
The Impact of Randomization in Smoothing Networks∗

Marios Mavronicolas† Thomas Sauerwald‡

(October 11, 2008)

∗A preliminary version of this work appeared in the Proceedings of the 27th Annual ACM Symposium on

Principles of Distributed Computing, pp. 345–354, August 2008. This work has been partially supported by

the IST Program of the European Union under contract number 15964 (AEOLUS) and by the German Science

Foundation (DFG) Research Training Group GK-693 of the Paderborn Institute for Scientific Computation

(PaSCo).
†Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus. Part of the work of

this author was done while visiting the Faculty of Computer Science, Electrical Engineering and Mathematics,

University of Paderborn. Email mavronic@cs.ucy.ac.cy
‡International Computer Science Institute, 1947 Center Street, Suite 600 Berkeley, CA 94704, USA. Part of the

work of this author was done while at the Faculty of Computer Science, Electrical Engineering and Mathematics,

University of Paderborn, and while visiting the Department of Computer Science, University of Cyprus. Email

sauerwal@upb.de

Abstract

We revisit randomized smoothing networks [13], which are made up of balancers and
wires. We assume that balancers are oriented independently and uniformly at random.
Tokens arrive arbitrarily on w input wires and propagate asynchronously through the net-
work; each token is served on the output wire it arrives at. The smoothness is the maximum
discrepancy among the numbers of tokens arriving at the w output wires. We present a
collection of lower and upper bounds on smoothness, which are to some extent surprising:

• The smoothness of a single block network is lg lg w+Θ(1) (with high probability), where
the additive constant is between −2 and 3. This tight bound improves vastly over the
upper bound of O(

√
lg w) from [13], and it essentially settles our understanding of the

smoothing properties of the block network.

• Most significantly, the smoothness of the cascade of two block networks is no more than
17 (with high probability); this is the first known randomized network with so small
depth (2 lg w) and so good (constant) smoothness. The proof introduces some combi-
natorial and probabilistic structures and techniques which may be further applicable;
the result demonstrates the full power of randomization in smoothing networks.

• There is no randomized 1-smoothing network of width w and depth d that achieves 1-
smoothness with probability better than d

w − 1 . In view of the deterministic, Θ(lg w)-
depth, 1-smoothing network in [18], this result implies the first separation between
deterministic and randomized smoothing networks.

These results demonstrate an unexpected limitation on the power of randomization for
smoothing networks: although it yields constant smoothness using small depth, going down
to smoothness of 1 requires linear depth.

Keywords: Smoothing metworks, balancing networks, randomization.

2

1 Introduction

1.1 Motivation and Framework

A smoothing network [5] is a distributed data structure which receives tokens issued arbitrarily
by concurrent processes at w input wires and routes them asynchronously through a network to
w output wires. The network consists of balancers and wires. A balancer is oriented either top

or bottom; the first token through the balancer will be forwarded to its top or bottom output
wire, respectively, and subsequent tokens will alternate. Each token represents a request by a
client for a unit service provided by the server residing on the output wire the token arrives
at. Tokens are dispersed through the network, thereby reducing contention (cf. [5, 10]). A
small-depth smoothing network has depth polylogarithmic in w, thereby reducing latency.

The routing of tokens through the network must ensure that all servers receive approxi-
mately the same number of tokens, no matter how unbalanced the arrival of tokens on input
wires is. The smoothness of the network is the maximum discrepancy among the numbers of to-
kens arriving at different output wires; a γ-smoothing network has smoothness γ. Small-depth
smoothing networks with low smoothness are attractive for multiprocessor coordination and
load balancing applications where low-contention and small-latency are required; these include
producers-consumers [12, Section 1.3] and distributed numerical computations [7].

We only require randomized initialization [2, 13], where each balancer is oriented indepen-
dently and uniformly at random in some initialization phase. The resulting networks were
coined as randomized smoothing networks [2, 13]. Randomized initialization is distinguished
from arbitrary initialization [14], where each balancer is oriented arbitrarily, while both are
local. Local initialization withdraws the advantage of global consistency offered by global ini-
tialization [1, 5, 8, 16, 17, 18], where every balancer must be oriented in a certain way; however,
it offers fault-tolerance against crashes, resets or replacements of balancers (cf. [22]).

Together with counting networks [5], smoothing networks have been studied quite exten-
sively since their introduction in the seminal paper of Aspnes et al. [5]. Since early on, it has
been a major challenge to construct small-depth smoothing networks with small smoothness
(and counting networks) (cf. [8, 17, 18]). In this work, we report some progress on this challenge.

1.2 State-of-the-Art

Aspnes et al. [5, Theorems 3.6 and 4.4] presented the first counting (hence, 1-smoothing) net-
works with depth Θ(lg2 w); those were isomorphic to the bitonic sorting network due to Batcher
[6] and the periodic sorting network due to Dowd et al. [9], respectively, with comparators re-
placed by balancers. These networks require global initialization.

3

Already in 1992, Klugerman and Plaxton [18] presented an elaborate random construction
for an asymptotically efficient, Θ(lg w)-depth 1-smoothing network; the construction was later
derandomized by Klugerman [17]. Unfortunately, their 1-smoothing network is impractical
since it contains the AKS (sorting) network [3] due to Ajtai, Komlos and Szemeredi [3], which
inherits huge constants∗; moreover, their network requires global initialization.

Shortly after the work of Klugerman and Plaxton [17, 18], Aiello et al. [2] presented an
elegant construction for a (partially) randomized 2-smoothing network, called r-butterfly, with
depth lg w+o(lg w) and no reliance on the AKS (sorting) network; however, global initialization
is still required for some of the balancers in the r-butterfly.

More than a decade later, Herlihy and Tirthapura [13] considered the randomized block
network [5, 9]. This is a very simple network of depth lg w, which has been used in advanced
constructions; for example, the periodic network is the cascade of lg w blocks [5, 9]. An upper
bound of 2.36

√
lg w (with high probability) on smoothness was shown in [13]; this bound is

trivially inherited to the bitonic network [5, 6] and the periodic network [5, 9]. This upper
bound improved over the smoothness of lg w known before for simple constructions with global
initialization (such as the bitonic merger [16], the butterfly [17, 18]), and for the block network
itself with (local) non-deterministic initialization [14].

We summarize all state-of-the-art results (together with the results presented in this article)
on smoothing networks in Table 1.

1.3 Contribution and Significance

Herlihy and Tirthapura formulated in [13, Section 5] the following three interesting Open Prob-
lems about randomized smoothing networks, which we quote:

(1) Our bounds for the smoothness of the block network do not make use of structure that
may be present in the input sequence. Can we obtain better bounds if the input is already
fairly smooth?

(2) Can we get better bounds on the output smoothness of the randomized periodic or bitonic
networks?

(3) How tight is the O(
√

lg w) upper bound for the block network? Can we get a matching
lower bound?

∗Knuth comments on the (im)practicality of the AKS sorting network with n inputs and n outputs as fol-

lows [19, p. 228]: “The networks they [Ajtai et al. [3]] constructed are not of practical interest, since many

comparators were introduced just to save a factor of lg n. Batcher’s method is much better, unless n exceeds the

total memory capacity of all computers on earth.”

4

Network Depth Type GI Smoothness With Probability Reference

Bitonic Θ(lg2 w) D � 1 Not applicable [5, Theorem 3.6]
Periodic Θ(lg2 w) D � 1 Not applicable [5, Theorem 4.4]
KP Θ(lg w) D � 1 Not applicable [18, Theorem 5.2]
r-Butterfly lg w(1 + o(1)) D/R � 2 ≥ 1 − 1

superpoly(w) [2, Theorem 3.1]

Bitonic merger lg w D � lg w Not applicable [16, Theorem 4.5]
Butterfly lg w D � lg w Not applicable [18, Corollary 4.1.1]
Block lg w D X lg w Not applicable [14, Theorems 3 & 4]
Block lg w R X 2.36

√
lg w ≥ 1 − 4

w [13, Theorem 10]
Block lg w R X �lg lg w� + 3 ≥ 1 − 4

w3 Theorem 5.1

Block lg w R X �lg lg w� − 2 ≤ 2 exp

(
−4

√
w

lg w

)
Theorem 5.3

Two Blocks 2 lg w R X 17 ≥ 1 − 2 · 4 lg lg w − 39
w Theorem 6.7

Any d R X 1 ≤ d
w − 1 Theorem 7.1

Table 1: Summary of known bounds on the smoothness of smoothing networks. D and R stand
for deterministic and randomized balancers, respectively; note that a deterministic balancer
may result from either global or arbitrary initialization. D/R stands for a combination of
deterministic and randomized balancers. GI stands for global initialization; the corresponding
column indicates whether GI is required or not. KP stands for Klugerman and Plaxton [17, 18].
We use superpoly(w) to denote a superpolynomial function in w. Note that probabilities are
not applicable in the case of deterministic balancers.

In this work, we shall provide answers to all three of these open problems.

1.3.1 One Block

We first prove that the randomized block network is (�lg lg w�+ 3)-smoothing with probability
at least 1 − 4

w3 (Theorem 5.1). Our analysis drastically sharpens the elementary arguments
developed by Herlihy and Tirthapura [13] for establishing their corresponding O(

√
lg w) upper

bound. This exponential improvement is achieved through a tighter analysis of the same random
variables. This result provides a partial answer to Open Problem (3) of Herlihy and Tirthapura
from [13, Section 5].

For the proof, we consider a partition of the block into two groups of consecutive layers,
and we analyze separately the contribution of each group to smoothness; the leftmost group
consists of lg w − �lg lg w� layers. We consider a certain sum of independent random variables,
which was bounded directly by using a Hoeffding Bound [15] in [13]; we now split this sum
into two parts, which correspond to the two groups from the partition. Still using a Hoeffding

5

Bound, the first part is bounded by lg lg w +Θ(1); the second part is bounded by a constant by
simply summing up the maximum possible absolute values of the involved random variables.

We continue to establish a matching lower bound (up to a small additive constant) on
the smoothness of the block network. We prove that the randomized block network is only a

(�lg lg w� − 2)-smoothing network with probability at most 2 exp

(
−4

√
w

lg w

)
(Theorem 5.3); so,

our analysis is essentially tight. This lower bound completes the answer to Open Problem (3)

of Herlihy and Tirthapura from [13, Section 5].

For the proof of Theorem 5.3, we partition again the block network into two groups of
consecutive layers. We determine a fixed-point input (cf. [14]) for the first group; we prove

that (with probability at most 2 exp

(
−4

√
w

lg w

)
), this input achieves smoothness no better than

�lg lg w� − 1 when traversing the second group.

Although there still remains a small gap between our upper and lower bounds on smoothness
for a single block, we feel that these bounds essentially settle our understanding of the smoothing
properties of the randomized block network with arbitrary inputs.

1.3.2 Two Blocks

As our main result, we provide a simple, Θ(lg w)-depth, randomized O(1)-smoothing network.
Specifically, we show that the cascade of two block networks is 17-smoothing with probability at
least 1 − 2 · 4 lg lg w − 39

w (Theorem 6.7). This upper bound identifies the first Θ(lg w)-depth,
randomized smoothing network which simultaneously (i) achieves constant smoothness, (ii)
does not use the AKS network [3] (and, hence, it need not be inpractical), and (iii) does not
require global initialization.

This upper bound provides an answer to Open Problem (1) of Herlihy and Tirthapura
from [13]: When the input to a block network has the smoothing properties of a block’s output,
then the corresponding output is 17-smooth (with high probability).

For the proof, we consider a partition of the second cascaded block into no more than⌈
1
2 lg lg w

⌉
− 6 groups of consecutive layers (with an increasing number of layers per group).

Each group is found to contribute an amplification of 1 to smoothness (while decreasing the
corresponding probability). So, invoking Theorem 5.1 to the first cascaded block, implies a
smoothness of 17 for the cascade. To establish the amplification, we employ some very deli-
cate combinatorial and probabilistic structures and techniques; we believe that these will be
instrumental elsewhere — for example, in showing that a small number of cascaded randomized
blocks is 2-smoothing (with high probability), and we conjecture this to be the case:

6

Conjecture 1.1 The cascade of a constant number of randomized block networks is a 2-
smoothing network (with high probability).

Since the cascade of two blocks is contained in the periodic network [5, 9], it follows that
the randomized periodic network is a 17-smoothing network (with high probability) (Corol-
lary 6.10). This settles Open Problem (2) of Herlihy and Tirthapura from [13].

1.3.3 Improbability of 1-Smoothing

We conclude with the first improbability result about randomized smoothing networks [2, 13].
We show that there is no randomized network of width w and depth d that achieves smoothness
of 1 with probability greater than d

w − 1 (Theorem 7.1).

For the proof, we follow the probabilistic method [4]. We establish that on a certain random
input, the output of a randomized network is 1-smooth with probability at most d

w − 1. This
implies the existence of a deterministic input with this property, which settles the claim.

Theorem 7.1 is bad news: Any of the common (randomized) networks of depth O(lg2 w)
(such as the bitonic [6, 5] and periodic networks [5, 9]) is 1-smoothing with extremely small
probability. Even more so, only randomized smoothing networks of depth (no less than) linear
in w may guarantee a smoothness of 1 with constant probability; hence, it is impossible to
obtain a small-depth, randomized 1-smoothing network with constant probability (Corollary
7.4).

Recall the deterministic 1-smoothing network from [17, 18], which relies on the AKS network
to achieve depth Θ(lg w). So, Theorem 7.1 reveals the first separation between deterministic
and randomized (1-)smoothing networks: There is a deterministic 1-smoothing network of depth
Θ(lg w), but no such randomized network (with high probability).

Theorems 6.7 and 7.1 demonstrate together a somehow unexpected limit on the power of
randomization in smoothing networks: There is some threshold c between 1 and 16 such that
there are small-depth, randomized (c + 1)-smoothing networks (with high probability), but no
such c-smoothing networks. (Conjecture 1.1 postulates that c = 1.)

1.4 Road Map

The rest of this paper is organized as follows. Section 2 collects together some preliminary
facts and notation. Smoothing networks are reviewed in Section 3. Section 4 revisits the block
network (and some relatives). Sections 5 and 6 treat one block and the cascade of two blocks,
respectively. The improbability result is presented in Section 7. We conclude, in Section 8,
with a discussion of our results and some open problems.

7

2 Notation and Preliminaries

2.1 Notation

All logarithms are to the base 2. For an integer i ≥ 0, the binary representation of i is a
binary string i1i2 . . . ir with r ≥ �lg i� such that

∑r
k=1 2r−kik = i. We shall often identify the

integer i with the binary representation i1i2 . . . ir and write i = i1i2 . . . ir; for each index � with
1 ≤ � ≤ r, i(�) denotes the binary string i1 . . . i�−1i�, i�+1ir where bit � has been reversed. For a
binary string i, denote as 1(i) the number of occurrences of 1 in i. For an integer i ≥ 1, denote
[i] = {0, . . . , i − 1}. For a number r ∈ R, denote exp(r) = er.

An integer vector 〈x0, . . . , xw−1〉 with w ≥ 2 will be denoted as x; the index of each entry
will be represented as a binary string. For a vector x, denote

∑
x =

∑
i∈[w] xi; for an index set

I ⊆ [w], denote
∑

I x =
∑

i∈[I] xi. The odd-characteristic function of the vector x, denoted as
Odd(x), is given by Odd(x) = 1 if

∑
x =

∑
i∈[w] xi is odd, and 0 otherwise. For a vector x with

w ≥ 4 entries, the A-cochain (resp., B-cochain) of x, denoted as xA (resp., xB) consists of
all entries of x whose indices have least significant bits 00 or 11 (resp., 01 or 10).

We shall use P[E] to denote the probability of the event E in some probability space. We
shall denote the complement of event E as ¬E . Say that the events E1 and E2 are conditionally
independent given the event E if P [E1 ∧ E2 | E] = P [E1 | E] · P [E2 | E] (cf. [11, Section 21.5]).
All random variables considered in this paper will be discrete and have a finite range. For a
random variable v, we shall denote as E [v] the expectation of v (according to P); Range(v) will
denote the range of v and |Range(v)| will denote its size.

2.2 Smooth and Concentrated Vectors

Fix a number γ ≥ 1. Say that the vector x is γ-smooth if for each pair of distinct entries xi

and xj with i, j ∈ [w], |xi − xj| ≤ γ; so, all entries are within γ of each other. Say that x is

ceiling γ-concentrated if for each entry xi with i ∈ [w], xi ≤
⌈∑

x
w

⌉
+ γ; so, the entry xi

exceeds the ceiling average

⌈∑
x

w

⌉
by no more than γ. Say that x is floor γ-concentrated

if for each entry xi with i ∈ [w], xi ≥
⌊∑

x
w

⌋
− γ; so, the entry xi is exceeded by the floor

average

⌊∑
x

w

⌋
by no more than γ. Say that x is ceilingfloor γ-concentrated if it is both

ceiling γ-concentrated and floor γ-concentrated. Finally, say that x is γ-concentrated if for

each entry xi with i ∈ [w],
∣∣∣∣xi −

∑
x

w

∣∣∣∣ < γ; so, the entry xi is within less than γ of the average∑
x

w .

8

In the next two simple claims, we shall observe that (ceilingfloor) concentration implies
smoothness. We first prove:

Lemma 2.1 Assume that x is ceilingfloor γ-concentrated. Then, x is (2 γ + 1)-smooth.

Proof: Fix an arbitrary pair of entries xj and xk with j, k ∈ [w]. Since x is ceilingfloor γ-

concentrated,
⌊∑

x
w

⌋
− γ ≤ xj ≤

⌈∑
x

w

⌉
+ γ and

⌊∑
x

w

⌋
− γ ≤ xk ≤

⌈∑
x

w

⌉
+ γ. It follows

that

|xj − xk| =
∣∣∣∣(xj −

⌈∑
x

w

⌉)
+
(⌊∑

x
w

⌋
− xk

)
+
(⌈∑

x
w

⌉
−
⌊∑

x
w

⌋)∣∣∣∣
≤ |2 γ + 1|
= 2 γ + 1 ,

as needed.

We continue to prove:

Lemma 2.2 Assume that x is γ-concentrated, where 2 γ is an integer.. Then, x is (2 γ − 1)-
smooth.

Proof: Fix an arbitrary pair of entries xj and xk with j, k ∈ [w]. Since x is γ-concentrated,∑
x

w − γ < xj <

∑
x

w + γ and
∑

x
w − γ < xk <

∑
x

w + γ. By the triangle inequality,

|xj − xk| =
∣∣∣∣(xj −

∑
x

w

)
+
(∑

x
w

− xk

)∣∣∣∣
≤

∣∣∣∣xj −
∑

x
w

∣∣∣∣ +
∣∣∣∣∑x

w
− xk

∣∣∣∣
< 2 γ .

Since 2γ is an integer, it follows that

|xj − xk| ≤ 2 γ − 1 ,

as needed.

2.3 Probabilistic Tools and Preliminaries

In some later proofs, we shall use extensively the elementary Union Bound and the Hoeffding

Bound [15]:

9

Lemma 2.3 (Union Bound) For a finite sequence of events E1, E2, . . .,

P

⎡⎣∨
i≥1

Ei

⎤⎦ ≤
∑
i≥1

P [Ei] .

Lemma 2.4 (Hoeffding Bound) Consider a collection of independent random variables vi ∈
[ai, bi] with i ∈ [n]. Then, for any number δ ≥ 0,

P

[∣∣∣∣ n∑
i=1

vi − E

[
n∑

i=1

vi

] ∣∣∣∣ ≥ δ

]
≤ 2 · exp

(
− 2δ2∑n

i=1(bi − ai)2

)
.

The next observation relates the probability of the smoothing property for a random vector
to the ones of the ceiling and floor concentration properties for the same vector.

Lemma 2.5 Consider a random vector x such that P [x is ceiling γ-concentrated] ≥ 1− δ and
P [x is floor γ-concentrated] ≥ 1 − δ Then,

P [x is (2 γ + 1)-smooth] ≥ 1 − 2 δ ,

Proof: By Lemma 2.1 and the Union Bound (Lemma 2.3),

P [x is (2γ + 1)-smooth] ≥ P [x is ceilingfloor γ-concentrated]

= 1 − P [x is not ceilingfloor γ-concentrated]

= 1 − P [x is not ceiling γ-concentrated or x is not floor γ-concentrated]

≥ 1 − P [x is not ceiling γ-concentrated] − P [x is not floor γ-concentrated]

= −1 + P [x is ceiling γ-concentrated] + P [x is floor γ-concentrated]

≥ −1 + (1 − δ) + (1 − δ)

= 1 − 2 δ ,

as needed.

We conclude with an elementary technical claim, which will be used in a later proof.

Claim 2.6 For a pair of random variables v1 and v2, and a pair of numbers δ1 and δ2,

P [v1 + v2 ≥ δ1 + δ2] ≤ P [v1 ≥ δ1] + P [v2 > δ2] .

Proof: Clearly, the event (v1 < δ1) ∧ (v2 ≤ δ2) implies the event (v1 + v2 < δ1 + δ2).
By contrapositive, the event ¬(v1 + v2 < δ1 + δ2) = (v1 + v2 ≥ δ1 + δ2) implies the event
¬ ((v1 < δ1) ∧ (v2 ≤ δ2)) = ¬(v1 < δ1) ∨ ¬(v2 ≤ δ2) = (v1 ≥ δ1) ∨ (v2 > δ2). Hence, by the
Union Bound (Lemma 2.3),

P [v1 + v2 ≥ δ1 + δ2] ≤ P [(v1 ≥ δ1) ∨ (v2 > δ2)]

≤ P [v1 ≥ δ1] + P [v2 > δ2] ,

as needed.

10

3 Smoothing Networks

A smoothing network [5] is a special case of a balancing network [5], which is a collection
of interconnected balancers. Balancers and balancing networks are considered in Sections 3.1
and 3.2, respectively. Sections 3.3 and 3.4 consider deterministic and randomized balancing
networks, respectively. Most definitions are given in the style of [13, 14].

3.1 Balancers

A balancer [5] is an asynchronous switch b with two input wires and two output wires,
denoted as i1(b) and i2(b) with i1(b) < i2(b); we shall often identify b with the set {i1(b), i2(b)}.
An initialization takes places in some preprocessing phase; the initialization simply chooses
an orientation for the balancer b, either top or bottom. If the balancer is oriented top (resp.
bottom), then the output wire i1(b) is labeled top (resp., top), the output wire i2(b) is labeled
bottom (resp., top), and we write i2(b) b→ i1(b) (resp., i1(b) b→ i2(b)).

A stream of tokens enters a balancer via its two input wires; each time a new token enters
on an input wire, it is directed to the output wire currently labeled top; at the same time,
the orientation of the balancer is reversed (from top to bottom and vice versa). This ensures
that the total number of tokens is (almost) evenly balanced among the two output wires. A
balancer satisfies a safety and a liveness condition [5]: it never creates or ”swallows” tokens,
respectively. Henceforth, we shall focus on finite streams of entering tokens; then, the liveness
property implies that the balancer reaches a quiescent state [5] where all entering tokens have
exited. Henceforth, we shall only consider a balancer in a quiescent state.

For a balancer b (in a quiescent state), denote as x1 and x2 the number of tokens entering
on the input wires i1(b) and i2(b), of b, respectively; x1 and x2 make the input vector xb =
〈x1, x2〉. Denote as y1 and y2 the number of tokens exiting through the output wires i1(b) and
i2(b) of b, respectively; y1 and y2 make the output vector yb = 〈y1, y2〉. We shall sometimes
write x1(b), x2(b), y1(b) and y2(b) for x1, x2, y1 and y2, respectively, when reference to b is
necessary; write x(b) to denote either x1(b) or x2(b). If b is oriented top (resp., bottom), then
y1 =

⌈
x1 + x2

2

⌉
and y2 =

⌊
x1 + x2

2

⌋
(resp., y1 =

⌊
x1 + x2

2

⌋
and y2 =

⌈
x1 + x2

2

⌉
). Note that

in all cases, |y2 − y1| ≤ 1; so, the output vector of a balancer is 1-smooth.

3.2 Balancing Networks

A balancing network [5], or network for short, is an acyclic network of balancers, where
output wires of balancers are connected to input wires of (other) balancers. The input wires

0, 1, . . . , w − 1 may not be connected from any output wires; the output wires may not be

11

2

3

2

1

2

2

2

2

2

3

2

1

2

3

2

1

Figure 1: Two different orientations of the same balancing network. Horizontal segments
represent the wires and vertical segments represent the balancers. Input and output wires
appear on the left and right, respectively. The numbers next to the input and output wires
denote the numbers of tokens on the input and output wires, respectively.

connected to any input wires. We shall consider a balancing network Bw with the same number
w of input and output wires, called the network’s width. The balancer set of the network
Bw, denoted as Bw, is the set of all balancers in Bw. The size of the balancing network Bw,
denoted as size(Bw), is the number of its balancers; so, size(Bw) = |Bw|. For an integer κ ≥ 1,
Bκ

w denotes the sequential cascade of κ copies of the network Bw.

3.2.1 Initializations and Orientations

We make a distinction on the way the balancers are initialized; in all cases, an initialization
determines an orientation for each balancer in the network. In global initialization [5], each
balancer must be oriented in some certain way. In local initialization [2, 13, 14], each balancer
is oriented locally and independently of other balancers (cf. Section 3.4).

An orientation or for a network is a collection of orientations, one for each of its balancers;
see Figure 1 for an illustration. There are 2size(Bw) orientations for the network Bw. In the
standard orientation, all balancers are oriented top.

3.2.2 Layers and Paths

The acyclicity ensures that each balancer can be assigned a unique layer : the length of the
longest path from an input wire to the balancer; the depth d(Bw) is the maximum layer. We
shall often identify a layer with a corresponding set of balancers (and sometimes with the set
of output wires of balancers in the layer). For a wire i ∈ [w] and a layer � with 1 ≤ � ≤ d(Bw),
bi(�) denotes the balancer b in layer � such that i ∈ b (or ⊥ if there is no such balancer). For an
even integer w ≥ 2, a layer � is complete if it has w

2 balancers; the network Bw is complete

12

if all layers are complete. An example of a complete layer is the ladder layer Lw, where there
is a balancer connecting each wire i ∈ {0, 1}lg w to wire i(1); so, d(Lw) = 1.

Fix an integer � with 1 ≤ � ≤ d(Bw). The prefix network Pref�(Bw) consists of the
� leftmost layers 1, . . . , � of the network Bw; the suffix network Suff�(Bw) consists of its �

rightmost layers d(Bw) − � + 1, . . . , d(Bw). The shift network Shift�(Bw) consists of layers
�, � + 1, . . . , d(Bw), 1, . . . , � − 1; so, Shift�(Bw) is a cyclic shift of the layers of the network
Bw. More generally, for a pair of integers �1 and �2 with �1 + �2 < d(Bw), the restriction

Bw \ [�1, �2] of the network Bw consists of layers �1 + 1, . . . , d(Bw) − �2; so, Bw \ [�1, �2] =
Prefd(Bw)−�1−�2

(
Suffd(Bw)−�1(Bw)

)
.

A path (from b1 to bκ) is a sequence β = b1, . . . , bκ of interconnected balancers; so, an
output wire of each balancer (other than the last) in the sequence is an input wire to the
following balancer. Associated with β is a wire path, which is the sequence of all output wires
of balancers in the path β, where each such wire either connects to the following balancer in β

or is an output wire of the network. For each balancer br with 1 < r ≤ κ, x(br) denotes the
input to balancer br from balancer br−1; while x̂(br), denotes the other input to br; for r = 1,
x(b1) is arbitrarily chosen from x1(b1) and x2(b1).

A path descriptor for the wire path associated with β is a binary sequence of length κ such
that a 0 (resp. 1) in position r indicates that balancer br+1 (or an output wire of the network
if r = κ) is reached through the top (resp., bottom) output wire of the preceding balancer br.

For a pair of layers � and �′ < �, P[�′, �] denotes the set of all paths from layer �′ to layer
�. By abuse of notation, P[Bw] denotes the set of all paths from an input wire to an output
wire of the network Bw; so, P[Bw] = P[1, d(Bw)]. Note that all paths from an input wire to an
output wire of a complete balancing network Bw have length d(Bw).

3.2.3 Dependencies

A balancer b in layer � depends on balancer b′ in layer �′ ≤ � if there is a path from b′ to b; by
convention, the balancer b depends trivially on itself. Note that the balancer b may not depend
on any other balancer in layer �. We shall often abuse notation to say that each output wire
of balancer b depends on balancer b′ whenever b depends on b′. Consider two output wires j1

and j2 in layer �; say that j1 and j2 are independent for layer �′ < � if there is no balancer
b′ in layer �′ such that both j1 and j2 depend on b′.

The dependency set of balancer b in layer � is the set of all balancers b′ in layers �′ ≤ �

such that b depends on b′. The input dependency set of balancer b in layer � is the set of
input wires of balancers in the dependency set of balancer b. We shall often abuse notation to

13

identify the dependency set and the input dependency set of an output wire of the balancer b

with the dependency set and the input dependency set, respectively, of b.

Fix a pair of layers � and �′ ≤ �. The dependency set in �′ of an output wire j (of
a balancer b) in layer � is the restriction of the dependency set of j to balancers in layer �′;
denote it as Dj[�′]. The dependency set back to �′ of an output wire j (of a balancer b) in
layer � is the restriction of the dependency set of j to balancers in layers �′, . . . , �; denote it
as Dj[�′, �]. The input dependency set in �′ of the output wire j (of a balancer b) in layer
� is the restriction of the input dependency set of j to input wires in layer �′; denote it as
IDj[�′]. The input dependency set back to �′ of the output wire j of a balancer b in layer �

is the restriction of the input dependency set of j to input wires in layers �′, . . . , �; denote it as
IDj[�′, �].

The balancing network Bw is full if for each layer � with 1 ≤ � ≤ d(Bw), for each output
wire j (of balancer b) in layer �, for each layer �′ ≤ �, |Dj [�′, �]| = 2�−�′ ; in such case, |IDj [�′, �]| =
2�−�′+1. A simple necessary condition for a full balancing network is that a pair of balancers
b and b′ in layers � and �′ < �, respectively, are either connected by a unique path or not
connected at all. Note that each shift of a full balancing network is also full.

3.2.4 Topological Equivalence

Two balancing networks Bw and B̂w with d(Bw) = d(B̂w) are topologically equivalent if there
is a permutation π : [w] → [w] such that for each layer � with 1 ≤ � ≤ d(Bw), there is a balancer
b between wires j and k in Bw if and only if there is a balancer between wires π(j) and π(k)
in B̂w; note that the permutation π induces a corresponding permutation ρ between the sets
of balancers of the two networks Bw and B̂w. Roughly speaking, two balancing networks are
topologically equivalent if there is a permutation between the wires of the two networks that
yields one network from the other; call it a balancer-preserving permutation.

Note that topological equivalence is defined with no regard to the orientations of corre-
sponding balancers in the two networks. Two balancing networks are isomorphic if they are
topologically equivalent with a permutation ρ such that a balancer b in the network Bw is ori-
ented top if and only if the balancer ρ(b) in the network B̂w is oriented top. Roughly speaking,
two networks are isomorphic if the induced permutation between their sets of balancers respects
the orientation of each balancer; so, isomorphism is a more stringent property than topological
equivalence.

14

b1

b2

blgw

b

Figure 2: The path β and the balancers b, b1 and b2 involved in the proof of Lemma 3.3.

3.2.5 Delta and Bidelta Networks

A delta network [20] is one in which (i) there is a unique path from each input wire to every
output wire, and (ii) the path descriptors associated with all paths ending with the same output
wire are identical. A bidelta network [20] is one that is a delta network in both directions
(from left to right and vice versa). It is known that any two bidelta networks of the same width
and depth are topologically equivalent [20]. We continue with a simple observation.

Claim 3.1 Consider a bidelta network B, and fix a pair of balancers b1 and b2 with �(b1) <

�(b2) on a path β. Then, the dependency sets Dx̂(b1)[1, �(b1)] and Dx̂(b2)[1, �(b2)] are disjoint.

Figure 2 provides an illustration to the proof.

Proof: Assume, by way of contradiction, that the sets Dx̂(b1)[1, �(b1)] and Dx̂(b2)[1, �(b2)] are
not disjoint. Then, there is a balancer b ∈ Dx̂(b1)[1, �(b1)]∩Dx̂(b2)[1, �(b2)]; take such a balancer

15

b with a maximum layer. By definition of dependency set, there is a path β1 from b to b2 and
a path β2 from b to b1 in B. Since �(b) is maximum, it follows that the paths β1 and β2 do
not intersect. Consider now the concatenation β1β[�1, �2]; clearly, it yields an alternative (to
β2) path from b1 to b2. Since B is a bidelta network, there is a unique path from b1 to b2. A
contradiction.

3.3 Deterministic Balancing Networks

A deterministic balancer is one that has been oriented in some fixed way, as a result of either
global initialization [5] or local initialization [2, 13, 14] (cf. Section 3.2.1). A deterministic

balancing network, or deterministic network for short, consists of deterministic balancers.

Consider an input vector x = 〈x0, . . . , xw−1〉, where xi is the number of tokens fed into
input wire i of the network Bw. The safety and liveness conditions for a balancer imply corre-
sponding safety and liveness conditions for the network Bw in the natural way; in particular,
the network Bw reaches a quiescent state on the input vector x, where all

∑
x input tokens

have exited. It is simple to observe that on the input vector x, the network Bw will reach a
quiescent state with a (unique) output vector y = 〈y0, . . . , yw−1〉 (cf. [18, Lemma 3.1]). So,
the network Bw acts like an operator B : x → y transforming an input vector x into the output
vector y = Bw(x). A vector x is a fixed-point for the network Bw if Bw(x) = x (cf. [14]).

For each layer � with 1 ≤ � ≤ d(Bw) in the network Bw, denote as x(�) and y(�) the
input and output vectors, respectively, for layer �; so, x(1) = x and y(d(Bw)) = y. Clearly,∑

y(�) =
∑

x(�) for each layer � with 1 ≤ � ≤ d(Bw).

3.3.1 Smoothing Networks and Path-Concentrating Networks

Say that Bw is a γ-smoothing network [1, 5] for some integer γ ≥ 1 if for each input vector
x, Bw(x) is γ-smooth; so, the difference between the maximum and the minimum entries in the
output vector of a γ-smoothing network is no more than γ. The smoothness of the network
Bw is the least integer γ such that Bw is a γ-smoothing network.

For a number γ > 0, say that the network Bw is path γ-concentrating on the input

vector x if for each path β ∈ P[Bw], there is a layer � with 1 ≤ � ≤ |β| such that∣∣∣∣x̂(br(β)) −
∑

x
w

∣∣∣∣ ≤ γ ;

intuitively, on the input vector x, every path from an input wire to an output wire in Bw

includes a balancer b whose output x̂(b) is within γ of the average
∑

x
w . Say that the network

Bw is path γ-concentrating if it is path γ-concentrating on every input vector x.

16

3.3.2 A Combinatorial Lemma

We prove:

Lemma 3.2 Consider a complete balancing network Bw. For some number γ ≥ 2, assume
that the network Bw is path (γ − 2)-concentrating. Fix a ceiling γ-concentrated input vector x.
Then, the output vector y is ceiling (γ − 1)-concentrated.

Proof: Assume, by way of contradiction, that there is a wire k0 ∈ [w] such that

yk0 ≥
⌈∑

x
w

⌉
+ γ .

Since x is ceiling γ-concentrated, it follows that y is ceiling γ-concentrated. Hence, it follows
that

yk0 =
⌈∑

x
w

⌉
+ γ .

We shall derive a contradiction to the assumption that Bw is path (γ − 2)-concentrating.
specifically, we will prove that there is a path β ∈ P[Bw] such that for every layer � with
1 ≤ � ≤ d(Bw),

xi1(b)(�) =
⌈∑

x
w

⌉
+ γ

and

xi2(b)(�) ≥
⌈∑

x
w

⌉
+ γ − 1 .

We construct the path β by backward induction. For the sake of shortening the construction
and the proof that the constructed path has the required property, we merge the basis case
(where � = d(Bw)) and the induction step; so, the case � = d(Bw) will be treated separately
(where needed) along the induction step.

We assume, as our induction hypothesis, that we have defined a balancer br in layer � with
1 < � ≤ d(Bw) such that

xi1(br)(�) =
⌈∑

x
w

⌉
+ γ

and

xi2(br)(�) ≥
⌈∑

x
w

⌉
+ γ − 1 .

17

To ground the induction hypothesis, choose the balancer b = bd(Bw) so that k0 ∈ {i1(b), i2(b)}.
(Since the network Bw is complete, there is such a balancer.) Hence, by assumption and the
definition of balancer, it follows that

xi1(b) =
⌈∑

x
w

⌉
+ γ

and

xi2(b) ≥
⌈∑

x
w

⌉
+ γ − 1 .

Since the network Bw is complete, there is a balancer b = b� in layer � such that i1(b�+1) ∈
{i1(b), i2(b)}. Assume, without loss of generality, that xi1(b)(�) ≥ xi2(b)(�). Since x is ceiling γ-
concentrated, it follows that x(�) is ceiling γ-concentrated. Hence, by the definition of balancer,
it follows that

xi2(b)(�) =
⌈∑

x
w

⌉
+ γ

and

xi1(b)(�) ≥
⌈∑

x
w

⌉
+ γ − 1 .

The inductive construction is complete, and the contradiction follows.

3.4 Randomized Balancing Networks

3.4.1 Randomized Balancers

A randomized balancer b [2, 13] is initialized to each of top and bottom with probability 1
2

and independently of all other balancers; so, it is oriented uniformly at random.

Define a random variable rb taking values 1
2 and −1

2 with equal probability (cf. [13]).
(Clearly, E [rb] = 0.) Define also the random variable χb = Odd(x) · rb (cf. [13]). Then,

y2 =
x1 + x2

2
+ χb

=
x1 + x2

2
+ Odd(xb) · rb.

and

y2 =
x1 + x2

2
− χb

=
x1 + x2

2
− Odd(xb) · rb.

18

3.4.2 Randomized Networks

A randomized balancing network, or randomized network for short, consists of random-
ized balancers. So, a randomized balancing network is a balancing network Bw with a random
orientation; it is represented by the set of (independent) random variables {rb | b ∈ Bw}. Note
that each orientation of the network Bw determines values for all random variables {rb | Bw}.
So, a randomized network Bw induces a family of deterministic networks Bw, one for each pos-
sible orientation. An input vector x is a fixed-point of the randomized network w if x is a
fixed-point for each induced deterministic network Bw.

Given an input vector x to a randomized balancing network Bw, induced in the natural way
is a probability measure P on associated events. For each layer � with 1 ≤ � ≤ d(Bw), induced is
the random variable y(�), also called a random vector; clearly, the input vector to a restriction of
the randomized network Bw is a random vector, and it will be called a random input vector. Note
that for each wire j ∈ [w] in layer �, the random variable yj(�) is determined by (i) the inputs on
each input wire i ∈ IDj [1] and (ii) all random variables rb where b ∈ Dj[1, �]. For some integer
y ≥ 0, say that the random variable yj(�) with j ∈ [w] and 1 ≤ � ≤ d(Bw) attains the value y if
there are values for the random variables {rb | b ∈ Dj[1, �]} such that yj(�) = y. Induced are also
the sets of random variables {Odd(xb) | b ∈ Bw} and {χb | b ∈ Bw} = {Odd(xb) · rb | b ∈ Bw};
note that both are sets of not necessarily independent random variables.

We observe an immediate consequence of the disjointness among dependency sets estabished
in Claim 3.1 for randomized bidelta networks:

Lemma 3.3 Fix an input vector x to a bidelta network Bw. Then, for each path β ∈ P[Bw],
the set

⋃
b∈β{x̂(b)} is a set of independent random variables.

Note that for a wire j and a layer � in a complete balancing network Bw, the definition of
a balancer implies that

yj(�) =
1
2

∑
i′∈IDi[�−1]

yi′(� − 1) +
∑

b∈Di[�−1]

χb .

We continue with an elementary observation on the relation between certain concentration
and path concentration probabilities in a randomized complete balancing network.

Lemma 3.4 Consider a randomized complete balancing network Bw : x → y, where x is a
random input vector. Then,

P [y is ceiling (γ − 1)-concentrated]

≥ P [x is ceiling γ-concentrated] − P [Bw is not path (γ − 2)-concentrating on x] .

19

Proof: By Lemma 3.2 and the Union Bound (Lemma 2.3), we obtain that

P [y is ceiling (γ − 1)-concentrated]

≥ P [(x is ceiling γ-concentrated) ∧ (Bw is path (γ − 2)-concentrating on x)]

= 1 − P [(x is not ceiling γ-concentrated) ∨ (Bw is not path (γ − 2)-concentrating on x)]

≥ 1 − P [x is not ceiling γ-concentrated] − P [Bw is not path (γ − 2)-concentrating on x]

= P [x is ceiling γ-concentrated] − P [Bw is not path (γ − 2)-concentrating on x] ,

as needed.

The next observation is an immediate consequence of the Law of Conditional Alternatives.

Claim 3.5 Consider a randomized balancing network Bw with a random input vector x. Then,
for any event E,

P [Bw is not path γ-concentrating on x]

≤ P

[
Bw is not path γ-concentrating on x

∣∣∣E] + P [¬E] .

3.4.3 Randomized Smoothing Networks

For some integer γ ≥ 1, say that Bw is a γ-smoothing network with probability δ, where
0 ≤ δ ≤ 1, if for each input vector x,

P [Bw(x) is γ-smooth] ≥ δ;

that is, the probability that for each pair of output wires j, k ∈ [w], |yj − yk| ≤ γ is at least δ.

We observe:

Lemma 3.6 Consider two topologically equivalent randomized networks. Then, their smooth-
nesses are identically distributed random variables.

3.4.4 A Combinatorial Expression

We provide a combinatorial expression for the output vector of a (randomized) complete bal-
ancing network Bw in terms of the output vector of an earlier layer.

Lemma 3.7 Consider a complete balancing network Bw. Then, for each pair of an output wire
j ∈ [w] and a layer � with 0 ≤ � < d(Bw),

yj =
1

2d(Bw)−�

∑
i∈IDj [�]

yi(�) +
d(Bw)∑
k=�+1

1
2d(Bw)−k

∑
b∈Dj [k]

χ(b).

20

Proof: By backward induction on �. For the basis case, � = lg w − 1. By the definition of
balancer,

yj =
1
2

∑
i∈IDj [d(Bw)−1]

yi(d(Bw) − 1) +
∑

b∈Dj[d(Bw)]

χb

=
1

2d(Bw)−(d(Bw)−1)

∑
i∈IDj [d(Bw)−1]

yi(d(Bw) − 1) +
d(Bw)∑

k=(d(Bw)−1)+1

1
2d(Bw)−k

∑
b∈Dj[k]

χb ,

and the claim follows.

Assume inductively that the claim holds for layer � where 0 < � < d(Bw), and consider layer
� − 1. By induction hypothesis and the definition of balancer,

yj =
1

2d(Bw)−�

∑
i∈IDj [�]

yi(�) +
d(Bw)∑
k=�+1

1
2d(Bw)−k

∑
b∈Dj [k]

χb

=
1

2d(Bw)−�

∑
i∈IDj [�]

⎛⎝1
2

∑
i′∈IDi[�−1]

yi′(� − 1) +
∑

b∈Di[�−1]

χb

⎞⎠ +
d(Bw)∑
k=�+1

1
2d(Bw)−k

∑
b∈Dj[k]

χb

=
1

2d(Bw)−(�−1)

∑
i′∈IDj [�−1]

yi′(� − 1) +
d(Bw)∑

k=(�−1)+1

1
2d(Bw)−k

∑
b∈Dj [k]

χb ,

as needed.

We remark that Lemma 3.7 is motivated by and generalizes a corresponding equation derived
in [13, Section 2.1] for the particular case where � = 0 and Bw is the block network [9].

3.4.5 A Probabilistic Lemma

Consider a collection of balancers B in a network Bw, with a constant cb specific to each balancer
b ∈ B. Following the notation from [13, p. 15], define the random variables

W(B) =
∑
b∈B

cb rb ,

V(B) =
∑
b∈B

cb χb

=
∑

b∈B |Odd(xb)=1

cb rb ,

and

U(B) = W(B) − V(B)

=
∑

b∈B |Odd(xb)=0

cb rb .

21

Clearly, the summation domain for the variable W(B) is fixed, so that W(B) is a fixed-domain
sum of independent random variables; since for each random variable rb with b ∈ B, rb is
symmetrically distributed around 0 (with E [rb] = 0), linearity of expectation implies that
E [W(B)] = 0, so that W(B) is symmetrically distributed around 0. This implies that

P [W(B) < 0] ≤ 1
2

,

and

P [W(B) > 0] ≤ 1
2

.

In contrast, each of the summation domains {b ∈ B | Odd(x) = 1} and {b ∈ B | Odd(x) = 0}
for V(B) and U(B), respectively, is a random variable itself; so, each of V(B) and U(B) is a
non-fixed-domain sum of (not necessarily independent) random variables.

We continue with a formal proof for a (variant of) a claim from Herlihy and Tirthapura [13,
Lemma 7].

Lemma 3.8 ([13]) Consider a collection of balancers B in the randomized network Bw. Then,
for any number δ > 0,

P [|V(B)| ≥ δ] ≤ 2 · P [|W(B)| ≥ δ] .

Proof: Clearly, by the definition of conditional probability,

P [|W(B)| ≥ δ]

= P [(W(B) ≥ δ) ∨ (W(B) ≤ −δ)]

= P [W(B) ≥ δ] + P [W(B) ≤ −δ]

≥ P [W(B) ≥ δ ∧ V(B) ≥ δ] + P [W(B) ≤ −δ ∧ V(B) ≤ −δ]

= P [W(B) ≥ δ | V(B) ≥ δ] · P [V(B) ≥ δ] + P [W(B) ≤ −δ | V(B) ≤ −δ] · P [V(B) ≤ −δ]

= (1 − P [W(B) < δ | V(B) ≥ δ]) · P [V(B) ≥ δ] + (1 − P [W(B) > −δ | V(B) ≤ −δ]) · P [V(B) ≤ −δ]

= P [V(B) ≥ δ] + P [V(B) ≤ −δ]

−P [W(B) < δ | V(B) ≥ δ] · P [V(B) ≥ δ] − P [W(B) > −δ | V(B) ≤ −δ] · P [V(B) ≤ −δ]

= P [|V(B)| ≥ δ]

−P [W(B) < δ | V(B) ≥ δ] · P [V(B) ≥ δ] − P [W(B) > −δ | V(B) ≤ −δ] · P [V(B) ≤ −δ] .

Conditioned on the event (V(B) ≥ δ) (resp., the event (V(B) ≤ −δ)), the event (W(B) < δ)
(resp., the event (W(B) > −δ)) implies the event (U(B) < 0) (resp., the event (U(B) > 0)).

22

Hence,

P [|W(B)| ≥ δ]

≥ P [|V(B)| ≥ δ]

−P [U(B) < 0 | V(B) ≥ δ] · P [V(B) ≥ δ] − P [U(B) > 0 | V(B) ≤ −δ] · P [V(B) ≤ −δ]

= P [|V(B)| ≥ δ] − P [(U(B) < 0) ∧ (V(B) ≥ δ)] − P [(U(B) > 0) ∧ (V(B) ≤ −δ)]

= P [|V(B)| ≥ δ]

−
∑
B′⊆B

P [{b | Odd(xb) = 0} = B′] · P [(U(B) < 0) ∧ (V(B) ≥ δ) | {b | Odd(xb) = 0} = B′]

−
∑
B′⊆B

P [{b | Odd(xb) = 0} = B′] · P [(U(B) > 0) ∧ (V(B) ≤ −δ) | {b | Odd(xb) = 0} = B′] .

We prove:

Claim 3.9 Fix a set of balancers B′ ⊆ B. Then, the events (U(B) < 0) and (V(B) ≥ δ)
(resp., the events (U(B) > 0) and (V(B) ≤ −δ)) are conditionally independent given the event
{b | Odd(xb) = 0} = B′.

Proof: Since {b | Odd(xb) = 0} = B′, the summation domains for U(B) and V(B) are fixed
(and not random variables); since they are disjoint, it follows that the random variables U(B)
and V(B) are conditionally independent (given the event {b | Odd(xb) = 0} = B′). This implies
that the events (U(B) < 0) and (V(B) ≥ δ) (resp., the events (U(B) > 0) and (V(B) ≤ −δ)) are
also conditionally independent.

23

By Claim 3.9, it follows that

P [|W(B)| ≥ δ]

≥ P [|V(B)| ≥ δ] −
∑
B′⊆B

P [{b | Odd(xb) = 0} = B′] ·

(P [U(B) < 0 | {b | Odd(xb) = 0} = B′] · P [V(B) ≥ δ | {b | Odd(xb) = 0} = B′]

+P [U(B) > 0 | {b | Odd(xb) = 0} = B′] · P [V(B) ≤ −δ | {b | Odd(xb) = 0} = B′])

= P [|V(B)| ≥ δ] −
∑
B′⊆B

P [{b | Odd(xb) = 0} = B′] ·

(P [W(B′) < 0] · P [V(B) ≥ δ | {b | Odd(xb) = 0} = B′]

+P [W(B′) > 0] · P [V(B) ≤ −δ | {b | Odd(xb) = 0} = B′])

≥ P [|V(B)| ≥ δ] −
∑
B′⊆B

P [{b | Odd(xb) = 0} = B′] ·
(

1
2
· P [V(B) ≥ δ | {b | Odd(xb) = 0} = B′] +

1
2

· P [V(B) ≤ −δ | {b | Odd(xb) = 0} = B′]
)

= P [|V(B)| ≥ δ] − 1
2

∑
B′⊆B

P [{b | Odd(xb) = 0} = B′] ·

(P [V(B) ≥ δ | {b | Odd(xb) = 0} = B′] + P [V(B) ≤ −δ | {b | Odd(xb) = 0} = B′])

= P [|V(B)| ≥ δ] − 1
2

∑
B′⊆B

P [{b | Odd(xb) = 0} = B′] ·

P [(V(B) ≥ δ) ∨ (V(B) ≤ −δ) | {b | Odd(xb) = 0} = B′]

= P [|V(B)| ≥ δ] − 1
2

∑
B′⊆B

P [{b | Odd(xb) = 0} = B′] · P [|V(B)| ≥ δ | {b | Odd(xb) = 0} = B′]

= P [|V(B)| ≥ δ] − 1
2

P [|V(B)| ≥ δ]

=
1
2

P [|V(B)| ≥ δ] ,

as needed.

4 Block Network (and Relatives)

Henceforth, denote as Blockw the block network of width w [9], where w is a power of 2.
Section 4.1 reviews the inductive construction of the block network. Section 4.2 reviews the
tree structure from [13, Section 2] associated with the block network. The randomized block
network is treated in Section 4.3. Section 4.4 deals with the (relative) cube-connected-cycles
network.

4.1 Inductive Construction of Blockw

• Basis: The network Block2 is a single balancer.

24

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

INPUT OUTPUT
1 2 3 4

Figure 3: The network Block16. The binary strings next to the input wires are their correponding
binary representations. The four numbers on the top indicate the four layers.

• Induction step: The network Block2w is constructed from two copies of the network Blockw

and an additional layer as follows. For an input vector x, each of xA and xB is fed into
each of two copies of Blockw; denote as yA and yB the output vectors of the two copies.
In a rightmost layer, each pair of corresponding entries of the vectors yA and yB are
matched through a balancer. (See Figure 3 for an illustration.)

So, the network Blockw has lg w complete layers 1, . . . , lg w, and d(Blockw) = lg w.

The periodic network of width w [9], denoted as Periodicw, is the cascade of lg w copies of
the network Blockw; so, d(Periodicw) = lg2 w.

4.2 The Tree Structure

The network Blockw induces a (rooted) binary tree, where each node is associated with a set
of balancers from the same layer of the network; different nodes are associated with disjoint
sets, and we shall often identify a node with the corresponding set of balancers. Each node is
labeled with two integers; the first one is the layer of the associated balancers.

25

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110

0100
0011
0010
0001
0000

0101

21 3 4
INPUT OUTPUT

v2,2

v2,1v1,1 v3,1

v3,3

v4,7

v4,8

v4,6

v4,5

v4,4

v4,3

v4,2

v4,1

v3,2

v3,4

Figure 4: The tree structure for the network Block16. Each node is shown as a shaded box.

• The root, denoted as v1,1, consists of all w
2 balancers from layer 1.

• Each layer � with 2 ≤ � ≤ lg w induces 2�−1 nodes, denoted as v�,1, . . . , v�,2�−1 and each
consisting of w

2� balancers. The nodes for layer � are defined inductively given the nodes

for layer � − 1. Fix an integer j with 1 ≤ j ≤ 2�−2.

– The node v�,2j−1 consists of all balancers (in layer �) where the top output wire of
some balancer in node v�−1,j is connected to.

– The node v�,2j consists of all balancers (in layer �) where the bottom output wire of
some balancer in node v�−1,j is connected to.

See Figure 4 for an illustration of the tree structure. Clearly, the tokens exiting from output
wire 0 of the network Blockw must have followed the path v1,1, . . . , vlg w,1 and exited on the top

output wire of the single balancer in vlg w,1. We continue with a simple observation.

Claim 4.1 For the network Blockw,

lg w−�lg lg w�∑
�=1

∑
b∈v�,1

(
1

2lg w−�+1
−
(
− 1

2lg w−�+1

))2

≤ 2
lg w

.

26

Proof: Clearly,

lg w−�lg lg w�∑
�=1

∑
b∈v�,1

(
1

2lg w−�+1
−
(
− 1

2lg w−�+1

))2

=
lg w−�lg lg w�∑

�=1

2lg w−�

(
1

2lg w−�

)2

=
lg w−�lg lg w�∑

�=1

1
2lg w−�

≤ 1
w

· (2lg w−lg lg w+1 − 1)

≤ 2
lg w

,

as needed.

For a layer � and an integer j with 1 ≤ j ≤ 2�−1 denote as x�,j and y�,j the number of tokens
entering and exiting all balancers in node v�,j, respectively.

4.3 Randomized Block Network

The numbers of tokens y0, . . . , yw−1 on the output wires 0, . . . , w − 1, respectively, of the ran-
domized block network are random variables. for each pair of a layer � and an integer j with the
numbers x�,j and y�,j are also random variables. Fix a layer � > 1; since the tokens exiting on
the top (resp., bottom) output wires of balancers associated with node v�−1,j enter node v�,2j−1

(resp., v�,2j), it follows that

x�,2j−1 =
x�−1,j

2
+

∑
b∈v�−1,j

χb

and

x�,2j =
x�−1,j

2
−

∑
b∈v�−1,j

χb ,

respectively.

The symmetry of the block network implies that all random variables yj with j ∈ [w] follow
the same distribution (cf. [13, Proof of Theorem 10]); so, we shall only analyze y0. wire of
vlg w,1. We recall a preliminary claim due to Herlihy and Tirthapura [13].

Claim 4.2 ([13]) For the randomized network Blockw,

y0 =
∑

x
w

+
lg w∑
�=1

1
2lg w−�

∑
b∈v�,1

χb .

27

The following technical claim can be derived easily using techniques from [13].

Lemma 4.3 For the randomized network Blockw and for any number δ > 0,

P

[∣∣∣∣y0 −
∑

x
w

∣∣∣∣ ≥ δ

]
≤ 4 · exp(−δ2) .

The proof will use a simple calculation from [13, page 5]:

lg w∑
�=1

∑
b∈v�,1

(
1

2lg w−�+1
−
(
− 1

2lg w−�+1

))2

= 2 − 2
w

.

Proof: By Claim 4.2,

P

[∣∣∣∣y0 −
∑

x
w

∣∣∣∣ ≥ δ

]
= P

⎡⎣∣∣∣∣∣∣
lg w∑
�=1

∑
b∈v�,1

1
2lg w−�

χb

∣∣∣∣∣∣ ≥ δ

⎤⎦ .

Now use Claim 3.8 with B =
⋃

1≤�≤lg w v�,1 and cb = 1
2lg w−� for each balancer b ∈ v�,1 with

1 ≤ � ≤ lg w. Then,

P

⎡⎣∣∣∣∣∣∣
lg w∑
�=1

1
2lg w−�

∑
b∈v�,1

χb

∣∣∣∣∣∣ ≥ δ

⎤⎦ ≤ 2 · P

⎡⎣∣∣∣∣∣∣
lg w∑
�=1

1
2lg w−�

∑
b∈v�,1

rb

∣∣∣∣∣∣ ≥ δ

⎤⎦ .

Note that for each pair of a layer � with 1 ≤ � ≤ lg w and a balancer b ∈ v�,1, the random

variable 1
2lg w−� · rb has range

{
− 1

2lg w−�+1 ,+ 1
2lg w−�+1

}
. By Hoeffding Bound (Lemma 2.4), it

follows that

P

[∣∣∣∣y0 −
∑

x
w

∣∣∣∣ ≥ δ

]
≤ 2 · 2 · exp

⎛⎜⎝− 2δ2∑lg w
�=1

∑
b∈v�,1

(
1

2lg w−�+1 −
(
− 1

2lg w−�+1

))2

⎞⎟⎠
= 4 · exp

(
− 2δ2

2 − 2
w

)
≤ 4 · exp(−δ2) ,

as needed.

4.4 The Cube-Connected-Cycles Network

Henceforth, denote as CCCw the cube-connected-cycles network [21] of width w, where w

is a power of 2.

28

1100
1011
1010
1001
1000
0111
0110

0101
0100
0011
0010

0001
0000

1111
1110
1101

1 2 3 4
INPUT OUTPUT

Figure 5: The network CCC16.

4.4.1 Construction

The network CCCw has lg w (complete) layers. For each layer � with 1 ≤ � ≤ lg w, for each
wire u ∈ {0, 1}lg w, there is a balancer b connecting wire u and wire u(�). (See Figure 5 for an
illustration to the construction.) Clearly, the network CCCw is the sequential cascade of the
ladder network Lw followed by the parallel cascade of two copies of the network CCCw

2
.

4.4.2 Topological Properties

We start a simple property of the cube-connected-cycles network.

Lemma 4.4 Fix a pair of integers �1 and �2 with �1 + �2 < lg w, and a corresponding pair of
binary strings l1 ∈ {0, 1}�1 and l2 ∈ {0, 1}�2 . Then, the network CCCw \ [�1, �2] restricted to the
set of wires

{
l1ul2 | u ∈ {0, 1}lg w−�1−�2

}
is a cube-connected-cycles network CCC2lg w−�1−�2 .

Proof: We provide a balancer-preserving permutation π :
{
l1ul2 | u ∈ {0, 1}lg w−�1−�2

} →
{0, 1}lg w−�1−�2 between the sets of wires of the networks CCCw \ [�1, �2] and CCC2lg w−�1−�2 ,
respectively: For an arbitrary wire l1ul2 with u ∈ {0, 1}lg w−�1−�2 , π(l1ul2) = u.

29

Consider a balancer b in layer �−�1 of the network CCCw\[�1, �2], with �1+1 ≤ � ≤ lg w−�2.
By construction of the network CCCw, b connects the wires l1ul2 and l1u(� − �1)l2 for some
u ∈ {0, 1}lg w−�1−�2 . By definition of π, π(l1ul2) = u and π(l1u(� − �1)l2) = u(� − �1). By
construction of the network CCC2lg w−�1−�2 , the wires u and u(�−�1) are connected by a balancer
in the network CCC2lg w−�1−�2 , and the claim follows.

By Lemma 4.4, it immediately follows:

Corollary 4.5 Fix a pair of integers �1 and �2 with �1 + �2 < lg w. Then, the network CCCw \
[�1, �2] is the parallel cascade of 2�1+�2 copies of the network CCC2lg w−�1−�2 .

We continue with another simple property of the cube-connected-cycles network.

Lemma 4.6 Consider layers � and �′ in the network CCC2
w, with lg w + 1 ≤ � ≤ 2 lg w and

� − lg w ≤ �′ < �. Fix an input wire i = i1 . . . ilg w in layer �. Then,

IDi(�′) =

⎧⎨⎩
{
u1i�−lg w . . . i�′−1u2 | u1 ∈ {0, 1}�−1−lg w and u2 ∈ {0, 1}lg w−�′+1

}
, if �′ ≤ lg w{

i1 . . . i�′−lg w−1u1i�−lg w . . . ilg w | u1 ∈ {0, 1}�−�′
}

, if �′ > lg w
.

Proof: By backward induction on �′. For the basis case, assume that �′ = � − 1. We proceed
by case analysis.

1. Assume first that �′ ≤ lg w. Since � ≥ lg w + 1, it follows that �′ = lg w and � = lg w + 1.
By construction of the network CCCw, wire i is the output wire of a balancer in layer lg w

(within the first cascaded network CCCw) with input wires i = i1 . . . ilg w and i(lg w) =
i1 . . . ilg w. Hence,

IDi(�′) = {i1 . . . ilg w−1u2 | u2 ∈ {0, 1}}
=

{
i�−lg w . . . i�′−1u2 | u2 ∈ {0, 1}lgw−�′+1

}
as needed.

2. Assume now that �′ > lg w. By construction of the network CCCw, wire i is the output wire
of a balancer in layer �′ (within the second cascaded network CCCw) with input wires i =
i1 . . . i�′−lg w−1i�′−lg wi�′−lg w+1 . . . ilg w and i(�′−lg w) = i1 . . . i�′−lg w−1i�′−lg wi�′−lg w+1 . . . ilg w.
Hence,

IDi(�′) = {i1 . . . i�′−lg w−1u1i�′−lg w+1 . . . ilg w | u1 ∈ {0, 1}}
= {i1 . . . i�′−lg w−1u1i�−lg w . . . ilg w | u1 ∈ {0, 1}} ,

as needed.

30

Assume inductively that the claim holds for some layer �′ with � − lg w < �′ < �. For the
induction step, consider the integer �′ − 1. We proceed by case analysis.

1. Assume first that �′ ≤ lg w. By induction hypothesis,

IDi(�′) =
{
u1i�−lg w . . . i�′−1u2 | u1 ∈ {0, 1}�−1−lgw and u2 ∈ {0, 1}lgw−�′+1

}
.

Fix some wire j ∈ IDi(�′); so, j = u1i�−lg w . . . i�′−1u2 for a pair of binary strings u1 ∈
{0, 1}�−1−lg w and u2 ∈ {0, 1}lg w−�′+1. By construction of the network CCCw, wire j is the
output wire of a balancer b in layer �′−1 (within the first cascaded network CCCw). Then,
b has input wires j = u1i�−lg w . . . i�′−2i�′−1u2 and j(�′ − 1) = u1i�−lg w . . . i�′−2i�′−1u2.
Hence,

IDi(�′ − 1) =
{
u1i�−lg w . . . i�′−2uu2 | u1 ∈ {0, 1}�−1−lgw , u ∈ {0, 1} and u2 ∈ {0, 1}lgw−�′+1

}
=

{
u1i�−lg w . . . i�′−2u2 | u1 ∈ {0, 1}�−1−lgw and u2 ∈ {0, 1}lgw−(�′−1)+1

}
,

as needed.

2. Assume now that �′ > lg w. By induction hypothesis,

IDi(�′) =
{
i1 . . . i�′−lg w−1u1i�−lg w . . . ilg w | u1 ∈ {0, 1}�−�′

}
.

Fix some wire j ∈ IDi(�′); so, j = i1 . . . i�′−lg w−1u1i�−lg w . . . ilg w for some binary string
u1 ∈ {0, 1}�−�′ . By construction of the network CCCw, wire j is the output wire of a
balancer b in layer �′ − 1. We proceed by case analysis.

(a) Assume first that �′−1 > lg w, so that balancer b is within the second cascaded net-
work CCCw. Then, b has input wires j = i1 . . . i�′−lg w−2i�′−lg w−1u1 . . . i�−lg w . . . ilg w

and j(�′ − lg w − 1) = i1 . . . i�′−lg w−2i�′−lg w−1u1 . . . i�−lg w . . . ilg w. Hence,

IDi(�′ − 1) =
{

i1 . . . i�′−lg w−2uu1i�−lg w . . . ilg w | u ∈ {0, 1} and u1 ∈ {0, 1}�−�′
}

=
{

i1 . . . i�′−lg w−2u1i�−lg w . . . ilg w | u1 ∈ {0, 1}�−(�′−1)
}

,

as needed.

(b) Assume now that �′−1 ≤ lg w, so that balancer b is within the first cascaded network
CCCw. It follows that �′ = lg w + 1. So,

IDi(�′) =
{
u1i�−lg w . . . ilg w | u1 ∈ {0, 1}�−�′

}
,

and j = u1i�−lg w . . . ilg w. Then, b has input wires j = u1i�−lg w . . . ilg w and j(lg w) =
u1i�−lg w . . . ilg w. Hence,

IDi(�′ − 1) =
{
u1i�−lg w . . . ilg wu2 | u1 ∈ {0, 1}�−�′ and u2 ∈ {0, 1}1

}
=

{
u1i�−lg w . . . ilg wu2 | u1 ∈ {0, 1}�−1−lgw and u2 ∈ {0, 1}lgw−(�′−1)+1

}
,

as needed.

31

The induction is now complete.

It is simple to see that the cube-connected-cycles network is a bidelta network. Hence, the
topological equivalence of all bidelta networks implies that the cube-connected-cycles network
CCCw is topologically equivalent to the block network Blockw.

4.4.3 The Randomized Cube-Connected-Cycles Network

We prove a conditional concentration property for the randomized cube-connected-cycles net-
work.

Lemma 4.7 Consider the randomized cube-connected-cycles network CCCw and fix a layer �

with 1 ≤ � ≤ lg w − �lg lg w�, an integer ζ with 0 ≤ ζ ≤ lg w − �lg lg w� − � + 1, and a pair of
binary strings u1 ∈ {0, 1}�−1 and u2 ∈ {0, 1}lg w−�lg lg w�−�−ζ+1. Fix an input vector x(�) with∣∣∣∣∣

∑
{u1uu2|u∈{0,1}�lg lg w�+ζ}} x

2�lg lg w�+ζ
−

∑
x

w

∣∣∣∣∣ ≤ 2 .

Consider a balancer b in layer �(b) = � + �lg lg w� + ζ with input wires i = u1ûu2 and i(�(b)),
for some binary string û ∈ {0, 1}�lg lg w�+ζ. Then, for any number δ > 0,

P

[∣∣∣∣x(b) −
∑

x
w

∣∣∣∣ ≥ δ

]
≤ 4 · exp(−(δ − 2)2) .

Proof: By the triangle inequality and the assumption on x(�), it follows that

P

[∣∣∣∣x(b) −
∑

x
w

∣∣∣∣ ≥ δ

]
≤ P

[∣∣∣∣∣x(b) −
∑

{u1uu2|u∈{0,1}�lg lg w�+ζ} x

2�lg w lg w�+ζ

∣∣∣∣∣ +

∣∣∣∣∣
∑

{u1uu2|u∈{0,1}�lg lg w�+ζ} x

2�lg w lg w�+ζ
−

∑
x

w

∣∣∣∣∣ ≥ δ

]

≤ P

[∣∣∣∣∣x(b) −
∑

{u1uu2|u∈{0,1}�lg lg w�+ζ} x

2�lg w lg w�+ζ

∣∣∣∣∣ ≥ δ − 2

]
.

By Lemma 4.4, the network CCCw \ [�−1, lg w−�lg lg w�−�−ζ +1] restricted to the set of wires{
u1uu2 | u ∈ {0, 1}�lg lg w�+ζ

}
is a cube-connected-cycles network CCC2�lg lg w�+ζ ; by definition,

the input wires to balancer b are output wires of this network. Hence, by Lemma 4.3,

P

[∣∣∣∣∣x(b) −
∑

{u1uu2|u∈{0,1}�lg lg w�+ζ} x

2�lg w lg w�+ζ

∣∣∣∣∣ ≥ δ − 2

]
≤ 4 · exp

(
− (δ − 2)2

)
.

It follows that

P

[∣∣∣∣x(b) −
∑

x
w

∣∣∣∣ ≥ δ

]
≤ 4 · exp

(
− (δ − 2)2

)
.

as needed.

32

5 One Block

Upper and lower bounds on the smoothness of the randomized block network are presented in
Sections 5.1 and 5.2, respectively.

5.1 Upper Bound

We show:

Theorem 5.1 The randomized network Blockw is a (�lg lg w� + 3)-smoothing network with
probability at least 1 − 4

w3 .

Proof: Fix an input vector x. By Lemma 4.2,

y0 =
∑

x
w

+
lg w∑
�=1

1
2lg w−�

∑
b∈v�,1

χb

=
∑

x
w

+
lg w−�lg lg w�∑

�=1

1
2lg w−�

∑
b∈v�,1

χb +
lg w∑

�=lg w−�lg lg w�+1

1
2lg w−�

∑
b∈v�,1

χb

=
∑

x
w

+ V1 + V2 ,

where

V1 = V

⎛⎝ ⋃
1≤�≤lg w−lg lg w

{b | b ∈ v�,1}
⎞⎠

=
lg w−�lg lg w�∑

�=1

1
2lg w−�

∑
b∈v�,1

χb

and

V2 = V

⎛⎝ ⋃
lg w−lg lg w+1≤�≤lg w

{b | b ∈ v�,1}
⎞⎠

=
lg w∑

�=lg w−�lg lg w�+1

1
2lg w−�

∑
b∈v�,1

χb .

Similarly to V1, denote

W1 = W

⎛⎝ ⋃
1≤�≤lg w−lg lg w

{b | b ∈ v�,1}
⎞⎠

=
lg w−�lg lg w�∑

�=1

1
2lg w−�

∑
b∈v�,1

rb .

33

For each pair of a layer � with 1 ≤ � ≤ lg w − �lg lg w� and a balancer b ∈ v�,1, the random

variable 1
2lg w−� · rb from the sum W1 has range

{
− 1

2lg w−�+1 ,+ 1
2lg w−�+1 ,

}
. Hence, by the

Hoeffding Bound (Lemma 2.4) and Claim 4.1, it follows that

P [|W1| ≥ 2] ≤ 2 · exp

⎛⎜⎝− 2 · 22∑lg w−�lg lg w�
�=1

∑
b∈v�,1

(
1

2lg w−�+1 −
(
− 1

2lg w−�+1

))2

⎞⎟⎠
= 2 · exp

(
−2 · 22

2
lg w

)

≤ 2
w4 .

Hence, Claim 3.8 implies that

P [|V1| ≥ 2] ≤ 4
w4 .

On the other hand, by the triangle inequality,

|V2| ≤
lg w∑

�=lg w−�lg lg w�+1

1
2lg w−�

∑
b∈v�,1

|χb|

≤
lg w∑

�=lg w−�lg lg w�+1

1
2lg w−�

∑
b∈v�,1

1
2

=
lg w∑

�=lg w−�lg lg w�+1

1
2lg w−�

· w

2�
· 1
2

=
1
2

· �lg lg w� .

We now prove a lower bound on some concentration probability for the output vector
Blockw(x).

Lemma 5.2 It holds that

P
[
Blockw(x) is

(
1
2 �lg lg w� + 2

)
-concentrated

] ≥ 1 − 4
w3

.

34

Proof: By the Union Bound (Lemma 2.3),

P
[
Blockw(x) is

(
1
2 �lg lg w� + 2

)
-concentrated

]
= 1 − P

[
Blockw(x) is not

(
1
2 �lg lg w� + 2

)
-concentrated

]
= 1 − P

⎡⎣ ∨
j∈[w]

(∣∣∣yj −
∑

x
w

∣∣∣ ≥ 1
2
�lg lg w� + 2

)⎤⎦
≥ 1 −

∑
j∈[w]

P

[∣∣∣yj −
∑

x
w

∣∣∣ ≥ 1
2
�lg lg w� + 2

]
.

Since each output yj with j ∈ [w] is identically distributed with y0. it follows by the Union
Bound (Lemma 2.3) the triangle inequality and Lemma 2.6 that

P
[
Blockw(x) is

(
1
2 �lg lg w� + 2

)
-concentrated

]
≥ 1 − w · P

[∣∣∣y0 −
∑

x
w

∣∣∣ ≥ 1
2
�lg lg w� + 2

]
= 1 − w · P

[∣∣∣V1 + V2

∣∣∣ ≥ 1
2
�lg lg w� + 2

]
≥ 1 − w · P

[∣∣∣V1

∣∣∣ +
∣∣∣V2

∣∣∣ ≥ 1
2
�lg lg w� + 2

]
≥ 1 − w ·

(
P

[∣∣∣V1

∣∣∣ ≥ 2
]

+ P

[∣∣∣V2

∣∣∣ >
1
2
�lg lg w�

])
≥ 1 − w ·

(
4

w4
+ 0

)
= 1 − 4

w3
,

as needed.

Since 2
(

1
2 �lg lg w� + 2

)
= �lg lg w� + 4 is an integer, it follows from Lemmas 2.2, and 5.2

that

P [Blockw(x) is (�lg lg w� + 3)-smooth] ≥ 1 − 4
w3

.

as needed.

5.2 Lower Bound

We show:

Theorem 5.3 The randomized network Blockw is a (�lg lg w� − 2)-smoothing network with

probability at most 2 · exp
(
−4

√
w

lg w

)
.

35

21 3 4

1111
1110
1101
1100
1011
1010
1001

1000
0111

0110

0101
0100
0011
0010

0001
0000 0

1

1
2
0
1

1

2
0

1
1
2
0

0

OUTPUT

1

0

1
2

INPUT

1

2
1
2

0
2
1
1

0
2

1

1
0
2
1

1
0

1

0
2
0
1

1

2

1

1

1

1

1

1

1

11
2
0

0
2

2

2

0

1

1

1
1
0

1

1

1
1

2
1
1

0
2

1

1

2
1

1

0

1

1

Figure 6: The network CCC16 with a particular orientation. The five vertical boxes contain the
numbers of tokens entering on an input wire in one of the layers 1, 2, 3 and 4, or exiting on an
output wire, respectively. The numbers of tokens entering on an input wire of the network are
chosen as in the proof of Theorem 5.3; specifically, the number of tokens on an input wire is the
number of occurences of 1 in the two least significant bits of the wire’s binary representation.
We shall establish that the input vector is a fixed-point for the prefix of CCC16 consisting of
the two leftmost layers (Lemma 5.4); hence, the orientation of balancers in this prefix is not
indicated.

In the proof, we shall deal with the network CCCw. We shall construct an input vector x such

that the probability that CCCw(x) is (�lg lg w� − 2)-smooth is at most 2 ·exp
(
−4

√
w

lg w

)
. Figure

6 provides an illustration for the construction used in the proof.

Proof: Construct the input vector x as follows. For each input wire i = i1i2 . . . ilg w, set

xi(1) :=
lg w∑

k=lg w−	lg lg w
+2

ik ;

so, xi is the number of occurences of 1 in the �lg lg w� − 1 least significant bits of the binary
representation i1i2 . . . ilg w. We prove:

36

Lemma 5.4 For each balancer b in the randomized network Prefixlg w−	lg lg w
+1(CCCw),

x1(b) = x2(b) .

Proof: By induction on the layer �(b). For the basis case where �(b) = 1, consider a balancer
b in layer 1 connecting wires i ∈ {0, 1}lg w and i(1). By construction of the input vector x,

x1(b) =
lg w∑

k=lg w−	lg lg w
+2

ik

and

x2(b) =
lg w∑

k=lg w−	lg lg w
+2

i(1)k .

By construction of the network CCCw, i and i(1) differ only in bit 1; so, ik = i(1)k for all entries
k ≥ lg w − �lg lg w� + 2. Hence, x1(b) = x2(b), and the claim follows.

Assume inductively that the claim holds for all layers 1, . . . , � − 1, where 1 < � < lg w −
�lg lg w� + 2. For the induction step, consider a balancer b in layer �, which connects wires
i ∈ {0, 1}lg w and i(�). Induction hypothesis and the definition of balancer imply that for each
wire i′ ∈ {0, 1}lg w,

xi′(� − 1) =
lg w∑

k=lg w−	lg lg w
+2

i′k .

It follows that

x1(b) =
lg w∑

k=lg w−	lg lg w
+2

ik

and

x2(b) =
lg w∑

k=lg w−	lg lg w
+2

i(�)k ,

By construction of the network, i and i(�) differ only in bit �; so, ik = i(�)k for all entries
k ≥ lg w − �lg lg w� + 2. Hence, x1(b) = x2(b), and the claim follows.

Note that by Lemma 5.4, x is a fixed-point input of the network Prefixlg w−	lg lg w
+1(CCCw).
We now focus on the suffix network Suffix	lg lg w
−1(CCCw). By Corollary 4.5 (with �1 =
lg w − (�lg lg w� − 1) and �2 = 0), the suffix Prefix	lg lg w
−1(CCCw). is the parallel cascade
of 2lg w−(�lg lg w�−1) = w

2	lg lg w
−1 copies of the network CCC2lg w−(lg w−(�lg lg w�−1)) = CCC2�lg lg w�−1 .

37

Fix now a binary string u ∈ {0, 1}lg w−	lg lg w
+1, and consider the copy CCC2�lg lg w�−1 =
CCC2�lg lg w�−1(u) restricted to the set of wires {uv | v ∈ {0, 1}	lg lg w−1}. Consider the input wire
i = uv for some binary string v ∈ {0, 1}	lg lg w
−1. By Lemma 5.4,

xi =
lg w∑

k=lg w−	lg lg w
+2

ik .

We prove:

Lemma 5.5 It holds that

P [yu1�lg lg w�−1 = 0] ≥ 1
2(2�lg lg w�−1−1)

and

P [yu1�lg lg w�−1 = �lg lg w� − 1] ≥ 1
2(2�lg lg w�−1−1)

.

Proof: Clearly,

Du1�lg lg w�−1 [lg w − (�lg lg w� − 1), lg w] =
	lg lg w
−2∑

k=0

2k

= 2	lg lg w
−1 − 1 .

Hence, there are 22�lg lg w�−1−1 orientations for balancers in the set Du1�lg lg w�−1 [lg w− (�lg lg w�−
1), lg w]. Since these orientations occur with uniform probability, it suffices to prove that the
random variable yu1�lg lg w�−1 attains the values 0 and �lg lg w� − 1.

By induction on w′ = 2	lg lg w
. For the basis case where w′ = 4, the claim is verified directly.
Assume inductively that the random variable yu1lg w′ in the network CCCw′ attains the values
0 and lg w′. For the induction step, consider the network CCC2w′ , and its output wire 0u1lg w′

.
By construction of thr cube-connected-cycles network, CCC2w′ is the sequential cascade of a
ladder network Lw followed by the parallel cascade of two copies of the network CCCw′ ; we shall
focus on the top such copy.

• Assume that all balancers in layer 1 of the network CCC2w′ are oriented bottom. By
construction of the input vector x, this implies that the input to each input wire 0i′ of
CCCw′, where i′ ∈ {0, 1}lg(2w′)−1 = {0, 1}lg w′

, equals 1(0i′) = 1(i′). Induction hypothesis
implies that yu1lg w′ attains the value 0.

• Assume now that all balancers in layer 1 of the network CCC2w′ are oriented top. By
construction of the input vector x, this implies that the input to each input wire 1i′

of CCCw′ , where i′ ∈ {0, 1}lg(2w′)−1 = {0, 1}lg w′
, equals 1(1i′) = 1 + 1(i′). Induction

hypothesis implies that yu1lg w′ attains the value 1 + lg w′ = lg 2w′.

38

The induction is now complete.

We continue to prove:

Lemma 5.6 The set {yu1�lg lg w�−1 | u ∈ {0, 1}lg w−	lg lg w
+1} is a set of independent random
variables.

Proof: For each binary string u ∈ {0, 1}lg w−(lg lg w−1), the construction of the network CCCw

implies that the random variable yu1�lg lg w�−1 is determined by (i) the inputs to the copy
CCC2�lg lg w�−1 [u], which are fixed (by Lemma 5.4); (ii) the (randomly chosen) orientation of
the copy CCC2�lg lg w�−1 [u]. By Corollary 4.5, the copies CCC2�lg lg w�−1 [u′] over all binary strings
u′ ∈ {0, 1}lg w−(lg lg w−1) are disjoint. Hence, the claim follows.

Lemmas 5.5 and 5.6 imply that for each y ∈ {0, �lg lg w� − 1},

P

⎡⎢⎢⎣ ∧
u ∈ {0, 1}lgw − (�lg lg w� − 1)

(
y
u1�lg lg w� − 1 �= y

)⎤⎥⎥⎦
=

∏
u ∈ {0, 1}lgw − (�lg lg w� − 1)

(
1 − P

[
y
u1�lg lg w� − 1 = y

])

≤
(
1 − 2−(2�lg lg w� − 1−1)

)2lg w − (�lg lg w� − 1)

=

⎛⎜⎜⎝(
1 − 2−(2�lg lg w	−1 − 1)

)22�lg lg w� − 1 − 1
⎞⎟⎟⎠

2lg w − (�lg lg w� − 1

22�lg lg w� − 1 − 1

≤ exp

(
−2lg w − (�lg lg w� − 1) − 2�lg lg w� − 1 + 1

)
≤ exp

(
−2lg w − (lg lg w − 1) − 2lg lg w − 1 + 1

)
= exp

(
−4

√
w

lg w

)
.

Hence, by the Union Bound (Lemma 2.3),

P [y is (�lg lg w� − 2)-smooth]

= P

⎡⎣(∧
u∈{0,1}lg w−(�lg lg w�+1

(yu1�lg lg w�−1 �= 0)
)∨(∧

u∈{0,1}lg w−(�lg lg w�+1

(yu1�lg lg w�−1 �= �lg lg w� − 1)
)⎤⎦

≤ P

⎡⎣ ∧
u∈{0,1}lg w−(�lg lg w�−1)

(yu1�lg lg w�−1 �= 0)

⎤⎦ + P

⎡⎣ ∧
u∈{0,1}lg w−�lg lg w�+1

(yu1�lg lg w�−1 �= �lg lg w� − 1)

⎤⎦
≤ 2 · exp

(
−4

√
w

lg w

)
,

39

as needed.

6 Two Blocks

Henceforth, we shall assume that w ≥ 2218
since otherwise our main result for two blocks (The-

orem 6.7) follows from Theorem 5.1. Since the block network Blockw and the cube-connected-
cycles network CCCw are topologically equivalent, so are Block2

w and CCC2
w. Hence, we shall

deal throughout with the cascade of two cube-connected-cycles networks.

The rest of this section is organized as follows. Section 6.1 establishes the Concentration-to-
Average Lemma. Section 6.2 presents and analyzes a partitioning of the second cascaded cube-
connected-cycles network into groups. Section 6.3 establishes some concentration properties for
each of the partitioned groups. Our main result for two blocks is established in Section 6.4.

6.1 The Concentration-to-Average Lemma

We start with a significant definition:

Definition 6.1 (Concentration-to-Average) Fix an input vector x and a layer � with lg w+
1 ≤ � ≤ 2 lg w in the network CCC2

w. Denote as E(x, �) the event that for all integers ζ with
0 ≤ ζ ≤ 2 lg w − �lg lg w� − � + 1, and for all pairs of binary strings u1 ∈ {0, 1}�−lg w−1 and
u2 ∈ {0, 1}2 lg w−�−�lg lg w�−ζ+1,∣∣∣∣∣

∑
{u1uu2|u∈{0,1}�lg lg w�+ζ} x(�)

2�lg lg w�+ζ
−

∑
x

w

∣∣∣∣∣ ≤ 2 .

Recall that by Lemma 4.4, for each integer ζ with 0 ≤ ζ ≤ 2 lg w−�lg lg w�−�+1, and for each
pair of binary strings u1 ∈ {0, 1}�−lg w−1 and u2 ∈ {0, 1}2 lg w−�−�lg lg w�−ζ+1, the network CCCw\
[� − 1, lg w − �lg lg w� − � − ζ + 1] restricted to the set of wires

{
u1uu2 | u ∈ {0, 1}�lg lg w�+ζ

}
is

a cube-connected-cycles network CCC2�lg lg w�+ζ . Hence, the event E(x, �) refers to each separate
restriction of the inputs (to CCC2

w) on the input wires of such a cube-connected-cycles network;
it asserts that each such cube-connected-cycles network receives an average number of tokens

(over its input wires) which is within 2 of the average
∑

x
w . We continue to establish that the

event E(x, �) occurs with high probability. We prove:

Lemma 6.1 (Concentration-to-Average Lemma) Consider the randomized cube-connected-
cycles network CCC2

w. Fix an input vector x and a layer � in the network CCC2
w, with lg w+1 ≤

� ≤ 2 lg w. Then,

P [E(x, �)] ≥ 1 − 4
w3

.

40

Proof: Fix an integer ζ with with 0 ≤ ζ ≤ 2 lg w − �lg lg w� − � + 1, and a pair of binary
strings u1 ∈ {0, 1}�−lg w−1 and u2 ∈ {0, 1}2 lg w−�−�lg lg w�−ζ+1. Since � ≥ lg w + 1, it follows that
ζ ≤ lg w − �lg lg w�.

Fix a wire i = u1uu2 ∈ {0, 1}lg w, for some (fixed) binary string u ∈ {0, 1}�lg lg w�+ζ . Consider
layer �′ = �−lg w+�lg lg w�+ζ−1. By assumption on ζ, it follows that �′ ≤ �−lg w+�lg lg w�+
2 lg w − �lg w� − � + 1 − 1 = lg w, so that �′ is a layer in the first cascaded CCCw network. By
Lemma 4.6, this implies that

IDi(�′) =
{

û1uû2 | û1 ∈ {0, 1}�−1−lg w and û2 ∈ {0, 1}lg w−�′+1
}

.

Note that that the network CCC2
w is complete; hence, we apply Lemma 3.7 on the (complete)

network Pref�−1CCC2
w to obtain that

xu1uu2(�) = yi(� − 1)

=
1

2(�−1)−�′

∑
i′∈IDi(�′)

yi′(�′) +
�−1∑

k=�′+1

1
2(�−1)−k

∑
b∈Di[k]

χb

=
1

2lg w−�lg lg w�−ζ

∑
i′∈IDi(�′)

xi′ (�′ + 1) +
�−1∑

k=�′+1

1
2(�−1)−k

∑
b∈Di[k]

χb

=
1

2lg w−�lg lg w�−ζ

∑
bu1∈{0,1}�−1−lg w

bu2∈{0,1}lg w−�′+1

xbu1ubu2(�
′ + 1) +

�−1∑
k=�′+1

1
2(�−1)−k

∑
b∈Du1uu2 [k]

χb .

Summing over all binary strings u ∈ {0, 1}�lg lg w�+ζ , we obtain that∑
{u1uu2|u∈{0,1}�lg lg w�+ζ}

x(�)

=
∑

u∈{0,1}�lg lg w�+ζ

⎛⎜⎜⎜⎝ 1
2lg w−�lg lg w�−ζ

∑
bu1∈{0,1}�−1−lg w

bu2∈{0,1}lg w−�′+1

xbu1ubu2(�
′ + 1) +

�−1∑
k=�′+1

1
2(�−1)−k

∑
b∈Du1uu2 [k]

χb

⎞⎟⎟⎟⎠
=

1
2lg w−�lg lg w�−ζ

∑
u∈{0,1}�lg lg w�+ζ

∑
bu1∈{0,1}�−1−lg w

bu2∈{0,1}lg w−�′+1

xbu1ubu2(�
′ + 1)

+
∑

u∈{0,1}�lg lg w�+ζ

�−1∑
k=�′+1

1
2(�−1)−k

∑
b∈Du1uu2 [k]

χb

=
1

2lg w−�lg lg w�−ζ

∑
x(�′ + 1) +

∑
u∈{0,1}�lg lg w�+ζ

�−1∑
k=�′+1

1
2(�−1)−k

∑
b∈Du1uu2 [k]

χb

=
1

2lg w−�lg lg w�−ζ

∑
x +

∑
u∈{0,1}�lg lg w�+ζ

�−1∑
k=�′+1

1
2(�−1)−k

∑
b∈Du1uu2 [k]

χb .

41

Hence, ∑
{u1uu2|u∈{0,1}�lg lg w�+ζ} x(�)

2�lg lg w�+ζ

=
1
w

·
∑

x +
1

2�lg lg w�+ζ
·

∑
u∈{0,1}�lg lg w�+ζ

�−1∑
k=�′+1

1
2(�−1)−k

∑
b∈Du1uu2 [k]

χb

=
∑

x
w

+ V(u1, u2) ,

where

V(u1, u2) = V

⎛⎝ ⋃
u∈{0,1}�lg lg w�+ζ

�−1⋃
k=�′+1

⋃
b∈Du1uu2 [k]

{b}
⎞⎠

=
1

2�lg lg w�+ζ

∑
u∈{0,1}�lg lg w�+ζ

�−1∑
k=�′+1

1
2(�−1)−k

∑
b∈Du1uu2 [k]

χb ;

Similarly to V(u1, u2), define the random variable

W(u1, u2) = W

⎛⎝ ⋃
u∈{0,1}�lg lg w�+ζ

�−1⋃
k=�′+1

⋃
b∈Du1uu2 [k]

{b}
⎞⎠

=
1

2�lg lg w�+ζ

∑
u∈{0,1}�lg lg w�+ζ

�−1∑
k=�′+1

∑
b∈Du1uu2 [k]

1
2(�−1)−k

rb .

Note that by linearity of expectation, E [W(u1, u2)] = 0. For each triple of a layer k with
�′ + 1 ≤ k ≤ � − 1, a binary string u ∈ {0, 1}�lg lg w�+ζ and a balancer b ∈ Du1uu2[k], define the
random variable

vb =
1

2�lg lg w�+ζ

1
2�−1−k

rb

from the sum W(u1, u2); clearly, vb has range

Range(vb) =
1

2�lg lg w�+ζ

1
2�−1−k

{
−1

2
,+

1
2

}
=

{
− 1

2�lg lg w�+ζ+�−k
,+

1
2�lg lg w�+ζ+�−k

}
,

so that

|Range(vb)| =
1

2�lg lg w�+ζ+�−k−1
.

We continue with an elementary technical claim.

42

Claim 6.2 It holds that ∑
u∈{0,1}�lg lg w�+ζ

�−1∑
k=�′+1

∑
b∈Du1uu2 [k]

|Range(vb)|2 ≤ 2
lg w

.

Proof: Clearly,∑
u∈{0,1}�lg lg w�+ζ

�−1∑
k=�′+1

∑
b∈Du1uu2 [k]

|Range(vb)|2 =
∑

u∈{0,1}�lg lg w�+ζ

�−1∑
k=�′+1

∑
b∈Du1uu2 [k]

1
22(�lg lg w�+ζ+�−k−1)

=
∑

u∈{0,1}�lg lg w�+ζ

�−1∑
k=�′+1

1
22(�lg lg w�+ζ+�−k−1)

|Du1uu2 [k]| .

Recall that the network CCC2
w is full; hence, for each pair of a binary string u ∈ {0, 1}�lg lg w�+ζ

and an integer k with �′ + 1 ≤ k ≤ � − 1, |Du1uu2 [k]| = 2�−k−1. This implies that∑
u∈{0,1}�lg lg w�+ζ

�−1∑
k=�′+1

∑
b∈Du1uu2 [k]

|Range(vb)|2 =
∑

u∈{0,1}�lg lg w�+ζ

�−1∑
k=�′+1

1
22(�lg lg w�+ζ+�−k−1)

· 2�−k−1

=
1

22(�lg lg w�+ζ)+(�−1)
·

∑
u∈{0,1}�lg lg w�+ζ

�−1∑
k=�′+1

1
2−k

≤ 1
22(�lg lg w�+ζ)+(�−1)

· 2�lg lg w�+ζ 2�

=
2

2�lg lg w�+ζ

≤ 2
lg w

,

as needed.

By Lemma 3.8, the Hoeffding Bound (Lemma 2.4) and Claim 6.2, it follows that

P

[∣∣∣∣∣
∑

u1uu2|u∈{0,1}�lg lg w�+ζ x(�)

2�lg lg w�+ζ
− x

w

∣∣∣∣∣ ≥ 2

]
= P [|V(u1, u2)| ≥ 2]

≤ 2 · P [|W(u1, u2)| ≥ 2]

= 2 · P
⎡⎣∣∣∣∣∣∣

∑
u∈{0,1}�lg lg w�+ζ

�−1∑
k=�′+1

∑
b∈Du1uu2 [k]

vb

∣∣∣∣∣∣ ≥ 2

⎤⎦
≤ 2 · 2 exp

(
− 2 · 22∑

u∈{0,1}�lg lg w�+ζ

∑�−1
k=�′+1

∑
b∈Du1uu2

|Range(vb)|2
)

≤ 4 · exp
(
− 8

2
lg w

)
= 4 · exp (−4 lg w)

=
4

w4 .

43

Hence, by the Union Bound (Lemma 2.3),

P [E(x, �)]

= 1 − P [¬E(x, �)]

= 1 − P

⎡⎢⎢⎢⎣
lg w−�lg lg w�∨

ζ=0

∨
u1∈{0,1}�−lg w−1

u2∈{0,1}2 lg w−�−�lg lg w�−ζ+1

∣∣∣∣∣
∑

{u1uu2|u∈{0,1}�lg lg w�+ζ} x(�)

2�lg lg w�+ζ
−

∑
x

w

∣∣∣∣∣ > 2

⎤⎥⎥⎥⎦
≥ 1 −

lg w−�lg lg w�∑
ζ=0

∑
u1∈{0,1}�−lg w−1

u2∈{0,1}2 lg w−�−�lg lg w�−ζ+1

P

[∣∣∣∣∣
∑

{u1uu2|u∈{0,1}�lg lg w�+ζ} x(�)

2�lg lg w�+ζ
−

∑
x

w

∣∣∣∣∣ > 2

]

≥ 1 −
lg w−�lg lg w�∑

ζ=0

∑
u1∈{0,1}�−lg w−1

u2∈{0,1}2 lg w−�−�lg lg w�−ζ+1

4
w4

≥ 1 − lg w · 2lg w−�lg lg w� · 4
w4

= 1 − 4
w3

,

as needed.

6.2 The Partition

For each index ρ with 1 ≤ ρ ≤
⌈ lg lg w

2

⌉
−6, we consider a group Lρ of

⎡⎢⎢⎢⎢ 4 lg w(⌈
lg lg w

2

⌉
− 1 − ρ

)2

⎤⎥⎥⎥⎥+

�lg lg w� consecutive layers in the second cascaded cube-connected-cycles network CCCw. These
groups are defined inductively as follows:

• For the basis case, L1 consists of layers 1, . . . ,

⎡⎢⎢⎢⎢ 4 lg w(⌈
lg lg w

2

⌉
− 2

)2

⎤⎥⎥⎥⎥+ �lg lg w�.

• Assume inductively that we have defined group Lρ−1, where 2 ≤ ρ ≤
⌈ lg lg w

2

⌉
− 6.

• For the induction step, group Lρ consists of the

⎡⎢⎢⎢⎢ 4 lg w(⌈
lg lg w

2

⌉
− 1 − ρ

)2

⎤⎥⎥⎥⎥ + �lg lg w� layers

which immediately follow group Lρ−1.

For each group Lρ with 1 ≤ ρ ≤
⌈ lg lg w

2

⌉
− 6, denote as �ρ the leftmost layer in group Lρ;

so, �1 = 1, and for each group Lρ, �ρ < lg w−�lg lg w�. Also, denote as x(ρ) and y(ρ) the input
and output vectors for the group Lρ, respectively. We calculate:

44

Lemma 6.3 The total number of layers in the groups Lρ with 1 ≤ ρ ≤
⌈ lg lg w

2

⌉
− 6 is less

than lg w.

We shall employ the implication (lg lg w)2 ≤ 1
10 · lg w of the assumption that w ≥ 2218

.

Proof: Clearly,&
lg lg w

2

’
−6∑

ρ=1

⎛⎜⎝
⎡⎢⎢⎢⎢

4 lg w(⌈ lg lg w
2

⌉
− 1 − ρ

)2

⎤⎥⎥⎥⎥ + �lg lg w�

⎞⎟⎠

≤

&
lg lg w

2

’
−6∑

ρ=1

⎡⎢⎢⎢⎢
4 lg w(⌈

lg lg w
2

⌉
− 1 − ρ

)2

⎤⎥⎥⎥⎥ +
(⌈

lg lg w

2

⌉
− 6

)
· �lg lg w�

≤

&
lg lg w

2

’
−6∑

ρ=1

⎛⎜⎝ 4 lg w(⌈ lg lg w
2

⌉
− 1 − ρ

)2 + 1

⎞⎟⎠
2

+
(⌈

lg lg w

2

⌉
− 6

)
· �lg lg w�

=

&
lg lg w

2

’
−6∑

ρ=1

4 lg w(⌈ lg lg w
2

⌉
− 1 − ρ

)2 +
(⌈

lg lg w

2

⌉
− 6

)
+
(⌈

lg lg w

2

⌉
− 6

)
· �lg lg w�

≤

&
lg lg w

2

’
−6∑

ρ=1

4 lg w(⌈ lg lg w
2

⌉
− 1 − ρ

)2 +
(

lg lg w

2
− 5

)
+
(

lg lg w

2
− 5

)
· (lg lg w + 1)

=

&
lg lg w

2

’
−6∑

ρ=1

4 lg w(⌈ lg lg w
2

⌉
− 1 − ρ

)2 +
1
2
(lg lg w)2 − 4 lg lg w − 10

≤ 4 lg w ·
(∞∑

k=5

1
k2

)
+

1
2

(lg lg w)2

≤ 4 lg w ·
(∞∑

k=1

1
k2 −

4∑
k=1

1
k2

)
+

1
2

(lg lg w)2

= 4 lg w ·
(

π2

6
− 205

144

)
+

1
2

(lg lg w)2

≤ 9
10

lg w +
1
2

(lg lg w)2

≤ 9
10

lg w +
1
20

lg w

< lg w ,

as needed.

45

Lemma 6.3 implies that for each group Lρ with 1 ≤ ρ ≤
⌈ lg lg w

2

⌉
− 6, |P[Lρ]| < w · 2lg w = w2.

6.3 Concentration Properties of Groups

We now prove some concentration property for each group from the partition in Section 6.2.

Lemma 6.4 Consider group Lρ, where 1 ≤ ρ ≤
⌈ lg lg w

2

⌉
− 6, with a random input vector x.

Fix a path β ∈ P[Lρ]. Then,

P

⎡⎣∧
b∈β

(∣∣∣∣x̂(b) −
∑

x
w

∣∣∣∣ >

⌈
lg lg w

2

⌉
+ 1 − ρ

) ∣∣∣ E (x, �ρ)

⎤⎦ ≤ 4
w3

.

For the sake of shortening the notation, set γ(ρ) :=
⌈ lg lg w

2

⌉
+ 1 − ρ. Since ρ ≤

⌈
lg lg w

2

⌉
− 6,

it follows that γ(ρ) ≥ 7.

Proof: Since CCCw is a bidelta network, Claim 3.3 implies that

P

⎡⎣∧
b∈β

(∣∣∣∣x̂(b) −
∑

x
w

∣∣∣∣ > γ(ρ)
) ∣∣∣E (x, �ρ)

⎤⎦ ≤ P

⎡⎣ ∧
b∈β[�lg lg w�,d(Lρ)]

(∣∣∣∣x̂(b) −
∑

x
w

∣∣∣∣ > γ(ρ)
) ∣∣∣E (x, �ρ)

⎤⎦
=

∏
b∈β[�lg lg w�,d(Lρ)]

P

[(∣∣∣∣x̂(b) −
∑

x
w

∣∣∣∣ > γ(ρ)
) ∣∣∣E (x, �ρ)

]

Since 1 ≤ �ρ ≤ lg w − �lg lg w�, Lemma 4.7 applies to yield that for each balancer b ∈
β[�lg lg w�, d(Lρ)]

P

[(∣∣∣∣x̂(b) −
∑

x
w

∣∣∣∣ > γ(ρ)
) ∣∣∣E (x, �ρ)

]
≤ 4 · exp (−(γ(ρ) − 2)2

)
.

46

It follows that

P

⎡⎣∧
b∈β

(∣∣∣∣x̂(b) −
∑

x
w

∣∣∣∣ > γ(ρ)
) ∣∣∣E (x, �ρ)

⎤⎦
≤ (

4 · exp (−(γ(ρ) − 2)2
)

.
)|β[�lg lg w�, d(Lρ)]|

=
(
exp(ln 4) · exp (−(γ(ρ) − 2)2

)
.
)|β[�lg lg w�,d(Lρ)]|

= exp
(|β[�lg lg w�, d(Lρ)]| ·

(
ln 4 − (γ(ρ) − 2)2

))
= exp

(
(d(Lρ) − �lg lg w�) · (ln 4 − (γ(ρ) − 2)2

))
= exp

(
ln 4 ·

⌈
4 lg w

(γ(ρ) − 2)2

⌉)
· exp

(
−
⌈

4 lg w

(γ(ρ) − 2)2

⌉
· (γ(ρ) − 2)2

)
≤ exp

(
ln 4 ·

⌈
4 lg w

(7 − 2)2

⌉)
· exp (−4 lg w)

≤ exp

(
ln 4 ·

⌈
4 lg w

25

⌉)
· exp (−4 lg w)

≤ exp

(
4 ln 4
25

lg w + ln 4 − lg w

)
≤ exp (−3 lg w)

≤ 4
w3 ,

as needed.

We continue to prove:

Lemma 6.5 Consider group Lρ, where 1 ≤ ρ ≤
⌈ lg lg w

2

⌉
− 6, with a (random) input vector x.

Then,

P

[
Lρ(x) is not

(⌈ lg lg w
2

⌉
+ 1 − ρ

)
-concentrating on input x

]
<

8
w

.

Proof: By Claim 3.5 (with E(x, �ρ) for E), Lemma 6.1, the Union Bound (Lemma 2.3) and

47

Lemma 6.4, it follows that

P

[
Lρ(x) is not

(⌈ lg lg w
2

⌉
+ 1 − ρ

)
-concentrating on input x

]
≤ P

[
Lρ(x) is not

(⌈ lg lg w
2

⌉
+ 1 − ρ

)
-concentrating on input x

∣∣∣E(x, �ρ)
]

+ P [¬E(x, �ρ)]

≤ P

[
Lρ(x) is not

(⌈ lg lg w
2

⌉
+ 1 − ρ

)
-concentrating on input x

∣∣∣E(x, �ρ)
]

+
4

w3

= P

⎡⎣ ∨
β∈P[Lρ]

∧
b∈β

(∣∣∣∣x̂(b) −
∑

x
w

∣∣∣∣ >

⌈
lg lg w

2

⌉
+ 1 − ρ

) ∣∣∣ E (x, �ρ)

⎤⎦+
4

w3

≤ |P[Lρ]| · P

⎡⎣∧
b∈β

(∣∣∣∣x̂(b) −
∑

x
w

∣∣∣∣ >

⌈
lg lg w

2

⌉
+ 1 − ρ

) ∣∣∣ E (x, �ρ)

⎤⎦ +
4

w3

< w2 · 4
w3 +

4
w3

<
8
w

,

as needed.

By Lemmas 3.4 and 6.5, it immediately follows:

Lemma 6.6 Consider the group Lρ. Then,

P
[
y is ceiling

(⌈
1
2 lg lg w

⌉
+ 3 − ρ

)
-concentrated

]
> P

[
x is ceiling

(⌈
1
2 lg lg w

⌉
+ 3 − ρ

)
-concentrated

]− 8
w

.

6.4 Main Result

We show:

Theorem 6.7 The randomized network Block2
w is a 17-smoothing network with probability at

least 1 − 2 · 4 lg lg w − 39
w .

Proof: We start by proving:

Lemma 6.8 For each group Lρ, where 1 ≤ ρ ≤
⌈ lg lg w

2

⌉
− 6,

P

[
y(ρ) is ceiling

(⌈ lg lg w
2

⌉
+ 2 − ρ

)
-concentrated

]
≥ 1 − 8ρ + 1

w
.

48

Proof: By induction on ρ. For the basis case where ρ = 1, Lemmas 6.6 and 5.2 imply that

P

[
y(1) is ceiling

(⌈ lg lg w
2

⌉
+ 2 − ρ

)
-concentrated

]
≥ P

[
x(1) is ceiling

(⌈ lg lg w
2

⌉
+ 2 − ρ

)
-concentrated

]
− 8

w

≥
(

1 − 1
w

)
− 8

w

= 1 − 9
w

,

as needed.

Assume inductively that the claim holds for ρ− 1, 1 < ρ ≤
⌈ lg lg w

2

⌉
− 6. For the induction

step, consider group Lρ. Then, Lemma 6.6 and the induction hypothesis imply that

P

[
y(ρ) is ceiling

(⌈ lg lg w
2

⌉
+ 2 − ρ

)
-concentrated

]
≥ P

[
x(ρ) is ceiling

(⌈ lg lg w
2

⌉
+ 2 − ρ

)
-concentrated

]
− 1

w

≥ P

[
y(ρ − 1) is ceiling

(⌈
lg lg w

2

⌉
+ 2 − ρ

)
-concentrated

]
− 1

w

≥
(

1 − 8(ρ − 1) + 1
w

)
− 8

w

= 1 − 8ρ + 1
w

,

as needed.

Similarly to Lemma 6.8, we prove:

Lemma 6.9 For each group Lρ, where 1 ≤ ρ ≤
⌈ lg lg w

2

⌉
− 6,

P

[
y(ρ) is floor

(⌈ lg lg w
2

⌉
+ 2 − ρ

)
-concentrated

]
≥ 1 − 8ρ + 1

w
.

Setting ρ =
⌈ lg lg w

2

⌉
− 6 in Lemma 6.8 yields that

P

[
y
(⌈ lg lg w

2

⌉
− 6

)
is ceiling 8-concentrated

]
≥ 1 −

8
(⌈

lg lg w
2

⌉
− 6

)
+ 1

w

≥ 1 −
8
(

lg lg w
2 + 1 − 6

)
+ 1

w

≥ 1 − 4 lg lg w − 39
w

.

Similarly, setting ρ =
⌈ lg lg w

2

⌉
− 6 in Lemma 6.9 yields that

49

P

[
y
(⌈ lg lg w

2

⌉
− 6

)
is floor 8-concentrated

]
≥ 1 − 4 lg lg w − 39

w
.

By Lemma 2.5, the last two inequalities imply that

P
[
CCC2

w(x) is 17-smooth
] ≥ P

[
y
(⌈ lg lg w

2

⌉
− 6

)
is 17-smooth

]
≥ 1 − 2 · 4 lg lg w − 39

w
,

as needed.

Since the cascade of two block networks is contained in the periodic network, Theorem 6.7
immediately implies:

Corollary 6.10 The randomized periodic network is a 17-smoothing network with probability
at least 1 − 2 · 4 lg lg w − 39

w .

7 Improbability of 1-Smoothing

We show:

Theorem 7.1 A randomized network Bw is 1-smoothing with probability at most d(Bw)
w − 1 .

The proof will follow the probabilistic method [4]. Roughly speaking, we shall consider an
input vector generated randomly. We shall establish that the output vector of the network Bw

on the generated input vector is 1-smooth with probability at most d(Bw)
w − 1 . This will imply

the existence of an input vector such that the corresponding output vector is 1-smooth with

probability at most d(Bw)
w − 1 ; from this, the claim will follow.

For any arbitrary pair of distinct integers i, j ∈ [w], denote as zi,j the vector

zi,j =

〈
1, . . . , 1, 0︸︷︷︸

entry i

, 1, . . . , 1, 2︸︷︷︸
entry j

, 1, . . . , 1

〉

with w entries; note that the vector zi,j is not 1-smooth.

For the proof, we will introduce the layer � = 0 of a balancing network as the layer preceding
layer 1 with no balancers and input vector x(0) = x; so, y(0) = x as well.

50

Proof: Fix a randomized 1-smoothing network Bw. Choose two distinct integers i, j ∈ [w]
uniformly at random. So, the probability that a particular pair of distinct integers î and ĵ from
[w] are chosen is 1

w(w − 1) . Construct the input vector

xi,j := zi,j;

clearly, xi,j is a random variable with

P [xi,j = zi0,j0] =
1

w(w − 1)

for any fixed pair of distinct wires i0 and j0 from [w].

By the Law of Conditional Alternatives,

P [Bw(xi,j) is 1-smooth] =
∑

bi,bj∈[w] |bi �=bj

P

[
xi,j = z

bi,bj

]
· P

[
Bw(z

bi,bj) is 1-smooth
]

=
∑

bi,bj∈[w] |bi �=bj

1
w(w − 1)

· P
[
Bw(z

bi,bj) is 1-smooth
]

=
1

w(w − 1)
·

∑
bi,bj∈[w] |bi�=bj

P

[
Bw(z

bi,bj) is 1-smooth
]

.

For each layer � with 1 ≤ � ≤ d(Bw), denote as E(xi,j, �) the event that on input vector
xi,j, there is a balancer b in layer � such that the two inputs to b are 0 and 2; so, by the Union
Bound (Lemma 2.3),

P [E(xi,j , �)] = P

[∨
b∈�

({x1(b), x2(b)} = {0, 2})
]

≤
∑
b∈�

P [{x1(b), x2(b)} = {0, 2}]

=
∑
b∈�

(
P [(x1(b) = 0 ∧ x2(b) = 2)] + P [(x1(b) = 2 ∧ x2(b) = 0)]

)
=

∑
b∈�

(
P
[
y(� − 1) = zi1(b),i2(b)

]
+ P

[
y(� − 1) = zi2(b),i1(b)

])
.

Clearly, Bw(xi,j) is 1-smooth if and only if there is a layer � with 1 ≤ � ≤ d(Bw) such that
the event E(xi,j , �) occurs; so, by the Union Bound (Lemma 2.3),

P [Bw(xi,j) is 1-smooth] = P

⎡⎣d(Bw)∨
�=1

E(xi,j , �)

⎤⎦
≤

d(Bw)∑
�=1

P [E(xi,j , �)] .

51

We continue with an informal outline for the rest of the proof. We shall establish that
for each layer � with 1 ≤ � ≤ d(Bw), P [E(xi,j , �)] ≤ 1

w − 1 (Lemma 7.3). From this fact

and using the Union Bound, we will prove that P [Bw(xi,j) is 1-smooth] ≤ d(Bw)
w − 1 . Then, we

will use the expression derived from the Law of Conditional Alternatives for the probability
P [Bw(xi,j) is 1-smooth] to conclude the existence of a particular input vector x

bi,bj such that

P

[
Bw(x

bi,bj) is 1-smooth
]
≤ d(Bw)

w − 1 ; this establishes the claim. We now provide the details of
the formal proof. We start with a technical claim.

Lemma 7.2 Fix an arbitrary pair of distinct wires i0 and j0 from [w]. Then, for each layer �

with 0 ≤ � ≤ d(Bw),

P [y(�) = zi0,j0] ≤ 1
w(w − 1)

.

Proof: By induction on �. For the basis case, consider the layer � = 0. Clearly,

P [y(0) = zi0,j0] = P [xi,j = zi0,j0]

=
1

w(w − 1)
,

and the claim follows.

Assume inductively that the claim holds for the layer � − 1, where 1 ≤ � ≤ d(Bw). For the
induction step, consider the layer �. By the Law of Conditional Alternatives and the induction
hypothesis,

P [y(�) = zi0,j0] =
∑

bi,bj∈[w]|bi�=bj

P

[
y(� − 1) = z

bi,bj

]
· P

[
y(�) = zi0,j0 | y(� − 1) = z

bi,bj

]
≤ 1

w(w − 1)
·

∑
bi,bj∈[w]|bi�=bj

P

[
y(�) = zi0,j0 | y(� − 1) = z

bi,bj

]
=

1
w(w − 1)

·
∑

bi,bj∈[w]|bi�=bj

P

[
yi0(�) = 0 ∧ yj0(�) = 2 | y(� − 1) = z

bi,bj

]
.

We proceed by case analysis on the connections of the wires i0 and j0 in layer �. There are
five possible cases; two representative ones are illustrated in Figure 7

(C1) Assume first that i0 is connected to some balancer b = {i0, i1} from layer � (with i1 �= i0),
while j0 is not connected to any balancer from layer �. Clearly, for any pair of distinct
wires î, ĵ ∈ [w],

P

[
yi0(�) = 0 ∧ yj0(�) = 2 | y(� − 1) = z

bi,bj

]
= 0

52

1/0

0/1

2/2

0

2

0

i0

j0

w-1

i1

layer ` layer `

1/1/0/0

0/0/1/1

2/1/2/1

1/2/1/2

0

2

0

i1

i0

j0

j1

w-1

(a) The case (C1) (b) The case (C3)

Figure 7: The cases (C1) and (C3) in the proof of Lemma 7.2. The numbers on the input and
output wires of layer � denote the corresponding numbers of tokens in all possible cases where
yi0(�) = 0 and yj0(�) = 2.

unless î ∈ {i0, i1} and ĵ = j0. Hence,∑
bi,bj∈[w] |bi�=bj

P

[
yi0(�) = 0 ∧ yj0(�) = 2 | y(� − 1) = zbi,bj

]
=

∑
bi∈{i0,i1},bj=j0

P

[
yi0(�) = 0 ∧ yj0(�) = 2 | y(� − 1) = zbi,bj

]
=

∑
bi∈{i0,i1},bj=j0

P

[
yi0(�) = 0 | y(� − 1) = zbi,bj

]
= P [yi0(�) = 0 | y(� − 1) = zi0,j0] + P [yi0 (�) = 0 | y(� − 1) = zi1,j0]

= 2 · P

[
i0

b→ i1

]
= 2 · 1

2
= 1 .

(C2) Assume now that j0 is connected to some balancer bj from layer �, while i0 is not connected
to any balancer from layer �. This case is similar to the case (C1), and we omit the analysis.

(C3) Assume now that i0 and j0 are connected to distinct balancers bi0 = {i0, i1} and bj0 =

53

{j0, j1}, respectively, from layer �. Clearly, for any pair of distinct wires î, ĵ ∈ [w],

P

[
yi0(�) = 0 ∧ yj0(�) = 2 | y(� − 1) = z

bi,bj

]
= 0

unless î ∈ {i0, i1} and ĵ ∈ {j0, j1}. Hence,∑
bi,bj∈[w] |bi �=bj

P

[
yi0(�) = 0 ∧ yj0(�) = 2 | y(� − 1) = zbi,bj

]
=

∑
bi∈{i0,i1},bj∈{j0,j1}

P

[
yi0(�) = 0 ∧ yj0(�) = 2 | y(� − 1) = zbi,bj

]
= P [yi0(�) = 0 ∧ yj0(�) = 2 | y(� − 1) = zi0,j0] + P [yi0(�) = 0 ∧ yj0(�) = 2 | y(� − 1) = zi0,j1]

+

P [yi0(�) = 0 ∧ yj0(�) = 2 | y(� − 1) = zi1,j0] + P [yi0(�) = 0 ∧ yj0(�) = 2 | y(� − 1) = zi1,j1]

= P [yi0(�) = 0 | y(� − 1) = zi0,j0] · P [yj0(�) = 2 | y(� − 1) = zi0,j0]

+ P [yi0(�) = 0 | y(� − 1) = zi1,j0] · P [yj0(�) = 2 | y(� − 1) = zi1,j0]

+ P [yi0(�) = 0 | y(� − 1) = zi0,j1] · P [yj0(�) = 2 | y(� − 1) = zi0,j1]

+ P [yi0(�) = 0 | y(� − 1) = zi1,j1] · P [yj0(�) = 2 | y(� − 1) = zi1,j1]

= 4 · P
[
i0

bi0→ i1

]
· P

[
j0

bj0→ j1

]
= 4 · 1

4
= 1 .

(C4) Assume now that i0 and j0 are connected to the same balancer b = {i0, j0} from layer �.
Clearly, for any pair of distinct wires î, ĵ ∈ [w],

P

[
yi0(�) = 0 ∧ yj0(�) = 2 | y(� − 1) = z

bi,bj

]
= 0 ,

since the balancer property yields that |yi0(�) − yj0(�)| ≤ 1.

(C5) Assume finally that neither i0 nor j0 are connected to a balancer from layer �; so, yi0(�) =
yi0(� − 1) and yj0(�) = yj0(� − 1). Hence,∑

bi,bj∈[w] |bi�=bj
P

[
yi0(�) = 0 ∧ yj0(�) = 2 | y(� − 1) = zbi,bj

]
=

∑
bi,bj∈[w] |bi�=bj

P

[
yi0(� − 1) = 0 ∧ yj0(� − 1) = 2 | y(� − 1) = zbi,bj

]

=
∑

bi,bj∈[w] |bi�=bj

⎧⎨⎩1 , if ybi(� − 1) = 0 and ybj(� − 1) = 2

0 , if ybi(� − 1) �= 0 or ybj(� − 1) �= 2

≤ 1 .

54

It follows from the case analysis that

P [y(�) = zi0,j0] ≤ 1
w(w − 1)

,

as needed.

We are now ready to prove:

Lemma 7.3 For each layer � with 1 ≤ � ≤ d(Bw),

P [E(xi,j, �)] ≤ 1
w − 1

.

Proof: By Lemma 7.2, it follows that

P [E(xi,j , �)] ≤
∑
b∈�

(
1

w(w − 1)
+

1
w(w − 1)

)
≤ w

2
· 2
w(w − 1)

=
1

w − 1
,

as needed.

By Lemma 7.3, it follows that

P [Bw(xi,j) is 1-smooth] ≤ d(Bw)
w − 1

.

Hence, ∑
bi,bj∈[w] |bi�=bj

1
w(w − 1)

· P

[
Bw(z

bi,bj) is 1-smooth
]

≤ d(Bw)
w − 1

or ∑
bi,bj∈[w] |bi�=bj

P

[
Bw(z

bi,bj) is 1-smooth
]

≤ w · d(Bw) .

It follows that there is an input vector zi0,j0 such that

P [Bw(zi0,j0) is 1-smooth] ≤ 1
w(w − 1)

· w · d(Bw)

=
d(Bw)
w − 1

.

Hence, Bw is a 1-smoothing network with probability at most d(Bw)
w − 1 , as needed.

Theorem 7.1 immediately implies:

Corollary 7.4 There is no small-depth, randomized 1-smoothing network with constant prob-
ability.

55

8 Conclusion

We presented a thorough study of the impact of randomization in smoothing networks. We
showed a tight (up to a small additive constant) bound of lg lg w + Θ(1) on the smoothness of
the randomized block network. As our main result, we established an upper bound of 17 on the
smoothness of the cascade of two randomized block networks. Finally, we established that it
is impossible to obtain a randomized 1-smoothing network of small depth and sufficiently high
probability.

These results delimit the power of randomization in smoothing networks: it can be employed
in a simple, small-depth network to yield a constant upper bound on smoothness; however, it
cannot be employed to yield an upper bound of 1 on smoothness unless the network has linear
depth.

Our work leaves open numerous interesting problems. The most interesting extension of
our research is to establish the conjecture that the cascade of a (small) constant number of
randomized blocks is a 2-smoothing network (with high probability). (By Theorem 7.1, this is
the best trade-off one could hope for.) More generally, it would be very interesting to establish
trade-offs between the number of cascaded (randomized) block networks and the achievable
smoothness.

On a more concrete level, it would be interesting to close the small gap between the constants
(−2 and 3) from the lower and upper bounds on the smoothness of the (randomized) block.
Also, how tight is the upper bound of 17 on the smoothness of the cascade of two randomized
blocks? Finally, how tight is the improbability result from Theorem 7.1? Is there a specific
network Bw which, on some particular input vector, achieves smoothness of 1 with probability

exactly d(Bw)
w − 1 ?

Acknowledgments.

We thank Maurice Herlihy and Srikanta Tirthapura whose work [13] has inspired ours. We also
thank Costas Busch and the anonymous PODC 2008 reviewers for their helpful comments.

56

References

[1] E. Aharonson and H. Attiya, ”Counting Networks with Arbitrary Fan-Out,” Distributed
Computing, Vol. 8, No. 4, pp. 163–169, 1995.

[2] W. Aiello, R. Venkatesan and M. Yung, “Coins, Weights and Contention in Balancing
Networks,” Proceedings of the 13th Annual ACM Symposium on Principles of Distributed
Computing, pp. 193–205, August 1994.

[3] M. Ajtai, J. Komlós and E. Szemerédi, “Sorting in c lg n Parallel Steps,” Combinatorica,
Vol. 3, No. 1, pp. 1–19, 1983.

[4] N. Alon and J. Spencer, The Probabilistic Method, Wiley-Interscience Series in Discrete
Mathematics and Optimization, John Wiley & Sons, Second Edition, 2000.

[5] J. Aspnes, M. Herlihy and N. Shavit, “Counting Networks,” Journal of the ACM, Vol. 41,
No. 5, pp. 1020–1048, September 1994.

[6] K. E. Batcher, “Sorting Networks and Their Applications,” Proceedings of the AFIPS Joint
Computer Conference, pp. 334–338, 1968.

[7] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods, Athena Scientific, 1997.

[8] C. Busch and M. Mavronicolas, “An Efficient Counting Network,” Proceedings of the 1st
Merged International Parallel Processing Symposium and IEEE Symposium on Parallel
and Distributed Processing, pp. 380–384, May 1998.

[9] M. Dowd, Y. Perl, L. Rudoplh and M. Saks, “The Periodic Balanced Sorting Network,”
Journal of the ACM, Vol. 36, No. 4, pp. 738–757, October 1989.

[10] C. Dwork, M. Herlihy and O. Waarts, “Contention in Shared Memory Algorithms,” Journal
of the ACM, Vol. 44, No. 6, pp. 779–805, November 1997.

[11] B. Fristedt and L. Gray, A Modern Approach to Probability Theory, Probability and Its
Applications, Birkhäuser, 1997.

[12] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming, Morgan Kauf-
mann/Elsevier, 2008.

[13] M. Herlihy and S. Tirthapura, “Randomized Smoothing Networks,” Journal of Parallel
and Distributed Computing, Vol. 66, No. 5, pp. 626–632, May 2006.

57

[14] M. Herlihy and S. Tirthapura, “Self-Stabilizing Smoothing and Counting Networks,” Dis-
tributed Computing, Vol. 18, No. 5, pp. 345–357, April 2006.

[15] W. Hoeffding. “Probability Inequalities for Sums of Bounded Random Variables,” Journal
of the American Statistical Association, Vol. 53, pp. 13–30, 1963.

[16] S. Kapidakis and M. Mavronicolas, “Distributed, Low Contention Task Allocation,” Pro-
ceedings of the 8th IEEE Symposium on Parallel and Distributed Processing, pp. 358–365,
October 1996.

[17] M. Klugerman, Small-Depth Counting Networks and Related Topics, Ph.D. Thesis, De-
partment of Mathematics, Massachusetts Institute of Technology, September 1994.

[18] M. Klugerman and C. G. Plaxton, “Small-Depth Counting Networks,” Proceedings of the
24th Annual ACM Symposium on Theory of Computing, pp. 417–428, May 1992.

[19] D. E. Knuth, The Art of Computer Programming, Vol. 3/Sorting and Searching, Second
Edition, Addison-Wesley, 1998.

[20] C. P. Kruskal and M. Snir, “A Unified Theory of Interconnection Network Structure,”
Theoretical Computer Science, Vol. 48, No. 3, pp. 75–94, 1986.

[21] F. Preparata and J. Vuillemin, “The Cube-Connected-Cycles: A Versatile Network for
Parallel Computation,” Communications of the ACM. Vol. 24, No. 5, pp. 300–309, May
1981.

[22] M. D. Riedel and J. Bruck, ”Tolerating Faults in Counting Networks,” Technical Report
ETR-22, Paradise, California Institute of Technology, April 1999.

58

