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657, Vol. 3142, Lecture Notes in Computer Science, Springer-Verlag, July 2004. This work has been partially

supported by the IST Program of the European Union under contracts IST-2001-33116 (FLAGS), 001907 (DELIS)

and 015964 (AEOLUS), by research funds at University of Cyprus, and by the VEGA grant No. 2/3164/23.
†Faculty of Computer Science, Electrical Engineering and Mathematics, University of Paderborn, Fürstenallee

11, 33102 Paderborn, Germany. Email: {gairing,bm,rode}@upb.de
‡SAP AG, Dietmar-Hopp-Allee 16, D-69190 Walldorf, Germany. The work of this author was done while

at the Faculty of Computer Science, Electrical Engineering and Mathematics, University of Paderborn. Email:

luck@upb.de
§Department of Computer Science, University of Cyprus, P. O. Box 20537, Nicosia CY-1678, Cyprus. Part

of the work of this author was done while visiting the Faculty of Computer Science, Electrical Engineering and

Mathematics, University of Paderborn. Email: mavronic@ucy.ac.cy
¶International Graduate School Dynamic Intelligent Systems, University of Paderborn, Warburger St. 100,

33098 Paderborn, Germany.



Abstract

In a discrete routing game, each of n selfish users employs a mixed strategy to ship its
(unsplittable) traffic over m parallel links. The (expected) latency on a link is determined by
an arbitrary non-decreasing, non-constant and convex latency function φ. In a Nash equilib-
rium, each user alone is minimizing its (Expected) Individual Cost, which is the (expected)
latency on the link it chooses. To evaluate Nash equilibria, we formulate Social Cost as
the sum of the users’ (Expected) Individual Costs. The Price of Anarchy is the worst-case
ratio of Social Cost for a Nash equilibrium over the least possible Social Cost. A Nash
equilibrium is pure if each user deterministically chooses a single link; a Nash equilibrium
is fully mixed if each user chooses each link with non-zero probability.

Through a thorough analysis of Nash equilibria in discrete routing games, we obtain:

• For the case of identical users, the Social Cost of any Nash equilibrium is no more than
the Social Cost of the fully mixed Nash equilibrium, which may exist only uniquely.
Moreover, instances admitting a fully mixed Nash equilibrium enjoy an efficient char-
acterization.

• For the case of identical users, we derive two upper bounds on the Price of Anarchy:

– For the case of identical links with a monomial latency function φ(x) = xd, the
Price of Anarchy is less than (but may come arbitrarily close to) the Bell number
of order d + 1.

– For pure Nash equilibria, a generic upper bound from the Wardrop model can be
transfered to discrete routing games. For polynomial latency functions with non-
negative coefficients and degree d, this generic bound applies to yield an upper
bound of d + 1.

• For the case of identical users, a pure Nash equilibrium (and thereby an optimal pure
assignment) can be computed in time O(m lg m lg n). For the general case, computing
the best or the worst pure Nash equilibrium is NP-complete, even for identical links
with an identity latency function.
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1 Introduction

1.1 Background

Nash equilibrium [41, 42] is one of the most significant concepts in Non-Cooperative Game
Theory. For a given strategic game, a Nash equilibrium is a state where no player can improve
its individual objective by unilaterally changing its strategy. A Nash equilibrium is called pure
if each player chooses exactly one strategy; it is called mixed if each player makes her choice
using a probability distribution over strategies. In a fully mixed Nash equilibrium [35], each
player chooses each strategy with non-zero probability. The Price of Anarchy [30, 43] is the
worst-case ratio of the Social Cost in a Nash equilibrium and the least possible Social Cost.

Much of the recent algorithmic work on Non-Cooperative Game Theory considered selfish
routing, where it focused on the KP model due to Koutsoupias and Papadimitriou [30] and the
Wardrop model [50]. The KP model was proposed only recently in the context of studying the
effects of selfish traffic over the Internet; in contrast, the Wardrop model dates back to the 1950s,
when it was used for studying the economics of transportation networks (see, e.g., [4, 5, 12]).

• In the KP model, each of n selfish users employs a mixed strategy, which is a probability
distribution over m parallel links, to ship its (unsplittable) traffic. The (expected) latency
on a link is linear in the (expected) total traffic of users choosing it. The (Expected)
Individual Cost of a user is the (expected) latency on the link it chooses. In a Nash
equilibrium, each user alone is minimizing its Expected Individual Cost. The Social Cost
is the (expected) maximum latency; the Optimum is the least possible maximum latency.

• In the Wardrop model, the network can be arbitrary. Modeled as a network flow from
source to destination, selfish traffic is infinitesimally splittable; this modeling rules out
mixed strategies from consideration. Associated with each link is a convex latency func-
tion, which determines the latency on the link for a given traffic. In a Wardrop equilib-
rium [50], all used paths incur the same (total) latency. So, a Wardrop equilibrium can
be interpreted as a Nash equilibrium for a strategic game with infinitely many users, each
carrying an infinitesimal amount of traffic. The Individual Cost of each such user is the
sum of link latencies on the path it chooses; the Social Cost is the sum of Individual Costs.

1.2 Discrete Routing Games

In this work, we introduce the model of discrete routing games as a hybridization of the KP

model and the Wardrop model.
We follow the KP model to consider the parallel links network, unsplittable traffics and

mixed strategies. However, we allow arbitrary non-decreasing, non-constant and convex latency
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functions, whereas latency functions for the KP model are linear. So, the latency function for
a link is a convex function of the total traffic of users choosing the link. The Social Cost is the
sum of (Expected) Individual Costs; the (Expected) Individual Cost of a user is the (expected)
latency on the link it chooses. So, as far as the generality of latency functions and the Social
Cost are concerned, discrete routing games lean towards the Wardrop model; however, the
network structure and the unsplittability of traffics come from the KP model.

The assumption of convex latency functions determines a very broad class of discrete routing
games. Restricted to monotone latency functions and pure Nash equilibria, discrete routing
games were already studied in [10]. Restricted to linear latency functions, they have been
studied by Lücking et al. in [32], where Social Cost was formulated as the sum of weighted
Expected Individual Costs and called Quadratic Social Cost; so, the model in [32] is the special
case of discrete routing games where latency functions are linear and users are identical. To
the best of our knowledge, discrete routing games represent the first model to simultaneously
consider mixed Nash equilibria and arbitrary (convex) latency functions.

Discrete routing games are a particular instance of weighted congestion games [36, 44], where
each pure strategy is an arbitrary (not necessarily singleton) set of links. It is known that all
unweighted congestion games admit a pure Nash equilibrium [44]. Hence, so do discrete routing
games in the special case of identical (unweighted) users. However, it is straightforward to verify
through a lexicographic argument (cf. [17, Theorem 1]) that discrete routing games admit a
pure Nash equilibrium in the general case of arbitrary (weighted) users.

1.3 Contribution

Our results for discrete routing games are partitioned into four major groups:

1.3.1 Fully Mixed Nash Equilibria

Which is the worst-case Nash equilibrium for discrete routing games with respect to Social Cost?
This is a very natural question, which we address for the special case of identical users. As our
main result, we prove that for any discrete routing game with convex latency functions, when-
ever a fully mixed Nash equilibrium exists, it is a worst-case Nash equilibrium (Theorem 4.3).
Therewith, we prove the Fully Mixed Nash Equilibrium Conjecture for discrete routing games
(but only for the special case of identical users). The proof relies critically on the convexity
assumption for the latency functions; we provide a simple counterexample to show that this
assumption is essential (Proposition 4.4).

Furthermore, we prove that a fully mixed Nash equilibrium may exist only uniquely (Theo-
rem 4.6). The proof utilizes the assumption that the latency functions are non-decreasing and
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non-constant, but it does not need the convexity assumption on them.
Finally, we provide a combinatorial characterization of instances admitting a fully mixed

Nash equilibrium. Specifically, we identify the classes of dead and special links, and we prove
some combinatorial properties for them (Lemmas 4.8 and 4.9). In turn, these properties are
used for characterizing instances admitting a fully mixed Nash equilibrium (Theorem 4.10).
Furthermore, we prove a generalization of the Fully Mixed Nash Equilibrium Conjecture for
instances that do not admit a fully mixed Nash equilibrium (Theorem 4.11).

As our chief combinatorial instrument for the study of fully mixed Nash equilibria in discrete
routing games, we introduce and study a novel combinatorial function, called the binomial
function (Section 2).

1.3.2 Price of Anarchy

We focus on the special case of identical users, for which we present two upper bounds on the
Price of Anarchy for mixed and pure Nash equilibria, respectively.

• We first treat mixed Nash equilibria, where we consider the special case of identical links
with a monomial (convex) latency function φ(λ) = λd. We prove that the Price of Anarchy
is less than the Bell number of order d + 1 (Theorem 5.1). When m = n and in the limit,
this bound can be attained arbitrarily close but not exactly.

• For pure Nash equilibria, we consider the case of arbitrary links. We revisit a generic upper
bound on the Price of Anarchy for the Wardrop model, which was shown by Roughgarden
and Tardos [46]. We utilize the assumption that latency functions are non-decreasing and
non-constant to transfer this bound to discrete routing games (Proposition 5.3).

For polynomial latency functions with non-negative coefficients and degree d ≥ 1, the
transfered bound immediately yields an upper bound of d + 1 (Corollary 5.4).

Interestingly, both shown upper bounds on the Price of Anarchy are constant — independent
of m and n.

1.3.3 Algorithmic Results

We present algorithmic results for the case of identical users and arbitrary links. These results
utilize the assumption that latency functions are non-decreasing.

• We show that a pure Nash equilibrium can be computed in time O(m lg m lg n) (Theo-
rem 6.1). This is achieved by an algorithm running in lg n phases; in each phase, user
chunks of halving size are switched together to a different link in order to improve their
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(common) Individual Cost. We show that the number of such switches per phase is O(m),
We use a suitable data structure for implementing each switch in Θ(lg m) time, for a total
of O(m lg m) time per phase; this implies that the total time is O(m lg m lg n).

• Under a certain convexity assumption on the latency functions, we exhibit a very simple,
polynomial time reduction from the problem of computing an optimal (pure) assignment
to the problem of computing a pure Nash equilibrium (Proposition 6.4). Together with our
efficient algorithm for computing a pure Nash equilibrium, this implies a corresponding
efficient algorithm to compute an optimal assignment (Corollary 6.5).

1.3.4 Complexity Results

We present some complexity results for the problems of computing the best-case and worst-
case Nash equilibrium (with respect to the particular Social Cost adopted for discrete routing
games). Specifically, we prove that in the general case of arbitrary users, both problems are
NP-complete (Theorems 7.1 and 7.3, respectively). Both NP-completeness results hold even
for the case of identical links with an identity latency function.

Both proofs use polynomial time transformations from the NP-complete PARTITION prob-
lem [28], whose counting version is known to be #P-complete [47]. The employed transfor-
mations are parsimonious — roughly speaking, they preserve the number of solutions (cf. [31,
Definition 26.6]). This implies that the problems of counting the best-case and worst-case pure
Nash equilibria are both #P-complete as well (Corollaries 7.2 and 7.4).

1.4 Related Work and Comparison

The KP model has received a lot of interest and attention – see, e.g., [10, 11, 13, 14, 15, 17,
20, 23, 29, 33, 35]. For a survey of early work on the Wardrop model, see [5]. Inspired by
the new interest in the Price of Anarchy, Roughgarden and Tardos [46] initiated recently a
reinvestigation of the Wardrop model; for recent results, we refer the reader to the book [45]
(and the references therein).

The fully mixed Nash equilibrium was originally introduced and analyzed by Mavronicolas
and Spirakis [35] for the KP model. For the KP model, it was shown that existence of a fully
mixed Nash equilibrium implies its uniqueness [35]. This result applies to the special case of
discrete routing games where latency functions are linear; hence, it is broadened by Theorem 4.6.

The original Fully Mixed Nash Equilibrium Conjecture for the KP model states that the
worst-case Nash equilibrium is the fully mixed Nash equilibrium. This conjecture was originally
motivated by some results in [17]; it was explicitly formulated in [23] and further studied and
extended to other related models in [16, 21, 25, 32, 33, 34]. In particular, Lücking et al. [32]

6



proved the Fully Mixed Nash Equilibrium Conjecture for the special case of identical users and
identical links in their model (which is itself a special case of discrete routing games). Recently,
Fischer and Vöcking [16] provided a counterexample to the Fully Mixed Nash Equilibrium
Conjecture for the special case of arbitrary users and identical links in the KP model.

Bounds on the Price of Anarchy for the KP model were proved in [11, 14, 29, 30, 35].
These include (tight) bounds of Θ

( lg m
lg lg m

)
for the case of identical links [11, 29, 30, 35] and of

Θ
( lg m

lg lg lg m

)
for the case of arbitrary links [11]. Bounds on the Price of Anarchy for several

variants and generalizations of the KP model were proved in [2, 3, 7, 18, 19, 20, 22, 34, 49].
Bounds on the Price of Anarchy for congestion games were proved in [1, 2, 8]. Christodoulou

and Koutsoupias [8] consider congestion games with unweighted players and under linear and
polynomial latency functions (of degree d and with non-negative coefficients); they define Social
Cost as either the maximum (Expected) Individual Cost or the sum of (Expected) Individual
Costs. The upper bounds obtained for their latter definition apply to discrete routing games as
well. In particular, Christodoulou and Koutsoupias [8, Theorems 9 and 10] prove that the Price
of Anarchy for Social Cost as sum of (Expected) Individual Costs is Θ(dd(1−o(1))). (Exact values
were later obtained in [1] for both cases of unweighted and weighted players.) Corollary 5.4
provides a much smaller upper bound of d + 1 for the special case of discrete routing games
where each pure strategy is a singleton set. (but restricted to pure Nash equilibria).

For the KP model, Fotakis et al. [17] showed that a pure Nash equilibrium can be computed
in polynomial time using Graham’s LPT scheduling algorithm [26]. This result applies to the
special case of discrete routing games where latency functions are linear; hence, it is broadened
by Theorem 6.1.

Fotakis et al. [17] showed that computing the best-case and the worst-case (pure) Nash
equilibria are bothNP-complete for the KP model where Social Cost is defined as the (expected)
maximum latency; in contrast, Theorems 7.1 and 7.3 apply to discrete routing games where
Social Cost is defined as the sum of (Expected) Individual Costs.

Conitzer and Sandholm [9, Corollary 1] proved that it is NP-complete to decide if an
arbitrary strategic game has a (mixed) Nash equilibrium for which the Maximum Expected
Individual Cost is no less than some arbitrary number; this holds even if the game is symmetric
and has only two players. Theorem 7.3 is comparable to this result. On one hand, it restricts to
a particular kind of strategic games (namely, discrete routing games) and it applies even to the
case with only two links; on the other hand, it assumes an arbitrary number of players and it
refers to the sum of Expected Individual Costs. Furthermore, Corollary 7.4 is comparable to [9,
Corollary 8], which established the #P-completeness of the corresponding counting problem.

Subsequent to this work, Gairing et al. [21] introduced yet another hybridization of the KP

model and the Wardrop model, where Social Cost is the expectation of the sum (over links)
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of Latency Costs; each Latency Cost is defined as a polynomial function of the total traffic of
users choosing a link. For their model, Gairing et al. [21] established the Fully Mixed Nash
Equilibrium Conjecture for the special case of identical users and identical links; they also
proved several upper bounds on the Price of Anarchy. To do so, Gairing et al. [21] showed
further interesting properties of the binomial function. (In fact, we used one such property,
restated here as Lemma 2.3, to simplify some proofs in the preliminary version of this work.)

1.5 Notation and Preliminaries

Throughout, denote for any integer m ≥ 1, [m] = {1, . . . , m}. Denote as 0 and 1 the vectors
(of any appropriate dimension) with all zeros and all ones, respectively. Denote as R+

0 and N+
0

the sets of non-negative real and natural numbers, respectively. For a function φ : R+
0 → R+

0 ,
denote as φ̂ the function defined by φ̂(λ) = φ(λ + 1). For a random variable X with associated
probability distribution P, denote as EP(X) the expectation of X (according to P). For an
integer m ≥ 2 and a dimension j ∈ [m], the j-characteristic m-dimensional vector χj has entry
j equal to 1 and all other entries equal to 0.

Some of our analysis will bring into play some special numbers from classical combinatorics.
Recall first the Bell number of order d [6], denoted as Bd, which counts the number of partitions
of a set with d elements into blocks (non-empty subsets). It is known that Bd =

∑
k∈[d] S(d, k),

where for each k ∈ [d], S(d, k), the Stirling number of the second kind [48], counts the number
of partitions of a set with d elements into exactly k blocks. For any pair of integers r ≥ 1 and
k ≥ 1, the falling factorial of r of order k, denoted as rk, is given by rk = r(r−1)·. . .·(r−(k−1)),
when r ≥ k. Otherwise (k ≥ r + 1), rk = 0.

1.6 Organization

In Section 2, we introduce the binomial function. Section 3 presents discrete routing games.
The fully mixed Nash equilibrium is studied in Section 4. Section 5 contains the bounds on
the Price of Anarchy. Our algorithms for computing pure Nash equilibria and optimal pure
assignments appear in Section 6. Section 7 contains the complexity results for best-case and
worst-case pure Nash equilibria. We conclude, in Section 8, with a discussion of our results and
some open problems.

2 The Binomial Function

For a vector of probabilities p ∈ [0, 1]r, denote as p̃ the vector of probabilities with all entries

equal to

∑
i∈[r] pi

r . We now define a combinatorial function:
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Definition 2.1 (Binomial Function) For any integer r, consider a triple of a vector
of probabilities p = 〈p1, . . . , pr〉, a vector w = 〈w1, . . . , wr〉 ∈ Rr, and a function φ :
R+

0 → R+
0 . For a subset U ⊆ [r], denote wU =

∑
k∈U wk. The binomial function

BF(p,w, φ) is defined by

BF(p,w, φ) =
∑

U⊆[r]

(∏

k∈U
pk

∏

k/∈U
(1− pk)φ(wU )

)
.

Roughly speaking, the binomial function BF represents the expectation of a function φ of a ran-
dom variable that follows some kind of a binomial distribution – hence, its name. Clearly, the bi-
nomial function is a symmetric function in the probabilities p1, . . . , pr and the weights w1, . . . , wr

– for each permutation π on [r] that maps p to π(p) and w to π(w), BF(π(p), π(w), φ) =
BF(p,w, φ). Moreover, the binomial function BF is a continuous function in the probabilities
p1, . . . , pr.

Say that the function φ is non-constant on the vector w if φ
(
mini∈[r] wi

) 6= φ
(∑

i∈[r] wi

)
.

If φ is both non-decreasing and non-constant on w, then φ
(
mini∈[r] wi

)
< φ

(∑
i∈[r] wi

)
. We

now prove a significant monotonicity property of the binomial function:

Lemma 2.1 (Monotonicity of Binomial Function) Assume that the function φ is non-
decreasing and non-constant on the vector w. Then, BF(p,w, φ) is strictly increasing in each
probability pi, where i ∈ [r].

Proof: Since BF is non-decreasing and non-constant, there is some index r′ ∈ [r] and some
set U ⊆ [r] \ {r′} such that φ(wr′ + wU ) > φ(wU ). Assume, without loss of generality, that
r′ = r so that U ⊆ [r − 1]. Since BF(p,w, φ) is a symmetric function in the probabilities pi,
where i ∈ [r], it suffices to prove that BF(p,w, φ) is strictly increasing in the probability pr.
Clearly,

BF(p,w, φ) =
∑

U⊆[r]

(∏

k∈U
pk

∏

k/∈U
(1− pk) φ(wU )

)

=
∑

U⊆[r−1]


∏

k∈U
pk

∏

k/∈U∪{r}
(1− pk) (prφ(wU + wr) + (1− pr)φ(wU ))




=
∑

U⊆[r−1]


∏

k∈U
pk

∏

k/∈U∪{r}
(1− pk) (φ(wU ) + pr (φ(wU + wr)− φ(wU )))


 .

Since φ is non-decreasing, φ(wU+wr)−φ(wU ) ≥ 0 for all U ⊆ [r−1]. Moreover, by assumption,
φ(wU + wr)− φ(wU ) > 0 for some U ⊆ [r − 1]. It follows that BF(p,w, φ) is strictly increasing
in pr, as needed.
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A significant special case occurs when w is a constant vector with all entries equal to 1. In
this case, we abuse notation to write BF (p, r, φ) for BF (p,w, φ). For this special case, we prove
a monotonicity property of the binomial function with respect to averaging the probabilities:

Lemma 2.2 (Averaging Monotonicity of Binomial Function) Assume that the function
φ is convex. Then, BF(p, r, φ) ≤ BF(p̃, r, φ).

Proof: Clearly, it suffices to prove that BF(p, r, φ) does not decrease when any two arbitrary
probabilities in the vector p are replaced by their average. Since BF(p, r, φ) is symmetric in the
probabilities pi, with i ∈ [r], it suffices to prove that BF(p, r, φ) does not decrease when p1 and
p2 are replaced by their average p1 + p2

2 . So, consider the vector of probabilities q = 〈q1, . . . , qr〉
with q1 = q2 = p1 + p2

2 , and qi = pi for all i ∈ [r] \ [2]. Write

BF(p, r, φ)

=
∑

U⊆[r]

(∏

k∈U
pk

∏

k/∈U
(1− pk)φ(|U|)

)

=
∑

U⊆[r]\[2]


∏

k∈U
pk

∏

k/∈U∪[2]

(1− pk)

· ((1− p1)(1− p2)φ(|U|) + (p1(1− p2) + p2(1− p1))φ(|U|+ 1) + p1p2φ(|U|+ 2))))

=
∑

U⊆[r]\[2]


∏

k∈U
pk

∏

k/∈U∪[2]

(1− pk)

· (p1p2 (φ(|U|+ 2)− 2φ(|U|+ 1) + φ(|U|)) + (p1 + p2) (φ(|U|+ 1)− φ(|U|)) + φ(|U|))) ,

so that also

BF(q, r, φ)

=
∑

U⊆[r]\[2]


∏

k∈U
qk

∏

k/∈U∪[2]

(1− qk)

· (q1q2 (φ(|U|+ 2)− 2φ(|U|+ 1) + φ(|U|)) + (q1 + q2) (φ(|U|+ 1)− φ(|U|)) + φ(|U|))) .

Since pi = qi for all users i ∈ [r] \ [2], while q1 + q2 = p1 + p2, it follows that

BF(q, r, φ)− BF(p, r, φ)

=
∑

U⊆[r]\[2]


∏

k∈U
pk

∏

k/∈U∪[2]

(1− pk) ((q1q2 − p1p2) (φ(|U|+ 2)− 2φ(|U|+ 1) + φ(|U|)))

 .

Since q1 = q2 is the arithmetic mean of p1 and p2, it holds that q1q2 ≥ p1p2. Since the
function φ is convex, φ(|U|+1)−φ(|U|) ≤ φ(|U|+2)−φ(|U|+1); rearranging terms yields that
φ(|U|+ 2)− 2φ(|U|+ 1) + φ(|U|) ≥ 0. Thus, BF(q, r, φ)− BF(p, r, φ) ≥ 0, as needed.
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Another significant special case of the binomial function occurs when not only w is a constant
vector with all entries equal to 1, but also p is a constant vector with all entries equal to p > 0.
We shall analyze this special case under the additional assumption that φ is the monomial
function φ(λ) = λd. We will then abuse notation to write BF (p, r, d) for BF

(
p,w, λd

)
. Clearly,

BF (p, r, d) =
∑

0≤k≤r

(
r

k

)
pk (1− p)r−k kd .

We shall later use a known fact about BF (p, r, d):

Lemma 2.3 (Gairing et al. [21]) For any integer d ≥ 1,

BF (p, r, d) =
∑

k∈[d]

S(d, k) · rk · pk .

3 Discrete Routing Games

We extend definitions for the KP model to accommodate features from the Wardrop model.

3.1 General

We consider a simple network consisting of m ≥ 2 parallel links 1, 2, . . . , m from a source node
to a destination node. Each of n ≥ 2 users 1, 2, . . . , n wishes to route a particular amount of
(unsplittable) traffic along a (non-fixed) link from source to destination.

Denote as wi > 0 the traffic of user i ∈ [n]. Define the n× 1 traffic vector w in the natural
way. For a user i ∈ [n], eliminating wi from the vector w yields the (n− 1)-dimensional vector
w−i. Associated with each link j ∈ [m] is a latency function φj : R+

0 → R+
0 , which is a non-

decreasing and non-constant function with φj(0) = 0. For each user i ∈ [n], define the function
φij : R+

0 → R+
0 by φij(λ) = φj(wi + λ). We assume that φ1(1) ≤ . . . ≤ φm(1); call link 1 the

smallest link and say that link j is smaller than link k whenever j < k. Define the m×1 latency
function vector Φ in the natural way. An instance is a pair 〈w,Φ〉.

In the case of identical users, all user traffics are 1 and an instance is a pair 〈n,Φ〉. In the
case of identical links, φj = φ for all links j ∈ [m], where φ is a non-decreasing and non-constant
function (with φ(0) = 0); in this case, an instance is a pair 〈w, 〈m,φ〉〉. For the case of identical
users and identical links, an instance is a pair 〈n, 〈m,φ〉〉. In the general case, we talk about
arbitrary users and arbitrary links.

In the case of identical users, each latency function is a discrete function φj : [n]∪{0} → R+
0

φj(0) = 0; clearly, φ̂j = φij for each (identical) user i ∈ [n]. In this case, say that the latency
function φj is non-constant on [n], or non-constant for short, if φj(1) 6= φj(n); since each φj is
non-decreasing, this implies that φj(1) < φj(n).
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3.2 Convexity

For the case of identical users, we will often assume that the latency functions enjoy some
property of discrete convexity on the domain [n]∪{0}. Formally, a function φ : [n]∪{0} → R+

0 is
convex if for all pairs of integers x1, x2 ∈ [n−1] with x1 < x2, φ(x1+1)−φ(x1) ≤ φ(x2+1)−φ(x2).
Our definition of a convex function is the particular, one-dimensional case of a corresponding
definition of M-convex functions due to Murota and Shioura [39].∗ Clearly, to establish that such
a function φ is convex, it suffices to prove that for any x ∈ [n−1], φ(x)−φ(x−1) ≤ φ(x+1)−φ(x).

We will later use a combinatorial property of M-convex functions, which was originally
shown by Murota [38]:

Proposition 3.1 (Global Optimality = Local Optimality for M-Convex) Let φ be an
M-convex function on Nm

0 . Then, the vector x ∈ Nm
0 minimizes φ if and only if for all pairs of

dimensions j, k ∈ [m], φ(x) ≤ φ(x− χj + χk).

3.3 Strategies and Assignments

A pure strategy for user i ∈ [n] is some specific link. A mixed strategy for user i ∈ [n] is a
probability distribution over pure strategies; so, it is a probability distribution over links.

A pure assignment is a tuple L = 〈`1, . . . , `n〉 ∈ [m]n; a mixed assignment is an n × m

probability matrix P of n ·m probabilities p(i, j), for all pairs of a user i ∈ [n] and a link j ∈ [m],
where p(i, j) is the probability that user i chooses link j. We will cast a pure assignment as a
special case of a mixed assignment in which all (mixed) strategies are pure. The support of the
mixed strategy for user i ∈ [n] in the mixed assignment P, denoted as SupportP(i), is the set
of pure strategies which i chooses with strictly positive probability.

A mixed assignment F is fully mixed [35, Section 2.2] if f(i, j) > 0 for all pairs of a user
i ∈ [n] and a link j ∈ [m]. In the standard fully mixed assignment F, f(i, j) = 1

m for all users
i ∈ [n] and links j ∈ [m].

Fix now a mixed assignment P. The load δj(P) on link j ∈ [m] is the total traffic of users
choosing the link (according to P); so, δj(P) is a random variable. For each link j ∈ [m], denote
as θj(P) the expected load on link j ∈ [m]; so, clearly, θj(P) =

∑
k∈[n] p(k, j) wk. Moreover,

denote as θij(P) =
∑

k∈[n]\{i} p(k, j)wk, the expected load on link j ∈ [m] excluding user i ∈ [n].
For a user i ∈ [n] and a link j ∈ [m], denote as pij the (n − 1)-dimensional vector

〈p(1, j), . . . , p(i − 1, j), p(i + 1, j), . . . , p(n, j)〉 The average probability p̃ij on link j excluding

user i is defined as p̃ij =

∑
k∈[n]\{i} p(k, j)

n− 1 ; clearly, in the case of identical users, p̃ij = θij(P)
n− 1 .

∗M-convex functions are defined in terms of a generalization of the Steinitz Exchange Axiom for matroids.

This definition builds on the earlier definition of discretely-convex functions due to Miller [37].
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It is straightforward to verify that
∑

j∈[m] p̃ij = 1. Denote as p̃ij the (n−1)-dimensional vector
with all entries equal to p̃ij .

3.4 Costs

3.4.1 Individual Cost and Expected Individual Cost

For the pure assignment L, the Individual Cost for user i ∈ [n], denoted as ICi(L), is

ICi(L) = φ`i


 ∑

k∈[n]|`k=`i

wk


 ;

so, the Individual Cost for user i is the latency on the link it chooses.
Fix now a mixed assignment P. The Conditional Expected Individual Cost for user i ∈ [n]

on link j ∈ [m], denoted as ICij(P), is the expectation (according to P) of the Individual Cost
for user i had it chosen link j; thus,

ICij(P) =
∑

U⊆[n]\{i}


∏

k∈U
p(k, j)

∏

k 6∈U∪{i}
(1− p(k, j)) φj(wi + wU )


 .

Since the latency function φj is non-decreasing, it follows that for all pairs of a user i ∈ [n]
and a link j ∈ [m], ICij(P) ≥ φj(wi).

Using the binomial function, the Conditional Expected Individual Cost is expressed as

ICij(P) = BF (pij ,w−i, φij) .

For the special case of identical users, this expression reduces to

ICij(P) = BF
(
pij , n− 1, , φ̂j

)
.

For each user i ∈ [n], the Expected Individual Cost for user i, denoted as ICi(P), is the
expectation (according to P) of the Individual Cost of user i. Thus,

ICi(P) =
∑

j∈[m]

p(i, j) ICij(P) ;

so, Expected Individual Cost is a convex combination of Conditional Expected Individual Costs.

3.4.2 Social Cost

Associated with an instance 〈w,Φ〉 and a mixed assignment P is the Social Cost, denoted as
SCΣ(w,Φ,P), which is the sum, over all users, of Expected Individual Costs; so,

SCΣ(w,Φ,P) =
∑

i∈[n]

ICi(P)

=
∑

i∈[n]


 ∑

j∈[m]

p(i, j)


 ∑

U⊆[n]\{i}


∏

k∈U
p(k, j)

∏

k 6∈U∪{i}
(1− p(k, j)) φj(wi + wU )








 .
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3.4.3 Optimum

Associated with an instance 〈w,Φ〉 is the Optimum, denoted as OPTΣ(w,Φ), which is the least
possible, over all pure assignments, Social Cost; thus,

OPTΣ(w,Φ) = min
L∈[m]n

SCΣ(w,Φ,L) .

A pure assignment L is optimal for the instance 〈w,Φ〉 if SCΣ(w,Φ,L) = OPTΣ(w,Φ).
We note two obvious lower bounds on Optimum for the case of identical users and identical

links with a monomial latency function φ(λ) = λd, for some integer d ≥ 1. Assuming that
n ≥ m, OPTΣ(n, 〈m,φ〉) ≥ n · ( n

m
)d; assuming that n ≤ m, OPTΣ(n, 〈m, φ〉) = n.

3.5 Nash Equilibria and Price of Anarchy

We are interested in a special class of mixed strategies called Nash equilibria [41, 42]. Given
an instance 〈w,Φ〉 with an associated mixed assignment P, a user i ∈ [n] is satisfied in P if
ICij(P) = ICi(P) for all links j ∈ SupportP(i), and ICij(P) ≥ ICi(P) for all links j 6∈ SupportP(i).
So, a satisfied user has no incentive to unilaterally deviate from its mixed strategy. The mixed
assignment P is a Nash equilibrium if all users i ∈ [n] are satisfied in P.

A fully mixed Nash equilibrium [35] is a fully mixed assignment that is a Nash equilibrium.
Note that for the case of identical links, the standard fully mixed assignment F is a (fully mixed)
Nash equilibrium since it satisfies that for all users i ∈ [n] and for all pairs of links j, l ∈ [m],
ICij(P) = ICil(P); call it the standard fully mixed Nash equilibrium.

The Price of Anarchy, denoted as PoAΣ, is the worst-case ratio SCΣ(w,Φ,P)
OPTΣ(w,Φ)

, over all

instances 〈w,Φ〉 and associated Nash equilibria P.
A worst-case (or worst for short) Nash equilibrium [30] is one which, on any arbitrary

instance, maximizes Social Cost. A best-case (or best for short) Nash equilibrium [17] is one
which, on any arbitrary instance, minimizes Social Cost. The Fully Mixed Nash Equilibrium
Conjecture, henceforth abbreviated as the FMNE Conjecture, states that a fully mixed Nash
equilibrium is a worst-case Nash equilibrium.

4 Fully Mixed Nash Equilibria

We now focus on fully mixed Nash equilibria; we restrict to the special case of identical users.
A preliminary property of fully mixed Nash equilibria is shown in Section 4.1. In Section 4.2,
we formulate and prove the Fully Mixed Nash Equilibrium Conjecture under the (essential)
assumption of convex latency functions. Furthermore, we establish in Section 4.3 that the fully
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mixed Nash equilibrium may only exist uniquely. In Section 4.4, we prove a combinatorial
characterization of instances admitting a fully mixed Nash equilibrium.

4.1 A Preliminary Property

We show a preliminary property of fully mixed Nash equilibria, which applies to the case of
identical users. Specifically, we prove that all (identical) users choose each fixed link with the
same probability.

Lemma 4.1 (Same Probabilities) Consider the case of identical users and arbitrary links
with non-constant latency functions. Fix an instance 〈n,Φ〉 with an associated fully mixed Nash
equilibrium F. Then, for all pairs of users i, h ∈ [n] and for all links j ∈ [m], f(i, j) = f(h, j).

Proof: Fix any pair of users i, h ∈ [n] and a link j ∈ [m]. Since F is a fully mixed Nash
equilibrium,

ICi(F)

= ICij(F)

=
∑

U⊆[n]\{i,h}


∏

k∈U
f(k, j)

∏

k∈[n]\(U∪{i,h})
(1− f(k, j)) ((1− f(h, j))φj(|U|+ 1) + f(h, j)φj(|U|+ 2))




and also

ICh(F)

=
∑

U⊆[n]\{i,h}


∏

k∈U
f(k, j)

∏

k∈[n]\(U∪{i,h})
(1− f(k, j)) ((1− f(i, j))φj(|U|+ 1) + f(i, j)φj(|U|+ 2))


 .

Hence,

ICi(F)− ICh(F)

=
∑

U⊆[n]\{i,h}


∏

k∈U
f(k, j)

∏

k∈[n]\(U∪{i,h})
(1− f(k, j))(f(h, j)− f(i, j)) (φj(|U|+ 2)− φj(|U|+ 1))




= (f(h, j)− f(i, j))
∑

U⊆[n]\{i,h}


∏

k∈U
f(k, j)

∏

k∈[n]\(U∪{i,h})
(1− f(k, j))


 (φj(|U|+ 2)− φj(|U|+ 1)) .

Since F is fully mixed,
∏

k∈U f(k, j)
∏

k∈[n]\(U∪{i,h})(1 − f(k, j)) > 0 for all (non-empty)
subsets U ⊆ [n] \ {i, h}. Since φj is non-decreasing and non-constant on [n], there is a (non-
empty) subset U ⊆ [n] \ {i, h} such that φj(|U|+ 2) > φj(|U|+ 1). These imply that

∑

U⊆[n]\{i,h}


∏

k∈U
f(k, j)

∏

k∈[n]\(U∪{i,h})
(1− f(k, j)) (φj(|U|+ 2)− φj(|U|+ 1))


 > 0 .
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It follows that ICi(F) > ICh(F) (resp., ICi(F) < ICh(F)) if and only if f(h, j) > f(i, j)
(resp., f(h, j) < f(i, j)). Since the link j ∈ [m] was chosen arbitrarily, this implies that
ICi(F) > ICh(F) (resp., ICi(F) < ICh(F)) if and only if for all links l ∈ [m], f(h, l) > f(i, l)
(resp., f(h, l) < f(i, l)). Since, however,

∑
l∈[m] f(h, l) =

∑
l∈[m] f(i, l) = 1, the latter is false.

It follows that ICi(F) = ICh(F). This implies that f(h, j) = f(i, j), as needed.

Lemma 4.1 implies that a fully mixed Nash equilibrium F can be identified with a sequence
fj ∈ (0, 1), j ∈ [m], such that for all pairs of a user i ∈ [n] and a link j ∈ [m], f(i, j) = fj .

4.2 The FMNE Conjecture

Convex latency functions are considered in Section 4.2.1. Section 4.2.2 considers arbitrary
latency functions. Throughout this section, we keep restricting to the case of identical users.

4.2.1 Convex Latency Functions

We prove:

Proposition 4.2 Consider the case of identical users and arbitrary links with non-constant and
convex latency functions. Fix an instance 〈n,Φ〉 with an associated fully mixed Nash equilibrium
F. Then, for each Nash equilibrium P and for each user i ∈ [n], ICi(P) ≤ ICi(F).

Proof: By Lemma 4.1, there is, for each link j ∈ [m], some probability fj ∈ (0, 1) such that
each user chooses link j with probability fj . Denote as fj the (n − 1)-dimensional vector of
probabilities with all entries equal to fj .

Since Expected Individual Cost is a convex combination of Conditional Expected Individual
Costs, it suffices to prove that for all pairs of a user i ∈ [n] and a link j ∈ SupportP(i),
ICij(P) ≤ ICi(F).

Assume, by way of contradiction, that there is a user i ∈ [n] and a link j ∈ SupportP(i)
such that ICij(P) > ICi(F). Then,

ICij(P)

= BF
(
pij , n− 1, φ̂j

)

≤ BF
(
p̃ij , n− 1, φ̂j

)
(by Lemma 2.2) .

On the other hand,

ICi(F)

= ICij(F) (since F is a fully mixed Nash equilibrium)

= BF
(
fj , n− 1, φ̂j

)
.
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Since ICij(P) > ICi(F), it follows that BF
(
p̃ij , n− 1, φ̂j

)
> BF

(
fj , n− 1, φ̂j

)
. Since φ̂j is

non-decreasing and non-constant, it follows from Lemma 2.1 that p̃ij > fj . Clearly,
∑

l∈[m] fl =∑
l∈[m] f(i, l) = 1. Recall that

∑
l∈[m] p̃il = 1. It follows that there is a link l ∈ [m] such that

p̃il < fl. Thus,

ICij(P)

≤ ICil(P) (since j ∈ SupportP(i) and P is a Nash equilibrium)

= BF
(
pil, n− 1, φ̂l

)

≤ BF
(
p̃il, n− 1, φ̂l

)
(by Lemma 2.2)

< BF
(
fl, n− 1, φ̂l

)
(by Lemma 2.1 (since p̃il < fl))

= ICil(F)

= ICi(F) (since F is a fully mixed Nash equilibrium)

< ICij(P) (by assumption) ,

a contradiction.

Since Social Cost is the sum of Expected Individual Costs, Proposition 4.2 directly implies:

Theorem 4.3 (Convexity Implies the FMNE Conjecture) Consider the case of identical
users and arbitrary links with non-constant and convex latency functions. Then, the Fully Mixed
Nash Equilibrium Conjecture is valid.

4.2.2 Arbitrary Latency Functions

We now provide a counterexample to Theorem 4.3. More specifically, we construct an instance
involving identical links with a non-decreasing and non-constant but not convex latency function
for which Proposition 4.2 does not hold. We prove:

Proposition 4.4 Consider the case of identical users and identical links with an arbitrary
latency function. Then, there is an instance 〈n, 〈m,φ〉〉 with associated pure Nash equilibrium
L and fully mixed Nash equilibrium F such that for all users i ∈ [n], ICi(L) > ICi(F).

Proof: Consider the instance 〈4, 〈2, φ〉〉, where φ : [4] ∪ {0} → R+
0 is a (strictly increasing)

function with φ(1) = 1, φ(2) = 2, φ(3) = 13
6 and φ(4) = 7

3. Since φ(3)− φ(2) < φ(2)− φ(1), φ

is not convex. Consider any arbitrary pure Nash equilibrium L and the standard fully mixed
Nash equilibrium F, where f(i, j) = 1

2 for each user i ∈ [4] and link j ∈ [2].
Fix any arbitrary user i ∈ [4]. We compare the Individual Cost ICi(L) and the Expected

Individual Cost ICi(F) for user i.
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On one hand, note that since φ(2) < φ(3) and φ(1) < φ(4), the definition of Nash equilibrium
implies that in L, there is no link chosen by either 3 or 4 users. So, exactly two users choose
each link in L; hence, ICi(L) = φ(2) = 2. On the other hand, ICi(F) = 1

8(φ(1)+3φ(2)+3φ(3)+
φ(4)) = 95

48. Since 2 > 95
48. it follows that ICi(L) > ICi(F), as needed.

Since Social Cost is the sum of Expected Individual Costs, Proposition 4.4 directly implies:

Corollary 4.5 (The FMNE Conjecture Needs Convexity) Consider the case of identical
users and identical links with an arbitrary latency function. Then, the FMNE Conjecture is not
valid.

Corollary 4.5 implies that the assumption of convexity made for Theorem 4.3 is essential.

4.3 Uniqueness

We show:

Theorem 4.6 (Fully Mixed Nash Equilibrium Uniqueness) Consider the case of iden-
tical users and arbitrary links with non-constant latency functions. Then, a fully mixed Nash
equilibrium may exist only uniquely.

Proof: Assume, by way of contradiction, that there is an instance 〈n,Φ〉 with two distinct
associated fully mixed Nash equilibria F and G. Lemma 4.1 implies that for each link j ∈ [m],
there is a probability fj ∈ (0, 1) (resp., gj ∈ (0, 1)) such that for all users i ∈ [n], f(i, j) = fj

(resp., g(i, j) = gj). For each link j ∈ [m], denote as fj (resp., gj) the (n − 1)-dimensional
vector of probabilities with all entries equal to fj (resp., gj).

Since F and G are distinct with
∑

l∈[m] fl =
∑

l∈[m] gl = 1, there are two distinct links
j, l ∈ [m] such that fj > gj and fl < gl. Fix any user i ∈ [n]. Clearly, for the fully mixed Nash
equilibria F and G, the Conditional Expected Individual Costs for user i on the link j ∈ [m]
are ICij(F) = BF

(
fj , n− 1, φ̂j

)
and ICij(G) = BF

(
gj , n− 1, φ̂j

)
. Hence,

ICij(F)

= ICil(F) (since F is a fully mixed Nash equilibrium)

= BF
(
fl, n− 1, φ̂l

)

< BF
(
gl, n− 1, φ̂l

)
(by Lemma 2.1 (since fl < gl))

= ICil(G)

= ICij(G) (since G is a fully mixed Nash equilibrium)

= BF
(
gj , n− 1, φ̂j

)

< BF
(
fj , n− 1, φ̂j

)
(by Lemma 2.1 (since gj < fj))

= ICij(F) ,
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a contradiction.

Consider now the case of identical users and identical links, and recall the standard fully
mixed Nash equilibrium. Then, Theorem 4.6 immediately implies:

Corollary 4.7 Consider the case of identical users and identical links. Then, the standard
fully mixed assignment is the unique fully mixed Nash equilibrium.

4.4 Existence

We present a characterization of instances admitting a fully mixed Nash equilibrium. Recall
our earlier assumption that φ1(1) ≤ φ2(1) ≤ . . . ≤ φn(1).

Fix an instance 〈n,Φ〉. For each link k ∈ [m] and for each smaller link j ∈ [k − 1], denote
as pj(k) the probability such that

BF
(
pj(k), n− 1, φ̂j

)
= min {φj(n), φk(1)} ,

where pj(k) is the vector with n−1 entries equal to pj(k). We argue that this definition uniquely

determines a probability pj(k). Recall that BF
(
pj(k), n− 1, φ̂j

)
is the Conditional Expected

Individual Cost for a user on link j ∈ [m] in the case where p(i, j) = pj(k) for all remaining

users i ∈ [n− 1]. In particular, BF
(
0, n− 1, φ̂j

)
= φj(1). and BF

(
1, n− 1, φ̂j

)
= φj(n). Note

that

φj(1)

= min{φj(n), φj(1)} (since φj is non-decreasing)

≤ min{φj(n), φk(1)} (since φj(1) ≤ φk(1)) ,

while φj(n) ≥ min{φj(n), φk(1)}. So, φj(1) ≤ min{φj(n), φk(1)} ≤ φj(n). By Lemma 2.1,
BF

(
pj(k), n− 1, φ̂j

)
is strictly increasing in pj(k). By continuity of the binomial function,

this implies that BF attains exactly once the intermediate value min{φj(n), φk(1)} Hence, the
definition uniquely determines a probability pj(k).

We now continue with two important definitions.

• A link k ∈ [m] is dead for the instance 〈n,Φ〉 if either (i) φj(n) < φk(1) for some
smaller link j ∈ [k − 1], or (ii)

∑
j∈[k−1] pj(k) > 1.

• A link k ∈ [m] is special for the instance 〈n,Φ〉 if
∑

j∈[k−1] pj(k) = 1.

We continue to prove some properties of dead and special links. The first of them shows that
no user chooses a dead link.
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Lemma 4.8 (No User Chooses a Dead Link) Consider the case of identical users and ar-
bitrary links with non-constant and convex latency functions. Fix an instance 〈n,Φ〉 with a dead
link k ∈ [m] and an associated Nash equilibrium P. Then, p(i, k) = 0 for all users i ∈ [n].

Proof: Assume, by way of contradiction, that there is a user i ∈ [n] such that p(i, k) > 0.
Since P is a Nash equilibrium, this implies that for any link j ∈ [k − 1], ICik(P) ≤ ICij(P).
Since φk(1) ≤ ICik(P). it follows that φk(1) ≤ ICij(P).

Since k is a dead link, there are two cases to consider. For each case, we will derive a
contradiction.

1. Assume first that φl(n) < φk(1) for some smaller l ∈ [k − 1]. Then, by Lemma 2.1,

ICil(P)

= BF
(
pil, n− 1, φ̂l

)

≤ BF
(
p̃il, n− 1, φ̂l

)
(by Lemma 2.2)

≤ BF
(
1, n− 1, φ̂l

)
(by Lemma 2.1 (since p̃ij ≤ 1))

= φl(n)

< φk(1) (by assumption) ,

a contradiction.

2. Assume now that
∑

j∈[k−1] pj(k) > 1. Without loss of generality, assume that for each
smaller link j ∈ [k−1], φk(1) ≤ φj(n) (since otherwise the claim follows from the previous
case). Note that

∑
j∈[k−1] p̃j ≤

∑
j∈[m] p̃j = 1. It follows that there is some smaller link

l ∈ [k − 1] such that pl(k) > p̃il. Hence,

ICil(P)

= BF
(
pil, n− 1, φ̂l

)

≤ BF
(
p̃il, n− 1, φ̂l

)
(by Lemma 2.2)

< BF
(
pl(k), n− 1, φ̂l

)
(by Lemma 2.1 (since p̃il < pl(k)))

= min{φl(n), φk(1)} (by definition of pl(k))

= φk(1) ,

a contradiction.

Since we derived a contradiction in all possible cases, the proof is now complete.

We continue to prove:
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Lemma 4.9 (At Most One User Chooses a Special Link) Consider the case of identical
users and arbitrary links with non-constant and convex latency functions. Fix an instance 〈n,Φ〉
with an associated Nash equilibrium P. Then, there is at most one user i ∈ [n] with p(i, k) > 0
for some special link k ∈ [m].

Proof: Assume, by way of contradiction, that there are two distinct users i, h ∈ [n] and two
(not necessarily distinct) special links k, r ∈ [m], k ≤ r, with p(i, k) > 0 and p(h, r) > 0.

Since p(h, r) > 0, it follows that p̃ir ≥ p(h, r)
n− 1 > 0. Since k ≤ r ≤ m, this implies that∑

j∈[k−1] p̃ij <
∑

j∈[m] p̃ij = 1. Since link k is special,
∑

j∈[k−1] pj(k) = 1. It follows that there
is some link l ∈ [k − 1] such that pl(k) > p̃il. So,

φk(1)

≤ ICik(P)

≤ ICil(P) (since p(i, k) > 0 and P is a Nash equilibrium)

= BF
(
pil, n− 1, φ̂l

)

≤ BF
(
p̃il, n− 1, φ̂l

)
(by Lemma 2.2)

< BF
(
pl(k), n− 1, φ̂l

)
(by Lemma 2.1 (since pil < pl(k)))

= min {φl(n), φk(1)} (by definition of pl(k))

≤ φk(1) ,

a contradiction.

We are now ready to prove:

Theorem 4.10 (Existence of Fully Mixed Nash Equilibria) Consider the case of iden-
tical users and arbitrary links with non-constant and convex latency functions. Then, there is
a fully mixed Nash equilibrium if and only if there are neither dead nor special links.

Proof: Throughout, fix an instance 〈n,Φ〉.
Assume first that 〈n,Φ〉 admits a fully mixed Nash equilibrium F. By definition, f(i, j) > 0

for all pairs of a user i ∈ [n] and a link j ∈ [m]. Lemma 4.8 implies that there is no dead link;
since n ≥ 2, Lemma 4.9 implies that there is no special link either, and we are done.

Assume now that there are neither dead nor special links for the instance 〈n,Φ〉. We will
determine a fully mixed Nash equilibrium F for 〈n,Φ〉 with f(i, j) = fj for all users i ∈ [n] and
links j ∈ [m].

For each link j ∈ [m], define ∆φj = φj(n) − φm(1). Clearly, ∆φj ≤ φj(n). Since there are
no dead links, it follows that ∆φj ≥ 0. So, 0 ≤ ∆φj ≤ φj(n).
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Fix now a link j ∈ [m− 1]. For any value x ∈ [0,∆φj ], denote ψj(x) the value such that

B
(
ψj(x), n− 1, φ̂j

)
= φm(1) + x ,

where ψj(x) is the (n − 1)-dimensional vector with all entries equal to ψj(x). We argue that
ψj(x) is uniquely determined by this definition.

Note that BF
(
ψj(x), n− 1, φ̂j

)
is the Conditional Expected Individual Cost for a user on

link j ∈ [m− 1] in the case where all remaining users i ∈ [n− 1] choose link j with probability
ψj(x). In particular, BF

(
0, n− 1, φ̂j

)
= φj(1) ≤ φm(1) and BF

(
1, n− 1, φ̂j

)
= φj(n). Note

also that

φm(1) + x

≤ φm(1) + ∆φj (since x ≤ ∆φj)

= φm(1) + φj(n)− φm(1)

= φj(n) ,

while

φm(1) + x ≥ φm(1) .

By Lemma 2.1, BF
(
ψj(x), n− 1, φ̂j

)
is strictly increasing in ψj(x). By continuity of the

binomial function, this implies that BF attains exactly once the intermediate value φm(1) + x.
Hence, the definition uniquely determines ψj(x).

Note that the definition of ψj(x) and Lemma 2.1 imply together that ψj(x) is strictly
increasing in x ∈ [0, ∆φj ], where j ∈ [m−1]; in particular, this implies that for any x ∈ (0,∆φj),
0 < ψj(x) < 1.

Now for the link m, for each x ∈ [0, minj∈[m−1] ∆φj ], set

ψm(x) = 1−
∑

j∈[m−1]

ψj(x) .

Clearly, ψm(x) is strictly decreasing in x for x ∈ [0, minj∈[m−1] ∆φj ]. Moreover, ψm(x) < 1 for
all x ∈ (0, minj∈[m−1] ∆φj ].

Define

x̂ = max
{

x ∈ [0, min
j∈[m−1]

∆φj ] | ψm(x) ≥ 0
}

;

thus, ψm(x̂) = 0.
Consider the function BF

(
ψm(x), n− 1, φ̂m

)
, where ψm(x) is the (n−1)-dimensional vector

with all entries equal to ψm(x), for x ∈ [0, x̂]. Since ψm(x) is strictly decreasing in x for x ∈ [0, x̂],
Lemma 2.1 implies that BF

(
ψm(x), n− 1, φ̂m

)
is strictly decreasing in x for x ∈ [0, x̂].
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Note that by definition of ψm(x),

ψm(0) = 1−
∑

j∈[m−1]

ψj(0) .

Recall also that for each link j ∈ [m− 1], ψj(0) is (uniquely) determined by the equation

BF
(
ψj(0), n− 1, φ̂j

)
= φm(1) .

Since there are no dead links, this equation is equivalent to

BF
(
ψj(0), n− 1, φ̂j

)
= min {φj(n), φm(1)} .

By definition of pj(m), it follows that ψj(0) = pj(m). Hence,

ψm(0) = 1−
∑

j∈[m−1]

pj(m) .

Since there are neither dead nor special links, it follows that
∑

j∈[m−1] pj(m) < 1, so that
ψm(0) > 0. Thus,

BF
(
ψm(0), n− 1, φ̂m

)

> BF
(
0, n− 1, φ̂m

)
(by Lemma 2.1 (since ψm(0) > 0))

= φm(1) .

On the other hand,

BF
(
ψm(x̂), n− 1, φ̂m

)

= BF
(
0, n− 1, φ̂m

)
(since ψm(x̂) = 0)

= φm(1)

< φm(1) + x̂ (since x̂ > 0) .

Since BF
(
ψm(x), n− 1, φ̂m

)
is a continuous, strictly decreasing function in x for x ∈ [0, x̂], the

Mean Value Theorem implies that there is some x0 ∈ (0, x̂) such that

BF
(
ψm(x0), n− 1, φ̂m

)
= φm(1) + x0 .

We are now ready to determine a fully mixed Nash equilibrium F for the instance 〈n,Φ〉:

For each user i ∈ [n] and link j ∈ [m], set f(i, j) = ψj(x0).

It remains to show that F is a fully mixed Nash equilibrium:

• We first prove that F is a fully mixed assignment. We need to prove that for each link
j ∈ [m], 0 < ψj(x0) < 1.
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– For a link j ∈ [m − 1], note that 0 < x0 < x̂ ≤ minj∈[m−1] ∆φj ≤ ∆φj . Thus,
0 < ψj(x) < 1, as needed.

– For the link m, note that 0 < x0 < x̂ ≤ minj∈[m−1] ∆φj . Thus, ψm(x0) < 1. Since
ψm(x) is strictly decreasing in x with ψm(x̂) = 0, while x0 < x̂, it follows that
ψm(x0) > 0. So, 0 < ψm(x0) < 1, as needed.

• We finally prove that F is a Nash equilibrium. Recall that by construction of x0,
B

(
ψm(x0), n− 1, φ̂m

)
= φm(1) + x0. By definition of the value ψj(x) for each link

j ∈ [m−1], BF
(
ψj(x0), n− 1, φ̂j

)
= φm(1)+x0. It follows that BF

(
ψj(x0), n− 1, φ̂j

)
=

φm(1) + x0 for all links j ∈ [m]. Since for each pair of a user i ∈ [n] and a link j ∈ [m],

ICij(F)

= BF
(
fij , n− 1, φ̂j

)

= BF
(
ψj(x0), n− 1, φ̂j

)
(by construction of F)

= φm(1) + x0 ,

it follows that ICij(F) is constant over all links j ∈ [m], so that F is a Nash equilibrium.

The proof is now complete.

By the definition of dead and special links, it follows that Theorem 4.10 provides an efficient
characterization of instances admitting a fully mixed Nash equilibrium.

We now broaden Theorem 4.3 by proving an upper bound on the Social Cost for the case
where the fully mixed Nash equilibrium does not exist. To state and prove this upper bound,
we need first to introduce some simple notation. For a given instance 〈n,Φ〉, denote as SD the
set of all special and dead links. Moreover, denote as 〈n,Φ \SD〉 the restriction of the instance
〈n,Φ〉 to links outside SD. We prove:

Theorem 4.11 Consider the case of identical users and arbitrary links with non-constant and
convex latency functions. Consider an instance 〈n,Φ〉 with an associated Nash equilibrium P,
and the instance 〈n,Φ \ SD〉 with an associated fully mixed Nash equilibrium F. Then,

SCΣ (n,Φ,F) ≤ SCΣ (n,Φ \ SD,F) .

Proof: If there are neither dead nor special links, then SCΣ (n,Φ \ SD,F) = SCΣ (n,Φ,F)
and the claim follows from Theorem 4.3. So, assume that there are either dead or special links.
Lemma 4.8 implies that no user is assigned (with non-zero probability) by P to a dead link,
while Lemma 4.9 implies that at most one user is assigned (with non-zero probability) by P to
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a special link. If no user is assigned (with non-zero probability) by P to a special link, then
SCΣ (n,Φ \ SD,F) = SCΣ (n,Φ,F) and the claim follows again from Theorem 4.3. So, assume
that there is a single user assigned (with non-zero probability) by P to a special link.

Consider any user i ∈ [n]. Note that
∑

j∈[m]\SD
θij(F) =

∑

j∈[m]\SD

∑

k∈[n]\{i}
f(k, j)

=
∑

k∈[n]\{i}

∑

j∈[m]\SD
f(k, j)

=
∑

k∈[n]\{i}
1

= n− 1 ,

while
∑

j∈[m]\SD
θij(P) =

∑

j∈[m]\SD

∑

k∈[n]\{i}
p(k, j)

=
∑

k∈[n]\{i}

∑

j∈[m]\SD
p(k, j)

≤
∑

k∈[n]\{i}
1

= n− 1 .

So,
∑

j∈[m]\SD θij(F) ≥ ∑
j∈[m]\SD θij(P). It follows that there is some link j0 ∈ [m] \ SD such

that θij0(F) ≥ θij0(P), or f̃ij0 ≥ p̃ij0 Hence, we obtain that

ICi(P)

≤ ICij0(P) (since P is a Nash equilibrium)

= BF
(
pij0 , n− 1, φ̂j0

)

≤ BF
(
p̃ij0 , n− 1, φ̂j0

)
(by Lemma 2.2)

≤ BF
(
f̃ij0 , n− 1, φ̂j0

)
(by Lemma 2.1 (since p̃ij0 ≤ f̃ij(F)))

= BF
(
fij0 , n− 1, φ̂j0

)
(by Lemma 4.1)

= ICij0(F) (since j0 ∈ [m] \ SD)

= ICi(F) (since F is a fully mixed Nash equilibrium) .

Since Social Cost is the sum of Expected Individual Costs, the claim now follows.

5 Price of Anarchy

We now present our bounds on the Price of Anarchy for the case of identical users. The case
of identical links with a monomial latency function is treated in Section 5.1. The more general
case of arbitrary links is treated in Section 5.2.
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5.1 Identical Links with a Monomial Latency Function

In this section, we assume that there is some integer d ≥ 1 such that the latency function of
each link is the monomial function φ(x) = xd. We prove:

Theorem 5.1 Consider the case of identical users and identical links with a monomial latency
function φ(x) = xd, for any integer d ≥ 1. Then, PoAΣ < Bd+1 and supm=n→∞ PoAΣ = Bd+1.

Proof: Since the function φ(x) = xd is strictly increasing and convex, Theorems 4.3, 4.10
and 4.6 imply together that the worst-case Nash equilibrium is the unique fully mixed Nash
equilibrium. Clearly, the standard fully mixed assignment F is a Nash equilibrium; so, it is the
unique fully mixed Nash equilibrium.

We shall proceed as follows. First, we shall derive a formula for the Social Cost of F; then,
we shall use this formula to prove the claim. So,

SCΣ(n,Φ,F)

=
∑

i∈[n]

∑
j∈[m] f(i, j)

(∑
U⊆[n]\{i}

(∏
k∈U f(k, j)

∏
k 6∈U∪{i}(1− f(k, j))φ̂(|U|)

))

=
∑

i∈[n]

(∑
j∈[m]

(∑
B⊆[n]|i∈B

(∏
k∈B f(k, j) ·∏k 6∈B(1− f(k, j)) · φ(|B|)

)))

=
∑

j∈[m]

(∑
B⊆[n] |B|

(∏
k∈B f(k, j) ·∏k 6∈B(1− f(k, j)) · φ(|B|)

))

=
∑

j∈[m]

∑
k∈[n]

(∑
B⊆[n]||B|=k |B|

(∏
t∈B f(t, j) ·∏t 6∈B(1− f(t, j)) · φ(|B|)

))

=
∑

j∈[m]

∑
k∈[n]

((
n
k

)
k

(
1
m

)k

·
(
1− 1

m

)n−k

· kd

)

=
∑

j∈[m]

∑
k∈[n]

((
n
k

) (
1
m

)k

·
(
1− 1

m

)n−k

· kd+1

)

= mBF
(

1
m,n, d + 1

)

= m
∑

k∈[d+1] S(d + 1, k) · nk ·
(

1
m

)k

(by Lemma 2.3)

=
∑

k∈[d+1] S(d + 1, k) · nk

mk−1

It follows that

SCΣ(n,Φ,F)
OPTΣ(n,Φ)

=
∑

k∈[d+1]

S(d + 1, k) · nk

mk−1OPTΣ(n,Φ)
.

We proceed by case analysis on the relation between n and m.
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1. Assume first that n ≥ m. Then, for each index k ∈ [d + 1],

nk

mk−1OPTΣ(n,Φ)

≤ nk

mk−1 · n ( n
m

)d (since OPTΣ(n,Φ) ≥ n
( n
m

)d)

= nk

nk ·
(m

n
)d+1−k

< 1 (since n ≥ m and nk < nk) ,

while also

lim
m=n→∞

nk

mk−1OPTΣ(n,Φ)
= 1 .

2. Assume now that n < m. Then, for each index k ∈ [d + 1],

nk

mk−1OPTΣ(n,Φ)

≤ nk

mk−1n
(since OPTΣ(n,Φ) = n)

< nk

nk (since n < m)

< 1 (since nk < nk) .

It follows that PoAΣ <
∑

k∈[d+1] S(d + 1, k) = Bd+1, while limm=n→∞ PoAΣ = 1, as needed.

5.2 Arbitrary Links

In this section, we consider the case of arbitrary links. We start with a preliminary technical
claim.

Proposition 5.2 (Global Optimality = Local Optimality) For any integer n ≥ 2, con-
sider the set Xn = {〈x1, . . . , xm〉 ∈ Nm

0 | ∑
l∈[m] xj = n}, and a family of convex functions

φl : [n]∪ {0} → R+
0 , where l ∈ [m]. Then, the vector 〈x1, . . . , xm〉 ∈ Xn minimizes the function∑

l∈[m] φl over Xn if and only if for all pairs of links j, k ∈ [m],

φj(xj) + φk(xk) ≤ φj(xj + 1) + φk(xk − 1) .

It is straightforward to verify that Proposition 5.2 is a particular case of Proposition 3.1. We
now prove:
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Proposition 5.3 Consider the case of identical users and arbitrary links. Fix an instance
〈n,Φ〉 such that for all links j ∈ [m] and for all integers k ∈ [n],

kφj(k) ≤ α
∑

t∈[k]

φj(t) .

Then, for any pure Nash equilibrium L,

SCΣ(n,Φ,L) ≤ α · OPTΣ(n,Φ) .

Proof: Fix an optimal pure assignment G for the instance 〈n,Φ〉. For all integers k ∈ [n]
and links j ∈ [m], define the function

ψj(k) =
∑

t∈[k]

φj(t) .

We first show that for each link j ∈ [m], the function ψj is convex. Fix a link j ∈ [m] and an
integer k ∈ [n− 1]. Clearly, ψj(k +1)−ψj(k) = φj(k +1) and ψj(k)−ψj(k− 1) = φj(k). Since
the function φj is non-decreasing, it follows that ψj(k + 1)−ψj(k) ≥ ψj(k)−ψj(k− 1), so that
ψj is convex.

We now show that the vector 〈δ1(L), . . . , δm(L)〉minimizes the function
∑

j∈[m] ψj(xj) under
the restriction that

∑
j∈[m] xj = n. By definition of Nash equilibrium, we have that φj(δj(L) +

1) ≥ φk(δk(L)) for all pairs of links j, k ∈ [m]. Hence,

ψj(δj(L) + 1) + ψk(δk(L)− 1)

= ψj(δj(L)) + φj(δj(L) + 1) + ψk(δk(L))− φk(δk(L)) (by definition of ψj(x) and ψk(x))

≥ ψj(δj(L)) + ψk(δk(L)) (since φj(δj(L) + 1) ≥ φk(δk(L))) .

By Proposition 5.2, this implies that the pure assignment L induces loads δ1(L), . . . , δm(L)
which minimize the function

∑
j∈[m] ψj(δj(L)) under the restriction that

∑
l∈[m] xl = n; call L

a minimizing assignment. Thus,

SCΣ(n,Φ,L)

=
∑

j∈[m] δj(L)φj(δj(L))

≤ ∑
j∈[m]

(
α ·∑t∈[δj(L)] φj(t)

)
(by assumption on φ)

= α
∑

j∈[m] ψj(δj(L)) (by definition of ψj)

≤ α
∑

j∈[m] ψj(δj(G)) (since L is a minimizing assignment)

= α
∑

j∈[m]

(∑
t∈[δj(G)] φj(t)

)
(by definition of ψj)

≤ α
∑

j∈[m] δj(G)φj(δj(G)) (since φj is non-decreasing)

= α · OPTΣ(n,Φ) , (since G is an optimal assignment) ,

as needed.
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We remark that the proof of Proposition 5.3 is a straightforward adaptation of the corre-
sponding proof for [46, Corollary 2.10] from the continuous setting with splittable flows and
continuous latency functions to the discrete setting with unsplittable traffics and discrete la-
tency functions. We conclude this section with a simple application of Proposition 5.3.

Corollary 5.4 Consider the case of identical users. Assume that all latency functions are
(non-zero) polynomials with non-negative coefficients and maximum degree d. Then, for pure
Nash equilibria,

PoAΣ ≤ d + 1 .

Proof: Consider any latency function φ(x) =
∑d

k=0 akx
k with ak ≥ 0 for all indices k ∈

[d] ∪ {0}. By Proposition 5.3, it suffices to prove that

xφ(x)∑
t∈[x] φ(t)

≤ d + 1

for all integers x ∈ [n]. Clearly,

xφ(x)∑
t∈[x] φ(t)

=
∑d

k=0 akx
k+1

∑d
k=0 ak

(∑
t∈[x] t

k
)

We shall use the following simple inductive claim:

Lemma 5.5 For all integers k ≥ 0 and x ≥ 1,
∑

t∈[x] t
k ≥ xk+1

k + 1 .

So, by Lemma 5.5,

xφ(x)∑
t∈[x] φ(t)

≤
∑d

k=0 akx
k+1

∑d
k=0

akxk+1

k+1

≤ d + 1 ,

as needed.

We remark that Corollary 5.4 is a discrete analog of [46, Corollary 2.11], which held for
splittable flows and continuous latency functions.

6 Computing Pure Nash Equilibria and Optimal Assignments

In this section, we provide a fast algorithm to compute a pure Nash equilibrium for the case
of identical users and arbitrary links. This algorithm is presented and analyzed in Section 6.1.
Section 6.2 establishes that this algorithm can also be used to compute an optimal (pure)
assignment for the same case.
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6.1 Pure Nash Equilibria

A simple approach to compute a pure Nash equilibrium is to assign the (identical) users one by
one to their respective best links. This approach is motivated by the classical LPT scheduling
algorithm due to Graham [26]; the algorithm had been already employed by Fotakis et al. [17,
Section 3] for the case of the KP model (where latency functions are linear). The resulting
greedy algorithm can be implemented to run in time O((n + m) lg m) if the link latencies are
maintained in a priority queue, which is updated after the assignment of each user.

We present an algorithm ComputeNash to compute a pure Nash equilibrium under the
assumption of arbitrary, non-decreasing latency functions. We shall establish that the running
time of ComputeNash is O(m lg n lg m); this improves on the naive approach if m = o

(
n

lg n

)
.

We start with an informal description of the algorithm ComputeNash. The algorithm takes
as input an arbitrary initial pure assignment L and gives as output a pure Nash equilibrium
L′. It does so by moving chunks of users at a time. The first chunk contains all users. In
each phase, the chunk size is halved until a chunk contains one user only, in which case a Nash
equilibrium has been reached. All users in a moved chunk improve their Individual Costs. A
pseudocode description of the algorithm ComputeNash appears in Figure 1.

We prove:

Theorem 6.1 Consider the case of identical users and arbitrary links. Then, algorithm Com-

puteNash computes a pure Nash equilibrium in time O(m lg m lg n).

Proof: After the last iteration of the algorithm ComputeNash (with δ = 1), it holds that
φs(δs(L′)) ≤ φt(δt(L′) + 1) for all pairs of links s, t ∈ [m]. This implies that L′ is a (pure) Nash
equilibrium. We continue to analyze the running time of the algorithm ComputeNash. To do
so, we first prove an invariant of the algorithm.

Lemma 6.2 (Only Increases or Only Decreases) During each iteration of the for loop,
the load on a link is either increased or decreased but not both.

Proof: By way of contradiction, assume otherwise for some iteration of the for loop with
chunk size δ. Then, two cases are possible.

1. The load on some link t ∈ [m] is decreased after it has been increased.
Consider an increase to the load on link t and the earliest decrease to the load on link
t following the increase. By the algorithm, there is some link u whose load is increased
simultaneously with the decrease to the load on link t. Denote δt and δu, and δ̂t and
δ̂u the loads on links t and u before the increase (to the load on link t) and before the
decrease (to the load on link t), respectively. Note that δ̂t = δt + δ.
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Algorithm ComputeNash

Input: an instance 〈w,Φ〉, and an (arbitrary) pure assignment L

Output: a Nash equilibrium L′

(1) begin

(2) L′ ← L:
(2a) for j = 1, . . . , m do

(2b) δj(L′) ← δj(L);
(3) for δ = n, dn

2 e, dn
4 e, . . . , 1 do

(4) while ∃s, t ∈ [m] with δs(L′) ≥ δ and φs(δs(L′)) > φt(δt(L′) + δ) do

(5) choose such t ∈ [m] so that φt(δt(L′) + δ) is minimum;
(6) choose such s ∈ [m] so that φs(δs(L′)) is maximum;
(7) transfer δ users from s to t:
(7a) δs(L′) ← δs(L′)− δ;
(7b) δt(L′) ← δt(L′) + δ;
(8) return L′;
(9) end

Figure 1: Algorithm ComputeNash

For the increase to the load on link t, the choice of t by the algorithm implies that
φt(δt + δ) ≤ φu(δu + δ). For the decrease to the load on link t, the algorithm implies that
φt(δ̂t) > φu(δ̂u + δ) or φt(δt + δ) > φu(δ̂u + δ). It follows that φu(δu + δ) > φu(δ̂u + δ).
Since φu is non-decreasing, it follows that δ̂u < δu. Hence, there is a decrease to the load
on link u in between the increase to the load on link t and the increase to the load on link
u. Take the latest such decrease to the load on link u. By the algorithm, the load on link
u before this decrease is δ̂u + δ. Since there is no change to the load on link t since it has
been increased, the load on link t before this decrease is still δt + δ. The choice of u by
the algorithm for this decrease (to the load on link u) implies that φu(δ̂u +δ) ≥ φt(δt +δ).
A contradiction.

2. The load on some link s ∈ [m] is increased after it has been decreased.
Consider a decrease to the load on link s and the earliest increase to the load on link s

following the decrease. By the algorithm, there is some link u whose load is decreased
simultaneously with the increase to the load on link s. Denote δs and δu, and δ̂s and
δ̂u the loads on links s and u before the decrease (to the load on link s) and before the
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increase (to the load on link s), respectively. Note that δ̂s = δs − δ.

For the decrease to the load on link s, the choice of s by the algorithm implies that
φs(δs) ≥ φu(δu). For the increase to the load on link s, the algorithm implies that
φs(δ̂s + δ) < φu(δ̂u) or φs(δs) < φu(δ̂u). It follows that φu(δu) < φu(δ̂u). Since φu is non-
decreasing, it follows that δu < δ̂u. Hence, there is an increase to the load on link u in
between the decrease to the load on link s and the decrease to the load on link u. Take the
latest such increase to the load on link u. By the algorithm, the load on link u before this
increase is δ̂u−δ. Since there is no change to the load on link s since it has been decreased,
the load on link s before this increase is still δs − δ. The choice of u by the algorithm for
this increase (to the load on link u) implies that φu((δ̂u − δ) + δ) ≤ φs((δs − δ) + δ) or
φu(δ̂u) ≤ φs(δs). A contradiction.

Since we derived a contradiction in all possible cases, the proof is now complete.

We continue to prove:

Lemma 6.3 In each iteration of the for loop, there are at most O(m) iterations of the while

loop.

Proof: We consider separately the first iteration of the for loop, where δ = n. Consider
the first (if any) corresponding iteration of the while loop, where the load on some link s is
decreased and the load on some link t is increased. For any link l, denote δl and δ̂l the loads on
link l before and after this iteration of the while loop, respectively. By the algorithm, δs ≥ n;
it follows that δl = 0 for any link l 6= s. By the algorithm, δ̂t = δt + n = n: it follows that
δ̂l = 0 for any link l 6= t.

By the algorithm, φs(δs) > φt(δt + n), or φs(n) > φt(n). By the choice of link t by the
algorithm, it holds that for any link t′ such that φs(δs) > φt′(δt′ + n) or φs(n) > φt′(n), either
φt(δt + n) ≤ φt′(δt′ + n) or φt(n) ≤ φt′(n).

Assume, by way of contradiction, that a second iteration of the while loop is now possible.
Since δ̂t = n and δ̂t′ = 0 for any link t′ 6= t, it follows by the algorithm that there is some link
t′ 6= t such that φt(n) > φt′(n). Recall also that φs(n) > φt(n). It follows that φt′(n) < φs(n).
Thus, there is a link t′ such that φt′(n) < φs(n) for which φt(n) > φt′(n). A contradiction. It
follows that there is at most one iteration of the while loop in the first iteration of the for

loop.
Consider now any subsequent iteration of the for loop with chunk size δ < n. The immedi-

ately preceding iteration of the for loop has parameter δ′ such that δ = d δ′
2 e; clearly, δ′ ≤ 2δ.

Denote as δ̃j the load on link j ∈ [m] upon completion of that iteration of the for loop (and
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immediately before the current iteration with chunk size δ). Partition the set of links [m] into
the two sets

L1 = {j ∈ [m] | δ̃j < 2δ}

and

L2 = {j ∈ [m] | δ̃j ≥ 2δ .}

Since each iteration of the while loop incurs a simultaneous increase and decrease to the
loads on two distinct links, the number of iterations of the while loop (in the considered
iteration of the for loop) is equal to the the total number of decreases to link loads (in the
considered iteration of the for loop). Hence, we proceed to show:

(1) The total number of decreases (in the considered iteration of the for loop) to loads of links
in the set L1 is at most m.

(2) The total number of decreases (in the considered iteration of the for loop) to loads of links
in the set L2 is at most m.

Proof of (1): Consider a link j ∈ L1 whose load is decreased. Lemma 6.2 implies that its load
will further not increase. Since the initial load on link j is less than 2δ and each decrease
decreases the load by δ, it follows that the load on link j can be decreased at most once. Hence,
the total number of decreases to loads of links in L1 is at most m.
Proof of (2): We will establish that each link can increase simultaneously with a decrease to the
load of any link in L2 at most once. This will imply that the number of decreases to loads of
links in the set L2 is at most m.

Consider any link t ∈ [m] and any two consecutive increases to its load. (If there is at most
one increase to the load on link t, the claim about the increases to the load on link t holds
trivially.) By the algorithm, there is some link s whose load is decreased simultaneously with
the second increase to the load on link t. Denote by δs and δt, and δ̂s and δ̂t the loads on links
s and t before the first increase (to the load on link t) and before the second increase (to the
load on link t), respectively. Note that δ̂t = δt + δ.

• By Lemma 6.2, there can be no increase to the load on link s in the current iteration of
the for loop. Hence, δ̂s ≤ δs ≤ δ̃s.

• By Lemma 6.2, there can be no decrease to the load on link t in the current iteration of
the for loop. Hence, δ̂t > δt ≥ δ̃t.
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For the second increase to the load on link t, the algorithm implies that φs(δ̂s) > φt(δ̂t + δ).
Since δ̂t = δt + δ, it follows that φs(δ̂s) > φt(δt + 2δ).

By the post-condition for the previous iteration of the for loop, either φs(δ̃s) ≤ φt(δ̃t + δ′)
or δ̃s < δ′. We proceed to establish the necessity of the second possibility.

We first prove that δ̃s < δ′. Assume, by way of contradiction, that δ̃s ≥ δ′. This implies
that φs(δ̃s) ≤ φt(δ̃ + δ′). Since δs ≤ δ̃s and δ̃t ≤ δt, and both φs and φt are non-decreasing, it
follows that φs(δs) ≤ φt(δt+δ′). Since δ′ ≤ 2δ and φt is non-decreasing, φt(δt+δ′) ≤ φt(δt+2δ).
It follows that φs(δs) ≤ φt(δt + 2δ). Since φs(δ̂s) > φt(δt + 2δ), it follows that φs(δs) < φs(δ̂s).
Since φs is non-decreasing, this implies that δs < δ̂s. A contradiction. It follows that δ̃s < δ′.

Since δ′ ≤ 2δ, this implies that δ̃s < 2δ. By definition of the set L1, it follows that s ∈ L1.
This implies that an increase to the load on a link can occur simultaneously with a decrease to
the load of any link in the set L2 only if this is the first such increase. So, the load on a link
can increase simultaneously with a decrease to the load of any link in the set L2 at most once.
It follows that the number of decreases to loads of links in the set L2 is at most m, as needed.

Claims (1) and (2) imply together that the number of iterations of the while loop in each
iteration of the for loop is O(m), as needed.

Each iteration of the for loop (with chunk size δ) is implemented using two priority queues.
In the first queue, the priorities are according to φj(δj(L′)), j ∈ [m]; in the second queue, the
priorities are according to φj(δj(L′) + δ), j ∈ [m]. At the beginning of the iteration, the two
priority queues are constructed in time O(m lg m).

In each iteration of the while loop, the links s and t (with maximum φs(δs(L′)) and mini-
mum φt(δt(L′)+δ), respectively) are determined in constant time using the two priority queues.
After each iteration of the while loop, which updates φs(δs(L′)) and φt(δt(L′)), the two priority
queues are updated in time O(lg m) (by two successive deletion and insertion operations).

By Lemma 6.3, the total time for each iteration of the for loop is O(m lg m) + O(m) ·
O(lg m) = O(m lg m). Since there are lg n iterations of the for loop, the total running time of
ComputeNash is O(m lg m lg n), as needed.

6.2 Optimal Pure Assignments

We now establish a relation between optimal pure assignments for a given vector of latency
functions and pure Nash equilibria for a modified vector of latency functions. More specifically,
given a vector Φ of latency functions, construct the vector Ψ of latency functions by defining
for each link l ∈ [m], the latency function ψl : [n] → R as

ψl(x) = xφl(x)− (x− 1)φl(x− 1)

for each x ∈ [n]. We prove:
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Proposition 6.4 Consider the case of identical users. Assume that for each link l ∈ [m], the
function xφl(x) is convex. Then, a pure assignment L is optimal for the instance 〈n,Φ〉 if and
only if L is a Nash equilibrium for the instance 〈n,Ψ〉.

Proof: Clearly, L is a Nash equilibrium for the instance 〈n,Ψ〉 if and only if for all pairs of
links j, k ∈ [m],

ψj(δj(L)) ≤ ψk(δk(L) + 1) ;

or, by the definition of the latency function vector Ψ,

δj(L)φj(δj(L))− (δj(L)− 1)φj(δj(L)− 1) ≤ (δk(L) + 1) φk(δk(L) + 1)− δk(L)φk(δk(L))

or

δj(L)φj(δj(L)) + δk(L)φk(δk(L)) ≤ (δj(L)− 1) φj(δj(L)− 1) + (δk(L) + 1)φk(δk(L) + 1) .

By Proposition 5.2, these are necessary and sufficient conditions for the minimization of the sum∑
j∈[m] δj(L)φj(δj(L)) over pure assignments L. Since SCΣ(w,Φ,L) =

∑
j∈[m] δj(L)φj(δj(L)),

these are as well necessary and sufficient conditions for L to be an optimal pure assignment for
the instance 〈n,Φ〉. The proof is now complete.

We remark that Proposition 6.4 transfers [46, Corollary 2.7] from the continuous setting of
the Wardrop model to discrete routing games. Proposition 6.4 immediately implies:

Corollary 6.5 Consider the case of identical users. Assume that for each link l ∈ [m],
the function xφl(x) is convex. Then, an optimal pure assignment can be computed in time
O(m lg m lg n).

7 Computing Best and Worst Pure Nash Equilibria

In this section, we present some complexity results for the computation of best and worst pure
Nash equilibria. More specifically, we will consider the following two decision problems, which
are natural decision versions of corresponding optimization problems defined in [17] for the KP

model:

BEST PURE NE

INSTANCE: An instance 〈w,Φ〉 and a rational number B > 0.
QUESTION: Is there a pure Nash equilibrium L with SCΣ(w,Φ,L) ≤ B?
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WORST PURE NE

INSTANCE: An instance 〈w,Φ〉 and a rational number B > 0.
QUESTION: Is there a pure Nash equilibrium L with SCΣ(w,Φ,L) ≥ B?

We will prove that both these problems are NP-complete even for the case of identical links
with an identity latency function. The proofs will use polynomial time transformations from the
original NP-complete PARTITION problem [28] or its slight variant RESTRICTED PARTITION

that we define below.

PARTITION

INSTANCE: A finite set A of items with |A| ≥ 2, and a size s(a) ∈ N+ for each item
a ∈ A.

QUESTION: Is there a subset A′ ⊆ A such that
∑

a∈A′ s(a) =
∑

a∈A\A′ s(a)?

RESTRICTED PARTITION

INSTANCE: A finite set A of items with |A| ≥ 12, and a size s(a) ∈ N+ for each item
a ∈ A such that s(a) ≤ 1

8

∑
a′∈A s(a′).

QUESTION: Is there a subset A′ ⊆ A such that
∑

a∈A′ s(a) =
∑

a∈A\A′ s(a)?

Clearly, PARTITION reduces trivially to RESTRICTED PARTITION by padding the finite
set A in the instance of PARTITION with ten new items a′ with s(a′) =

∑
a∈A s(a). It is easy

to see that this trivial reduction is parsimonious; since #PARTITION (the counting version of
PARTITION) is #P-complete [47], it follows that #RESTRICTED PARTITION (the counting
version of RESTRICTED PARTITION) is also #P-complete.

We shall also consider the counting versions #BEST PURE NE and #WORST PURE NE of
BEST PURE NE and WORST PURE NE, respectively.

We start by proving:

Theorem 7.1 Consider the case of identical links. Then, BEST PURE NE is NP-complete.

Proof: Clearly, BEST PURE NE ∈ NP. To prove NP-hardness, we employ a polynomial
time transformation from RESTRICTED PARTITION to BEST PURE NE. Given an instance of
RESTRICTED PARTITION, we construct an instance 〈w, 〈m,φ〉〉 of BEST PURE NE as follows:
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• There are n = |A|+ 2 users with

wi =

{
s(ai), 1 ≤ i ≤ |A|P

a∈A s(a)

2 , i ∈ {|A|+ 1, |A|+ 2}

• There are three identical links with identity latency function φ(x) = x.

• B =
( |A|

2 + 2
)∑

a∈A s(a).

Clearly, this is a polynomial time mapping. We prove that it is a transformation from
RESTRICTED PARTITION to BEST PURE NE.

Assume first that the instance of RESTRICTED PARTITION is positive, and consider a
subset A′ ⊆ A such that

∑
a∈A′ s(a) =

∑
a∈A\A′ s(a). Use A′ to define a pure assignment L for

the constructed instance of BEST PURE NE as follows:

• For each item ai ∈ A′, user i is assigned to link 1; for each item ai ∈ A \ A′, user i is
assigned to link 2.

• Users |A|+ 1 and |A|+ 2 are assigned to link 3.

We now prove that L is a (pure) Nash equilibrium for the instance 〈w, 〈m,φ〉〉 of BEST

PURE NE with SC (w, 〈m,φ〉,L) ≤ B. Clearly,

δ1(L)

=
∑

ai∈A′ wi (by definition of L)

=
∑

ai∈A′ s(ai) (by the mapping)

=
∑

a∈A s(a)
2 (since the instance of RESTRICTED PARTITION is positive) ,

and similarly δ2(L) =
∑

a∈A s(a)
2 . On the other hand,

δ3(L)

=
∑

i∈{|A|+1,|A|+2}wi (by the definition of L)

=
∑

i∈{|A|+1,|A|+2}

∑
a∈A s(a)

2 (by the mapping)

=
∑

a∈A s(a) .

Note that each user i ∈ [|A|] is assigned to either link 1 or link 2; thus, ICi(L) = δ1(L) =
δ2(L). So, user i is satisfied in L. Note also that IC|A|+1(L) = δ3(L) = δ1(L) + w|A|+1 =
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δ2(L) + w|A|+1 and similarly IC|A|+2(L) = δ3(L) = δ1(L) + w|A|+2 = δ2(L) + w|A|+2; so users
|A|+ 1 and |A|+ 2 are also satisfied in L, and L is a Nash equilibrium. Clearly,

SCΣ (w, 〈m,φ〉,L) = |A| · δ1(L) + 2 · δ3(L)

= |A| ·
∑

a∈A s(a)
2

+ 2 ·
∑

a∈A

s(a)

=
( |A|

2
+ 2

) ∑

a∈A

s(a)

= B .

So, the instance 〈w, 〈m,φ〉〉 of BEST PURE NE is also positive.
Assume now that the instance of RESTRICTED PARTITION is negative. So, for every

subset A′ ⊆ A,
∑

a∈A′ s(a) 6= ∑
a∈A\A′ s(a). It follows that for every subset A′ ⊆ A, either

∑
a∈A′ s(a) <

∑
a∈A s(a)

2 or
∑

a∈A\A′ s(a) <

∑
a∈A s(a)

2 (but not both).
We now prove that the instance 〈w, 〈m,φ〉〉 of BEST PURE NE is also negative. Consider

any arbitrary (pure) Nash equilibrium L for the instance 〈w, 〈m,φ〉〉. We will prove that
SCΣ (w, 〈m, φ〉,L) > B. We first show a preliminary property of L.

Assume, by way of contradiction, that users |A|+ 1 and |A|+ 2 were assigned to the same
link in L. Say that link were link 3. Then, IC|A|+1(L) ≥ w|A|+1 + w|A|+2 =

∑
a∈A s(a). Denote

as A′ the set of users assigned to link 1; then, δ1(L) =
∑

a∈A′ s(a). Assume, without loss of

generality, that
∑

a∈A′ s(a) <

∑
a∈A s(a)

2 . Then,

IC(|A|+1)1(L)

=
∑

a∈A′ s(a) + w|A|+1

=
∑

a∈A′ s(a) +
∑

a∈A s(a)
2 (by the mapping)

<

∑
a∈A s(a)

2 +
∑

a∈A s(a)
2 (by assumption)

=
∑

a∈A s(a)

≤ IC|A|+1(L) ,

so that user |A|+1 is not satisfied in L; this contradicts the fact that L is a Nash equilibrium.
It follows that users |A|+ 1 and |A|+ 2 are assigned to different links in L.

Assume, without loss of generality, that δ1(L) ≥ δ2(L) ≥ δ3(L). Clearly,

δ1(L) + δ2(L) + δ3(L) =
∑

i∈[n]

wi

= 2
∑

a∈A

s(a) ,
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which implies that

δ1(L) ≥ 2
3

∑

a∈A

s(a) .

Now, since w|A|+1 = w|A|+2 =
∑

a∈A s(a)
2 and users |A|+1 and |A|+2 are assigned to different

links, it follows that there is a user i ∈ [|A|] assigned to link 1; by definition of RESTRICTED

PARTITION, it follows that wi ≤ 1
8

∑
a∈A s(a). Since L is a Nash equilibrium, user i is satisfied

in L, so that

ICi(L) = δ1(L)

≤ δ3(L) + wi

≤ δ3(L) +
1
8

∑

a∈A

s(a) .

Hence,

δ3(L)

≥ δ1(L)− 1
8

∑
a∈A s(a)

=
(
2− 1

8

) ∑
a∈A s(a)− δ2(L)− δ3(L) (since δ1(L) + δ2(L) + δ3(L) = 2

∑
a∈A s(a))

≥ 15
8

∑
a∈A s(a)− δ1(L)− δ3(L) (since δ1(L) ≥ δ2(L))

≥ 15
8

∑
a∈A s(a)− δ3(L)− 1

8

∑
a∈A s(a)− δ3(L) (since δ1(L) ≤ δ3(L) + 1

8

∑
a∈A s(a)) ,

which implies that

δ3(L) ≥ 7
12

∑

a∈A

s(a) .

Since there are |A|+ 2 users and δ1(L) ≥ δ2(L) ≥ δ3(L), it follows from the definition of Social
Cost that

SCΣ (w, 〈m,φ〉,L)

≥ (|A|+ 2) · δ3(L)

≥ (|A|+ 2) · 7
12

∑
a∈A s(a)

>

(
|A|
2 + 2

)
·∑a∈A s(a) (since |A| ≥ 12)

= B .

So, the instance 〈w, 〈m,φ〉〉 is also negative. This completes the proof.

Note that the reduction from RESTRICTED PARTITION employed in the proof of Theo-
rem 7.1 is parsimonious; since #RESTRICTED PARTITION is #P-complete, it immediately
follows:
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Corollary 7.2 Consider the case of identical links. Then #BEST PURE NE is #P-complete.

We continue to prove:

Theorem 7.3 Consider the case of identical links. Then, WORST PURE NE is NP-complete.

Proof: Clearly, WORST PURE NE ∈ NP. To prove NP-hardness, we employ a polynomial
time transformation from PARTITION to WORST PURE NE. Given an instance of PARTITION,
we construct an instance 〈w, 〈m,φ〉〉 of WORST PURE NE as follows:

• There are 3|A| users with

wi =





s(ai), i ∈ [|A|]
1

4|A| , |A|+ 1 ≤ i ≤ 3|A|

• There are two identical links with identity latency function φ(x) = x.

• B = 3|A|
(∑

a∈A s(a)
2 + 1

4

)
.

Clearly, this is a polynomial time mapping. We prove that it is a transformation from
PARTITION to WORST PURE NE.

Assume first that the instance of PARTITION is positive, and consider a subset A′ ⊆ A such
that

∑
a∈A′ s(a) =

∑
a∈A\A′ s(a). Use A′ to define a pure assignment L for the constructed

instance 〈w, 〈m,φ〉〉 of WORST PURE NE as follows:

• For each item ai ∈ A′, user i is assigned to link 1; for each item ai ∈ A \ A′, user i is
assigned to link 2.

• Each user i with |A|+1 ≤ i ≤ 2|A| is assigned to link 1; each user i with 2|A|+1 ≤ i ≤ 3|A|
is assigned to link 2.

We now prove that L is a Nash equilibrium for the instance 〈w, 〈m,φ〉〉 of WORST PURE NE

with SCΣ (w, 〈m,φ〉,L) ≥ B. Clearly,

δ1(L)

=
∑

a∈A′ s(a) +
∑
|A|+1≤i≤2|A|

1
4|A| (by definition of L and the mapping)

=
∑

a∈A′ s(a) + 1
4

=
∑

a∈A s(a)
2 + 1

4 (by choice of A‘) ,
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and similarly

δ2(L) =
∑

a∈A s(a)
2

+
1
4

.

Since δ1(L) = δ2(L), all users are satisfied in L, and L is a Nash equilibrium. Since 3|A| users
are assigned to links and δ1(L) = δ2(L), it follows that

SCΣ (w, 〈m,φ〉,L) = 3|A| · δ1(L)

= 3|A| ·
(∑

a∈A s(a)
2

+
1
4

)

= B .

So, the instance 〈w, 〈m,φ〉〉 of WORST PURE NE is also positive.
Assume now that the instance of PARTITION is negative. So, for every subset A′ ⊆ A,∑

a∈A′ s(a) 6= ∑
a∈A\A′ s(a). It follows that for every subset A′ ⊆ A, either

∑
a∈A′ s(a) <∑

a∈A s(a)
2 or

∑
a∈A\A′ s(a) <

∑
a∈A s(a)

2 (but not both).
We now prove that the instance 〈w, 〈m,φ〉〉 of WORST PURE NE is also negative. Con-

sider any arbitrary pure Nash equilibrium L for the instance 〈w, 〈m,φ〉〉. We will prove that
SCΣ (w, 〈m, φ〉,L) < B.

Denote as A′ the set of users assigned to link 1. So, A\A′ is the set of users assigned to link

2. Assume, without loss of generality, that
∑

a∈A′ s(a) <

∑
a∈A s(a)

2 . Then,
∑

a∈A\A′ s(a) >∑
a∈A s(a)

2 , so that
∑

a∈A\A′ s(a)−∑
a∈A′ s(a) ≥ 1. We first show a preliminary property of L.

Assume, by way of contradiction, that some user i with |A| + 1 ≤ i ≤ 3|A| is assigned to
link 2. Then,

ICk(L)

= δ2(L)

≥ ∑
a∈A\A′ s(a) + wi

≥ ∑
a∈A′ s(a) + 1 + wi

>
∑

a∈A′ s(a) +
∑
|A|+1≤k≤3|A| s(a) + wi (since

∑
|A|+1≤k≤3|A| s(a) = 1

2)

≥ δ1(L) + wi

= ICi1(L) ,

which implies that user i is not satisfied in L; this contradicts the fact that L is a Nash
equilibrium. It follows that all users i with |A| + 1 ≤ i ≤ 3|A| are assigned to link 1 in L, so
that

δ1(L)

=
∑

a∈A′ s(a) + 2|A| 1
4|A| (by the mapping)

=
∑

a∈A′ s(a) + 1
2 .
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For each link j ∈ [2], denote as nj the number of users i with ai ∈ A that are assigned to
link j in L. Clearly,

∑
j∈[2] nj = |A|. So, it follows from the definition of Social Cost that

SC (w, 〈m,φ〉,L)

= (n1 + 2|A|)δ1(L) + n2δ2(L)

= (n1 + 2|A|)
(∑

a∈A′ s(a) + 1
2

)
+ n2

(∑
a∈A\A′ s(a)

)

< 2 |A|
(∑

a∈A′ s(a) + 1
2

)
+ (n1 + n2)

(∑
a∈A\A′ s(a)

)
(since

∑
a∈A′ s(a) + 1

2 <
∑

a∈A\A′ s(a))

= 2 |A|
(∑

a∈A′ s(a) + 1
2

)
+ |A|

(∑
a∈A\A′ s(a)

)

= |A|
(∑

a∈A′ s(a) +
∑

a∈A\A′ s(a)
)

+ |A|∑a∈A′ s(a) + |A|
= |A|∑a∈A s(a) + |A|∑a∈A′ s(a) + |A|

≤ |A|∑a∈A s(a) + |A|
(∑

a∈A s(a)
2 − 1

2

)
+ |A| (since

∑
a∈A′ s(a) ≤

∑
a∈A s(a)

2 − 1
2)

= 3|A|
(∑

a∈A s(a)
2 + 1

6

)

< B .

So, the instance 〈w, 〈m,φ〉〉 of WORST PURE NE is also negative. This completes the proof.

Note that the reduction from PARTITION employed in the proof of Theorem 7.3 is parsi-
monious; since #PARTITION is #P-complete [47], it immediately follows:

Corollary 7.4 Consider the case of identical links. Then #WORST PURE NE is #P-complete.

8 Epilogue

We have introduced discrete routing games combining features from two of the most prominent
models for non-cooperative routing, namely the KP model [30] and the Wardrop model [50].

• We presented a thorough analysis of fully mixed Nash equilibria for discrete routing games.
In particular, we proved that, for the case of identical users, the Social Cost of any Nash
equilibrium is bounded by the Social Cost of the fully mixed Nash equilibrium. Moreover,
we derived a characterization of instances admitting a fully mixed Nash equilibrium, and
we proved that a fully mixed Nash equilibrium may exist only uniquely.

• We presented upper bounds on the Price of Anarchy for the case of identical users.

• Still for the case of identical users, we showed that a pure Nash equilibrium can be
computed efficiently. For the case of arbitrary users, we proved that computing the best
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or the worst pure Nash equilibrium is already NP-complete even for identical links with
an identity latency function.

We conclude with a collection of interesting open problems about discrete routing games.

1. Extend the results about uniqueness and existence of the fully mixed Nash equilibrium
(namely, Theorems 4.6 and 4.10) from the case of identical users to the case of arbitrary
users. In particular, what are the analogs of dead links and special links for such extension?

2. Prove or disprove the FMNE Conjecture for discrete routing games.

3. Obtain bounds on the Price of Anarchy for the case of arbitrary users and identical links
with a monomial latency function. (This will extend Theorem 5.1.)

4. Obtain bounds on the Price of Anarchy for the case of arbitrary users and arbitrary links
with a polynomial latency function. (This will extend Corollary 5.4.)

5. Is the fast algorithm we presented in Section 6 to compute a pure Nash equilibrium (for
the case case of identical users and arbitrary links) optimal? We note that there are no
known lower bounds for this problem.

6. Is there a PTAS for either BEST PURE NE or WORST PURE NE? We know that there
is a PTAS to compute a best pure Nash equilibrium for the KP model [14]. (This PTAS

employs known approximation algorithms to compute an optimal pure assignment [27];
the so called Nashification technique is then applied on that to transform it in polynomial
time into a pure Nash equilibrium with no increased Social Cost.)
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