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Abstract

We compare the impact of timing conditions on implementing sequentially consistent
and linearizable counters using (uniform) counting networks in distributed systems. For
counting problems in application domains which do not require linearizability but will run
correctly if only sequential consistency is provided, the results of our investigation, and their
potential payoffs, are threefold:

• First, we show that sequential consistency and linearizability cannot be distinguished
by the timing conditions previously considered in the context of counting networks;
thus, in contexts where these constraints apply, it is possible to rely on the stronger
semantics of linearizability, which simplifies proofs and enhances compositionality.

• Second, we identify local timing conditions that support sequential consistency but not
linearizability; thus, we suggest weaker, easily implementable timing conditions that
are likely to be sufficient in many applications.

• Third, we show that any kind of synchronization that is too weak to support even
sequential consistency may violate it significantly for some counting networks; hence,
we identify timing conditions that are to be totally ruled out for specific applications
that rely critically on either sequential consistency or linearizability.

Keywords: Counting networks, balancing networks, sequential consistency, linearizability,
inconsistency fractions.
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1 Introduction

1.1 Motivation and Overview

A solution to the counting problem is a protocol which allows a number of concurrent processes to
repeatedly acquire successive values from a given range, such as addresses of memory locations or
destination ids in a routing network. A standard consistency condition, linearizability, requires
that the order of the values returned to (possibly different) processes reflect the real-time order
of the request operations [HW90]. That is, a request operation that was completed earlier must
obtain a smaller value than one invoked after its completion. Linearizable counting can be used
as a building block in basic constructions such as barrier synchronization∗ [MS91], concurrent
queues and stacks [FG91] and efficient shared program counters [ML89].

Counting networks are highly concurrent data structures which solve a (non-linearizable)
counting problem in a way that reduces sequential bottlenecks and contention [AHS94]. Unlike
queue-locks [MS91] and combining trees [GVW89], which were based on handing out values from
a single memory location, counting networks hand out values from a collection of locations. To
guarantee that the returned values are correct (that is, they exhibit no duplications or gaps),
counting networks use a special network structure that is traversed by processes before they
reach the counters; this structure is made up of balancers and wires, implemented in shared
memory as records and pointers, respectively, whose role is to coordinate the routing of processes
through it. The obvious advantage of counting networks is that they achieve spreading of the
processes through a network structure, thereby reducing contention and increasing concurrency.

It is known that there does not exist a completely asynchronous counting network (with
finite depth) that guarantees linearizability in all possible schedules [HSW96, Theorem 5.1].
So, it is natural to seek appropriate timing conditions that outlaw non-linearizable schedules,
thus rendering a counting network linearizable [LSST99, MPT97].

Sequential consistency [L79] is a consistency condition weaker than linearizability. For count-
ing networks, it assures that the order of values returned to the same process reflects the real-
time order in which the values were requested. This natural monotonicity property is reasonable
to expect from a counter primitive. However, although a standard consistency condition for
shared memory multiprocessors, sequential consistency has not previously been investigated in
the context of counting networks. Our work is a first step in such an investigation.†

∗A barrier synchronization is a coordination mechanism that forces processes participating in a concurrent

algorithm to wait until each one of them has reached a certain coordination point in its program. Using barriers

often enables to significantly simplify the design of concurrent algorithms.
†However, we point out that a trivial modification to the proof for [HSW96, Theorem 5.1] immediately
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In a nutshell, we demonstrate that previously studied timing conditions fail to distinguish
sequential consistency from linearizability in the context of counting networks. Furthermore,
we introduce a new local timing condition and establish that it suffices to guarantee sequential
consistency but not linearizability. Finally, we show that previous measures of the fraction of
inconsistent counter operations can be applied to sequential consistency as well.

We remark that there are counting problems arising from practical applications that can
do with only sequentially consistent counters. Consider, for example, a particular counter-
based implementation of barrier synchronization for n concurrent processes, which uses a single
counter C (initially set to 0). As soon as a process reaches the barrier, it increments the counter
by 1 and “busy-waits”; when a process reads that C = n, it signals to the other processes that
they may run past the barrier (cf. [T06, Section 5.2]. A linearizable counter suffices; then, the
last process to increment will get the value n and signal to the others. However, a sequentially
consistent counter will also suffice; in that case, exactly one process will (still) get the value n

(once all processes have started their increments) and all processes will run past the barrier.

1.2 Contribution

For counting problems that originate from application domains which do not absolutely require
linearizability but will run correctly if only sequential consistency is provided, the results of our
investigation, and their potential payoffs, are threefold:

• First, we show that sequential consistency and linearizability cannot be distinguished by
the timing conditions previously considered in the context of counting networks; thus, in
contexts where these constraints apply, it is possible to rely on the stronger semantics of
linearizability, which simplifies proofs and enhances compositionality.‡

• Second, we identify local timing conditions that support sequential consistency but not
linearizability; thus, we suggest weaker, easily implementable timing conditions that are
likely to be sufficient in many applications.

• Third, we show that any kind of synchronization that is too weak to support even se-
quential consistency may violate it significantly for some counting networks; hence, we
identify timing conditions that are to be totally ruled out for specific applications that
rely critically on either sequential consistency or linearizability.

yields that there does not exist a completely asynchronous counting network (with finite depth) that guarantees

sequential consistency in all possible schedules.
‡Linearizability is a compositional condition: a system of objects is linearizable if and only if each individual

object is linearizable [HW90]. Sequential consistency is not a compositional condition.
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The specific results of our investigation contribute directly to these intended payoffs as follows:

• We consider several timing conditions regulating both the rate at which processes move
through a counting network and global inter-operation delays. We show that considering
only these conditions cannot distinguish linearizability from sequential consistency (The-
orem 3.2). Previous work on timing conditions for assuring linearizability in counting
networks involved only such timing conditions [HSW96, LSST99, MPT97]. So, previously
known results (especially the necessary conditions) apply also to sequential consistency.

• We identify timing conditions that can distinguish linearizability from sequential consis-
tency; that is, these timing conditions are sufficient for sequential consistency but not for
linearizability (Theorem 4.1). These conditions involve a bound on local inter-operation
delay; thus, they are straightforward to implement. By way of example, we present,
for any given uniform counting network,§ timing conditions under which the network is
sequentially consistent but not linearizable.

• The fraction of non-sequentially-consistent (resp., non-linearizable) operations in a finite
execution is defined to be the ratio of the number of operations whose removal yields a
sequentially consistent (resp., linearizable) execution over the total number of completed
operations in the execution; so, these fractions measure the amount of locally (resp.,
globally) observable inconsistencies. We present both upper and lower bounds on these
inconsistency fractions (Theorems 5.4 and 5.11).

In particular, some of these bounds imply that in the worst case, some weak timing con-
ditions, previously shown to admit a large fraction of incorrect (non-linearizable) opera-
tions [LSST99], actually admit the same fraction of non-sequentially consistent operations.
Some other bounds indicate the relative cost-effectiveness of provided timing conditions
for sequential consistency and linearizability.

To derive our lower bounds on inconsistency fractions, we investigate the topological
structure of (uniform) counting networks. More specifically, we identify structure with a
direct quantitative impact on inconsistency fractions.

1.3 Related Work

Counting networks made up of balancers with fan-in and fan-out two were first introduced and
studied in [AHS94]; those were the bitonic and periodic counting networks. A generalization

§Roughly speaking, a counting network is uniform if all paths traversing it have the same length.
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was introduced in [AA95], where topological constraints on designs using larger balancers were
investigated. Similar design issues were considered in [BHM94, BH02, BM98, FLL93, HKM93].

The notions of linearizability and sequential consistency were originally defined in [HW90]
and [L79], respectively. Linearizable counting networks were defined and studied in [HSW96].
We know of no previous work on sequentially consistent counting networks.

To circumvent the impossibilty of a completely asynchronous linearizable counting network
(with finite depth) already established in [HSW96], the first work to investigate the effect
of timing conditions on the behavior of counting networks, and to identify timing conditions
guaranteeing linearizability, is by Lynch et al. [LSST99]. Moreover, this work shows that this
sufficient condition is also a necessary condition for the special cases of the bitonic counting
network [AHS94] and the counting tree [SZ96]. Additional results in this direction are presented
in [MPT97].

Generalizations to counting networks were recently considered in [BMS05, FH04]. Counting
networks with additional properties (such as self-stabilization and adaptivity) have been inves-
tigated in [HT06a, T05]. Results on concurrent counting (without using counting networks) are
reported in [BMT02, MT97, MTY96]. The impact of timing conditions on the relative costs
of implementing linearizability and sequential consistency in message-passing has been studied
in [AW94, EM99, MR99].

1.4 Road Map

Section 2 introduces our theoretical framework. Section 3 identifies timing conditions that do
not distinguish linearizability from sequential consistency. Section 4 introduces timing condi-
tions that do distinguish linearizability from sequential consistency. Our bounds on inconsis-
tency fractions are presented in Section 5. We conclude, in Section 6, with some open problems.

2 Framework

Balancers and balancing networks are presented in Section 2.1. Section 2.2 introduces executions
and counting networks. Section 2.3 proceeds to define several timing parameters and timing
conditions. Definitions for consistency conditions are provided in Section 2.4. Some structural
aspects of balancing and counting networks are reviewed in Section 2.5. Section 2.6 revisits some
known constructions of counting networks. Some implementation issues for counting networks
are discussed in Section 2.7. Section 2.8 concludes with a review of some previous, directly
related work.
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Figure 1: A symbolic representation of a (3, 3)-balancer.

2.1 Balancers and Balancing Networks

Many of the definitions in this section are adapted from [AA95, AHS94, LSST99].

Throughout, we consider a distributed system with an unbounded number of processes.
Balancing networks are constructed from elements called balancers, which direct tokens from
inputs to outputs, and wires, which acyclically interconnect the balancers [AHS94]. The wires

act as interconnection and delay elements, but provide no queueing or ordering of pending
tokens.

Formally, an (fin, fout)-balancer, or balancer for short, is a routing element receiving
tokens on fin input wires 1, 2, . . . , fin and sending out tokens to fout output wires 1, 2, . . . , fout;
the integers fin and fout are called the balancer’s fan-in and fan-out, respectively. A balancer
is regular if its fan-in and fan-out are equal. The state of an (fin, fout)-balancer is some integer
s ∈ {1, . . . , fout}. In the initial state of an (fin, fout)-balancer, s = 1. Figure 1 depicts a (3, 3)-
balancer; we draw wires as horizontal lines with the balancer stretched vertically. Roughly
speaking, a balancer acts as a round-robin scheduler, taking a stream of input tokens and
forwarding them to its output wires from top to bottom; thus, a balancer effectively balances
input tokens on its output wires.

We allow processes to introduce tokens on the balancer’s input wires at arbitrary times;
after some delay, they shepherd them instantaneously through the balancer, arriving on an
output wire. Formally, we consider an instantaneous balancer transition step of the form

e = BALp (T,B, i, j) ,

corresponding to a token T of process p traversing a balancer B, entering on input wire i and
exiting on output wire j.

A (win, wout)-balancing network, or balancing network for short, is a directed, acyclic
graph G with three kinds of nodes:

• win source nodes X1,X2, . . . ,Xwin ;
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Figure 2: A (6, 6)-balancing network.

• wout sink nodes Y1, Y2, . . . , Ywout;

• a finite number of inner nodes.

The source and sink nodes represent the input and output wires of the network, respectively;
the inner nodes represent the balancers of the network. The edges of G interconnect the
balancers by identifying the input and output wires of them; thus, a node corresponding to
an (fin, fout)-balancer has fin incoming edges and fout outgoing edges that coincide with the
input and output wires of the balancer. Since edges represent wires, we shall, in the following
discussion, use wires and edges interchangeably. Moreover, the outgoing and incoming degrees
of all source and sink nodes, respectively, are equal to one; the incoming and outgoing degrees
of all source and sink nodes, respectively, are equal to zero. The integers win and wout are
called the network’s fan-in and fan-out, respectively. When fan-in and fan-out are equal,
their common value w is called the fan of the network.

We depict a balancing network as a collection of horizontal lines on which the edges are
deployed; that is, each edge of the network is mapped onto some segment of a horizontal line.
Balancers are stretched vertically. Figure 2 shows a (6, 6)-balancing network made up of (2, 2)-
balancers and (3, 3)-balancers.

Each one of the wout sink nodes of a balancing network is identified with an atomic counter.
The tokens exiting on output wire Yj , 1 ≤ j ≤ wout, are consecutively assigned by the resident
counter the integers j−1, (j−1)+wout, (j−1)+2wout, and so on. The state of the counter Yj

is an integer s ≥ j − 1. In the initial state, s = j − 1. Formally, we consider an instantaneous
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counter transition step of the form

e = COUNTp (T,C, v) ,

corresponding to a token T of process p traversing a counter C and obtaining the value v. A
step will be used as an abbreviation for both a balancer transition step and a counter transition
step.

The original definition of balancing networks [AHS94] allows each process to introduce
tokens on an input wire that is either preassigned or chosen arbitrarily. In this work, we
assume that each process is assigned to some specific input wire of the balancing network; all
tokens generated by the process enter on that input wire. (Since the second assumption is more
restrictive, it can make impossibility results only stronger.)

A configuration of a balancer is a collection of tokens on its input and output wires. A
configuration of a counter is a collection of tokens on its input wire. A network state, or
state for short, is a collection of pairs of a state and a configuration, one pair for each of the
balancers and counters in the network. In the initial network state, all balancers are in their
initial states and all wires are empty.

2.2 Executions and Counting Networks

An execution of a balancing network is an alternating sequence of network states and steps

E = Q0, e1, Q1, e2, Q2, . . .

such that:

1. Q0 is the initial network state.

2. Each step transforms the preceding network state to the following network state in the
natural way. In particular:

(a) If the step is a balancer transition step which occurs at an (fin, fout)-balancer, then
the state of the balancer increases by 1 modulo fout; so, balancer states “wrap
around”.

(b) If the step is a counter transition step which occurs at the counter Yj, where 1 ≤
j ≤ wout, then the state of the counter increases by wout; so, counter states do not
“wrap around”.

9



3. For each process p, for each pair of tokens T and T ′ issued by process p, either all
steps involving T precede all steps involving T ′ or all steps involving T ′ precede all steps
involving T in E ; roughly speaking, a process may not issue tokens which are overlapping
in time.

4. Fix any network state Qr, where r ≥ 1. Use the prefix of E ending with Qr to define
history variables for each (fin, fout)-balancer as follows:

For each index i, 1 ≤ i ≤ fin, the history variable xi stands for the number of
tokens that have entered on input wire i in the prefix of E ending with Qr; for
each index j, 1 ≤ j ≤ fout, the history variable yj stands for the number of
tokens that have exited on output wire j in the prefix of E ending with Qr.

Then, the following properties hold for each (fin, fout)-balancer:

(a) Safety property :
∑fin

i=1 xi ≥ ∑fout

j=1 yj; that is, a balancer never creates tokens
spontaneously.

(b) Liveness property : Assume that in the (possibly infinite) suffix of E starting
with Qr, there are only finitely many steps involving the balancer; then, there is a
configuration Qr′ in E with r′ ≥ r where

∑fin
i=1 xi =

∑fout

j=1 xj ; that is, a balancer
never “swallows” tokens.

Call Qr′ a quiescent network state for the (fin, fout)-balancer. So, in a quiescent
network state Qr′ for a balancer, the number of tokens that exited the balancer is
equal to the number of tokens that entered it (in the prefix of E ending with Qr′).

(c) Step property : For any pair of indices j and k such that 1 ≤ j < k ≤ fout,
0 ≤ yj − yk ≤ 1.

Denote by T (E) the set of tokens appearing in execution E . The safety and liveness prop-
erties for a balancing network follow naturally from those for its balancers and are as follows:

1. Safety property : For each network state Qr,
∑win

i=1 xi ≥
∑wout

j=1 yj; that is, a balancing
network never creates tokens spontaneously.

2. Liveness property : Fix a network state Qr such that in the (possibly infinite) suffix
of E starting with Qr, there are only finitely many steps involving each balancer; then,
there is a network state Qr′ in E with r′ ≥ r which is a quiescent network state for each
balancer.

Call Qr′ a quiescent network state for the network, or a quiescent network state

for short. So, in a quiescent network state Qr′ , the number of tokens that exited the
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network is equal to the number of tokens that entered it (in the prefix of E ending with
Qr′). Roughly speaking, a balancing network never “swallows” tokens.

We are now ready to state the most prominent correctness condition for balancing networks.
A (win, wout)-counting network [AHS94], or counting network for short, is a (win, wout)-
balancing network which satisfies the step property:

Step property : In any execution E , for any quiescent network state of E , and for
any pair of indices j and k such that 1 ≤ j < k ≤ wout, 0 ≤ yj − yk ≤ 1.

2.3 Timing Parameters and Timing Conditions

A timed execution RE for an execution E of a balancing network G is an alternating sequence
of network states and timed steps

RE = Q0, 〈e1, t1〉, Q1, 〈e2, t2〉, Q2, . . .

that associates a time tr with each step er in the execution E in a non-decreasing order. More-
over, if the execution E is infinite, then the sequence t1, t2, . . . is unbounded.

A timed execution RE determines a schedule SE : T (E) × [d(G) + 1] → R that specifies
for any pair of a token T ∈ T (E) and a layer �, 1 ≤ � ≤ d(G) + 1, the time SE(T, �) (as a real
number) at which token T passes through a node in layer �. We shall sometimes abuse notation
by representing a schedule as a sequence of timed steps RE = 〈e1, t1〉, 〈e2, t2〉, . . .; further, we
shall interchangeably use the terms of timed execution and schedule when no confusion arises.

Associated with a schedule SE of the network G are the following timing parameters:

cP
min – lower bound on wire delay for process P . The minimum, over all tokens T

generated by process P and all layers l, of the difference between the time at which
T passes through layer �, and the time at which T passes through layer � − 1, where
1 < � ≤ d(G) + 1. Intuitively, cP

min represents the minimum delay a token by process P

experiences over any individual wire.

cmin – lower bound on wire delay. The minimum, over all processes P , of cP
min. Intuitively,

cmin represents the minimum delay a token experiences over any individual wire.

cmax – upper bound on wire delay. The maximum, over all tokens T and all layers �, of
the difference between the time at which T passes through layer �, and the time at which
T passes through layer � − 1, where 1 < � ≤ d(G) + 1. Intuitively, cmax represents the
maximum delay a token incurs over any individual wire.
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CP
L – lower bound on local inter-operation delay for process P . The minimum, over

all pairs of consecutive tokens T and T ′ by process P , of the difference between the time
at which token T ′ passes through layer 1 of the network, and the time at which token T

passes through layer d(G) + 1. Intuitively, CP
L measures the local delay incurred between

the time a token by P exits the network and the time for a new token by P to enter it
again.

CL – lower bound on local inter-operation delay. The minimum, over all processes P ,
of CP

L . Intuitively, CL measures the local delay incurred between the time some token
exits the network, and the time for a new token by the same process to enter it again.

Cg – lower bound on global delay. The minimum, over all pairs of tokens T and T ′ that
do not overlap (that is, they are not inside the network at the same time), of the difference
between the time at which the (later) token T ′ passes through layer 1 of the network, and
the time at which the (earlier) token T passes through layer d(G) + 1. Intuitively, Cg

measures the global delay incurred between the time some token exits the network, and
the time a new token, possibly by a different process, can enter it.

The timing parameters cmin, cmax, and Cg were introduced by Lynch et al. [LSST99], who
studied their impact on linearizability properties of (uniform) counting networks.

• The timing parameters cmin and cmax are motivated by the fact that many common
distributed and real-time computing elements are neither completely synchronous nor
completely asynchronous (cf. [AM94]). Using the parameters cmin and cmax is sufficiently
general to capture both shared memory and message passing implementations of bal-
ancers [AHS94, SZ96].

• The timing parameter Cg is motivated by real-time scheduling of tasks on multiprocessors,
where service requests must respect a separation by some least amount of time. If a
counter is used for issuing values that break ties for the task conflicts, it is reasonable to
use the parameter Cg for modeling the pattern of counter accesses.

The timing parameters cP
min, CP

L , and CL were previously considered by Shavit et al. [SUZ98],
who studied the impact of local delay on global performance, but with no regard to consistency
conditions.

• The parameter CP
L models the extent to which one process P issues operations at a faster

rate than others; so, using these parameters allows modeling a heterogeneous distributed
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system where individual processes undergo non-uniform and unpredictable delays. Finally,
CL represents the slowest possible rate of counter accesses by the processes. So, it models
the process of slowest pace in a system.

A timing condition for the balancing network G is a restriction on (some combination
of) the timing parameters for its schedules. A timing condition is often identified with the set
of restricted timing parameters. Induced by a timing condition is a set of timed executions of
the network that satisfy the condition.

2.4 Consistency Conditions

A serialization of execution E is a total order of the tokens in T (E) that respects the order
of tokens at each individual process. For any pair of tokens T and T ′ in T (E), say that T

completely precedes T ′ in the execution E if the latest transition step involving T in E
precedes the earliest transition step involving T ′ (in E). An execution E specifies a partial order
E−→ on tokens in T (E) as follows:

For any pair of tokens T and T ′ in T (E), T
E−→ T ′ if and only if T completely

precedes T ′ in the execution E .

A linearization of the execution E is a serialization of E that extends E−→. So, for any
pair of tokens T and T ′ in T (E), if T

E−→ T ′, then T precedes T ′ in the linearization. An
execution E is linearizable if it admits a linearization in which every token receives a value
greater than that of all tokens earlier in the linearization. A balancing network is linearizable

if every execution of it is linearizable. (This is an adaptation by Herlihy et al. [HSW96] of the
general definition of linearizability from [HW90] to balancing networks.)

Since we shall consider balancing networks in association to timing conditions, which may
restrict the set of possible executions, we need to incorporate timing conditions into the stan-
dard definition of linearizability, which involves executions. Towards this end, say that a timed
execution RE is linearizable if the underlying execution E is linearizable. A balancing net-
work is linearizable under a timing condition C if every timed execution satisfying C is
linearizable.

We now adapt the weaker consistency condition of sequential consistency from [L79] to bal-
ancing networks. Say that an execution E of a balancing network G is sequentially consistent

if the successive token traversals by each process return increasing values. A balancing network
is sequentially consistent if every execution of it is sequentially consistent. Say that a timed
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execution RE is sequentially consistent if the underlying execution E is sequentially consistent.
A balancing network is sequentially consistent under a timing condition C if every timed
execution satisfying C is sequentially consistent.

For any execution E , consider the restriction of E to steps involving process P , denoted as
E | P . Clearly, this restriction inherits the order of tokens of process P (already determined by
execution E). Say that an execution E is sequentially consistent with respect to process

P if the values obtained by tokens in the restriction E | P are in increasing order. A balancing
network G is sequentially consistent with respect to process P if every execution of it is
is sequentially consistent with respect to process P . Our definitions immediately imply:

Observation 2.1 Assume that for each process P , the balancing network G is sequentially
consistent with respect to process P . Then, G is sequentially consistent.

Fix now a balancing network G and consider a timing condition C. Say that C distinguishes

sequential consistency from linearizability for the network G when G is sequentially
consistent under C, but G is not linearizable under C; call such a condition C a distinguishing

timing condition (for the network G). Say that C does not distinguish sequential con-

sistency from linearizability for the network G when G is sequentially consistent under
C if and only if G is linearizable under C; call such a condition C an indistinguishing timing

condition (for the network G).

2.5 Structural Parameters and Properties of Balancing Networks

A path in a balancing network is an alternating sequence of nodes and edges, starting and
finishing with a node, such that for any pair of consecutive nodes, the balancer that corresponds
to the preceding node has an output wire identified with an input wire of the balancer that
corresponds to the following node; these common output and input wires are represented by
the edge between them in the sequence. We observe that in a counting network, there is a path
from every input wire to every output wire. (To see this, note that the step property must hold
even if all tokens enter the network through the same input wire.) This property will be useful
in some later proofs.

A balancing network is uniform [LSST99, Definition 2.1] if each node of the network lies
on some path from a source node to a sink node, and all paths from source nodes to sink nodes
have the same length. We remark that all known constructions of counting networks [AA95,
AVY94, AHS94, BHM94, BM98, FLL93, HKM93, KP92, SZ96] are uniform, except for the
construction in [BH02].
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The size of a balancing network is the total number of its inner nodes. For any wire z in a
balancing network, the depth of z, denoted as d(z), is defined to be zero if z is an input wire
connected to a source node, and the length of the longest path from a source node to the edge
otherwise. For any balancer B in a balancing network, the depth of B, denoted d(B), is the
maximum wire depth, over all of its output wires. A layer in a balancing network is a maximal
set of nodes (balancers or sinks) that have the same depth. For any integer �, 1 ≤ � ≤ d(G)+1,
the layer � of G is the collection of nodes whose depth is �. The depth of a balancing network
G, denoted as d(G) or d for short, is the maximum balancer depth, over all of its balancers.

Fix now some output wire Y of the balancing network G. By definition of depth, there is
a path π with d(G) wires from a source node to Y . Since there are d(G) + 1 layers, it follows
that for each layer �, π includes a node from layer �. This implies that for each layer, for each
output wire, there is a path from some node in the layer to the output wire.

2.6 Constructions of Counting Networks

We now describe some prominent constructions of counting networks, which we shall refer to
later. In the descriptions, we adopt the convention that subscripts denote identical copies of
the same network; we also assume that w is a power of 2. We shall start with the two original
constructions of counting networks due to Aspnes et al. [AHS94]; the third one is one due to
Shavit and Zemach [SZ96].

2.6.1 Bitonic Counting Network

The bitonic counting network B(w) [AHS94] with fan w is constructed inductively. In the
basis case where w = 2, B(2) is a single (2, 2)-balancer. In the induction step, B(w) consists of
two stages:

• The first stage consists of two bitonic counting networks B1

(
w
2

)
and B2

(
w
2

)
connected

in parallel to the second stage.

• The second stage consists of the merging network M(w) with fan w, which is con-
structed inductively. In the basis case, M(2) is a single (2, 2)-balancer. In the induction
step, M(w) consists of a column of (2, 2)-balancers connected to two merging networks
M1

(
w
2

)
and M2

(
w
2

)
. The two output wires of each balancer in the row are connected to

the two merging networks M1

(
w
2

)
and M2

(
w
2

)
, respectively; the two input wires of each

balancer in the column are connected from the two bitonic networks B1

(
w
2

)
and B2

(
w
2

)
,
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B

B

Figure 3: The bitonic counting network B(w) in diagrammatic form. We have denoted balancers
using the symbol B. (Balancers and wires have been omitted.)

respectively; Note that the network M(w) has depth d(M(w)) = lg w. We remark that
there is a path from each input wire to each output wire of the network M(w).

The depth of the bitonic counting network is d(B(w)) = lg w(lg w + 1)
2 . The inductive con-

struction of the bitonic counting network is depicted (in diagrammatic form) in Figure 3. As
a particular example, the bitonic counting networks B(4) and B(8) are shown in Figure 4.

2.6.2 Periodic Counting Network

The periodic counting network [AHS94] with fan w is the cascade of lg w components. Each
component is a block network L(w) of fan w, which consists of two stages:

• The first stage consists of two block networks L1

(
w
2

)
and L2

(
w
2

)
connected in parallel

to the second stage.

• The second stage consists of the odd-even network OE(w), which consists of a single
column of (2, 2)-balancers. Each of the two input wires of each balancer in the column is
identified with an output wire of the networks L1

(
w
2

)
and L2

(
w
2

)
, respectively.

Alternatively, the block network can be constructed to consist of two stages, as follows:

• The first stage consists of the top-bottom network TB(w) with fan w, which consists of
a single column of (2, 2)-balancers. The two input (resp., output) wires of each balancer
in the column are located symmetrically (with respect to the middle) in the sequences
1, . . . , w

2 and w
2 + 1, . . . , w.
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Figure 4: The bitonic counting networks B(4) and B(8) on left and right, respectively.

• The second stage consists of a block network L1

(
w
2

)
and an extension L̂2

(
w
2

)
to a

block network L2

(
w
2

)
. The extension L̂2

(
w
2

)
is obtained by renaming each input (and

output) wire i of the network L2

(
w
2

)
to

(
i + w

2

)
mod w.

As an example, Figure 5 demonstrates the two described constructions for the network
L(8). Note that the network L(w) has depth d(L(w)) = lg w. It is established by Herlihy and
Tirthapura [HT06] that the block network L(w) and the merging network M(w) are isomorphic
(as graphs). This verifies that there is a path from each input wire to each output wire of L(w).

The depth of the periodic counting network P (w) is d(P (w)) = lg w · d(L(w)) = lg2 w.
Figure 6 depicts the periodic counting network P (w) (in diagrammatic form), where the con-
struction of each block network follows the second alternative.

2.6.3 Counting Tree

The (w, 1)-counting tree, or counting tree for short (also known as diffracting tree [SZ96])
is a balanced binary tree of depth lg w made up of (2, 1)-balancers.

2.7 Implementing Counting Networks

On a shared memory multiprocessor machine, a counting network is implemented as a data
structure in shared memory; balancers are records and wires are pointers from one record to
another. Each process runs a program that repeatedly performs an increment operation on the
network by traversing the data structure from some input pointer to some output pointer; each
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OE(8) TB(8)

Figure 5: The block network L(8) in both left and right. The left network features the first
construction. Here, the block network L(8) consists of two interleaved block networks L(4),
whose balancers are denoted by solid and dotted lines, respectively. The outputs of the two
smaller block networks are fed into the boxed odd-even network OE(8). The right network
features the second construction. Here, the boxed top-bottom network TB(8) feeds into the
two boxed block networks L1(4) and L̂2(4) connected in parallel.

time it shepherds a new token through the network. In doing so, the process atomically updates
each balancer and uses the returned value to choose which pointer to follow. Upon exiting the
data structure, the token is pointed to a local counter which assigns (unique) values that are
congruent modulo the fan-out of the network. (Since the balancers are connected correctly, all
consecutive values 1, 2, . . . will be assigned (with no gaps).)

2.8 Previous Related Results

It is pointed out in [LSST99] that the timing condition d(G) · (cmax − 2cmin) < Cg [LSST99,
Corollary 3.7] relating depth, wire delays and global delay, and which is sufficient for lineariz-
ability, is not a local condition – it would require coordination among individual processes in
order to ensure that the lower bound on Cg is preserved. Hence, the stronger sufficient con-
dition cmax

cmin
≤ 2 [LSST99, Corollary 3.10] is stressed as a local linearizability criterion. (As

we shall see in Section 4, some weaker, local timing conditions suffice to guarantee the weaker
correctness condition of sequential consistency.) Table 1 summarizes all known previous results
that provide necessary and sufficient timing conditions for linearizability in counting networks.
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...

...

input output

Block 1 Block

Figure 6: The periodic counting network P (w) in diagrammatic form. Each of the numbered
lg w boxes represents a block network L(w). Inside each box, the left-most rectangle represents
a top-bottom network TB(w). (Balancers and wires have been omitted.)

3 Non-Distinguishing Timing Conditions

In this section, we establish that constraints that only consider the bounds cmin, cmax and Cg

cannot distinguish sequential consistency from linearizability.

The proof of this indistinguishability result exploits the modular counting carried out by
an individual balancer with fan-out f ; that is, f tokens can be simultaneously carried through
a balancer without affecting the values returned to later tokens. We formalize this property as
follows:

Lemma 3.1 (Modular Counting) Fix a timed execution RE = 〈e1, t1〉, . . . , 〈er , tr〉, R̂E of a
balancer B with fan-out f , where τ tokens have traversed B in the prefix of RE ending with
〈el, tl〉. Consider processes p1, . . . , pf assigned to input wires i1, . . . , if of B, respectively, and
corresponding tokens T1, . . . , Tf . Then, for any real number t ≥ tr such that either R̂E is empty
or t ≤ tr+1, the sequence

RE ′ = 〈e1, t1〉, . . . , 〈er, tr〉,
〈BALp1(T1, B, i1, τ mod f + 1), t〉, . . . ,
〈BALpf

(Tf , B, if , τ mod f + f), t〉,
R̂E

is also a timed execution of B.

Roughly speaking, Lemma 3.1 deals with a timed execution of a balancer B; it considers
inserting f steps by processes p1, . . . , pf assigned to input wires x1, . . . , xf , with corresponding
tokens T1, . . . , Tf ; the insertion takes place immediately following the step 〈er, tr〉 in RE . These
additional steps occur simultaneously at time t; since times are non-decreasing in a timed
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Counting

networks Sufficient condition Necessary condition

Arbitrary cmax
cmin

≤ 2s(G)
d(G) [MPT97, Thm. 4.1] —

Uniform d(G)(cmax − 2cmin) < Cg [LSST99, Cor. 3.7] cmax
cmin

≤ d(G)
irad(G) + 1 [MPT97, Thm. 3.1]

cmax
cmin

≤ 2 [LSST99, Cor. 3.10]

Bitonic ↓ cmax
cmin

≤ 2 [LSST99, Thm. 4.3]

Counting ↓ cmax
cmin

≤ 2 [LSST99, Thm. 4.1]

Tree

Table 1: Known necessary and sufficient timing conditions for linearizability in counting net-
works. A downward arrow ↓ indicates that the sufficient condition is identical to the sufficient
condition(s) for the immediately wider class of counting networks in the table. So, the suffi-
cient conditions for uniform counting networks are inherited down to both the bitonic counting
network and the tree. A bar indicates lack of known results. Here, for a counting network G,
irad(G), called the influence radius of G, denotes the maximum, over all pairs of output wires
j and k of G, of the distance from j to the least common ancestor of j and k in G; s(G), called
the shallowness of G, denotes the length of the shortest path from an input wire to an output
wire of the network. (Clearly, s(G) ≤ d(G), while s(G) = d(G) if and only if G is uniform.)

execution, it must be that t ≥ tr; moreover, if the suffix RE is not empty, t may not exceed
the time tr+1 at which the step following 〈el, tl〉 occurs in RE . Since τ tokens have traversed B

in the prefix of RE ending with the step 〈el, tl〉, the new tokens must exit through the output
wires τ mod f + 1, . . . , τ mod f + f , where additions are modulo f ; this follows immediately
from the observation that a balancer with fan-out f acts as a counter modulo f . Since exactly
f new tokens pass through B simultaneously, the state of the balancer returns to its original
value; so, the outgoing wire to be used next is not affected. We are now ready to prove:

Theorem 3.2 (Non-Distinguishing Timing Condition) For a uniform counting network,
there is no timing condition cmin, cmax and Cg that distinguishes sequential consistency from
linearizability.

Proof: Fix a uniform counting network G with fan-out W and depth d. Assume, by way of
contradiction, that there is a timing condition cmin, cmax and Cg that distinguishes sequential
consistency from linearizability. So, fix a timed execution RE of G that satisfies the timing
condition but is not linearizable. We will use RE to construct another timed execution R′

E of
G that is not sequentially consistent and yet satisfies the same timing condition.
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For simplicity, assume for now that each balancer in the network G is regular. We will later
extend our construction to remove this assumption.

Since RE is not linearizable, there are two tokens T and T ′, such that T completely precedes
T ′ in E , while T and T ′ return values v and v′ such that v > v′.

• If these two tokens are introduced by the same process, then RE is already not sequentially
consistent, and we are done. So, assume that T and T ′ are introduced by different
processes p and p′, respectively.

• If each process may introduce tokens on arbitrarily chosen input wires, the claim follows
trivially by relabeling tokens T and T ′ to be introduced by a new process that otherwise
takes no steps in RE . So, assume that this is not the case; denote as i and i′ the (possibly
different) input wires on which tokens T and T ′ are introduced by the two processes p

and p′.

We start with an informal outline of our proof. We will carefully introduce and schedule
additional tokens by using the modular counting property of balancers from Lemma 3.1. In
this way, we will obtain two tokens associated with the same process (and introduced on the
same input wire) that mimic the behavior of tokens T and T ′, emerging with the values v and
v′, respectively. We now continue with the details of the formal proof.

Since the counting network G with fan-out W is uniform and all balancers are regular, it
follows that the fan-in of the network is equal to W as well. So, consider a new set of processes
p1, . . . , pW that take no steps in the execution RE ; assume that each such process pl is assigned
to the input wire l, 1 ≤ l ≤ W . Our construction can be divided into two main parts; we start
with the first.

• Relabel the process indices of all steps of token T from p to pi.

Denote by R̂E the resulting timed execution. Clearly, R̂E satisfies the timing condition cmin,
cmax and Cg. In addition, each token receives the same value in R̂E as in RE . In particular,
token T receives the value v in the timed execution R̂E . Write

R̂E = 〈e1, t1〉, . . . ,
〈BALq(T ′, B1, i1, j1), tq1〉, . . . ,
〈BALq(T ′, Bd−1, id−1, jd−1), tqd−1

〉, . . . ,
〈COUNTq(T ′,Cd, v2), tqd

〉, . . . ,
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where the identified steps are the d steps taken by process p′ to move the token T ′ through the
network and access the counter Cd.

We now continue with the second part of our construction. In this part, we will use a path
π from input wire i to the counter Cd. (Recall that such a path must exist.) Using Lemma 3.1,
we will carefully route a token by process pi along π, emerging just before T ′ and returning
the value v′. In doing so, we must prevent this token from affecting other tokens. To achieve
this, we will use W additional tokens, which will be routed synchronously through the uniform
network, moving through each layer at the same speed as T ′. These W additional tokens
will suffice to guarantee that exactly one additional token will arrive on each input wire of a
balancer in the network. Hence, exactly one of the additional tokens will exit on the output
wire of each balancer, without affecting the state of the balancer. Thus, subsequent tokens will
not be affected. We continue with the formal details of the second part of the construction.

• Insert W steps immediately preceding the step 〈BALq(T ′, B1, i1, j1), tq1〉 in the timed
execution R̂E . Each such step corresponds to a token Tpl

by process pl, 1 ≤ l ≤ W ,
entering the network through its assigned input wire l. All such steps occur at time
tq1. The ordering of the inserted steps is such that the token Tpi introduced by process
pi is routed through the first balancer B1 on the path π (to the counter Cd). Denote
as RE1 the resulting timed sequence.

So, one token has moved from every input wire through the first balancer B1 on the path π.
Hence, there is now one token on each input wire of the second layer. We now repeat:

• Insert W steps immediately preceding the step 〈BALq(T ′, B2, i2, j2), tq2〉 in the timed
execution R̂E1 . Each such step corresponds to a token Tpl

by process pl, 1 ≤ l ≤ W ,
entering the second layer of the network. All such steps occur at time tq2. The ordering
of the inserted steps is such that the token introduced by process pi is routed through
the second balancer on the path π (to the counter Cd). Denote as RE2 the resulting
timed sequence.

• We repeat this insertion procedure for a total of d − 1 times. Denote as REd−1
the

resulting timed sequence.

Clearly, in the timed sequence REd−1
, the token Tpi is on the input wire to the counter Cd. We

are now ready for the last step of our construction:

• REd
:= REd−1

, 〈COUNTpi(Tpi , Cd, v), tqd
〉. (The value v will be determined later.)
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Note that for each index �, 1 ≤ � ≤ d − 1, the restriction of the timed sequence RE�
to each

individual balancer and counter of G is a timed execution; hence, RE�
is a timed execution of

the network G. This implies that REd
is a timed execution of the network G.

Note that in the timed execution REd
, each of the W additional tokens traverses each layer of

the network G at exactly the same rate as the token T ′ in the original timed execution RE ; each
of the older tokens keeps its own rate. Moreover, the time between any two non-overlapping
tokens in REd

is the same as the time between two non-overlapping tokens in RE . It follows
that the timed execution REd

satisfies the timing condition cmin, cmax and Cg.

Consider any index �, 1 ≤ � ≤ d − 1. Since there are W additional tokens all balancers
are regular and the network is uniform, it follows that the number of additional tokens taking
a step through each balancer is equal to the fan of the balancer. Hence, Lemma 3.1 implies
that all balancers are left in the same state in the timed execution RE�

as they were in the
corresponding prefix of the timed execution RE ending with the step 〈BALq(T2, B�, i�, j�), tq�

〉.
Since none of the additional tokens traversed a counter in the timed execution RE�

, this implies
that all counters are also left in the same state in the timed execution RE�

as they were in the
corresponding prefix of the timed execution RE ending with the step 〈BALq(T2, B�, i�, j�), tq�

〉.
In particular, all balancers and counters are left in the same state in the timed execution
REd−1

as they were in the corresponding prefix of the timed execution RE ending with the step
〈BALq(T2, Bd−1, id−1, jd−1), tqd−1

〉. It follows that the token Tpi receives the same value in the
timed execution REd

as the token T ′ receives in the timed execution RE ; so, v = v′. Since T

completely precedes Tpi , this implies that REd
is not sequentially consistent.

So, in conclusion, there is a timed execution REd
of the network G, satisfying the timing

condition cmin, cmax and Cg, which is not sequentially consistent. A contradiction.

So far we have assumed that all balancers are regular. We now describe an extension to our
construction that removes this assumption; the resulting construction may need far more than
W tokens. Specifically, for each layer � of the network G, where 1 ≤ � ≤ d− 1, denote as LCM�

the least common multiple of the fan-outs of balancers in layer � of G. Set LCM =
∏d−1

�=1 LCM�.
So, LCM is a multiple of each balancer’s fan-out.

• Construct the timed execution REd
by initially entering LCM tokens on each input

wire of the network G. These tokens will be simultaneously traversing each layer of
the network, as in the original construction.

Clearly, at least one token will emerge on each wire of the network; moreover, the number of
tokens traversing each balancer is a multiple of its fan-out, as required by Lemma 3.1. So, this
extension suffices to route the specific token Tpi to counter Cd, and all arguments still apply in
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an identical way to yield that there is a timed execution REd
of the network G, satisfying the

timing condition cmin, cmax and Cg, which is not sequentially consistent. A contradiction.

An inspection to the proof of Theorem 3.2 reveals that the proof would become trivial under
the more general assumption that each process can introduce tokens on arbitrarily chosen input
wires.

The results reported in [HSW96, LSST99, MPT97] identified timing conditions dependent
only on the parameters cmin, cmax and Cg that are either necessary or sufficient (or both) for
linearizability. Theorem 3.2 allows for the extension of such results to sequential consistency.
Thus, together Theorem 3.2 and the results proved for linearizability in [LSST99, MPT97] (see
Table 1) immediately imply:

Corollary 3.3 A uniform counting network G is sequentially consistent under timing condition
cmin and cmax only if

cmax

cmin
≤ d(G)

irad(G)
+ 1 .

Corollary 3.4 A bitonic counting network (resp., counting tree) is sequentially consistent un-
der timing condition cmin and cmax if and only if

cmax

cmin
≤ 2 .

Notice that the local delay CL is not constrained by any of the necessary and sufficient
conditions for linearizability and sequential consistency shown in this section. Note, however,
that for an arbitrary uniform counting network G, Corollary 3.3 implies that even for some
small enough local delay (say 0), G is not sequentially consistent; in the next section, we will
formally prove (Theorem 4.1) that, in contrast, if the local delay is large enough, then G is
sequentially consistent.

4 Distinguishing Timing Conditions

In this section, we establish that any uniform counting network G is sequentially consistent
under a timing condition cmin, cmax and CL such that d(G) · (cmax − 2cmin) < CL, but that
this condition is insufficient for linearizability. However, unlike the global delay bound d(G) ·
(cmax − 2cmin) < Cg, (which implies linearizability [LSST99, Corollary 3.7]) this condition can
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be implemented easily using local clocks: upon completion of an operation by a process, the
process sets a timer to expire after time d(G) · (cmax −2cmin) elapses; it may then issue another
operation. We first prove:

Theorem 4.1 (Sufficient Condition for Sequential Consistency) Fix a uniform count-
ing network G. Consider a timing condition cmin, cmax and CL such that d(G)·(cmax−2cmin) <

CL. Then, G is sequentially consistent under this condition.

To prove Theorem 4.1, we use the following technical claim due to Lynch et al. [LSST99].

Proposition 4.2 ([LSST99]) Consider arbitrary tokens T and T ′ traversing a uniform count-
ing network G during the time intervals [tin, tout] and [t′in, t′out], respectively. Assume that
d(G) · (cmax − 2cmin) < t′in − tout. Then, T ′ returns a higher value than T .

Proposition 4.2 can be restricted to the case where tokens T and T ′ are introduced by the
same process P to yield:

Corollary 4.3 Consider tokens T and T ′, both of process P , traversing a uniform counting
network G during the time intervals [tin, tout] and [t′in, t′out], respectively. Assume that d(G) ·
(cmax − 2cP

min) < t′in − tout. Then, T ′ returns a higher value than T .

We now use Corollary 4.3 to prove:

Lemma 4.4 Fix a uniform counting network G and a process P . Consider a timing condition
cP
min, cmax and CP

L such that d(G) · (cmax − 2cP
min) < CP

L . Then, G is sequentially consistent
for process P under this condition.

Proof: Consider any pair of tokens T and T ′, both of process P , traversing G during the
time intervals [tin, tout] and [t′in, t′out], respectively, with T preceding T ′. By definition of CP

L , it
follows that CP

L ≤ t′in−tout. Hence, the assumption implies that d(G)·(cmax−2cP
min) < t′in−tout.

Thus, Corollary 4.3 implies that T ′ returns a higher value than T . Since T and T ′ were chosen
arbitrarily, it follows that G is sequentially consistent for process P .

Theorem 4.1 follows now from the definition of CL, Lemma 4.4 and Proposition 2.1.

We now use Theorem 4.1 and Corollary 3.3 to prove that for any uniform counting network,
there is a distinguishing timing condition:
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Corollary 4.5 (Distinguishing Timing Condition) Fix a uniform counting network G.
Then, there is a distinguishing timing condition cmin, cmax and CL for G.

Proof: Consider a timing condition cmin, cmax and CL such that (i) cmax
cmin

>
d(G)

irad(G) + 1 and

(ii) CL > d(G) · (cmax − 2 cmin). We prove that G is sequentially consistent but not linearizable
under this timing condition.

• By Theorem 4.1, (ii) suffices to imply that G is sequentially consistent under this timing
condition.

• To prove that G is not linearizable under the timing condition, we determine a timed
execution of G that satisfies the timing condition, yet it is not linearizable. Corollary 3.3
implies that there is a timed execution RE of G that is not sequentially consistent and
yet satisfies (i). Rename processes that introduce more than one token in execution E ,
so that each token is now introduced by a different process. Denote as R′

E the resulting
timed execution.

– The construction implies that R′
E still satisfies the first inequality, while it vacuously

satisfies the second inequality. So, R′
E satisfies the timing condition.

– Since RE is not sequentially consistent, the construction implies that R′
E is not lin-

earizable.

The proof is now complete.

5 Inconsistency Fractions

Section 5.1 contains our definitions for inconsistency fractions and some preliminary facts.
Upper and lower bounds on inconsistency fractions are presented in Sections 5.2 and 5.3, re-
spectively.

5.1 Definitions and Preliminaries

All definitions here refer to a fixed balancing network G; we will omit explicit mention of G.

A token T is non-linearizable [LSST99, Definition 2.5] in an execution E if there is some
other token T ′ in E , which completely precedes T in E and returns a value larger than that of
T . The choice of declaring T as the non-linearizable token (and not T ′) is justified in [LSST99,
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discussion following Definition 2.5] in two ways. First, it allows determining whether or not a
token is non-linearizable as soon as it completes. Second, if T ′ were instead declared as the
non-linearizable token, the definition would lead to non-reasonable situations where a single
token can cause all tokens preceding it to become non-linearizable by returning a sufficiently
small value. A token T is non-sequentially consistent in an execution E if there is some
other token T ′ in E , introduced by the same process, which precedes T in E and returns a value
larger than that of T .

Fix now a finite execution E with a total number of tokens |T (E)|. The non-linearizability

fraction of E [LSST99] is the number of non-linearizable tokens in E divided by |T (E)|. In
a similar way, we define the non-sequential consistency fraction of E as the number of
non-sequentially consistent tokens in E divided by |T (E)|.

Lynch et al. [LSST99, discussion following Definition 2.6] observe that the non-linearizable
fraction is an upper bound on the fraction of tokens whose removal yields a linearizable se-
quence. So, define the absolute non-linearizability fraction of E as the least number of
non-linearizable tokens in E whose removal yields a linearizable execution divided by |T (E)|.
We prove:

Lemma 5.1 For a finite execution E, the non-linearizability fraction of E is equal to the abso-
lute non-linearizability fraction of E.

Proof: The claim holds vacuously when E is linearizable. So, assume that E is not linearizable.
Assume, by way of contradiction, that the absolute non-linearizability fraction of E is strictly
less than the non-linearizability fraction of E . So, it is possible to remove a strict subset of the
non-linearizable tokens in E and obtain a linearizable execution E ′. Fix any non-linearizable
token T that is not removed.

Since all linearizable tokens in E are also in E ′, it follows that there is no linearizable token
in E that completely precedes T in E and returns a larger value than T .

So, consider all tokens that completely precede T in E and return larger values than T .
It follows that all these tokens are non-linearizable (in E). Take T ′ to be the token with the
earliest step in E . Since T ′ is non-linearizable in E , it follows that there is a token T ′′ (in E)
that precedes T ′ (in E) and returns a larger value than T ′.

• Since T ′ has been taken to be the earliest token in E (among all non-linearizable tokens
in E that completely precede T in E and return a larger value than T ), it follows that T ′′

is linearizable.
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• Since T ′′ completely precedes T ′ (in E) and T ′ completely precedes T (in E), it follows
that T ′′ completely precedes T in E .

• Since T ′′ returns a larger value than T ′ (in E) and T ′ returns a larger value than T (in
E), it follows that T ′′ returns a larger value than T in E .

A contradiction.

Fix now a timing condition C. The non-linearizability fraction under C [LSST99],
denoted as Fnl(G), is the maximum, over all (finite) timed executions E satisfying C, of the non-
linearizability fraction of E . The non-sequential consistency fraction under C. denoted as
Fnsc(G), is the maximum, over all (finite) timed executions E satisfying C, of the non-sequential
consistency fraction of E . Clearly, Fnl(G) ≥ Fnsc(G).

In the literature, there is a single known bound on inconsistency fractions; this is a lower
bound on Fnl(G) for the particular case where G is the bitonic counting network [AHS94] and
under a timing condition involving the fan of the network. The following result is due to Lynch
et al. [LSST99, Theorem 4.4]:

Proposition 5.2 ([LSST99]) Consider the bitonic counting network B(w) with fan w, under
a timing condition cmin and cmax such that cmax

cmin
>

lg w + 3
2 . Then,

Fnl(B(w)) ≥ 1
3

.

We modify the construction used in the proof of Proposition 5.2 to get a slightly stronger result:

Proposition 5.3 Consider the bitonic counting network B(w) with fan w, under a timing
condition cmin and cmax such that cmax

cmin
>

lg w + 3
2 . Then,

Fnsc(B(w)) ≥ 1
3

.

The proof of Proposition 5.3 will refer to the construction of the bitonic counting network, as
illustrated in Figure 3.

Proof: We construct a (finite) timed execution RE of the network B(w) with three waves of
tokens; each wave has w

2 tokens which enter the network simultaneously and proceed in lock
step.
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• The first wave enters through the network B1(w2 ). Since B(w) is a counting network, this
wave proceeds to the network M1(w2 ). The speed of this wave in the network M(w) is
the slowest– one wire per time cmax.

• Immediately following the first wave (and with no relative dalay) is the second wave,
which also enters through the network B1(w2 ). Since B(w) is a counting network and the
second wave follows the first wave (with no relative delay), this second wave proceeds to
the network M2(w2 ). The speed of this wave in the network M(w) is the fastest– one
wire per time cmin. Assume that the w

2 tokens in this wave are introduced by processes
p1, . . . , pw

2
, respectively.

• As soon as the second wave exits the network, the third wave enters through the network
B1(w2 ). Since B(w) is a counting network and the two preceding waves proceeded to
the networks M1(w2 ) and M2(w2 ),. respectively, this third wave proceeds to the network
M1(w2 ). The speed of this wave in the network M(w) is the fastest– one wire time per
time cmin. Assume that the w

2 tokens in this wave are introduced by processes p1, . . . , pw
2
,

respectively.

Clearly, the values returned to the tokens in the second wave are w
2 , . . . , w− 1, respectively.

Denote as t1, t2 and t3 the times for the first, second and third waves, respectively, to reach the
counters of the network; these times are taken from the point where the first wave is entering
the network M(w). Clearly, t1 = d(M(w)) · cmax = lg w · cmax, t2 = d(M(w)) · cmin = lg w · cmin

and t3 = t2 + d(B(w)) · cmin = t2 + lg w(lg w + 1)
2 · cmin. Hence,

t3

= lg w · lg w + 3
2 · cmin

< lg w · cmax (by assumption)

= t1 .

This implies that the third wave bypasses the first wave on the first wire out and obtains values
0, . . . , w

2 − 1; these values are all smaller than the corresponding values returned to tokens by
the same processes in the first wave. So, there are w

2 non-sequentially consistent tokens in the
execution E with 3w

2 tokens, and the claim follows.

We remark that the only difference between the proof of Proposition 5.2 from [LSST99] and
the proof of Proposition 5.3 is that in the latter, the set of processes shepherding tokens in the
third wave is taken to be the same as the set of processes shepherding tokens in the second
wave.
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Propositions 5.2 and 5.3 establish a lower bound of 1
3 on the non-linearizability and non-

sequential consistency fractions, respectively, for the bitonic counting network B(w) under a
certain timing condition. We feel that this lower bound is rather poor for practical applications.
On the other hand, the required asynchrony to guarantee this lower bound on inconsistency
fractions amounts to a lower bound of lg w + 3

2 on the ratio cmax
cmin

; this lower bound grows un-
bounded as the fan w of the network increases. This fact confirms the intuition that unbounded
asynchrony is essential to guarantee sufficiently poor linearizability properties for counting net-
works whose size grows unbounded.

5.2 Upper Bound

We now prove an upper bound on the non-sequential consistency fraction under a timing con-
dition expressing bounded asynchrony.

Theorem 5.4 (Upper Bound on Inconsistency Fraction) Fix a uniform counting net-
work G and a timing condition cmin and cmax such that cmax

cmin
< � for some integer � > 1.

Then,

Fnsc(G) ≤ � − 2
� − 1

.

Proof: Fix any execution E of G and a process p. Denote as Ep the sequence of tokens
introduced by procees p in execution E . We establish a technical claim:

Lemma 5.5 Consider any arbitrary subsequence T1, . . . , T� of Ep. Then, T1 returns a smaller
value than T�.

Proof: Denote as [tin, tout] and [t′in, t′out] the time intervals during which tokens T1 and T�

traverse the network, respectively. Recall that the time for each token to traverse the network
is at least d(G) · cP

min. Since there are � − 2 tokens in between T1 and T�, it follows that

t′in − tout

≥ (� − 2) · d(G) · cP
min

>
(

cmax
cmin

− 2
)
· d(G) · cP

min (by assumption)

≥
(

cmax

cP
min

− 2
)
· d(G) · cP

min

= d(G) · (cmax − 2 cP
min) .

Hence, Corollary 4.3 implies that T1 returns a smaller value than T�.
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Lemma 5.5 implies that in the sequence EP , any token Ti appearing �−1 positions before token
Tj will return a smaller value. So, for each process P , remove from E all tokens whose order
in EP is different than 1 modulo (� − 1). Clearly, the fraction of removed tokens is at most
� − 2
� − 1, and the result is a sequentially consistent timed execution. The claim now follows from
Lemma 5.1.

5.3 Lower Bounds

We now prove a lower bound on the non-linearizability and non-sequential consistency fractions
of any counting network with a certain topological structure. We first need some definitions,
all of which refer to a fixed balancing network G with fan-out wout; we shall sometimes omit
explicit mention of G.

For an output wire j of a balancer in the network G, define the valency of the wire j,
denoted as Val(j), as the set of sink nodes reachable from j. The valency of a balancer B,
denoted as Val(B), is the union of the valencies of its output wires; so, Val(B) is the set of sink
nodes reachable from some output wire of the balancer B.

Assume now that G is a counting network. Recall that for any particular layer � of balancers,
every sink node is reachable from some balancer in the layer; so,

⋃
B∈� Val(B) = {1, 2, . . . , wout}.

In addition, recall that every sink node must be reachable from each balancer in layer 1; so,
for a balancer B in layer 1, Val(B) = {1, 2, . . . , wout}. More generally, a balancer B such that
Val(B) = {1, 2, . . . , wout} will be called complete.

A balancer B is univalent if for each pair of output wires j and k of B, 1 ≤ j, k ≤ fout,
Val(j)∩Val(k) = ∅. Intuitively, B is univalent if each sink node in the set Val(B) unambiguously
determines an output wire of the balancer; so, the eventual ”sink decisions” for each of its output
wires are completely separated. A layer � is univalent if each balancer in � is univalent.

Consider now sets of integers V1 and V2; say that V1 precedes V2, denoted as V1 ≺ V2, if
every integer in V1 is less than any integer in V2. Say that the balancer B (with fan-out fout)
is totally ordering if the set {Val(1), . . . ,Val(fout)} is totally ordered with respect to ≺; that
is, for each pair of output wires j and k of B, either Val(yj) ≺ Val(yk) or Val(yk) ≺ Val(yj).
Intuitively, for a totally ordering balancer B, the eventual “sink decisions” for each of its output
wires not only do not intersect each other, but they are also totally ordered. Clearly, any totally
ordering balancer is univalent, but not vice versa. A layer is totally ordering if each of its
balancers is totally ordering.

The split depth of a balancing network G, denoted as sd(G), is the least integer �, 1 ≤ � ≤
d(G), such that the layer � of G is totally ordering; intuitively, the split depth of G measures
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how far into G a token needs to get before the eventual ”sink decisions” about which sink node
it will exit from become disjoint and totally ordered. A totally ordering layer at split depth
will be called a split layer. For a network G such that sd(G) < d(G), the split network of
G, denoted as SP(G), is the subnetwork of G consisting of layers sd(G) + 1, . . . , d(G).

A layer � is complete if each of its balancers is complete. The network G is complete if
the layer sd(G) is complete. A layer � is uniformly splittable if for each balancer B in �,
for any pair of output wires j and k of B, |Val(j)| = |Val(k)|. The network G is uniformly

splittable if the layer sd(G), is uniformly splittable.

From now on, fix a complete and uniformly splittable network G made up of (2, 2)-balancers.
Fix any balancer B in the layer sd(G) with output wires 1 and 2, Since G is complete, the layer
sd(G) is complete; this implies that Val(B) = {1, . . . , wout}. Since G is uniformly splittable,
sd(G) is uniformly splittable; this implies that |Val(1)| = |Val(2)|. By definition of split depth,
we have that either Val(1) ≺ Val(2) or Val(2) ≺ Val(1); assume, without loss of generality, that
Val(1) ≺ Val(2). It follows that Val(1) =

{
1, . . . , wout

2

}
and Val(2) =

{
wout

2 + 1, . . . , wout

}
.

This implies that the split network S(G) can be partitioned into two subnetworks S1(G) and
S2(G) with output wires 1, . . . , wout

2 and wout
2 + 1, . . . , wout, respectively.

We continue to prove that the original counting networks from [AHS94] are complete and
uniformly splittable; moreover, we shall calculate their split depths. These properties will be
needed later, when we use the bitonic and periodic counting networks as particular examples
on which to apply our general result providing lower bounds on inconsistency fractions (Theo-
rem 5.11). We start with the bitonic counting network.

Proposition 5.6 The bitonic counting network B(w) of fan w is complete and uniformly split-

table with sd(B(w)) = lg2 w − lg w + 2
2 .

The proof of Proposition 5.6 will refer to the construction of the bitonic counting network B(w)
depicted in Figure 3.

Proof: Fix layer � to be the first layer in the merging network M(w); so, � consists of a
column of balancers. Each output wire of such a balancer is connected either to M1(w2 ) or to
M2(w2 ); since M1(w2 ) and M2(w2 ) are disjoint, this layer is totally ordering. We prove a simple
claim:

Lemma 5.7 No layer �′ < � of the network B(w) is totally ordering,
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Proof: Consider any layer �′ < �. Recall that for every output wire of B(w), there is a path π

of length d(G) that includes a balancer from every layer; let B and B′ be the balancers on π from
layers � and �′, respectively. Denote as 1′ and 2′ the two output wires of B′. Since � is a complete
layer, Val(B) = {1, . . . , wout}. Since �′ < �, either Val(B) ⊆ Val(1′) or Val(B) ⊆ Val(2′). It
follows that either Val(1′) = {1, . . . , wout} or Val(2′) = {1, . . . , wout}. Hence, balancer B′ is not
totally ordering, which implies that �′ is not a totally ordering layer.

Lemma 5.7 implies that sd(B(w)) = d(B(w)) − d(M(w)) + 1 = lg2 w − lg w + 2
2 . Fix any

balancer B in the layer sd(B(w)) with output wires 1 and 2. Recall that there is a path from
each input wire to each output wire of the merging network M(w). Hence, the construction of
the merging network implies that Val(1) =

{
1, . . . , wout

2

}
and Val(2) =

{
wout

2 + 1, . . . , wout

}
.

So, |Val(1)| = |Val(2)|, and the network B(w) is complete and uniformly splittable, as needed.

We now consider the periodic counting network.

Proposition 5.8 The periodic counting network P (w) of fan w is complete and uniformly
splittable with sd(P (w)) = lg2 w − lg w + 1.

The proof of Proposition 5.8 will refer to the construction of the periodic counting network
P (w) depicted in Figure 6.

Proof: Fix layer � to be the first layer in the latest block network L(w) in P (w); so, � is the
top-bottom network TB(w), and it consists of a column of balancers. Each output wire of such
a balancer is connected either to L1(w2 ) or to L̂2(w2 ); since L1(w2 ) and L̂2(w2 ) are disjoint, this
layer is totally ordering. No earlier layer of the network P (w) can be totally ordering, as each
balancer in layer � is complete. It follows that sd(P (w)) = (lg w−1)·d(L(w))+1 = lg2 w−lg w+1.

Fix any balancer B in the layer sd(P (w)) with output wires 1 and 2. Recall that there
is a path from each input wire to each output wire of the block network. Hence, the (sec-
ond) construction of the block network implies that Val(1) =

{
1, . . . , wout

2

}
and Val(2) ={

wout
2 + 1, . . . , wout

}
. So, |Val(1)| = |Val(2)|, and the network P (w) is complete and uniformly

splittable, as needed.

We now provide an inductive definition of a (finite) sequence of networks S(0)(G),S(1)(G), . . .,
which we call the split sequence for G, as follows.
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Figure 7: A continuously complete and continuously uniformly splittable network G made up of
(2, 2)-balancers in diagrammatic form. Each solid box represents a network in the split sequence
for G. Each box denoted with larger dots represents a split layer. Each remaining component
of the network is denoted with smaller dots. (Wires have been omitted.)

• For the basis case, take S(0)(G) = G.

• Assume inductively that we have defined the network S(�−1)(G) for some integer � ≥ 1.

For the induction step, if sd(S(�−1)(G)) = d(S(�−1)(G)), then terminate; else, take S(�)(G)
to be SP2(S(�−1)(G)) (the bottom subnetwork of the split network of S(�−1)(G)).

Roughly speaking, the construction starts with the network G. Subsequently, each network
in the sequence is obtained by ”chopping off” the preceding network at its splitting depth (if
possible). The split number of G, denoted as sp(G), is the length of the splitting sequence
for G. Clearly, sp(G) ≤ d(G). The complete (resp., uniformly splittable) network G is con-

tinuously complete (resp., uniformly splittable) if each network but the last in the split
sequence for G is complete (resp., uniformly splittable). Figure 7 illustrates the topological
structure of a continuously complete and continuously uniformly splittable network made up of
(2, 2)-balancers.
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We continue to prove that the original counting networks from [AHS94] are both continu-
ously complete and continuously uniformly splittable; moreover, we shall calculate their split
numbers. We start with the bitonic counting network.

Proposition 5.9 The bitonic counting network B(w) of fan w is continuously complete and
continuously uniformly splittable with sp(B(w)) = lg w.

The proof of Proposition 5.9 will refer to the construction of the bitonic counting network B(w)
depicted in Figure 3.

Proof: By Proposition 5.6, S(0)(B(w)) = B(w) is complete and unformly splittable. By the
definition of the split sequence and the construction of the bitonic counting network, S(1)(B(w))
is the merging network M2

(
w
2

)
. We first prove that the merging network is complete and

uniformly splittable.

Fix any layer B in layer 1 of the merging network M(w) with output wires 1 and 2. Each
of these output wires is connected either to M1(w2 ) or to M2(w2 ); since M1(w2 ) and M2(w2 ) are
disjoint, this layer is totally ordering. Recall that there is a path from each input wire to each
output wire of the merging network. Hence, the construction of the merging network implies
that Val(1) =

{
1, . . . , wout

2

}
and Val(2) =

{
wout

2 + 1, . . . , wout

}
. So, |Val(1)| = |Val(2)|, so that

layer 1 of the merging network is complete and uniformly splittable. It follows that the network
M(w) is complete and uniformly splittable.

Since layer 1 of the merging network M(w) is totally ordering, complete and uniformly
splittable, sd(M(w)) = 1. By the definition of the split sequence and the construction of the
merging network, S(2)(M(w)) = SP(S(1)(B(w))) = SP

(
M2

(
w
2

))
= M2

(
w
4

)
. Hence, the

argument applies inductively to imply that the network B(w) is continuously complete and
continuously uniformly splittable.

Besides the bitonic counting network B(w) used in the basis of the inductive definition of
split sequence, each layer but the last of the merging network determines a split network in
the sequence. Hence, the split number of B(w) is 1 + (d(M(w)) − 1 = lg w, and the proof is
complete.

We now consider the periodic counting network.

Proposition 5.10 The periodic counting network P (w) of fan w is continuously complete and
continuously uniformly splittable with sp(P (w)) = lg w.
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The proof of Proposition 5.10 will refer to the construction of the periodic counting network
P (w) depicted in Figure 6.

Proof: By Proposition 5.8, S(0)(P (w)) = P (w) is complete and unformly splittable. By the
definition of the split sequence and the construction of the periodic counting network, S(1)(P (w))
is the block network L̂2

(
w
2

)
that is included in the last block of the periodic counting network.

We first prove that the block network is complete and uniformly splittable.

Fix any balancer B in layer 1 of the block network L̂(w) with output wires 1 and 2. Each
of these output wires is connected either to L̂1

(
w
2

)
or to L̂2

(
w
2

)
; since L̂1

(
w
2

)
and L̂2

(
w
2

)
are disjoint, this layer is totally ordering. Recall that there is a path from each input wire to
each output wire of the block network. Hence, the construction of the block network implies
that Val(1) =

{
1, . . . , wout

2

}
and Val(2) =

{
wout

2 + 1, . . . , wout

}
. So, |Val(1)| = |Val(2)|, so that

layer 1 of the block network is complete and uniformly splittable. It follows that the network
L̂(w) is complete and uniformly splittable.

Since layer 1 of the block network L̂(w) is totally ordering, complete and uniformly split-
table, sd(L̂(w)) = 1. By the definition of the split sequence and the construction of the block
network, S(2)(P (w)) = SP

(
S(1)(P (w))

)
= SP

(
L̂2

(
w
2

))
= L̂2

(
w
4

)
. Hence, the argument ap-

plies inductively to imply that the network L̂(w) is continuously complete and continusously
uniformly splittable.

Besides the periodic counting network P (w) used in the basis of the inductive definition
of split sequence, each layer but the last of the block network determines a split network in
the sequence. Hence, the split number of P (w) is 1 + (d(L̂(w)) − 1 = lg w, and the proof is
complete.

We are now ready to prove our lower bounds on inconsistency fractions:

Theorem 5.11 (Lower Bounds on Inconsistency Fractions) Fix a uniform, continuously
complete and continuously uniformly splittable counting network G(w) with fan w, and a timing
condition cmin and cmax such that

cmax

cmin
> 1 +

d(G(w))
d(S(�)(G(w)))

,

for some integer � such that 1 ≤ � ≤ sp(G(w)). Then,

Fnl(G(w)) ≥ 1 − 1

2 − (
1
2

)�
.
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and

Fnsc(G(w)) ≥
(

1
2

)�

2 − (
1
2

)�
.

The proof of Theorem 5.11 extends the proof of Proposition 5.3 to apply to counting networks
with a topological structure generalizing that of the bitonic counting network. The proof will
exploit the general structure of a continuously complete and continuously uniformly splittable
counting network G, as illustrated in Figure 7.

Proof: We construct a (finite) timed execution RE of the network G(w) with three waves of
tokens; the tokens in each wave enter the network simultaneously and through a different input
wire, and they proceed in lock step through the network. Each of the first and third waves

contains w
2 + . . . + w

2� = w ·
(

1 −
(

1
2

)�
)

tokens. The second wave contains w
2� tokens.

• The first wave enters through the input wires 1, . . . , w ·
(

1 −
(

1
2

)�
)

, with one token per

wire. The speed of this wave in the network is the slowest possible – one wire per time
cmax.

Since G(w) is a counting network, these tokens must proceed to the output wires 1, . . . , w ·(
1 −

(
1
2

)�
)

. Since the network G(w) is continuously complete and continuously uni-

formly splittable, w
2i of them will be exiting through the network SP1

(
S(i−1)(G(w))

)
(the

top subnetwork of the split network of S(i−1)(G(w))), where 1 ≤ i ≤ �.

• Immediately following the first wave (and with no relative delay) is the second wave,
which enters through the input wires 1, . . . , w

2� , with one token per wire. Assume that the
tokens in the second wave are introduced by processes p1, . . . , p w

2�
.

Since G(w) is a counting network, these tokens must proceed to the output wires w− w
2� +

1 = w ·
(
1 − 1

2�

)
+ 1, . . . , w. Since the network G(w) is continuously complete and con-

tinuously uniformly splittable, these tokens must exit through the network S(�)(G(w)) =
SP2

(
S(�−1)(G(w))

)
(the bottom subnetwork of the split network of S(�−1)(G(w))).

The speed of this wave in the network SP2

(
S(�−1)(G(w))

)
is the fastest possible – one

wire per time cmin. Before reaching this network, the speed of this wave is the slowest
possible– one wire per time cmax. Since the network G(w) is uniform, this implies that the
first and second waves will be simultaneously entering the networks SP1

(
S(�−1)(G(w))

)
and SP2

(
S(�−1)(G(w))

)
, respectively.
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• As soon as the second wave exits the network G, the third wave enters the network through

the input wires 1, . . . , w ·
(

1 −
(

1
2

)�
)

, with one token per wire. The speed of this wave

in the network is the fastest possible – one wire per time cmin. Assume that there are w
2�

tokens in this wave that are introduced by processes p1, . . . , p w
2�

.

Since G(w) is a counting network, these tokens must proceed to the output wires 1, . . . , w ·(
1 −

(
1
2

)�
)

. Since the network G(w) is continuously complete and continuously uni-

formly splittable, w
2�′ of them will be exiting through the network SP1

(
S(�′−1)(G(w))

)
,

where 1 ≤ �′ ≤ �.

Clearly, the values returned to the tokens in the second wave are w ·
(
1 − 1

2�

)
, . . . , w − 1.

We pursue a timing analysis to determine the values returned to tokens in the third wave.
Denote as t1, t2 and t3 the times for the first, second and third waves to reach the counters of
the network; these times are taken from the point where tokens of the first wave are entering
the network SP1

(
S(�−1)(G(w))

)
Recall that the second wave is simultaneously entering the

network S(�)(G(w)) = SP1

(
S(�−1)(G(w))

)
. Since the network G(w) is uniform, it follows that

d
(
SP1

(
S(�−1)(G(w))

))
= d

(
SP2

(
S(�−1)(G(w))

))
= d

(
S(�)(G(w))

)
. Hence, t1 = d

(
S(�)(G(w))

) ·
cmax and t2 = d

(
S(�)(G(w))

) · cmin. On the other hand, t3 = t2 + d (G(w)) · cmin. It follows
that

t3

=
(
d

(
S(�)(G(w))

)
+ d (G(w))

) · cmin

< d
(
S(�)(G(w))

) · cmax (by assumption)

= t1 .

This implies that the third wave bypasses the first and obtains values 0, . . . , w ·
(

1 −
(

1
2

)�
)
−1.

• Note that each value returned to a token in the third wave is smaller than any value

returned to a token in the second wave. So, there are w ·
(

1 −
(

1
2

)�
)

non-linearizable

tokens in the execution E with w + w ·
(

1 −
(

1
2

)�
)

tokens. It follows that

Fnl(G(w)) ≥
1 −

(
1
2

)�

2 −
(

1
2

)�

= 1 − 1

2 −
(

1
2

)�
.
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• Each value returned to a token introduced by some process pl, 1 ≤ l ≤ w
2� , in the third

wave is smaller than the value returned to the token by the same process in the second
wave. So, there are w · 1

2� non-sequentially consistent tokens in the execution E with

w + w ·
(

1 −
(

1
2

)�
)

. tokens. It follows that

Fnsc(G(w)) ≥
(

1
2

)�

2 −
(

1
2

)�
.

The proof is now complete.

Theorem 5.11 establishes a collection of lower bounds on the non-linearizability and non-
sequential consistency fractions, together with a corresponding collection of timing conditions on
cmin and cmax. Each timing condition and the corresponding lower bounds on the inconsistency
fractions are determined by the integer �, where 1 ≤ � ≤ sp(G(w)).

• Each timing condition takes the form of a lower bound on the ratio cmax
cmin

. The lower bound
depends on � since it involves d(S(�)(G(w))) As � increases, d(S(�)(G(w))) decreases, and,
therefore, the assumed lower bound increases as well. Thus, the lower bounds on incon-
sistency fractions corresponding to larger (resp., smaller) values of l apply to distributed
systems with stronger asynchrony (resp., weaker) asynchrony.

• The established lower bound on Fnl(G(w)) increases with �; it approaches 1
2 as � in-

creases. To the contrary, the established lower bound on Fnsc(G(w)) decreases with �;
it approaches 0 as � increases. Propositions 5.9 and 5.10 imply that the largest value
taken on by � (namely, sp(G(w)) becomes larger when the counting network G(w) be-
comes larger in the case where the counting network is the bitonic counting network or
the periodic counting network, respectively; we conjecture that the same holds for other
known families of counting networks (e.g., the counting network in [BM98]). This obser-
vation appears to suggest to use large counting networks for applications that are willing
to occasionally sacrifice sequential consistency, in case it is expensive to provide a timing
constraint that would guarantee sequential consistency in all schedules; however, the sug-
gsetion would only be relevant if the lower bounds on Fnl(G(w)) and Fnsc(G(w)) were
shown to be tight.

Remarkably, the established lower bounds on the non-linearizability and non-sequential
consistency fractions coincide for the smallest value � = 1 to the value 1

3 . For the particular
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case of the bitonic counting network, these lower bounds have been established by Lynch
et al [LSST99] (see Proposition 5.2 in this paper) for linearizability, and in this paper
(Proposition 5.3) for sequential consistency, respectively. Taking � = 1 in Theorem 5.11,
and using Proposition 5.8, implies that identical lower bounds on inconsistency fractions
hold for the periodic counting network as well.

In conclusion, the established lower bounds on the non-linearizability and non-sequential
consistency fractions tend to diverge in systems with strong asynchrony but converge in
systems with weak asynchrony.

We conclude this section with some particular examples of applying Theorem 5.11. We
shall examine the case where � = sp(G(w)) in Theorem 5.11, for the particular cases of the
bitonic and periodic counting networks, which are both uniform, continuously complete and
continuously uniformly splittable (by Propositions 5.6 and 5.8, respectively).

Recall that for the bitonic counting network B(w), d(B(w)) = lg w(lg w + 1)
2 , sp(B(w)) = lg w

(by Proposition 5.9) and d
(
S(sp(B(w)))(B(w))

)
= 1. We use Theorem 5.11 with � = lg w; then,

1 − 1

2 −
(

1
2

)� becomes w − 1
2w − 1 and

(
1
2

)�

2 −
(

1
2

)� becomes 1
2w − 1. Hence, we obtain:

Corollary 5.12 Consider the bitonic counting network B(w) with fan w, under a timing con-

dition cmin and cmax such that cmax
cmin

> 1 + lg w(lg w + 1)
2 . Then,

Fnl(B(w)) ≥ w − 1
2w − 1

.

and

Fnsc(B(w)) ≥ 1
2w − 1

.

Recall that for the periodic counting network P (w), d(P (w)) = lg2 w, sp(P (w)) = lg w (by
Proposition 5.10) and d

(
S(sp(P (w)))(P (w))

)
= 1. We use Theorem 5.11 with � = lg w; then,

1 − 1

2 −
(

1
2

)� becomes w − 1
2w − 1 and

(
1
2

)�

2 −
(

1
2

)� becomes 1
2w − 1. Hence, we obtain:

Corollary 5.13 Consider the periodic counting network P (w) with fan w, under a timing
condition cmin and cmax such that cmax

cmin
> 1 + lg2 w. Then,

Fnl(P (w)) ≥ w − 1
2w − 1

.
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and

Fnsc(P (w)) ≥ 1
2w − 1

.

6 Open Problems

We conclude this article with a rich collection of problems that remain open:

1. Identify further timing conditions that cannot distinguish sequential consistency from
linearizability in uniform counting networks.

2. Identify timing conditions that cannot distinguish sequential consistency from lineariz-
ability in general (not necessarily uniform) counting networks.

3. Identify timing conditions that distinguish sequential consistency from linearizability in
general (not necessarily uniform) counting networks.

4. Establish tightness (or show an improvement) for the upper bound on the absolute non-
sequential consistency fraction in Theorem 5.4. Establish more upper and lower bounds
on absolute inconsistency fractions.

5. Establish tightness (or show improvements) for the lower bounds on non-linearizability
and non-sequential consistency fractions in Theorem 5.11.
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