x
(w

2 )
o

)
= 0.

If k is odd, we have x2i = x2i+1 = a, for i < (k − 1)/2, while x2i = x2i+1 = a − 1, for
i > (k − 1)/2. Further, a− 1 = xk < xk−1 = a. Thus, x(w)

e and x(w)
o differ only on their kth

element, which implies
∑ (

x
(w

2 )
e

)
−∑ (

x
(w

2 )
o

)
= 1.

Lemma 2.4 Consider two step sequences x(w) and y(w), where w ≥ 2. If there is an even
integer δ such that

0 ≤ ∑ (
x(w)

)
−∑ (

y(w)
)
≤ δ,

then

0 ≤ ∑ (
x
(w

2 )
e

)
−∑ (

y
(w

2 )
e

)
≤ δ

2
,

and

0 ≤ ∑ (
x
(w

2 )
o

)
−∑ (

y
(w

2 )
o

)
≤ δ

2
.

Proof: Denote

A =
∑ (

x(w/2)
e

)
−∑ (

y(w/2)
e

)
,

B =
∑ (

x(w/2)
o

)
−∑ (

y(w/2)
o

)
.

We will show that 0 ≤ A ≤ δ/2 and 0 ≤ B ≤ δ/2. We have:

∑ (
x(w)

)
=

∑ (
x
(w

2 )
e

)
+

∑ (
x
(w

2 )
o

)
,

∑ (
y(w)

)
=

∑ (
y
(w

2 )
e

)
+

∑ (
y
(w

2 )
o

)
.

Since by assumption, 0 ≤ ∑
(x(w))−∑

(y(w)) ≤ δ, it follows that

0 ≤
(∑ (

x
(w

2 )
e

)
+

∑ (
x
(w

2 )
o

))
−

(∑ (
y
(w

2 )
e

)
+

∑ (
y
(w

2 )
o

))
≤ δ
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or
0 ≤ A + B ≤ δ. (2)

From Lemma 2.3,

0 ≤ ∑ (
x
(w

2 )
e

)
−∑ (

x
(w

2 )
o

)
≤ 1, (3)

and

0 ≤ ∑ (
y
(w

2 )
e

)
−∑ (

y
(w

2 )
o

)
≤ 1. (4)

By subtracting Inequalities 3 and 4 we get

−1 ≤
(∑ (

x
(w

2 )
e

)
−∑ (

y
(w

2 )
e

))
−

(∑ (
x
(w

2 )
o

)
−∑ (

y
(w

2 )
o

))
≤ 1

or
−1 ≤ A−B ≤ 1. (5)

By adding Inequalities 2 and 5, we get

−1

2
≤ A ≤ δ

2
+

1

2
,

and by subtracting Inequalities 2 and 5, we get

−1

2
≤ B ≤ δ

2
+

1

2
.

Since A and B are integers we get

0 ≤ A ≤ δ

2
,

and

0 ≤ B ≤ δ

2
,

as needed.

2.2 Smooth Sequences and Permutations

A sequence x(w) has the k-smooth property [1, 5] if |xi − xj| ≤ k, for any pair of indices i
and j such that 0 ≤ i, j < w; we say also that the sequence x(w) is k-smooth. Notice that
the elements of any k-smooth sequence take values in a range a, a + 1, . . . , a + k, for some
integer a. Clearly, any step sequence is also 1-smooth.

Consider the set H = {0, . . . , w − 1}. A permutation on H is a correspondence (one to
one and onto function) π : H → H, that maps each element of H to another element of H.
We define the permutation of a sequence x(w) to be π(x(w)) = y(w) if xi = yh(i), for each
i ∈ H. Since permutation π is a correspondence, it has a reverse permutation, denoted πR,
such that πR(h(i)) = i. Note that if π(x(w)) = y(w), then x(w) = πR(y(w)).

Lemma 2.5 If a sequence x(w) is k-smooth and π is a permutation, then π(x(w)) is k-smooth.

Proof: Let π(x(w)) = y(w). We have that for any pair of elements yi and yj of y(w),
xπR(i) = yi and xπR(j) = yj. Since |xπR(i) − xπR(j)| ≤ k, we get |yi − yj| ≤ k.
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2.3 Balancing networks

Consider a balancing network B of input width w and output width t. Each balancer b in
B has a depth which is the length of the longest path, in terms of number of balancers, that
a token has to traverse from an input wire of B until the token reaches an output wire of
balancer b. The depth of the network, denoted depth(B), is the maximum depth of any
balancer in B. Suppose that d = depth(B). Network B can be decomposed into d layers of
balancers, `1, . . . , `d, such that layer `i contains all the balancers with depth i. Note that a
layer is itself a balancing network with input and output width. Note also that in a regular
balancing network all the layers have input and output width equal to the width of the
regular network.

Consider now a (p, q)-balancer b. At any moment during an execution where tokens
traverse b, the balancer b has a state which is the index of the output wire on which b will
forward the next token that it processes. Thus, the state is a number in {0, . . . , q − 1}. A
transition α(τ, b) is the action of taking a token τ from the input and forwarding it to an
output wire of b. The transition increases the state of the balancer by one (in a modulo-q
operation).

Consider now a balancing network B with balancers b1, . . . , bk. The state of the network
is the collection of the states of its balancers. Each transition in the network brings the
network from one state to another. An execution E in B that involves tokens τ1, . . . , τm in
B is a sequence of transitions, namely, E = α(τi1 , bi1), α(τi2 , bi2), . . . , α(τik , bik), where k is
the length of the execution. At the end of the last transition in the execution (transition
α(τik , bik)), there are no tokens traversing the network; in this case we say that network has
reached a quiescent state.

Consider a (p, q)-balancer b in a quiescent state. Let xi denote the number of tokens that
have entered the balancer on input wire i. The sequence x(p) = x0, . . . , xp−1 is the input
sequence to balancer b (see Figure 1). Let yi denote the number of tokens that have left
from output wire i of balancer b. The sequence y(q) = y0, . . . , yq−1 is the output sequence
of balancer b. The output sequence y(q) satisfies the step property. The input and output
sequences satisfy the sum preservation property, which expresses the fact that in a quiescent
state all tokens that have entered the balancer has also left it:

∑
(x(p)) =

∑
(y(q)).

Since y(w) is step, from Equation 1 it holds for any output wire i that yi =
⌈∑

(x(w))−i

w

⌉
.

Therefore, y(w) is a function on the number of tokens that have gone through the balancer,
∑

(y(q)). From the sum preservation property, we have yi =
⌈∑

(x(w))−i

w

⌉
. Therefore, the

output sequence y(q) is function on the number of tokens that have entered b. Thus, any
two executions that involve balancer b such that the same number of tokens traverse the
balancer, will leave the the balancer in the same state with the same values on the output
sequence y(w).

Consider now a balancing network of input width w and output width t. For any quiescent
state, we define the input sequence x(w) and output sequence y(w) of B, similarly as for the
balancer (see Figure 1). It can be easily shown by induction on the layers of B that B satisfies
the sum preservation property:

∑
(x(w)) =

∑
(y(t)). Similarly, it can be shown by induction
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on the number of layers of B that the output sequence vyt only depends on the particular
values on each entry of x(w). Thus, for any two executions the corresponding values in y(t)

are the same, as long the number of tokens on each input wire are the same.
We will consider the following balancing network families, which are described according

to their behavior in a quiescent state:

• Counting network : For any values in the input sequence, the output sequence satisfies
the step property.

• k-Smoothing network : For any values in the input sequence, the output sequence
satisfies the k-smooth property.

• Difference merging network : Suppose that the width of the network is w. Let u(w) be
the input sequence. The input sequence u(w) is decomposed into two sequences x(w/2)

(first input sequence) and y(w/2) (second input sequence), consisting of the first and
second half, respectively, of u(w). There is a merging parameter δ ≥ 1 that specifies
the behavior of the network. If both x(w/2) and y(w/2) satisfy the step property, and
0 ≤ ∑

(x(w/2)) − ∑
(y(w/2)) ≤ δ, then the output sequence satisfies the step property

too. That is, a difference merging network merges two step input sequences into a
unique step output sequence, if the sums of the input sequences differ by at most δ.

The following result states that in a regular balancing network, if the input to a layer is
k-smooth, then the output of the layer (thus, of every subsequent layer) is k-smooth too.

Lemma 2.6 Consider a regular balancing network B of width w. Let ` denote a layer of B.
If the input sequence to ` is k-smoothing, then the the output sequence of ` is k-smoothing
too.

Proof: Suppose that the input sequence to ` is k-smoothing. We will show that its output
sequence is k-smooth too. The output sequence of any particular balancer in ` is step,
which is is trivially k-smooth. Thus, we only need to examine the difference on the output
sequences of two different balancers b1 and b2 in `. Suppose that a is the minimum value on
the input sequence of `. Then, the maximum value on the output sequence of ` is at most
a + k.

The maximum difference between the output sequences of b1 and b2 is when one balancer,
say b1, receives a tokens on each input wire, while the other balancer, say b2, receives a + k
tokens on each input wire. For such inputs, on each output wire of b1 will exit a tokens,
and on each output wire of b2 will exit a + k tokens. Thus, the difference on the number of
tokens between any two wires of the two balancers is bounded by k. Therefore, the output
sequence of ` is k-smooth.

2.4 Isomorphic Balancing Networks

Consider two balancing networks B1 and B2 that have the same input width w, and the same
output width t. We say that the networks B1 and B2 are isomorphic if three conditions hold:

13



b1

πin(1) = 2

πin(2) = 1

πin(0) = 0

wirewirewirewire

3 = πout(3)

2 = πout(2)

1 = πout(1)

0 = πout(0)

b′3

b′2

b′1

B2

3

2

1

0

3

2

1

0

b3

b2

B1

πin(3) = 3

Figure 4: Isomorphic

i. There is a correspondence between the balancers of B1 and B2 so that any (p, q)-
balancer b in B1 has a corresponding (p, q)-balancer b′ in B2.

ii. For any balancer bi in B1 whose k-th output wire is connected to an input wire of a
balancer bj, it holds that in B2 the k-th output wire of balancer b′i is connected to some
input wire of balancer b′j (the input wire in bj may not be necessarily the same as the
input wire in b′j).

iii. There is a correspondence between the input wires of B1 and B2. Similarly there is a
correspondence between the output wires of B1 and B2.

Let x(w) and y(t) be the respective input and output sequences of B1, and let u(w) and
z(t) be the respective input and output sequences of B2. Let πin be the correspondence
(permutation) that maps input wires of B1 to input wires of B2. Similarly, let πout be the
correspondence (permutation) that maps output wires of B1 to output wires of B2. From
condition (iii) of isomorphism, if token τ enters on input wire j in B1, then t enters on wire
πin(j) in B2. Similarly, if token τ exits on output wire j in B1, then t exits on wire πout(j)
in B2. An example of two isomorphic networks is shown in Figure 4.

Any execution E = α(τi1 , bi1), α(τi2 , bi2), . . . , α(τik , bik) in B1 with tokens {τ1, . . . , τm},
has a corresponding execution E ′ = α(τ ′i1 , b

′
i1
), α(τ ′i2 , b

′
i2
), . . . , α(τ ′ik , b

′
ik

) in B2 with tokens
{τ ′1, . . . , τ ′m}, where token τi corresponds to token τ ′i . At the end of executions E and E ′, the
number of tokens that have left the ith wire of a balancer b in B2 is the same with the the
number of tokens that have left the ith wire of balancer b′ in B2.

Lemma 2.7 If B1 and B2 are isomorphic and in are in quiescent states that holds u(w) =
πin(x(w)), then z(w) = πout(y

(w)).

Proof: Let c
(w)

in be an arbitrary sequence of values. Consider two executions E1 and E2 of

B1 in which the input sequence to B1 is x(w) = c
(w)

in . In both executions, the resulting output

sequence of B1 has to be the same, namely y(w) = c
(t)

out, for some assignment of values to a

sequence c
(t)

out. For any execution E in B1 there is a corresponding execution E ′ in B1, such
that on each input and output wire of B2 there will be the same number of tokens as on the
corresponding wires on B1 on execution E.

14



Suppose that in execution E the input sequence is x(w) = c
(w)

in ; thus, the output sequence

is y(w) = c
(w)

out. In execution E ′ the corresponding input sequence is u(w) = πin(c
(w)

in ). The

output sequence on E ′ is z(w) = πout(c
(w)

out). Actually, any other execution on B2 with input

sequence u(w) = πin(cin) results to the same output sequence z(w) = πout(c
(w)

out). Since

y(w) = c
(t)

out, we obtain z(w) = πout(y
(w)).

Lemma 2.8 If B1 and B2 are isomorphic and B1 is k-smoothing, then B2 is k-smoothing.

Proof: Suppose that sequence u(w) takes arbitrary values. Then set the values on x(w)

so that x(w) = πR
in(u(w)). Since B1 is k-smoothing, y(w) is k-smooth. From Lemma 2.5,

πout(y
(w)) is k-smooth too. From Lemma 2.7, πout(y

(w)) = z(w). Therefore, z(w) is k-
smooth.

3 Difference Merging Network

We present the construction of a difference merging network M(t, δ) where t is the network
width (recall that difference merging networks are regular) and δ is the merging parameter,
such that t = p2l, δ = 2k, p ≥ 1, and 1 ≤ k < l (such assignments to parameters t and δ will
be called valid).

3.1 Construction of M(w, t)

We will give the construction of network M(w, δ). To describe the network, we will use
input and output sequences to refer to their corresponding wires in the network. In the
construction, we will say that any two sequences c(w) and e(y) are directly-connected if ci is
connected with a wire to ei.

Let u(t) and z(t) denote the input and output sequences, respectively, of M(t, δ). Let
x(t/2) (first input sequence) and y(t/2) (second input sequence), denote the first and second
half of z(t), respectively.

The construction of M(t, δ) is recursive on the parameter δ; parameter t take any valid
value (see Figure 5).

• Recursive basis, δ = 2. The network M(t, 2) consists of a single layer of t/2 copies of
the (2, 2)-balancer, denoted b0, . . . , bt/2−1 (see Figure 5). For 1 ≤ i < t/2, the first and
second input wires of balancer bi are connected to yi−1 and xi, respectively, and the
first and second output wires are connected to z2i−1 and z2i, respectively. For balancer
b0, the first and second input wires are connected to x0 and yt/2−1, respectively, the
first and second output wires are connected to z0 and zt−1, respectively.

• Recursive step, δ > 2. Suppose that we have constructed the network M(t′, δ/2),
for any valid t′. The network M(t, δ) is constructed in two sub-steps, as follows (see
Figure 5).
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Figure 5: Top: the network M(t, 2); Bottom: the recursive construction of M(t, δ)
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– Sub-step 1. Take two copies of the network M(t/2, δ/2), denoted M0(t/2, δ/2)
and M1(t/2, δ/2). The first input sequence of M0(t/2, δ/2), is directly-connected
to the even subsequence of x(t/2), namely, x(t/4)

e , while the second input sequence is
directly-connected to the even subsequence of y(t/2), namely, y(t/4)

e . The first input
sequence of M1 is directly-connected to the odd subsequence of x(t/2), namely,
x(t/4)

o , while the second input sequence is directly-connected to the odd subse-
quence of y(t/2), namely, y(t/4)

o . Let g(t/2) and h(t/2) denote the output sequences
of networks M0(t/2, δ/2) and M1(t/2, δ/2), respectively.

– Sub-step 2. Take a copy of the network M(t, 2) which is given by the recursion
basis. The first input sequence of M(t, 2) is directly-connected to the output se-
quence g(t/2) of M0(t/2, δ/2) and the second input sequence is directly-connected
to the output sequence h(t/2) of M1(t/2, δ/2). Finally, the output sequence of
M(t, 2) is directly-connected to the output sequence z(t) of M(t, δ).

Next, we calculate the depth of network M(t, δ).

Lemma 3.1 depth(M(t, δ)) = lg δ.

Proof: By the recursive construction of M(t, δ), depth(M(t, 2)) = 1 and

depth (M(t, δ)) = depth

(
M

(
t

2
,
δ

2

))
+ depth (M(w, 2))

= depth

(
M

(
t

2
,
δ

2

))
+ 1

(since depth (M(t, 2)) = 1)

= depth

(
M

(
t

4
,
δ

4

))
+ 1 + 1

= depth

(
M

(
t

22
,

δ

22

))
+ 2

= . . .

= depth

(
M

(
t

2k
,

δ

2k

))
+ k

= . . .

= depth

(
M

(
t

2lg δ−1
,

δ

2lg δ−1

))
+ lg δ − 1

= depth
(
M

(
2t

δ
, 2

))
+ lg δ − 1

= 1 + lg δ − 1

(since depth
(
M

(
2t
δ
, 2

))
= 1)

= lg δ,

as needed.
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3.2 Correctness of M(w, t)

We prove the correctness of M(t, δ). We start with the correctness of M(t, 2).

Lemma 3.2 M(t, 2) is a difference merging network.

Proof: Suppose that M(t, 2) is quiescent. Suppose that each of the input sequences x(t/2)

and y(t/2) satisfies the step property and 0 ≤ ∑
(x(t/2)) −∑

(y(t/2)) ≤ 2. We will show that
the the output sequence z(t) satisfies the step property.

Denote by a and b the maximum values in sequences x(t/2) and y(t/2), respectively. Denote
by k and l the step points, respectively. Since t/2 ≥ 2, Lemma 2.2 implies that we have
0 ≤ a− b ≤ 1.

The various possible values on the input and output sequences of M(t, 2) are illustrated
in Figures 6, 7, and 8. Each sequence is represented with a linear array were an entry
is darker for a higher value, and lighter for a lower value. In the figures, û(t) denotes a
permutation of the input sequence u(t) where x(t/2) (the first half of u(t)) corresponds to
the even subsequence of û(t), and y(t/2) (the second half of u(t)) corresponds to the odd
subsequence of û(t).

We consider the cases a = b and a = b + 1, separately.

• a = b. In this case, û(t) is 1-smooth. The step points k and l differ by at most 2, which
gives the following three possibilities.

– k = l. It holds 1 ≤ k ≤ t/2. The case k < t/2 is depicted in Figure 6.a, where only
balancers bk and b0 receive two different values on their inputs. The case k = t/2
is depicted in Figure 7.a, where all balancers receive the same input values. The
output sequence z(t) is step in both cases.

– k = l +1. It holds 2 ≤ k ≤ t/2, and 1 ≤ l ≤ t/2− 1. The case k < t/2 is depicted
in Figure 6.b, while the case k = t/2 is depicted in Figure 7.b. In both cases, only
balancer b0 receives two different values on its inputs. The output sequence z(t)

is step in both cases.

– k = l + 2. It holds 3 ≤ k ≤ t/2 and 1 ≤ l ≤ t/2− 2. The case k < t/2 is depicted
in Figure 6.c, while the case k = t/2 is depicted in Figure 7.b. In both cases, only
balancers bk−1 and b0 receive two different values on their inputs. The output
sequence z(t) is step in both cases.

• a = b+1. In this case, it is possible that û(t) is 2-smooth. There are three possibilities
with respect to the step points k and l that we examine separately.

– k = 1 and l = t/2 − 1. This case is depicted in Figure 8.a. Note that û(t) is
2-smooth, and balancer b0 receives values a and a− 2 on its inputs. The resulting
sequence z(t) contains a− 1 in all of its entries. Thus, z(t) is step.

– k = 1 and l = t/2. This case is depicted in Figure 8.b. Here, û(t) is 1-smooth.
Only balancer b0 receives different values on its inputs. The output sequence z(t)

is step.
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– k = 2 and l = t/2. This case is depicted in Figure 8.b. Note that û(t) is again
1-smooth. Only balancers b0 and b1 receive different values on their inputs. The
output sequence z(t) is step.

So, in all cases the output sequence z(t) satisfies the step property, as needed.

Next, we show the correctness of network M(t, δ) for any δ.

Lemma 3.3 M(t, δ) is a difference merging network.

Proof: Suppose that M(t, 2) is quiescent, and that each of the input sequences x(t/2) and
y(t/2) satisfy the step property with 0 ≤ ∑

(x(t/2))−∑
(y(t/2)) ≤ δ. We will show that the the

output sequence z(t) satisfies the step property. We will prove the claim by induction on δ.
For the basis case δ = 2, Lemma 3.2 proves that M(t, 2) is a difference merging network.
Consider now the case δ > 2, and suppose that the network M(t′, δ/2) is a difference

merging network (induction hypothesis), for any valid value of t′. We will show that the
network M(t, δ) is a difference merging network.

Since z(t) is the output sequence of the difference merging networks M(t, 2), z(t) will be
step if each of g(t/2) and h(t/2) satisfy the step property and 0 ≤ ∑

(g(t/2))−∑
(h(t/2)) ≤ 2.

First we show that the sequence g(t/2) is step. The input sequences of network
M0(t/2, δ/2) are the even subsequences of x(t/2) and y(t/2), namely x(t/4)

e and y(t/4)
e . By

the induction hypothesis, network M0(t/2, δ/2) is a difference merging network. Thus g(t/2)

is step if each of x(t/4)
e and y(t/4)

e are step and 0 ≤ ∑
(x(t/4)

e ) − ∑
(y(t/4)

e ) ≤ δ/2. Since each
of x(t/2) and y(t/2) is step, Lemma 2.1 implies that that each of the subsequences x(t/4)

e and
y(t/4)

e is step too. Furthermore, since 0 ≤ ∑
(x(t/2))−∑

(y(t/2)) ≤ δ, Lemma 2.4 implies that
that 0 ≤ ∑

(x(t/4)
e )−∑

(y(t/4)
e ) ≤ δ/2. Hence, the sequence g(t/2) is step.

In an exactly similar way, we can prove that the sequence h(t/2) is step.
Now, we show that 0 ≤ ∑

(g(t/2)) −∑
(h(t/2)) ≤ 2. By the sum preservation property of

networks M0(t/2, δ/2) and M1(t/2, δ/2) we have

∑ (
g( t

2)
)

=
∑ (

x
( t

4)
e

)
+

∑ (
y
( t

4)
e

)
,

and ∑ (
h( t

2)
)

=
∑ (

x
( t

4)
o

)
+

∑ (
y
( t

4)
o

)
.

From Lemma 2.3,

0 ≤ ∑ (
x
( t

4)
e

)
−∑ (

x
( t

4)
o

)
≤ 1,

and

0 ≤ ∑ (
y
( t

4)
e

)
−∑ (

y
( t

4)
o

)
≤ 1.

Adding these two inequalities we get

0 ≤
(∑ (

x
( t

4)
e

)
+

∑ (
y
( t

4)
e

))
−

(∑ (
x
( t

4)
o

)
+

∑ (
y
( t

4)
o

))
≤ 2,
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which implies that

0 ≤ ∑ (
g( t

2)
)
−∑ (

h( t
2)

)
≤ 2.

Since each of g(t/2) and h(t/2) is step, and 0 ≤ ∑
(g(t/2))−∑

(h(t/2)) ≤ 2, the output sequence
z(t) is also step, as needed.

4 Counting Network

We present the construction of counting network C(w, t), that has input width w and output
width t, where w = 2k, t = p2l, p ≥ 1, and 1 ≤ k ≤ l (such assignments to parameters w
and t will be called valid).

4.1 Construction of C(w, t)

In the construction of C(w, t), we will use as a building block the ladder network L(w) (see
Figure 9). The network L(w) is a balancing network of input and output width w, that
consists of a single layer of w/2 copies of the (2, 2)-balancer, denoted b0, . . . , bw

2
−1. Consider

a balancer bi, where 0 ≤ i ≤ w/2 − 1. The top and bottom input wires of balancer bi are
connected to input wires i and i + w/2, respectively, of L(w) (corresponds to elements i and
i + w/2 of the input sequence of L(w)). The top and bottom output wires of balancer bi are
connected to output wires i and i + w/2, respectively, of L(w) (corresponds to elements i
and i + w/2 of the output sequence of L(w)).

The construction of C(w, t) is by recursion on w, where t takes arbitrary valid values.

• Recursive basis, w = 2. The network C(2, t) is just a (2, t)-balancer.

• Recursive step, w > 2. For the inductive case, suppose that we have constructed the
network C(w/2, t′), for any valid value t′. We will show how to construct the network
C(w, t). The network C(w, t) is constructed in two sub-steps as follows (see Figure 9).

– Sub-step 1. Let x(w) and y(t) denote the input and output sequences, respec-
tively, of C(w, t). We take a copy of the ladder network L(w), and two copies
of C(w/2, t/2), denoted as C0(w/2, t/2) and C1(w/2, t/2), Let e(w/2) and g(t/2)

be the input and output sequences, respectively, of C0(w/2, t/2); let f (w/2) and
h(t/2) be the input and output sequences, respectively, of C1(w/2, t/2). The input
sequence x(w) is directly-connected to the input sequence of L(w). The input
sequence e(w/2) is directly connected to the first half of the output sequence of
L(w), while input sequence f (w/2), is directly-connected to the second half of the
output sequence of L(w).

– Sub-step 2. Take now a copy of the merging network M(t, w/2) (described in
Section 3). The first input sequence of network M(t, w/2) is directly-connected
to the output sequence g(t/2), while the second input sequence of M(t, w/2),
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y2

yw−1

y(w)

Figure 9: The counting network C(w, t)

is directly connected to h(t/2). The output sequence of M(t, w/2) is directly-
connected to the output sequence y(t) of network C(w, t).

Next, we calculate the depth of network C(w, t).

Theorem 4.1 depth(C(w, t)) = (lg2 w + lg w)/2.

Proof: By the recursive construction of C(w, t), depth(C(2, t)) = 1, and

depth (C(w, t)) = 1 + depth
(
C

(
w

2
,
t

2

))
+ depth

(
M

(
t,

w

2

))

= 1 + depth
(
C

(
w

2
,
t

2

))
+ lg

w

2
(by Lemma 3.1)

= 1 +
(
1 + depth

(
C

(
w

4
,
t

4

))
+ depth

(
M

(
t

2
,
w

4

)))
+ lg

w

2

= 1 +
(
1 + depth

(
C

(
w

4
,
t

4

))
+ lg

w

4

)
+ lg

w

2
(by Lemma 3.1)

= 2 + depth
(
C

(
w

22
,

t

22

))
+

2∑

i=1

lg
w

2i

= . . .
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= k + depth
(
C

(
w

2k
,

t

2k

))
+

k∑

i=1

lg
w

2i

= k + depth
(
C

(
w

2k
,

t

2k

))
+ k lg w −

k∑

i=1

lg 2i

= k + depth
(
C

(
w

2k
,

t

2k

))
+ k lg w −

k∑

i=1

i

= k + depth
(
C

(
w

2k
,

t

2k

))
+ k lg w − k2

2
− k

2
= . . .

= lg w − 1 + depth
(
C

(
w

2lg w−1
,

t

2lg w−1

))
+ (lg w − 1) lg w

−(lg w − 1)2

2
− lg w − 1

2

= lg w − 1 + depth
(
C

(
2,

2t

w

))
+ lg2 w − lg w

− lg2 w − 2 lg w + 1

2
− lg w − 1

2

= −1 + 1 + lg2 w − lg2 w − lg w

2

(since depth
(
C

(
2, 2t

w

))
= 1)

=
lg2 w + lg w

2
,

as needed.

4.2 Correctness of C(w, t)

We show the correctness of network C(w, t).

Theorem 4.2 C(w, t) is a counting network.

Proof: Suppose that C(w, t) is quiescent. We prove that for any values on the input se-
quence x(w) to network C(w, t), the output sequence y(t) is step. We will prove the correctness
of C(w, t) by induction on w.

For the basis case w = 2, the network C(2, t) is just a (2, t)-balancer, which is a counting
network by definition.

For w > 2, we will assume that the network C(w/2, t′) is counting (induction hypothesis),
for any valid t′, and we will show that the network C(w, t) is counting too, for any valid t.

Consider the construction of C(w, t). By the induction hypothesis, we have that the
respective outputs g(t/2) and h(t/2) of C0(w/2, t/2) and C1(w/2, t/2), are step. These sequences
are inputs of the network M(t, w/2), whose output is the sequence y(t). Since, by Lemma
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3.3, M(t, w/2) is a difference merging network, the sequence y(t) is step if 0 ≤ ∑
(g(t/2)) −∑

(h(t/2)) ≤ w/2; next we prove that this property holds.
By the sum preservation property of networks C0 and C1,

∑ (
e(w

2 )
)

=
∑ (

g( t
2)

)
,

and ∑ (
f(

w
2 )

)
=

∑ (
h( t

2)
)

.

Thus, we only need to prove that 0 ≤ ∑
(e(w/2))−∑

(f (w/2)) ≤ w/2.
The sequences e(w/2) and f (w/2) are connected to the outputs of the (2, 2)-balancers

b0, . . . bw/2−1 of the ladder network L(w), so that the first output wire of bi is connected
to ei and the second to fi, for all 0 ≤ i ≤ w/2− 1. Since the outputs of balancer bi have the
step property for any input sequence x(w), 0 ≤ ei − fi ≤ 1, for all i, where 0 ≤ i < w/2. By
summing these inequalities for all the w/2 balancers, we obtain that

0 ≤
(
e0 + · · ·+ ew

2
−1

)
−

(
f0 + · · ·+ fw

2
−1

)
≤ w

2

which implies that

0 ≤ ∑ (
e(w

2 )
)
−∑ (

f(
w
2 )

)
≤ w/2.

Consequently, the sequence y(t) is step, as needed.

5 Butterfly Network

We will see in Section 6 that the first lg w layers of network C(w, t) are isomorphic to a
special network that we call butterfly. We give two isomorphic descriptions of the butterfly,
the forward-butterfly, and the backward-butterfly. We will actually see in Section 6 that the
first layers C(w, t) are isomorphic to a backward-butterfly. However, it is easier to analyze
the contention in the forward-butterfly.

5.1 Forward-Butterfly

Here we describe the forward-butterfly, denoted D(w), which is a regular network of width
w = 2k, where 0 ≤ k.

Network D(w) is constructed recursively on k (see Figure 10).

• Recursive basis w = 1. D(w) is simply a wire.

• Recursive step w > 1. Suppose we have constructed D(w/2). D(w) is constructed by
taking two copies of D(w/2), which we denote D0(w/2) and D1(w/2), and the ladder
network L(w) (which was described in Section 4.1). The output sequence of D0 is
directly-connected to the first half of the input sequence of L(w), while the output
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sequence of D0 is directly-connected to the second half of the input sequence of L(w).
The input sequence of D(w) is the concatenation of the input sequences of D0 and D1,
while the output sequence of Dw is the output sequence of L(w).

From the recursive construction of the forward-butterfly network, we immediately have:

Lemma 5.1 depth(D(w)) = lg w.

We next show that the forward-butterfly is lg w-smoothing.

Lemma 5.2 D(w) is lg w-smoothing.

Proof: Suppose that D(w) is quiescent. The proof is by induction of w.
For the basis case, where w = 1, the network is a wire that trivially has the 0-smooth

property, and hence the 1-smooth property.
Assume that the claim holds for w/2. For the induction step, we will show that it holds

also for w.
Recall the recursive construction of D(w). By the induction hypothesis, each of D0(w/2)

and D1(w/2) is lg(w/2)-smooth. Let c0 and d0 be the minimum and maximum values,
respectively, of the output sequence of D0. Similarly, define c1 and d1 for D1. By the
lg(w/2)-smooth property we have d0 − c0 ≤ lg(w/2), and d1 − c1 ≤ lg(w/2).

Each balancer bi at the final layer (L(w)) of D(w) receives one input from D0 and the
other from D1. The balancer will output the minimum value when it receives the minimum
values in its inputs which are c0 and c1. In this case, the minimum value on the output of
the balancer will appear on the bottom output wire and is given by c = d(c0 + c1 − 1)/2e.
Similarly, the maximum value is d = d(d0 + d1)/2e. Hence,

d =

⌈
d0 + d1

2

⌉

≤
⌈
c0 + c1 + 2 lg w

2

2

⌉

=
⌈
c0 + c1

2

⌉
+ lg

w

2
.

Clearly, ⌈
c0 + c1

2

⌉
−

⌈
c0 + c1 − 1

2

⌉
≤ 1.

which implies that

c ≥
⌈
c0 + c1

2

⌉
− 1.

Therefore,

d− c ≤
⌈
c0 + c1

2

⌉
+ lg

w

2
−

⌈
c0 + c1

2

⌉
+ 1

= lg
w

2
+ 1

= lg w,

as needed.
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Figure 10: Top: the forward-butterfly D(w), and instance D(8); Bottom: the backward-
butterfly E(w), and instance E(8)
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5.2 Backward-Butterfly

Here, we describe the backward-butterfly network, whose construction is similar to the
forward-butterfly network, with the only difference that the ladder network appears in the
front.

A backward-butterfly network E(w) is a regular network of width w, where w = 2k and
0 ≤ k.

The network is constructed recursively on w (see Figure 10).

• Recursion basis, w = 1. E(w) is simply a wire.

• Recursion step, w > 2. Assume that we have constructed E(w/2). The network E(w)
is constructed by taking two copies of E(w

2
), which we denote E0(w/2) and E1(w/2),

and the ladder network L(w). The input sequence of E(w) is directly connected to the
input sequence of L(w). The input sequence of E0 is directly-connected to the first half
of the output sequence of L(w), while the input sequence of E0 is directly-connected
to the second half of the output sequence of L(w). The first half and second half of
the output sequence of E(w) is directly connected to the output sequences of E0 and
E1, respectively.

Next, we show that the backward-butterfly and the forward-butterfly are isomorphic.

Lemma 5.3 The backward-butterfly E(w) is isomorphic to the forward-butterfly D(w).

Proof: We will prove the claim by induction on w. For the induction basis, we consider
the cases w = 1 and w = 2. For w = 1, E(w) is simply a wire which is trivially a forward-
butterfly. For w = 2, E(w) is a (2, 2)-balancer, which is trivially a forward-butterfly.

Suppose now that the claim holds for all w′ such that 1 ≤ w′ < w. We will show that
the claim holds for w, that is, E(w) and D(w) are isomorphic.

We will prove the claim by transforming E(w) to D(w) to intermediate isomorphic net-
works where in the last step of the transformation the resulting network is D(w). The
transformation is depicted in Figure 11.

By construction, E(w) consists of two identical backward-butterflies E0(w/2) and E1(w/2),
and the ladder network L(w) (Figure 11.a). By the induction hypothesis, E0(w/2) is iso-
morphic to forward-butterfly D0(w/2). As illustrated in Figure 11.b, in the construction of
E(w), we replace E0 with D0, by an adding an appropriate input permutation πin and output
permutation πout (which are the input and output permutations specified by condition (iii)
of the isomorphism which is defined in Section 2.4). Similarly E1(w/2) is substituted with
D1(w/2).

Input wire i of D0 corresponds to input wire j = πR
in(i) of E0. Similarly, input wire i of

D1 corresponds to input wire j = πR
in(i) of E1. Let bj be the balancer of L that connects

the jth input of E0 and E1. We have that bj connects the ith input wires of D0 and D1.
Suppose that L(w) consists of balancers b0, . . . , bw/2−1. Let L′(w) be a new ladder network
with balancers b′0, . . . , b

′
w/2−1, which is isomorphic to L(w) so that balancer bj corresponds
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Figure 11: A series of transformations to prove that backward-butterflies are isomorphic to
forward-butterflies
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to balancer b′i, where i = πin(j). Replace now the input permutation and the network L(w),
with network L′(w), and remove also the output permutations πout (Figure 11.c). The new
network is isomorphic to E(w).

Since w/2 > 1, from the recursive construction of forward-butterflies, we have that
D0(w/2) consists of two copies of C(w/4), denoted D′

0(w/4) and D′
1(w/4), whose outputs

are connected with a copy of the ladder network L(w/2), denoted G0(w/4) (Figure 11.d).
Similarly, D1(w/2) consists of two forward-butterflies, D′

2(w/4) and D′
3(w/4), and a ladder

network G1.
Next, we exchange the positions of D′

2 and D′
3, as shown in Figure 11.e. This exchange

results to the transformation of ladder network L′w to two canonical layers L′′0(w/2) and
L′′1(w/2), where L′0 connects the inputs of D′

0(w/4) and D′
2(w/4), while layer L′′1 connects

the inputs of D′
1(w/4) and D′

3(w/4). Further, the exchange of D′
2(w/4) and D′

3(w/4) results
to the combination of G0(w/2) and G1(w/2) to a new ladder network of width w that we
denote as G ′(w). The whole new network is isomorphic to E(w).

By the induction hypothesis, D′
0(w/4), . . . ,D′

4(w/4) are isomorphic to some backward-
butterflies, say E ′0(w/4), . . . , E ′0(w/4), respectively. We replace each D′

i with the respective
E ′i , using appropriate input and output permutations (Figure 11.f). After we remove the
input and output permutations, we obtain the network of Figure 11.g), where input ladder
networks L′′0 and L′′1 are translated to L′′′0 and L′′′1 , respectively, and the output ladder network
G ′ is translated to G ′′.

The combination of L′′′0 , E ′0, and E ′2 forms a backward-butterfly that we denote as E ′′0 (w/2)
(Figure 11.g). Similarly, the combination of L′′′1 , E ′1, and E ′3 form a backward-butterfly
E ′′1 (w/2). By the induction hypothesis, E ′′0 (w/2) and E ′′1 (w/2) are isomorphic to some forward-
butterflies, say D′′

0(w/2) and D′′
1(w/2), respectively. We replace E ′′0 with D′′

0 and E ′′1 with D′′
1 ,

respectively, with appropriate input and output permutations (Figure 11.h). After we remove
the input and output permutations, we obtain a new output ladder network G ′′′(w) (Figure
11.i). The resulting network is a forward-butterfly D(w) of width w which is isomorphic to
D(w).

6 Contention Analysis

6.1 Methodology

We derive a general formula for computing the amortized contention of any layer of a bal-
ancing network. Parts of the following discussion are adapted from [9, Section 3.2].

The contention on B will be measured as the sum of the contention caused in its layers.
Let ` be a layer of a balancing network B. Assume that layer ` is made of balancers of
output width at most q. Denote by w the output width of `. Assume that in any quiescent
state of B, the output of ` has the k-smooth property. (In [9], ` is 1-smooth). Recall that
the concurrency of B be n.

Dwork et al. [9] have introduced the following methodology for analyzing and bounding
the amortized contention of `:
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1. Partition the set of tokens that traverse ` into equally sized groups of size w, called
generations.

2. Calculate the average number of stalls occurring between tokens in different genera-
tions.

3. Divide the result by the size of the generations, w.

We will show that as a group, each generation of tokens at layer ` causes O(qn + qkw)
stalls to other tokens. It then follows that, on the average, a generation receives O(qn+qkw)
stalls. since in the amortized analysis the stalls are distributed uniformly among the tokens.
Dividing by the number of tokens in a generation, it follows that the average token passing
through ` receives (or causes) O(qn/w + qk) stalls.

We now continue with the details of the formal proof. Let b be a balancer of ` with
output width r, where 2 ≤ r ≤ q. We say that a token belongs to the gth generation of
tokens arriving at b if it is one of the ((g − 1)r + 1)th, . . .,((g − 1)r + r)th tokens to arrive
at b. Note that each generation of b has r tokens. The gth generation of ` is the set of gth
generation tokens of the balancers at layer `. We say that by time t, the gth generation has
completed its arrival at ` if for each balancer in `, all the tokens of the gth generation have
already entered the network by that time. Finally, we say that at time t there are f tokens
of the gth generation missing at layer ` if by time t exactly w − f tokens of generation g
have arrived at `.

The following two results are adaptations of [9, Fact 1] and [9, Fact 2] for the case where
` has the k-smooth property (instead of the 1-smooth property that is considered in [9]).

Lemma 6.1 Let ` be in a quiescent state, and let g be the maximum generation such that
some balancer b in ` has received at least one token of generation g. Then all balancers in `
have received at least one token of generation g − k.

Proof: Since balancer b has received a generation g token, the maximum value in the
output sequence of b is at least g. Assume, for contradiction, that there is a balancer b′ that
has received no generation g− k token. The maximum value on the output sequence of b′ is
at most g − k − 1. So, there is an output wire of b and an output wire of b′ with difference
at least g − (g − k − 1) = k + 1. This is a contradiction, since the output sequence of ` is
k-smooth.

Lemma 6.2 Let t be the time at which the first g generation token arrives at `. Then the
number of tokens of generations strictly less than g − k stuck (entered but not exited) at `
plus the number of tokens of generations strictly less than g − k still missing from layer ` is
at most n.

Proof: Run the network B to quiescence from its state at time t. Let g′ be the maximum
generation such that some balancer in layer ` has received at least one generation g′ token.
Clearly g′ ≥ g. By Lemma 6.1, every balancer has received at least one token from generation
g′ − k ≥ g − k. Thus, the claim follows since at most n tokens (the maximum number of
tokens in B at any time) were involved in moving B to a quiescent state.
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Recall that when a token passes through a balancer, it causes stalls to all tokens that are
waiting at the balancer. By stalls caused at layer ` by generation g to generation g′, we refer
to stalls incurred by tokens of generation g′ when they are waiting at some balancer of layer
` and some token of generation g passes. By stalls caused at layer ` between generation g
and generation g′, we refer to stalls caused by generation g to generation g′ and vice versa.

The following result is an adaptation of [9, Lemma 3.2.4] for the case where ` has the
k-smooth property (instead of the 1-smooth property that is considered in [9]).

Lemma 6.3 Consider the g generation passing through layer `. The maximum number of
stalls caused between generation g and generations less than or equal to g at this layer is at
most qn + q(k + 1)w.

Proof: Suppose that the first token of generation g arrives at ` at time t. A generation g
token can encounter (and hence cause a stall to or be stalled by)

(1) tokens of generation strictly less than g − k,

(2) generation g − k, . . . , g tokens.

By Lemma 6.2, the total number of tokens of generation strictly less than g − k stuck at `
or missing from ` is at most n. Therefore, the type (1) tokens are at most n. The tokens of
type (2) are at most (k + 1)w, since each generation has w tokens.

The number of stalls occurring between each token of generation g and tokens of gener-
ation less than or equal to g are at most the number of tokens of these generations that this
token encounters at the balancer is passes through. Each token of generation less than or
equal to g can be encountered by at most q tokens of generation g (since q is the maximum
balancer width in `). Therefore, we get qn stalls of type (1) and q(k + 1)w stalls of type (2),
for a total of qn + q(k + 1)w stalls.

Since there are w tokens at any generation g, Lemma 6.3 implies that the amortized
contention endured by a token at layer ` is at most (qn + q(k + 1)w)/w. Hence:

Corollary 6.4 The amortized contention of layer ` is

cont(l, n) ≤ qn

w
+ q(k + 1).

6.2 Contention of Butterfly

We now compute the contention of the forward-butterfly network, which will help to compute
the contention of our counting network.

Lemma 6.5 The amortized contention of the forward-butterfly network D(w) is

cont(D(w), n) <
2n lg(2w)

w
+ lg2 w + 3 lg w.
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Proof: From the construction of the network D(w) (see Section 5.2) we have that a token
first traverses either the subnetwork D0(w/2) or the subnetwork D1(w/2) and then the
layer L(w). Clearly, the concurrency of each of D0 and D1 is n/2, since each input wire
receives tokens from at most n/w processes (the distributed system assigns each process to
a particular input wire so that the processes are uniformly distributed on the input wires).
Furthermore, the concurrency of layer L(w) is n, since all processes traverse this layer.
Therefore, the amortized contention incurred by any token is equal to

cont(D(w), n) = cont
(
D

(
w

2

)
,
n

2

)
+ cont(L(w), n).

By Lemma 5.2, the output sequence of layer L(w) has the lg w-smooth property. Since
layer L(w) is made of (2, 2)-balancers, and the width of the layer is w, we have from Corollary
6.4 that

cont(l(w), n) ≤ 2
n

w
+ 2(lg w + 1)

= 2
(

n

w
+ lg w + 1

)
.

For the basis case, where w = 1, the network D(1) is just a wire which trivially has amortized
contention equal to its concurrency.

Denote k = lg w. Then,

cont (D(w), n) = cont
(
D

(
w

2

)
,
n

2

)
+ cont (L(w), n)

≤ cont
(
D

(
w

2

)
,
n

2

)
+ 2

(
n

w
+ k + 1

)

= cont
(
D

(
w

22

)
,

n

22

)
+ cont

(
L

(
w

2

)
,
n

2

)
+ 2

(
n

w
+ k + 1

)

≤ cont
(
D

(
w

22

)
,

n

22

)
+ 2

(
n
2
w
2

+ (k − 1) + 1

)
+ 2

(
n

w
+ k + 1

)

= cont
(
D

(
w

22

)
,

n

22

)
+ 2

(
2
n

w
+ 2k − 1 + 2

)

. . .

≤ cont
(
D

(
w

2j

)
,

n

2j

)
+ 2


j

n

w
+ jk −

j−1∑

i=1

i + j




= cont
(
D

(
w

2j

)
,

n

2j

)
+ 2

(
j
n

w
+ jk − j2 − 3j

2

)

. . .

≤ cont
(
D

(
w

2k

)
,

n

2k

)
+ 2

(
k

n

w
+ k2 − k2 − 3k

2

)

≤ n

w
+ 2

(
k

n

w
+ k2 − k2 − 3k

2

)

(since cont
(
D(1), n

w

)
≤ n

w
)
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C′′1 (w
2 )

C′′0 (w
2 )

C ′′(w)

C′1(w
2 , t

2 )

C′0(w
2 , t

2 )

C ′(w, t)

Figure 12: Left: the network C ′(w, t) which consists of the first log w layers of C(w, t); Right:
the network C ′′(w) in which the last layer of C ′′(w, t) is replaced with (2, 2)-balancers

= (2k + 1)
n

w
+ k2 + 3k

<
2n lg(2w)

w
+ lg2 w + 3 lg w,

as needed.

6.3 Contention of Counting Network

Here, we compute the amortized contention of the counting network C(w, t) (described in
Section 4.1). Recall from Section 1.3.2, that the unfolded construction of the network C(w, t)
consists of blocks Na, Nb and Nc (Figure 3). Let Na,b denote the cascade of Na and Nb.
We will show that Na,b is isomorphic to a forward-butterfly. This will help to compute the
contention of Na,b and Nc, which will give the contention of C(w, t).

Let C ′(w, t) be the network C(w, t) without the difference-merging subnetworks in the
recursive construction of C(w, t), as shown in the left part of Figure 12. The input width of
C ′(w, t) is w while its output width t. The construction of C ′(w, t) resembles the recursive
construction of a backward-butterfly E(w). The only difference is that when w = 2, C ′(w, t)
is a (2, 2t/w)-balancer, instead of a (2, 2)-balancer in E(w). Thus, all layers of C ′(w, t), except
for the last, consist of (2, 2)-balancers. Clearly, the depth of C ′(w, t) is lg w.

Since network C ′(w, t) describes how the balancers of the first lg w layers of C(w, t) are
connected, and since Na,b consists of the first lg w layers of C(w, t), we have that Na,b is
isomorphic to C ′(w, t). We have the following result.

Lemma 6.6 Na,b is s-smoothing, where,

s =

⌊
w lg w

t

⌋
+ 2.
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Proof: Let C ′′(w) denote the network that we obtain if we replace each (2, 2t/w)-balancer
in the last layer of C ′(w, t) with a (2, 2)-balancer. The recursive construction of C ′′(w) is
depicted in the right part of Figure 12. Clearly, C ′′(w) is a backward-butterfly. From Lemma
5.3, the backward-butterfly is isomorphic to the forward-butterfly. Therefore, from Lemmas
2.8 and 5.2, the C ′′(w) is log w-smoothing.

Let b0, . . . , bw/2−1 be the (2, 2)-balancers in the last layer of C ′′(w). Let x
(2)
i denote the

output sequence of balancer bi. Since C ′′(w) is lg w-smoothing, |∑(x
(2)
i )−∑

(x
(2)
j )| ≤ 2 lg w,

for any indices i and j such that 0 ≤ i, j < w/2. The factor 2 in front of the term 2 lg w
comes from the fact each (2, 2)-balancer has two output wires.

Now, restore the (2, 2t/w)-balancers to the last layer of C ′′(w), in order to obtain network

C ′(w, t). Denote by b̂0, . . . , b̂w
2
−1 these balancers and by x̂

(2t/w)
0 , . . . , x̂

(2t/w)
w
2
−1 their respective

output sequences. Since for any balancer b̂i the only difference from bi is the number of output
wires, the total sum of tokens that leave any balancer in both cases is the same. That is,∑

(x
(2)
i ) =

∑
(x̂

(2t/w)
i ). Hence, |∑(x̂

(2t/w)
i )−∑

(x̂
(2t/w)
j )| ≤ 2 lg w for any two balancers b̂i and

b̂j.
From Lemma 2.2, the maximum values on any two output wires, one wire from balancer

b̂i and the other from balancer b̂j, will differ by at most b(2 lg w)/(2t/w)c + 1. So, the
maximum difference between any two output wires is bw lg w/tc + 2 = s. Consequently,
C ′(w, t) is s-smoothing.

Since Na,b is isomorphic to C ′(w, t), Lemma 2.8 implies that Na,b is s-smoothing.

We are now ready to prove an upper bound on the amortized contention of the network
C(w, t).

Theorem 6.7 The amortized contention of network C(w, t) is

cont (C(w, t), n) <
2n lg(2w)

w
+

n lg2 w

t
+

w lg3 w

t
+ 4 lg2 w + 3 lg w.

Proof: From the construction of C(w, t),

cont (C(w, t), n) = cont (Na,b, n) + cont (Nc, n) .

Recall from the proof of Lemma 6.6, that the network C ′′(w) is isomorphic to the forward-
butterfly network E(w), which implies that their amortized contention is the same (since any
execution in one network has a corresponding execution in the other network). Thus, from
Lemma 6.5,

cont (C ′′(w), n) <
2n lg(2w)

w
+ lg2 w + 3 lg w.

This contention remains the same even when we restore the original (2, 2t/w)-balancers,
namely, cont(C ′(w, t), n) = cont(C ′′(w), n), since different outputs widths for a balancer
do not change its contention. Since Na,b and C ′(w) are isomorphic, we have cont(Na,b) =
cont(C ′(w, t), n) = cont(C ′′(w), n).
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Now, consider block Nc. The total amortized contention of block Nc is equal to the
contention of a layer multiplied by the number of layers in Nc. The concurrency for every
layer of Nc is n. From Lemma 6.6, Na,b is s-smoothing. Lemma 2.6 implies that each layer
of Nc will be s-smooth. Therefore, Corollary 6.4 implies that each layer of Nc has amortized
contention at most 2n/t + 2(s + 1). From Theorem 4.1, we have

depth (N (c)) = depth (C(w, t))− lg w

=
lg2 w − lg w

2
.

Therefore, we have:

cont (Nc, n) ≤
(
2
n

t
+ 2(s + 1)

)
lg2 w − lg w

2

≤ n lg2 w

t
+ s lg2 w + lg2 w

≤ n lg2 w

t
+

w lg3 w

t
+ 3 lg2 w

By adding the amortized contentions for blocks Na,b and Nc we obtain:

cont (C(w, t), n) = cont (Na,b, n) + cont (Nc, n)

<
2n lg(2w)

w
+ lg2 w + 3 lg w +

n lg2 w

t
+

w lg3 w

t
+ 3 lg2 w

=
2n lg(2w)

w
+

n lg2 w

t
+

w lg3 w

t
+ 4 lg2 w + 3 lg w,

as needed.

From Theorem 6.7, we obtain the following two results for the amortized contention of
the network C(w, t) for the cases t = w and t = w lg w.

Corollary 6.8 For t = w,

cont (C(w, t), n) = O

(
n lg2 w

w
+ lg3 w

)
.

Corollary 6.9 For t = w lg w,

cont (C(w, t), n) = O

(
n lg w

w
+ lg2 w

)
.
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7 Discussion

We presented a counting network construction with w input wires and t output wires, where
w = 2k, t = p2l, and w ≤ t. This is one of a very few known irregular counting networks
constructions ([3, 13]), whose output width may be different from its input width. We showed
that the irregularity can benefit the amortized contention, by bringing it to lower levels than
other networks.

As a byproduct of our analysis, we obtain a novel sorting network construction. It is
known that from any regular balancing network, we can obtain an isomorphic comparator
network if we substitute each balancer by a comparator [5]. The isomorphic of such a counting
network is a sorting network [5] (for more information on sorting networks see [12]). Our
counting network C(w,w), where the input width is the same with the output width, gives
a novel sorting network with depth O(lg2 w).

Several interesting questions remain. Is it possible to extend our construction to arbitrary
input and output widths, other than multiples of a power of two? It follows from impossibility
results in [1, 6] that appropriate sets of balancer types would have to be used for such
extension. Using such larger balancers is often expected to cause a reduction in depth
(see [7, 8, 10, 11]). What would be a trade-off between depth and contention in this situation?
Can the combinatorial techniques in [6] be used to show impossibility results on constructible
widths for difference merging networks? We believe that the difference merging network we
presented is of independent interest and could be used for other counting and sorting network
constructions.
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[4] M. Ajtai, J. Komlós and E. Szemerédi, “An O(n log n) Sorting Network,” Combinator-
ica, Vol. 3, pp. 1–19, 1983.

38



[5] J. Aspnes, M. Herlihy and N. Shavit, “Counting Networks,” Journal of the ACM,
Vol. 41, No. 5, pp. 1020–1048, September 1994.

[6] C. Busch and M. Mavronicolas, “A Combinatorial Treatment of Balancing Networks,”
Journal of the ACM, Vol. 43, No. 5, pp. 749–839, September 1996.

[7] C. Busch, N. Hardavellas and M. Mavronicolas, “Contention in Counting Networks,”
Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Comput-
ing, pp. 404, August 1994.

[8] C. Busch and M. Herlihy, “Sorting and Counting Networks of Arbitrary Width and
Small Depth,” Theory of Computing Systems, Vol. 35, No. 2, pp. 99–128, January 2002.

[9] C. Dwork, M. Herlihy and O. Waarts, “Contention in Shared Memory Algorithms,”
Journal of the ACM, Vol. 44, No. 6, pp. 779–805, November 1997.

[10] E. W. Felten, A. LaMarca and R. Ladner, “Building Counting Networks from Larger
Balancers,” Technical Report 93-04-09, Department of Computer Science and Engineer-
ing, University of Washington, April 1993.

[11] N. Hardavellas, D. Karakos and M. Mavronicolas, “Notes on Sorting and Counting
Networks,” Proceedings of the 7th International Workshop on Distributed Algorithms
(WDAG-93), Lecture Notes in Computer Science, Vol. 725 (A. Schiper, ed.), Springer-
Verlag, pp. 234–248, Lausanne, Switzerland, September 1993.

[12] D. Knuth, Sorting and Searching, Volume 3 of The Art of Computer Programming,
Addison-Wesley, 1973.

[13] N. Shavit and A. Zemach, “Diffracting Trees,” ACM Transactions on Computer Sys-
tems, Vol. 14, No. 4, pp. 385–428, November 1996.

[14] N. Shavit, E. Upfal and A. Zemach, “A Steady State Analysis of Diffracting Trees,”
Theory of Computing Systems, Vol. 31, No. 4, pp. 403–423, 1998.

39


