
A Network Game with Attackers and a Defender:

A Survey∗

Marios Mavronicolas† Vicky Papadopoulou† Anna Philippou Paul Spirakis‡

Abstract

We survey a research line recently initiated by Mavronicolas et al. [14, 15, 16], concerning a
strategic game on a graph G(V,E) with two confronting classes of randomized players: ν attackers
who choose vertices and wish to minimize the probability of being caught by the defender, who
chooses edges and gains the expected number of attackers it catches. So, the defender captures
system rationality. In a Nash equilibrium, no single player has an incentive to unilaterally deviate
from its randomized strategy. The Price of Defense is the worst-case ratio, over all Nash equilibria,
of the optimal gain of the defender (which is ν) over the gain of the defender at a Nash equilib-
rium. We present a comprehensive collection of trade-offs between the Price of Defense and the
computational efficiency of Nash equilibria proved in [14, 15, 16].

• We present an algebraic characterization of (mixed) Nash equilibria.

• No (non-trivial) instance of the graph-theoretic game has a pure Nash equilibrium. This is
an immediate consequence of some covering properties proved for the supports of the players
in all (mixed) Nash equilibria.

• We present a reduction of the game to a Zero-Sum Two-Players Game that proves that
a general Nash equilibrium can be computed via Linear Programming in polynomial time.
However, the reduction does not provide any apparent guarantees on the Price of Defense.

• To obtain guarantees on Price of Defense, we present an analysis of several structured Nash
equilibria:

– In a Matching Nash equilibrium, the support of the defender is an Edge Cover of the
graph. Matching Nash equilibria are shown to still be computable in polynomial time,
and that they incur a Price of Defense of α(G), the Independence Number of G.

– In a Perfect Matching Nash equilibrium, the support of the defender is a Perfect Matching
of the graph. Perfect Matching Nash equilibria are shown to be computable in computed

in polynomial time, and that they incur a Price of Defense of |V |

2 .

• We consider a generalization of the basic model with an increased power for the defender: it
is able to scan a simple path of the network instead of a single edge. Deciding existence of a
pure Nash equilibrium is shown to be an NP-complete problem for this model.
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1 Introduction

1.1 Motivation and Framework

Here, we overview a recent result line concerning a network game with attackers and a defender,
introduced recently by Mavronicolas et al. [14] and further studied in [7, 15, 16]; the game was
conceived as an appropriate theoretical model of security attacks and defenses in emerging networks
like the Internet. In this network game, nodes are vulnerable to infection by threats, called attackers.
Available to the network is a security software (or firewall [2]), called the defender, cleaning some part
of the network.

This network game is partially motivated by Network Edge Security [13], a new distributed fire-
wall architecture where a firewall is implemented in a distributed way and protects the subnetwork
spanned by the nodes participating in the distributed implementation. The simplest case where the
subnetwork is a single link (with its two incident nodes) offers the initial basis for the theoretical
model of Mavronicolas et al. [14]. Understanding the mathematical pitfalls of attacks and defenses in
this simplest theoretical model is a necessary prerequisite for making rigorous progress in the analysis
of distributed firewall architectures with more involved topologies.

Each attacker (called a vertex player) targets a node of the network chosen via its own probability
distribution on nodes; the defender (called the edge player) chooses a single link via its own probability
distribution on links. A node chosen by an attacker is destroyed unless it crosses the link being cleaned
by the defender. The Individual Profit of an attacker is the probability that it is not caught; the
Individual Profit of the defender is the expected number of attackers it catches.

The game with attackers and defenders is partially motivated from the problem of data integrity
on systems implementing a distributed database. A distributed database is realized through a set of
nodes that store parts of the database, and cooperate each other in a distributed way for the database
management. Given a node holding some database, one way to detect corruption of the data is
to store a hashed version (or fingerprint) of the data on some other node. Checking the database
and the fingerprint you can detect with high probability any corruption. Of course, one can store
multiple (possibly different) fingerprints of the database on a number of other nodes. This operation
induces a directed graph with links from nodes with some database to nodes holding a fingerprint of
that database. If we assume that each fingerprint holder y for the database on computer x has the
fingerprint of its own database stored on x, then the graph becomes undirected.

We can view this network scenario, as a game with attackers and defender entities: attackers
represent “intelligent” (hence, rational) entities of the network that may choose a computer and
corrupt its database (and possibly any stored fingerprints), such as viruses, hackers, etc. The defender
represents the distributed database administrator who’s goal is to maintain the integrity of the data.
The administrator does this by choosing two computers connected by an edge (i.e., two computers that
hold each other’s fingerprints) and compares their two databases to the corresponding fingerprints.
With high probability this will detect any corruption. These checks are performed on a regular basis,
and the administrator is rewarded for any corruptions it detects. Moreover, the more attackers attack
a database, the more corrupted the database becomes. So, the defender is not simply awarded a reward
for detecting a corrupted database, but rather a reward depending on how corrupted the database
was.

To the best of our knowledge, the network game of Mavronicolas et al. [14] is the first strategic
game where the network (system) is explicitly modeled as a distinct, non-cooperative player (namely,
the defender). Unlike previously studied games that evaluated the effect of selfish behavior on system
performance using the Price of Anarchy [12, 20] (which implicitly modeled the system), we pursue this
evaluation by defining and using the Price of Defense as the worst case ratio of ν over the Individual
Profit of the defender.

We are interested in analyzing the Price of Defense for Nash equilibria [17, 18], where no single
player has an incentive to deviate from its randomized strategy. How does the Price of Defense vary
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with Nash equilibria? Are there Nash equilibria that both are computationally tractable and offer
good Price of Defense? We present a comprehensive collection of trade-offs between Price of Defense
and the computational complexity of Nash equilibria proved in [14, 15, 16].

1.2 Overview

Here, we overview the most important results of [14, 15, 16], providing a multitude of results for
general and special classes of Nash equilibria. To describe the results, we need some game-theoretic
terminology, which we review here. (For precise definitions, see Section 2.) A profile is a tuple of
probability distributions, one for each player. The support of the edge player is the set of all edges to
which it assigns strictly positive probability; the support of a vertex player is the set of all vertices to
which it assigns strictly positive probability, and the support of the vertex players is the union of the
supports of all vertex players.

1.2.1 Mixed Nash Equilibria

Characterization

We present an elegant algebraic characterization of mixed Nash equilibrium proved in [14] (Theorem
4.1). The characterization is a precise algebraic formulation of the requirement that no player can
unilaterally improve its Expected Individual Profit in a Nash equilibrium. In more detail, the charac-
terization provides a system of equalities and inequalities to be satisfied by the players’ probabilities.

Graph-Theoretic Structure

We proceed to study the graph-theoretic structure of mixed Nash equilibria. We present two interesting
covering properties of Nash equilibria showed in [14]. In more detail, in a Nash equilibrium, the support
of the edge player to be is an Edge Cover of the graph (Proposition 5.1); the support of the vertex
players is a Vertex Cover of the graph induced by the support of the edge player (Proposition 5.2).
So, these covering properties represent necessary graph-theoretic conditions for Nash equilibria.

Inspired by the shown covering properties, the authors of [14], introduced a Covering profile as one
that satisfies the two necessary covering conditions for Nash equilibria that were proved. It is natural
to ask whether a Covering profile is necessarily a Nash equilibrium. We show a simple counterexample
to show that a Covering profile is not necessarily a Nash equilibrium (Proposition 5.4), first presented
in [14]. This implies that a Covering profile must be enriched with some additional condition(s) in
order to provide a set of sufficient graph-theoretic conditions for Nash equilibria.

Such enrichment is achieved in [14] via the definition of an Independent Covering profile (Definition
5.2). Loosely speaking, the following two additional conditions are included in the definition of an
Independent Covering profile: (i) The support of the vertex players is an Independent Set of the graph.
(ii) Each vertex in the support of the vertex players is incident to exactly one edge from the support
of the edge player.

Note that, intuitively, the first condition in the definition of an Independent Covering profile favors
a decrease to the expected number of vertex players caught by the edge player. Moreover, intuitively,
the second condition favors a decrease to the probability that some vertex player be caught by the edge
player. So, by its two additional conditions, an Independent Covering profile is one that, intuitively,
favors the vertex players.

In addition, the following two auxiliary conditions are included in the definition of an Indepen-
dent Covering profile: (i) All vertex players have the same support. (ii) Each player uses a uniform
probability distribution on its support.
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These two conditions provide some more intuitive, simplifying assumptions that may facilitate the
computation of an Independent Covering profile. In particular, the first auxiliary condition provides
some kind of symmetry for the vertex players; the second auxiliary condition provides some kind of
symmetry for the support of the edge player.

An Independent Covering profile is proved to be a Nash equilibrium (Proposition 5.6) [14]. The
proof verifies that an Independent Covering profile satisfies the characterization of a Nash equilibrium
(Theorem 4.1). So, an Independent Covering profile provides sufficient graph-theoretic conditions for
Nash equilibria.

Moreover, an Independent Covering profile, the support of the edge player contains a suitable
Matching that matches each vertex outside the support of the vertex players to some vertex in the
support of the vertex players, as shown in [14]. So, an Independent Covering profile will henceforth
be called a Matching Nash equilibrium.

1.2.2 Pure Nash Equilibria

The graph-theoretic game has no pure Nash equilibrium unless the graph is trivial (Theorem 5.3) [14].
This follows as an immediate consequence of one of the covering properties of a Nash equilibrium
(Proposition 5.1).

1.2.3 General Nash Equilibria

A (mixed) Nash equilibrium for the network game is computable in polynomial time (Theorem 6.1)
[16]. The proof is by reduction to the case of two players (one attacker and one defender), which is
shown to be constant-sum. Constant-sum Two-Players games are reducible to Linear Programming
[19], hence solvable in polynomial time [10]. However, the reduction to Linear Programming hides
the Price of Defense. This invites the consideration of special classes of Nash equilibria with sufficient
structure for the evaluation of the incurred Prices of Defense.

1.2.4 Matching Nash Equilibria

For Matching Nash equilibria we present the following results obtained in [16]:

• We present a new characterization of graphs admitting Matching Nash equilibria (Theorem 7.3)
proved in [16]. Such graphs have their Independence Number equal to their Edge Covering
Number. The characterization improves an earlier one from [14]. The characterization benefits
from an improved understanding of structural (graph-theoretic) properties of Matching Nash
equilibria. In particular, we prove that in a Matching Nash equilibrium, the support of the
vertex players is a Maximum Independent Set of the graph (Proposition 7.1) and the support
of the edge player is a Minimum Edge Cover of the graph (Proposition 7.2).

• We present a polynomial time algorithm which translates the characterization to (decide the
existence of and) compute a Matching Nash equilibrium (Theorem 7.4). This relies on obtaining
a polynomial time algorithm for the (new) graph-theoretic problem of deciding, given a graph
G, whether its Independence Number α(G) and Edge Covering Number β′(G) are equal, and
yielding, if so, a Maximum Independent Set for the graph (Proposition 3.1). In turn, the graph-
theoretic algorithm relies on computing a Minimum Edge Cover (via computing a Maximum
Matching) and a subsequent reduction to 2SAT.

• The Price of Defense for a Matching Nash equilibrium is shown to be α(G) (Proposition 7.5).
This relies on its modeling assumption that all vertex players are symmetric and uniform, and
on its shown property that the support of the vertex players is a Maximum Independent Set.
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1.2.5 Perfect Matching Nash Equilibria

A Perfect Matching Nash equilibrium is a Matching Nash equilibrium where, additionally, the support
of the edge player is a Perfect Matching of the graph.

• We provide a characterization of graphs admitting a Perfect Matching Nash equilibria (Theorem
8.2) presented in [16]. Such graphs have a Perfect Matching and their Independence Number

equals
|V |
2 (V is the vertex set). The characterization benefits from a structural (graph-theoretic)

property of Perfect Matching Nash equilibria we prove, namely that the support of the vertex

players has size
|V |
2 (Proposition 8.1).

• The characterization can be translated into a polynomial time algorithm to (decide the existence
and) compute a Perfect Matching Nash equilibrium (Theorem 8.3) [16]. This relies on obtaining
a polynomial time algorithm for the (new) graph-theoretic problem of deciding, given a graph

G with a Perfect Matching, whether its Independence Number equals
|V |
2 , and yielding, if so,

a Maximum Independent Set for the graph (Proposition 3.2). In turn, the graph-theoretic
algorithm relies on computing a Perfect Matching and a subsequent reduction to 2SAT.

• The Price of Defense for a Perfect Matching Nash equilibrium is
|V |
2 (Theorem 8.4) [16]. This

relies on its modeling assumption that all vertex players are symmetric and uniform, and on its

shown property that the support of the vertex players has size
|V |
2 .

The relation between the Prices of Defense for Perfect Matching and Matching Nash equilibria is

precisely the relation between
|V |
2 and α(G) for the graph G. For graphs that have both Matching

and Perfect Matching Nash equilibria, Theorem 8.2 implies that α(G) =
|V |
2 and the two Prices of

Defense coincide (as also do the two classes of equilibria). Consider a graph that has a Matching
Nash equilibrium but not a Perfect Matching Nash equilibrium. By the characterization of Matching

Nash equilibria in [14, Theorem 3], α(G) ≥
|V |
2 (else, there could not be enough vertices inside an

Independent Set to which vertices outside have to be matched). Thus, the Price of Defense of a Perfect
Matching Nash equilibrium may not exceed that of a Matching Nash equilibrium.

1.2.6 Generalizations

Finally, we consider two generalization of the basic model with an increased power for the defender:

• In the first variation, introduced in [15], the defender is able to scan a simple path of the network
instead of a single edge. The problem of deciding the existence of pure Nash equilibria in this
model is shown to be NP-complete (Theorem 9.2) [15]. This result opposes interestingly with
the corresponding non-existence result of the our basic model, proved before and indicates some
fascinating dimensions of the yet unexplored research area considered here.

• In the second variation, introduced in [7], the defender is able to scan and protect a set of k
links of the network. For this model, we discuss a generalized class of Nash equilibria, called
k-matching Nash equilibria and introduced in [7].

2 Background, Definitions and Preliminaries

Throughout, we consider an undirected graph G = G(V, E) with no isolated vertices; G is non-trivial
whenever it has more than one edges, otherwise it is trivial. We will sometimes model an edge as the
set of its two end vertices; we also say that a vertex is incident to an edge (or that the edge is incident
to the vertex) if the vertex is one of the two end vertices of the edge.
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2.1 Graph Theory

For a vertex set U ⊆ V , denote NeighG(U) = {u /∈ U : (u, v) ∈ E for some vertex v ∈ U}; de-
note G(U) = (V (U), E(U)) the subgraph of G induced by the vertices in U . (So, V (U) = U and
E(U) = {(u, v) : u ∈ U, v ∈ U, and (u, v) ∈ E}.) For the edge set F ⊆ E, denote Vertices(F ) =
{v ∈ V : (u, v) ∈ F for some vertex u ∈ V }. For edge set F ⊆ E, denote G(F ) = (V (F ), E(F ))
the subgraph of G induced by the edges in F . (So, E(F ) = F and V (F ) = {u ∈ V : (u, v) ∈ F
for some vertex v ∈ V }.) Given any vertex set U ⊆ V , the graph G\U is obtained by removing from

G all vertices of U and their incident edges. A simple path, P , is a path of G with no repeated vertices,
i.e. P = {v1, · · · , vi · · · , vk}, where 1 ≤ i ≤ k ≤ n, vi ∈ V , (vi, vi+1) ∈ E(G) and each vi ∈ V appears
at most once in P . Denote P(G) the set of all possible paths in G. For a vertex set U ⊆ V , denote
NeighG(U) = {u /∈ U : (u, v) ∈ E for some vertex v ∈ U}. The graph G is bipartite if V = V1 ∪ V2 for
some disjoint vertex sets V1, V2 ⊆ V so that for each edge (u, v) ∈ E, u ∈ V1 and v∈V2. Call (V1, V2)
a bipartition of the bipartite graph G.

A vertex set IS ⊆ V is an Independent Set of the graph G if for all pairs of vertices u, v ∈ IS,
(u, v) /∈ E. A Maximum Independent Set is one that has maximum size; denote α(G) the size of a
Maximum Independent Set of G.

A Vertex Cover of G is a vertex set V C ⊆ V such that for each edge (u, v) ∈ E either u ∈ V C
or v ∈ V C. A Minimum Vertex Cover is one that has a minimum size; denote β(G) the size of a
Minimum Vertex Cover of G. It is immediate to see that for any graph G, α(G) + β(G) = |V |. An
Edge Cover of G is an edge set EC ⊆ E such that for every vertex v ∈ V , there is an edge (v, u) ∈ EC.

A Matching of G is a set M ⊆ E of non-incident edges. For an edge (u, v) ∈ M , say that the
Matching M matches vertex u to vertex v. A Maximum Matching is one that has maximum size;
denote ν(G) the size of a Maximum Matching of G. The classical König-Egerváry Minimax Theorem
[3, 11] shows that for a bipartite graph G, β(G) = ν(G). Implicit in the proof is a polynomial rime
algorithm to compute a Minimum Vertex Cover of a bipartite graph though computing a Maximum
Matching of the graph (see, for example, [1, Theorem 10-2-1, p. 180]). For the class of bipartite
graphs, the currently most efficient algorithm to compute a Maximum Matching for a bipartite graph

is due to Feder and Motwani [5] and runs in time O

(

√

|V | · |E| · log|V |
|V |2

|E|

)

.

Fix now a vertex set U ⊆ V . The graph G is a U -Expander graph (and the set U is an Expander
for G) if for each set U ′ ⊆ U , |U ′| ≤ |NeighG(U ′) ∩ (V \U)|. An Expanding Independent Set of the
graph G is an Independent Set IS of G such that the complementary vertex set V \IS is an Expander
for G.

2.2 Game Theory

2.2.1 The Strategic Game Π(G)

Associated with G is a strategic game Π(G) = 〈N , {Si}i∈N , {IP}i∈N 〉 on G defined as follows:
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• The set of players is N = Nvp ∪Nep, where:

– Nvp is a finite set of ν vertex players vpi, called attackers, 1 ≤ i ≤ ν;

– Nep is a singleton set of an edge player ep, called defender.

• The strategy sets of the players are as follows:

– The strategy set Si of vertex player vpi is V .

– The strategy set Sep of the edge player ep is E.

So, the strategy set S of the game is S =
(

×
i ∈ Nvp

Si

)

× Sep = V ν × E.

• Fix an arbitrary strategy profile s = 〈s1, . . . , sν , sep〉 ∈ S, also called a profile.

– The Individual Profit of vertex player vpi is a function IPs(i) : S → {0, 1} such

that IPs(i) =

{

0, si ∈ sep

1, si 6∈ sep
; intuitively, the vertex player vpi receives 1 if it

is not caught by the edge player, and 0 otherwise.

– The Individual Profit of the edge player ep is a function IPs(ep) : S → N such
that IPs(ep) = |{i : si ∈ sep}|; intuitively, the edge player ep receives the
number of vertex players it catches.

2.2.2 Pure Strategies and Pure Nash Equilibria

The profile s is a pure Nash equilibrium (abbreviated as pure NE) [17, 18] if for each player i ∈ N ,
it maximizes IPs(i) over all profiles t that differ from s only with respect to the strategy of player i.
Intuitively, in a pure Nash equilibrium, no vertex player (resp., the edge player) can (resp., cannot)
improve its Individual Profit by switching to a different vertex (resp., edge). In other words, a pure
Nash equilibrium is a local maximizer for the Individual Profit of each player. Say that G admits a
pure Nash equilibrium if there is a pure Nash equilibrium for the strategic game Π(G).

2.2.3 Mixed Strategies

A mixed strategy for player i ∈ N is a probability distribution over its strategy set Si; thus, a mixed
strategy for a vertex player (resp., the edge player) is a probability distribution over vertices (resp.,
over edges) of G. A mixed profile s = 〈s1, . . . , sν , sep〉, or profile for short, is a collection of mixed
strategies, one for each player; so, si(v) is the probability that the vertex player vpi chooses vertex v
and sep(e) is the probability that the edge player ep chooses edge e.

The support of a player i ∈ N in the mixed profile s, denoted Support
s
(i), is the set of pure

strategies in its strategy set to which i assigns strictly positive probability in s. Denote Support
s
(vp) =

⋃

i∈Nvp
Support

s
(i); so, Support

s
(vp) contains all pure strategies (that is, vertices) to which some vertex

player assigns a strictly positive probability in s; Supports(vp) will be called the support of the vertex
players. Denote Edges

s
(v) = {(u, v) ∈ E : (u, v) ∈ Support

s
(ep)}. So, Edges

s
(v) contains all edges

incident to v that are included in the support of the edge player.

We shall often deal with profiles with some special structure. A mixed profile is uniform if each
player uses a uniform probability distribution on its support. Consider a uniform profile s. Then, for
each vertex player vpi ∈ Nvp, for each vertex v ∈ V , si(v) = 1

|Support
s
(i)|

; for the edge player ep, for

each e ∈ E, sep(e) = 1
|Support

s
(ep)|

. A profile s is vp-symmetric if for all vertex players vpi, vpk ∈ Nvp,

Supports(i) = Supports(k). Clearly, a uniform, vp-symmetric profile is completely determined by the
support of the vertex players and the support of the edge player.
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2.2.4 Probabilities and Expectations

We now determine some probabilities and expectations according to the profile s that will be of
interest. For a vertex v ∈ V , denote Hit(v) the event that the edge player ep chooses an edge
that contains the vertex v. Denote as Ps(Hit(v)) the probability (according to s) of the event Hit(v)
occurring. Clearly, Ps(Hit(v)) =

∑

e∈Edges
s
(v) sep(e). For a vertex v ∈ V , denote as VPs(v) the expected

number of vertex players choosing vertex v according to s; so, VPs(v) =
∑

i∈Nvp
si(v).Clearly, for

a vertex v 6∈ Support
s
(vp), VPs(v) = 0. Also, in a symmetric, vp-uniform profile s, for a vertex

v ∈ Supports(vp), VPs(v) =
∑

i∈Nvp
si(v) = ν

|Supports(vp)|
. For each edge e = (u, v) ∈ E, denote as

VPs(e) the expected number of vertex players choosing either the vertex u or the vertex v according
to s; so, VPs(e) = VPs(u) + VPs(v) =

∑

i∈Nvp
(si(u) + si(v)) .

2.2.5 Expected Individual Profit and Conditional Expected Individual Profits

A mixed profile s induces an Expected Individual Profit IPs(i) for each player i ∈ N , which is the
expectation according to s of the Individual Profit of player i.

Induced by the mixed profile s is also the Conditional Expected Individual Profit IPs(i, v) of vertex
player vpi ∈ Nvp on vertex v ∈ V , which is the conditional expectation according to s of the Individual
Profit of player vpi had it chosen vertex v. So, IPs(i, v) = 1 − Ps(Hit(v)) = 1 −

∑

e∈Edges
s
(v) sep(e).

Clearly, for the vertex player vpi ∈ Nvp, IPs(i) =
∑

v∈V si(v) · IPs(i, v) =
∑

v∈V si(v) ·(1−
∑

e∈Edges
s
(v) sep(e)).

Finally, induced by the mixed profile s is the Conditional Expected Individual Profit IPs(ep, e) of
the edge player ep on edge e = (u, v) ∈ E, which is the conditional expectation according to s of the
Individual Profit of player ep had it chosen edge e. So, IPs(ep, e) = VPs(e) =

∑

i∈Nvp
(si(u) + si(v)).

Clearly, for the edge player ep, IPs(ep) =
∑

e∈E sep(e)·IPs(ep, e) =
∑

e=(u,v)∈E sep(e)·(
∑

i∈Nvp
(si(u)+

si(v))).

2.2.6 Mixed Nash Equilibria

The mixed profile s is a mixed Nash equilibrium (abbreviated as mixed NE) [17, 18] if for each player
i ∈ N , it maximizes IPs(i) over all mixed profiles t that differ from s only with respect to the mixed
strategy of player i. In other words, a Nash equilibrium s is a local maximizer for the Expected
Individual Profit of each player. By Nash’s celebrated result [17, 18], there is at least one mixed Nash
equilibrium for the strategic game Π(G); so, every graph G admits a mixed Nash equilibrium.

The particular definition of Expected Individual Profits implies that a Nash equilibrium has two
significant properties:

• First, for each vertex player vpi ∈ Nvp and vertex v ∈ V such that si(v) > 0, all Conditional
Expected Individual Profits IPs(i, v) are the same and no less than any Conditional Expected
Individual Profit IPs(i, v

′) with si(v
′) = 0. It follows that for each vertex player vpi, for any

vertex v ∈ Support
s
(i), IPs(i) = 1 −

∑

e∈Edges
s
(v) sep(e). Thus, the Expected Individual Profit of

a vertex player in a Nash equilibrium is determined by any vertex in its support and the mixed
strategy of the edge player.

• Second, for each edge e ∈ E such that sep(e) > 0, all Conditional Expected Individual Profits
IPs(ep, e) are the same and no less than any Conditional Expected Individual Profit IPs(ep, e′)
with sep(e

′) = 0. It follows that for the edge player ep, for any edge (u, v) ∈ Supports(ep),
IPs(ep) =

∑

i∈Nvp
(si(u) + si(v)). Thus, the Expected Individual Profit of the edge player in a

Nash equilibrium is determined by any edge in its support and the mixed strategies of the vertex
players.
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A simple but crucial fact about mixed Nash equilibria is proved in [14]:

Lemma 2.1 [14] Fix a mixed Nash Equilibrium s. Then, for any pair of vertex players vpi and vpk,
IPs(i) = IPs(k).

Note that for each vertex player vpi, there is some vertex v such that si(v) > 0; since a Nash
equilibrium s maximizes the Individual Profit of the edge player ep, it follows that IPs(ep) > 0 for a
Nash equilibrium s.

We study algorithmic problems of existence and computation of various classes of Nash equilibria
for the considered game.

CLASS NE EXISTENCE FIND CLASS NE
Instance: A graph G(V,E). Instance: A graph G(V,E).
Question: Does Π(G) admit a CLASS Nash equilibrium? Output: A CLASS Nash equilibrium of G.

Variable CLASS takes values GENERAL, MATCHING, PERFECT MATCHING, it determines the classes
of general, Matching, Perfect Matching, respectively. We note that for all values of CLASS, membership
of a profile in CLASS can be verified in polynomial time. Since a Nash equilibrium can be verified in
polynomial time (by Theorem 4.1), it follows that CLASS NE EXISTENCE ∈ NP.

The Price of Defense is the worst-case ratio, over all Nash equilibria s, of ν
IPs(ep)

.

3 Some Problems from Graph Theory

For the positive results, we will consider two graph-theoretic problems:

MAXIMUM INDEPENDENT SET EQUAL MINIMUM EDGE COVER
Instance: A graph G(V, E).
Output: A Maximum Independent Set of G of size β′(G) if α(G) = β′(G), or No if α(G) < β′(G).

MAXIMUM INDEPENDENT SET EQUAL HALF ORDER
Instance: A graph G(V, E).

Output: A Maximum Independent Set of G of size
|V |
2 if α(G) =

|V |
2 , or No if such does not exist.

For these two new problems, the authors of [16] use reductions to 2SAT (solvable in polynomial time [4])
to prove:

Proposition 3.1 [16] MAXIMUM INDEPENDENT SET EQUAL MINIMUM EDGE COVER ∈ P

Sketch of Proof. Compute a Minimum Edge Cover EC of G. Recall that EC consists of vertex-
disjoint star graphs. Use EC to construct a 2SAT instance φ with variable set V as follows:

(1) For each edge (u, v) ∈ E, add the clause (ū ∨ v̄) to φ.

(2) For each single-edge star graph (u, v) ∈ EC, add the clause (u ∨ v) to φ.

(3) For each multiple-edge star graph of EC with center vertex u, add the clause (ū ∨ ū) to φ.

We prove that G has an Independent Set of size |EC| (hence, α(G) = β′(G)) if and only if φ is
satisfiable; when φ is satisfiable, the set {u | χ(u) = 1} is such a Maximum Independent Set.

Similar to Proposition 3.1, in [16] it is proved that,

Proposition 3.2 [16] MAXIMUM INDEPENDENT SET EQUAL HALF ORDER ∈ P, when restricted
to the class of graphs having a Perfect Matching.
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4 A Characterization of Nash Equilibria

Theorem 4.1 (Characterization of Nash Equilibria) [14] A profile s is a Nash equilibrium if
and only if the following two conditions hold:

(1) For any vertex v ∈ Support
s
(vp), Ps(Hit(v)) = minv′∈V Ps(Hit(v′)).

(2) For any edge e ∈ Support
s
(ep), VPs(e) = maxe′∈E VPs(e

′).

Proof. Assume first that s is a mixed Nash Equilibrium. To show (1), consider any vertex v ∈
Support

s
(vp); so, v ∈ Support

s
(i) for some vertex player vpi. Recall that, IPs(i) = 1−

∑

e∈Edges
s
(v) sep(e).

For any vertex v′ ∈ Support
s
(i), it holds similarly that IPs(i) = 1 −

∑

e∈Edges
s
(v′) sep(e). It follows

that
∑

e∈Edges
s
(v) sep(e) =

∑

e∈Edges
s
(v′) sep(e) or Ps(Hit(v)) = Ps(Hit(v′)). So, consider any vertex

v′ /∈ Support
s
(i). Assume, by way of contradiction, that Ps(Hit(v′)) < Ps(Hit(v)), or equivalently that

∑

e∈Edges
s
(v′) sep(e) <

∑

e∈Edges
s
(v) sep(e). Construct from s the mixed profile s′ by only changing si to

s′i so that v′ ∈ Support
s′(i). Then,

IPs′(i)

= 1 −
∑

e∈Edges
s
′ (v′) s′ep(e) (since v′ ∈ Support

s′(i))

= 1 −
∑

e∈Edges
s
(v′) sep(e) (since s′ep = sep)

> 1 −
∑

e∈Edges
s
(v) sep(e) (by assumption)

= IPs(i) (since v ∈ Supports(i))

which contradicts the fact that s is a Nash equilibrium.

To show (2), consider any edge e ∈ Support
s
(ep). Recall that, IPs(ep) = VPs(e). For any edge

e′ ∈ Support
s
(ep), it similarly holds that IPs(ep) = VPs(e

′). It follows that, VPs(e) = VPs(e
′).

So, consider any edge e′ 6∈ Support
s
(ep). Assume, by way of contradiction, that VPs(e

′) > VPs(e).
Construct from s the mixed profile s′ by only changing sep to s′ep so that e′ ∈ Support

s′(ep). Then,

IPs′(ep)

= VPs′(e
′) (since e′ ∈ Support

s′(ep))

= VPs(e
′) (since s′i = si for all vertex players vpi ∈ Nvp)

> VPs(e) (by assumption)

= IPs(ep) (since e ∈ Support
s
(ep))

which contradicts the fact that s is a Nash equilibrium.

Assume now that s is a mixed profile that satisfies conditions (1) and (2). We will prove that s is
a (mixed) Nash equilibrium.

• Consider first any vertex player vpi. Then, for any vertex v ∈ Support
s
(i),

IPs(i)

= 1 −
∑

e∈Edges
s
(v) sep(e) (since v ∈ Support

s
(i))

≥ 1 −
∑

e∈Edges
s
(v′) sep(e) (by condition (1)),

for any vertex v′ ∈ V . So, the vertex player vpi cannot increase its Expected Individual Profit
according to s by changing its mixed strategy si so that its support would include vertex v′.
Since its Expected individual Profit only depends on its support (and not on its probability
distribution), it follows that the vertex player vpi cannot increase its Expected Individual Profit
by changing its mixed strategy.
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• Consider now the edge player ep. Then, for any edge e ∈ Support
s
(ep),

IPs(ep)

= VPs(e) (since e ∈ Support
s
(ep))

≥ VPs(e
′) (by condition (2)),

for any edge e′ ∈ E. So, player ep cannot increase its Expected Individual Profit according to s
by changing its mixed strategy sep so that its support would include edge e′. Since its Expected
Individual Profit only depends on its support (and not on its probability distribution), it follows
that the edge player ep cannot increase its Expected Individual Profit by changing its mixed
strategy.

Hence, it follows that s is a Nash equilibrium.

5 Structure of Nash Equilibria

In this section, we present several graph-theoretic properties of (mixed) Nash equilibria proved in [15].
Necessary and sufficient graph-theoretic conditions are presented in Sections 5.1 and 5.2, respectively.

5.1 Necessary Conditions

In this section, we present necessary, graph-theoretic conditions for Nash equilibria.

Proposition 5.1 [14] For a Nash Equilibrium s, Support
s
(ep) is an Edge Cover of G.

Proof. Assume, by way of contradiction, that Support
s
(ep) is not an Edge Cover of G. Consider any

vertex v ∈ V such that v 6∈ Vertices(Support
s
(ep)). Thus, Edges

s
(v) = ∅ and Ps(Hit(v)) = 0.

Since s is a local maximizer for the Expected Individual Profit of each player vpi ∈ Nvp, which is
at most 1, it follows that vertex player vpi chooses some such v with probability 1 while si(u) = 0
for each vertex u ∈ Vertices(Support

s
(ep)). It follows that for each edge e = (u, v) ∈ Supports(ep),

VP(e) =
∑

i∈Nvp
(si(u) + si(v)) = 0, so that IPs(ep) =

∑

e∈Support
s
(ep) sep(e) · VPs(e) = 0. Since s is a

Nash equilibrium, IPs(ep) > 0. A contradiction.

Using similar arguments, it can be shown that,

Proposition 5.2 [14] For a Nash Equilibrium s, Support
s
(vp) is a Vertex Cover of G(Support

s
(ep)).

We remark that the necessary conditions in Propositions 5.1 and 5.2 express covering properties of
Nash equilibria. From Proposition 5.1 it can be proved:

Theorem 5.3 [14] The graph G admits no pure Nash equilibrium unless it is trivial.

Inspired by the necessary graph-theoretic conditions in Propositions 5.1 and 5.2 is the definition of a
Covering profile that follows.

Definition 5.1 A Covering profile is a profile s such that Supports(ep) is an Edge Cover
of G and Support

s
(vp) is a Vertex Cover of the graph G(Support

s
(ep)).

It is now natural to ask whether a Covering Profile is necessarily a Nash equilibrium. A negative
answer to this question is shown:

Proposition 5.4 [14] A Covering profile is not necessarily a Nash equilibrium.
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5.2 Sufficient Conditions

In this section, we present sufficient, graph-theoretic conditions for Nash equilibria presented in [14].
In particular, we will enrich the definition of a Covering profile with additional conditions; we will
then prove that the enriched set of conditions is a set of sufficient conditions for Nash equilibria. We
start with the definition of an Independent Covering profile.

Definition 5.2 An Independent Covering profile is a uniform, vp-symmetric Covering
profile s satisfying the additional conditions:

(1) Support
s
(vp) is an Independent Set of G.

(2) Each vertex in Support
s
(vp) is incident to exactly one edge in Support

s
(ep).

An preliminary property of Independent Covering profiles is the following.

Lemma 5.5 [14] Consider an Independent Covering profile s. Then, for each edge e = (u, v) ∈
Supports(ep), exactly one of u and v is in Supports(vp).

The above analysis is used in [14] to show:

Proposition 5.6 [14] An Independent Covering profile is a Nash equilibrium.

A necessary condition for Independent Covering profiles is proved in [14].

Proposition 5.7 [14] For an Independent Covering profile s, there is a Matching M ⊆ Supports(ep)
that matches each vertex in V \Supports(vp) to some vertex in Supports(vp).

An immediate consequence of Proposition 5.7 follows:

Corollary 5.8 [14] For an Independent Covering profile s, |Supports(vp)| ≤ |V \Supports(vp)|.

Propositions 5.6 and 5.7 together imply that an Independent Covering profile is a Nash equilibrium
which induces a suitable Matching contained in the support of the edge player. So, in the rest of this
paper, an Independent Covering profile will be called a Matching Nash equilibrium.

6 General Nash Equilibria

Denote as Π̂(G) the special case of Π(G) with ν = 1; so, Π̂(G) is a Two-Players game. Consider a Nash
equilibrium ŝ of Π̂(G). Constuct from ŝ a vp-symmetric profile s for Π(G) where for each vertex player
vpi, for each vertex v ∈ V , si(v) = ŝvp(v), where vp denotes the (single) vertex player of Π̂(G); for the
edge player ep, for each edge e ∈ E, sep(e) = ŝep(e).We prove that s satisfies the characterization of
Nash equilibria in Theorem 4.1 (assuming that ŝ does); so, s is a Nash equilibrium for Π(G). Hence,
a Nash equilibrium s for Π(G) can be computed from a Nash equilibrium ŝ for Π̂(G) in polynomial
time.

It can be proved that the two players game Π̂(G) is a constant-sum (two players) game: for each
profile ŝ, IPŝ(vp) + IPŝ(ep) is a constant (independent of ŝ). Clearly,

IPŝ(vp) + IPŝ(ep) =
∑

v∈V

ŝvp(v) ·



1 −
∑

e∈Edgess(v)

ŝep(e)



 +
∑

(u,v)=e ∈E

ŝep(e) · (ŝvp(u) + ŝvp(v))

=
∑

v∈V

ŝvp(v) −
∑

v∈V

ŝvp(v)





∑

e∈Edgess(v)

ŝep(e)



 +
∑

(u,v)=e ∈E

ŝep(e) · (ŝvp(u) + ŝvp(v))

= 1 −
∑

(u,v)=e ∈E

ŝep(e) · (ŝvp(u) + ŝvp(v)) +
∑

(u,v)=e ∈E

ŝep(e) · (ŝvp(u) + ŝvp(v)) = 1
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Since a Nash equilibrium of a constant-sum, two-players game can be computed in polynomial time
via reduction to Linear Programming [19] (which can be solved in polynomial time [10]), it is obtain:

Theorem 6.1 [16] FIND GENERAL NE ∈ P

7 Matching Nash Equilibria

We first present some graph-theoretic properties of Matching NE proved in [16].

Proposition 7.1 [16] In a Matching NE s, Supports(vp) is a Maximum Independent Set of G.

Proposition 7.2 [16] In a Matching NE s, Supports(ep) is a Minimum Edge Cover of G.

Using these properties it can be proved that,

Theorem 7.3 [16] The graph G admits a Matching NE if and only if α(G) = β′(G).

The constructive parts of the sufficiency proofs of Proposition 3.1 and Theorem 7.3 yield together a
polynomial time algorithm MatchingNE to compute a Matching NE, if one exists:

Algorithm MatchingNE
Input: A graph G(V,E).
Output: The supports in a Matching NE s for G, or No if such does not exist.

1. Compute a Minimum Edge Cover EC of G.

2. Construct an instance φ of 2SAT as follows:

• For each edge (u, v) ∈ E, add the clause (ū ∨ v̄) to φ.

• For each single-edge star graph (u, v) ∈ EC, add the clause (u ∨ v) to φ.

• For each multiple-edge star graph of EC with center vertex u, add the clause (ū ∨ ū) to φ.

3. Compute a satisfying assignment χ of φ, or output No if such does not exist.

4. Set IS = {u | χ(u) = 1}.

5. Set Supports(ep) := EC and Supports(vp) := IS.

Theorem 7.4 [16] Algorithm MatchingNE solves FIND MATCHING NE in time O

(

√

|V ||E| · log|V |
|V |2

|E|

)

.

Proposition 7.5 [16] In a Matching NE, the Price of Defense is α(G).

8 Perfect Matching Nash Equilibria

A Perfect Matching NE is a Matching NE s such that Supports(ep) is a Perfect Matching of G. We
first present a graph-theoretic property of Perfect Matching NE proved in [16].

Proposition 8.1 [16] For a Perfect Matching NE s, |Supports(vp)| =
|V |
2 .

Using this property, a characterization of Perfect Matching NE is proved in [16]:

Theorem 8.2 [16] A graph G admits a Perfect Matching NE if and only if G has a Perfect Matching

and α(G) =
|V |
2 .
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Algorithm PerfectMatchingNE
Input: A graph G(V,E).
Output: The supports in a Perfect Matching NE s for G, or No if such does not exist.

1. Compute a Perfect Matching M of G, or output No if such does nots exist.

2. Construct an instance φ of 2SAT as follows:

• For each edge (u, v) ∈ E, add the clause (ū ∨ v̄) to φ.

• For each edge (u, v) ∈ M , add the clause (u ∨ v) to φ.

3. Compute a satisfying assignment χ of φ, or output No if such does not exist.

4. Set IS = {u | χ(u) = 1}.

5. Set Supports(ep) := M and Supports(vp) := IS.

The constructive parts of the sufficiency proof of Proposition 3.2 and Theorem 8.2 yield together
a polynomial time algorithm PerfectMatchingNE to compute a Perfect Matching NE, if one exists.

Theorem 8.3 [16] Algorithm PerfectMatchingNE solves FIND PERFECT MATCHING NE in time

O
(

√

|V ||E|· log|V |
|V |2

|E|

)

.

Observe that a Perfect Matching NE is a Matching NE for which, by Theorem 8.2, α(G) =
|V |
2 .

Hence, Proposition 7.5 implies:

Theorem 8.4 [16] In a Perfect Matching Nash equilibrium, the Price of Defense is
|V |
2 .

9 Generalizations

The Path Model

Here, we consider a generalization of the basic model, where the defender has increased power: it is
able to clean, each time a simple path of the network instead of a single edge. We denote the advanced
defender as the path player and denote it as pp. The resulting model, called as Path model, is denoted
as ΠP(G) is identical to Π(G), with the only difference that now |Spp| = |P(G)|. Thus, the path player
have an exponential number of pure strategies. We provide the following characterization of pure
Nash Equilibria in the Path model.

Theorem 9.1 [15] For any graph G, ΠP(G) has a pure NE if and only if G contains a Hamiltonian
path.

This characterization immediately implies:

Corollary 9.2 [15] The problem of deciding whether G admits a pure NE for a ΠP(G) is NP-
complete.

The Tuple Model

Another generalization of the basic model Π(G), called the Tuple model, is introduced and studied in
[7]. Here, the defender is able to scan and protect a set of k links of the network. There, the existence
problem for pure Nash equilibria is shown to be solvable in polynomial time. Also, a generalized class
of Nash equilibria, called k-matching Nash equilibria. is introduced. For this class of Nash equilibria,
the authors in [7] provide a polynomial-time transformation of any Matching Nash equilibrium of
instance of the Edge model into a k-Matching Nash equilibrium on a corresponding instance of the
Tuple model and vice versa.
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