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Abstract

Consider an information network with threats called attackers; each attacker uses a
probability distribution to choose a node of the network to damage. Opponent to the
attackers is a protector entity called defender; the defender scans and cleans from attacks
some part of the network (in particular, a link), which it chooses independently using its own
probability distribution. Each attacker wishes to maximize the probability of escaping its
cleaning by the defender; towards a conflicting objective, the defender aims at maximizing
the expected number of attackers it catches.

We model this network security scenario as a non-cooperative strategic game on graphs.
We are interested in its associated Nash equilibria, where no network entity can unilaterally
increase its local objective. We obtain the following results:

• We obtain an algebraic characterization of (mixed) Nash equilibria.

• No (non-trivial) instance of the graph-theoretic game has a pure Nash equilibrium.
This is an immediate consequence of some covering properties we prove for the supports
of the players in all (mixed) Nash equilibria.

• We coin a natural subclass of mixed Nash equilibria, which we call Matching Nash
equilibria, for this graph-theoretic game. Matching Nash equilibria are defined by
enriching the necessary covering properties we proved with some additional conditions
involving other structural parameters of graphs, such as Independent Sets.

– We derive a characterization of graphs admitting Matching Nash equilibria. All
such graphs have an Expanding Independent Set. The characterization enables
a non-deterministic, polynomial time algorithm to compute a Matching Nash
equilibrium for any such graph.

– Bipartite graphs are shown to satisfy the characterization. So, using a polynomial
time algorithm to compute a Maximum Matching for a bipartite graph, we obtain,
as our main result, a deterministic, polynomial time algorithm to compute a
Matching Nash equilibrium for any instance of the game with a bipartite graph.
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1 Introduction

1.1 Motivation and Framework

The huge growth of the Internet has significantly extended the importance of Network Secu-
rity [24]. As it is well known, many widely used Internet systems and components are prone to
security risks (see, for example, [6]), some of which have led to successful and well-publicized
attacks [23]. Typically, an attack exploits the discovery of loopholes in the security mechanisms
of the Internet. Attacks and defenses are currently attracting a lot of interest in major forums
of communication research; see, for example, Session 37 (Attacks and defenses in emerging net-
works) in INFOCOM 2006. A current challenge is to invent and study appropriate theoretical
models of security attacks and defenses for emerging networks like the Internet.

In this work, we introduce and analyze such a model for a very simple case of a security
attack. Specifically, we consider a network whose nodes are vulnerable to infection by threats
(e.g., viruses, worms, trojan horses or eavesdroppers [9]), called attackers. Available to the
network is a security software (or firewall), called the defender. However, due to economic and
performance reasons, the defender is only able to clean a limited part of the network. Such
reasons stem from financial costs (e.g., the prohibitive cost of purchasing a global security
software) or from performance bottlenecks (e.g., the reduced usability of the protected part of
the network).

The defender seeks to protect the network as much as possible; on the other hand, each
attacker wishes to avoid being caught so as to be able to damage the network. Both the
attackers and the defender make individual decisions for their placement in the network while
seeking to maximize their contrary objectives. Each attacker targets a node of the network
chosen via its own probability distribution on nodes; the defender cleans a single link chosen
via its own probability distribution on links. The node chosen by an attacker is damaged unless
it crosses the link being cleaned by the defender.

This network security scenario is partially motivated by Network Edge Security [16], a new
distributed firewall architecture designed to counter threats undetected by existing firewall
implementations that usually protect individual servers. In this new architecture, a firewall is
implemented in a distributed way, rather than being locally installed; so, the firewall protects
the subnetwork spanned by the nodes that participate in the distributed implementation. The
simplest case occurs when the subnetwork is just a single link with its two incident nodes; this
starting case offers the initial basis for our theoretical model. Understanding the mathematical
intricacies of attacks and defenses in this simplest theoretical model is a necessary prerequisite
for making rigorous progress in the analysis of distributed firewall architectures with more
involved topologies.
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We model this network security scenario as a non-cooperative strategic game on graphs
with two kinds of players: the vertex players representing the attackers and the edge player
representing the defender. The (Expected) Individual Profit of an attacker is the probability
that it is not caught by the defender; the (Expected) Individual Profit of the defender is the
expected number of attackers it catches.

We are interested in the Nash equilibria [19, 20] associated with this graph-theoretic game,
where no player can unilaterally improve its (Expected) Individual Profit by switching to an-
other probability distribution. Nash’s celebrated result [19, 20] guarantees that the graph-
theoretic game has at least one (mixed) Nash equilibrium.

1.2 Contribution

We obtain a multitude of results for several classes of Nash equilibria and for some special class
of graphs, namely the bipartite graphs.

To describe our contribution, we need some game-theoretic terminology, which we review
here. (For precise definitions, see Section 2.) A profile is a tuple of probability distributions,
one for each player. The support of the edge player is the set of all edges to which it assigns
strictly positive probability; the support of a vertex player is the set of all vertices to which it
assigns strictly positive probability, and the support of the vertex players is the union of the
supports of all vertex players.

1.2.1 Mixed Nash Equilibria

Characterization

We discover that a mixed Nash equilibrium enjoys some elegant algebraic characterization
(Theorem 3.1). The characterization is a precise algebraic formulation of the requirement that
no player can unilaterally improve its Expected Individual Profit in a Nash equilibrium. In
more detail, the characterization provides a system of equalities and inequalities to be satisfied
by the players’ probabilities.

Graph-Theoretic Structure

We proceed to study the graph-theoretic structure of mixed Nash equilibria. We discover two
interesting covering properties of Nash equilibria. In more detail, we prove that in a Nash
equilibrium, the support of the edge player is an Edge Cover of the graph (Proposition 4.1);
the support of the vertex players is a Vertex Cover of the graph induced by the support of the
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edge player (Proposition 4.2). So, these covering properties represent necessary graph-theoretic
conditions for Nash equilibria.

Inspired by the shown covering properties, we define a Covering profile as one that satisfies
the two necessary covering conditions for Nash equilibria we proved. It is natural to ask whether
a Covering profile is necessarily a Nash equilibrium. We provide a simple counterexample to
show that a Covering profile is not necessarily a Nash equilibrium (Proposition 4.4). This
implies that a Covering profile must be enriched with some additional condition(s) in order to
provide a set of sufficient graph-theoretic conditions for Nash equilibria.

We attempt such enrichment in our definition of an Independent Covering profile (Definition
4.2). Loosely speaking, the following two additional conditions are included in the definition of
an Independent Covering profile:

• The support of the vertex players is an Independent Set of the graph.

• Each vertex in the support of the vertex players is incident to exactly one edge from the
support of the edge player.

Note that, intuitively, the first condition in the definition of an Independent Covering profile
favors a decrease to the expected number of vertex players caught by the edge player. Moreover,
intuitively, the second condition favors a decrease to the probability that some vertex player
be caught by the edge player. So, by its two additional conditions, an Independent Covering
profile is one that, intuitively, favors the vertex players.

In addition, the following two auxiliary conditions are included in the definition of an Inde-
pendent Covering profile:

• All vertex players have the same support.

• Each player uses a uniform probability distribution on its support.

These two conditions provide some more intuitive, simplifying assumptions that may fa-
cilitate the computation of an Independent Covering profile. In particular, the first auxiliary
condition provides some kind of symmetry for the vertex players; the second auxiliary condition
provides some kind of symmetry for the support of the edge player.

We prove that an Independent Covering profile is a Nash equilibrium (Proposition 4.6).
The proof verifies that an Independent Covering profile satisfies the characterization of a Nash
equilibrium (Theorem 3.1). So, an Independent Covering profile provides sufficient graph-
theoretic conditions for Nash equilibria.
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Figure 1: An illustration of a graph with a Matching Nash equilibrium. The left shaded region
represents the support of the vertex players, which is an Independent Set; the right shaded
region represents its complement. Note that there may be edges joining vertices in the right
region. The support of the edge player is indicated by bold edges; its contained Matching is
indicated by double bold edges.

Moreover, we prove that in an Independent Covering profile, the support of the edge player
contains a suitable Matching that matches each vertex outside the support of the vertex players
to some vertex in the support of the vertex players. So, an Independent Covering profile will
henceforth be called a Matching Nash equilibrium. Figure 1 provides an illustration for a
Matching Nash equilibrium.

1.2.2 Pure Nash Equilibria

We prove that the graph-theoretic game has no pure Nash equilibrium unless the graph is trivial
(Theorem 4.3). This follows as an immediate consequence of one of the covering properties of
a Nash equilibrium (Proposition 4.1).

1.2.3 Matching Nash Equilibria

Characterization

We provide a very simple and intuitive characterization of graphs admitting a Matching Nash
equilibrium (Theorem 5.1). Specifically, we prove that a graph admits a Matching Nash equi-
librium if and only if it has an Independent Set whose complementary vertex set is an Expander
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for the graph. Call such an Independent Set an Expanding Independent Set. To the best of our
knowledge, Expanding Independent Sets have not been considered before in the literature.

Computation

The proof of the characterization of graphs admitting a Matching Nash equilibrium is con-
structive (specifically, the sufficiency part of the proof). Hence, it immediately yields a non-
deterministic algorithm to compute a Matching Nash equilibrium for any graph that satisfies the
characterization (Algorithm MatchingNE in Figure 4). The only remaining non-deterministic
step in the algorithm is the step of choosing an Expanding Independent Set for any arbitrary
graph that has one. At present, we do not know if there is a deterministic, polynomial time
algorithm to compute an Expanding Independent Set for an arbitrary graph (that has one).
Hence, we do not know if there is a deterministic, polynomial time algorithm to compute a
Matching Nash equilibrium for an arbitrary graph that admits one.

Other than this step, the remaining steps of the algorithm MatchingNE run in polynomial
time. The dominating such step invokes the computation of a Maximum Matching of some in-
termediate bipartite graph; this step can be done in polynomial time using the (currently most
efficient) algorithm of Feder and Motwani [8]. Hence, the non-deterministic algorithm Match-

ingNE to compute a Matching Nash equilibrium for an arbitrary graph that has an Expanding
Independent Set runs in polynomial time.

Non-Triviality

We use the characterization of graphs admitting Matching Nash equilibria (Theorem 5.1) to
prove that the class of graphs admitting Matching Nash equilibria is non-trivial (Theorem 5.6):
there are both graphs admitting and not admitting Matching Nash equilibria (Propositions
5.4 and 5.5). Interestingly, we discover that an odd cycle does not admit a Matching Nash
equilibrium, while an even cycle does. König’s Theorem [15] shows that a graph has no odd
cycle if and only if it is bipartite; hence, due to our counterexamples, it is natural to consider
the class of bipartite graphs as a candidate class of graphs admitting Matching Nash equilibria.

1.2.4 Bipartite Graphs

We prove that a bipartite graph satisfies the characterization of graphs admitting a Matching
Nash equilibrium (Proposition 6.1); so, a bipartite graph admits a Matching Nash equilibrium
(Corollary 6.2).
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The proof of this property of bipartite graphs is constructive. Hence, it immediately com-
pletes a deterministic algorithm to compute a Matching Nash equilibrium for bipartite graphs
by providing an algorithm to compute an Expanding Independent Set of the graph. More im-
portant, we observe that an Expanding Independent Set of a bipartite graph can be computed
in polynomial time by reduction to computing a Minimum Vertex Cover of a bipartite graph; in
turn, this can be computed in polynomial time by reduction to computing a Maximum Match-
ing of a bipartite graph. Hence, a polynomial time algorithm to compute a Matching Nash
equilibrium for a bipartite graph follows (Theorem 6.3), as the main result of our study.

1.3 Significance

To the best of our knowledge, our work is the first (with an exception of [2]) to formulate a
network security problem as a strategic, graph-theoretic game and study its associated Nash
equilibria. Our formulated game is the first game where the network is explicitly modeled as
a distinct, non-cooperative player. We believe that our work invites a simultaneously game-
theoretic and graph-theoretic analysis of network security problems for which not only threats
seek to maximize their caused damage to the network but also the network seeks to protect
itself as much as possible.

Our results are specific to the particular graph-theoretic game we have introduced and
studied; however, they exhibit a novel interaction of ideas, arguments and techniques from two
seemingly diverse fields, namely Game Theory and Graph Theory. We believe that this inter-
action is quite promising. In particular, we believe that Matching Nash equilibria (and suitable
extensions of them) will find further applications to other graph-theoretic games motivated by
network security problems with a similar flavor.

Our work joins the booming area of Algorithmic Game Theory [18]. In particular, to the
best of our knowledge, our work is the first to study algorithmic properties of a non-cooperative
strategic game with two distinct kinds of opponent players.

1.4 Related Work and Comparison

Our graph-theoretic game can be seen as a graph-theoretic generalization of the classical Match-
ing Pennies game [21] where two players choose simultaneously between two strategies; one
wants to choose like the other, whereas the second wants to choose differently from the first.
The generalization lies in that one of the two players is now a group of players (the attackers),
and in that the two opponent players have different strategies; these are the vertices and edges
of the graph for the attackers and the defender, respectively. So, the two kinds of players have
distinct strategy sets, although the individual strategies (vertices and edges) may intersect.
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Hence, the inexistence of pure Nash equilibria for our graph-theoretic game does not follow
from the inexistence of pure Nash equilibria for Matching Pennies.

In the so called Interdependent Security games studied by Kearns and Ortiz [13], a large
number of players must make individual decisions related to security. The ultimate safety of
each player may depend in a complex way on the actions of the entire population. Our graph-
theoretic game may be seen as a particular instance of Interdependent Security games with some
kind of limited interdependence: there is interdependence between the actions of the defender
and an attacker, while there is no interdependence among the actions of attackers.

Aspnes et al. [2] consider a variation of Interdependent Security games. In particular, they
consider an interesting graph-theoretic game with a similar security flavor, modeling contain-
ment of the spread of viruses on a network with installable antivirus software. In the graph-
theoretic game of Aspnes et al., the antivirus software may be installed at individual nodes; a
virus damages a node if it can reach the node starting at a random initial node and proceeding
to it without crossing a node with installed antivirus software. Aspnes et al. [2] prove several
algorithmic properties for their graph-theoretic game and establish connections to a certain
graph-theoretic problem called Sum-of-Squares Partition.

A particular graph-theoretic game with two players, and its connections to the k-server
problem and network design, has been studied by Alon et al. [1].

Bonifaci et al. [4, 5] have independently studied uniformly mixed Nash equilibria where each
player uses a uniform probability distribution on its support. Our Matching Nash equilibria
are uniformly mixed Nash equilibria that satisfy additional (graph-theoretic) requirements.

1.5 Road Map

Section 2 provides the framework for our study. Section 3 provides a characterization of (mixed)
Nash equilibria. Section 4 presents several structural conditions that are either necessary or
sufficient for Nash equilibria. Matching Nash equilibria are treated in Section 5. Section 6
considers Matching Nash equilibria for the special case of bipartite graphs. We conclude, in
Section 7, with a discussion of our results and some open problems.

2 Framework

Throughout, we consider an undirected graph G = G(V, E) with no isolated vertices; G is
non-trivial whenever it has more than one edges, otherwise it is trivial. We will sometimes
model an edge as the set of its two end vertices; we also say that a vertex is incident to an edge
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(or that the edge is incident to the vertex) if the vertex is one of the two end vertices of the
edge. Sections 2.1 and 2.2 provide a summary of tools from Game Theory and Graph Theory,
respectively, we shall employ. For more background on Game Theory and Graph Theory, see
the authoritative textbooks [22] and [25], respectively.

2.1 Game Theory

2.1.1 The Strategic Game Π(G)

Associated with G is a strategic game Π(G) = 〈N , {Si}i∈N , {IP}i∈N 〉 on G defined as follows:

• The set of players is N = Nvp ∪Nep, where:

– Nvp is a finite set of ν vertex players vpi, called attackers, 1 ≤ i ≤ ν;

– Nep is a singleton set of an edge player ep, called defender.

• The strategy sets of the players are as follows:

– The strategy set Si of vertex player vpi is V .

– The strategy set Sep of the edge player ep is E.

So, the strategy set S of the game is S =
(

×
i ∈ Nvp

Si

)
× Sep = V ν × E.

• Fix an arbitrary strategy profile s = 〈s1, . . . , sν , sep〉 ∈ S, also called a profile.

– The Individual Profit of vertex player vpi is a function IPs(i) : S → {0, 1} such

that IPs(i) =

{
0, si ∈ sep

1, si 	∈ sep

; intuitively, the vertex player vpi receives 1 if it

is not caught by the edge player, and 0 otherwise.

– The Individual Profit of the edge player ep is a function IPs(ep) : S → N such
that IPs(ep) = |{i : si ∈ sep}|; intuitively, the edge player ep receives the
number of vertex players it catches.

2.1.2 Pure Strategies and Pure Nash Equilibria

The profile s is a pure Nash equilibrium [19, 20] if for each player i ∈ N , it maximizes IPs(i)
over all profiles t that differ from s only with respect to the strategy of player i. Intuitively, in a
pure Nash equilibrium, no vertex player (resp., the edge player) can (resp., cannot) improve its
Individual Profit by switching to a different vertex (resp., edge). In other words, a pure Nash
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equilibrium is a local maximizer for the Individual Profit of each player. Say that G admits a
pure Nash equilibrium if there is a pure Nash equilibrium for the strategic game Π(G).

2.1.3 Mixed Strategies

A mixed strategy for player i ∈ N is a probability distribution over its strategy set Si; thus,
a mixed strategy for a vertex player (resp., the edge player) is a probability distribution over
vertices (resp., over edges) of G. A mixed profile s = 〈s1, . . . , sν , sep〉, or profile for short, is a
collection of mixed strategies, one for each player; so, si(v) is the probability that the vertex
player vpi chooses vertex v and sep(e) is the probability that the edge player ep chooses edge e.

The support of a player i ∈ N in the mixed profile s, denoted Supports(i), is the set of
pure strategies in its strategy set to which i assigns strictly positive probability in s. Denote
Supports(vp) =

⋃
i∈Nvp

Supports(i); so, Supports(vp) contains all pure strategies (that is, ver-
tices) to which some vertex player assigns a strictly positive probability in s; Supports(vp) will be
called the support of the vertex players. Denote Edgess(v) = {(u, v) ∈ E : (u, v) ∈ Supports(ep)}.
So, Edgess(v) contains all edges incident to v that are included in the support of the edge player.

We shall often deal with profiles with some special structure. A mixed profile is uniform if
each player uses a uniform probability distribution on its support. Consider a uniform profile
s. Then, for each vertex player vpi ∈ Nvp, for each vertex v ∈ V , si(v) = 1

|Supports(i)| ; for

the edge player ep, for each e ∈ E, sep(e) = 1
|Supports(ep)| . A profile s is vp-symmetric if for

all vertex players vpi, vpk ∈ Nvp, Supports(i) = Supports(k). Clearly, a uniform, vp-symmetric
profile is completely determined by the support of the vertex players and the support of the
edge player.

2.1.4 Probabilities and Expectations

We now determine some probabilities and expectations according to the profile s that will be
of interest. For a vertex v ∈ V , denote Hit(v) the event that the edge player ep chooses an edge
that contains the vertex v. Denote as Ps(Hit(v)) the probability (according to s) of the event
Hit(v) occurring. Clearly,

Ps(Hit(v)) =
∑

e∈Edgess(v)

sep(e).

For a vertex v ∈ V , denote as VPs(v) the expected number of vertex players choosing vertex v

according to s; so,

VPs(v) =
∑

i∈Nvp

si(v).
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Clearly, for a vertex v 	∈ Supports(vp), VPs(v) = 0. Also, in a symmetric, vp-uniform profile
s, for a vertex v ∈ Supports(vp), VPs(v) =

∑
i∈Nvp

si(v) = ν
|Supports(vp)| . For each edge

e = (u, v) ∈ E, denote as VPs(e) the expected number of vertex players choosing either the
vertex u or the vertex v according to s; so,

VPs(e) = VPs(u) + VPs(v)

=
∑

i∈Nvp

(si(u) + si(v)) .

2.1.5 Expected Individual Profit and Conditional Expected Individual Profits

A mixed profile s induces an Expected Individual Profit IPs(i) for each player i ∈ N , which is
the expectation according to s of the Individual Profit of player i.

Induced by the mixed profile s is also the Conditional Expected Individual Profit IPs(i, v) of
vertex player vpi ∈ Nvp on vertex v ∈ V , which is the conditional expectation according to s of
the Individual Profit of player vpi had it chosen vertex v. So,

IPs(i, v) = 1 − Ps(Hit(v))

= 1 −
∑

e∈Edgess(v)

sep(e)

Clearly, for the vertex player vpi ∈ Nvp,

IPs(i) =
∑
v∈V

si(v) · IPs(i, v)

=
∑
v∈V

si(v) ·
⎛
⎝1 −

∑
e∈Edgess(v)

sep(e)

⎞
⎠ .

Finally, induced by the mixed profile s is the Conditional Expected Individual Profit IPs(ep, e)
of the edge player ep on edge e = (u, v) ∈ E, which is the conditional expectation according to
s of the Individual Profit of player ep had it chosen edge e. So,

IPs(ep, e) = VPs(e)

=
∑

i∈Nvp

(si(u) + si(v)).

Clearly, for the edge player ep,

IPs(ep) =
∑
e∈E

sep(e) · IPs(ep, e)

=
∑

e=(u,v)∈E

sep(e) ·
⎛
⎝ ∑

i∈Nvp

(si(u) + si(v))

⎞
⎠ .
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2.1.6 Mixed Nash Equilibria

The mixed profile s is a mixed Nash equilibrium [19, 20] if for each player i ∈ N , it maximizes
IPs(i) over all mixed profiles t that differ from s only with respect to the mixed strategy of
player i. In other words, a Nash equilibrium s is a local maximizer for the Expected Individual
Profit of each player. By Nash’s celebrated result [19, 20], there is at least one mixed Nash
equilibrium for the strategic game Π(G); so, every graph G admits a mixed Nash equilibrium.

The particular definition of Expected Individual Profits implies that a Nash equilibrium has
two significant properties:

• First, for each vertex player vpi ∈ Nvp and vertex v ∈ V such that si(v) > 0, all Condi-
tional Expected Individual Profits IPs(i, v) are the same and no less than any Conditional
Expected Individual Profit IPs(i, v′) with si(v′) = 0. It follows that for each vertex player
vpi, for any vertex v ∈ Supports(i),

IPs(i) = 1 −
∑

e∈Edgess(v)

sep(e).

Thus, the Expected Individual Profit of a vertex player in a Nash equilibrium is determined
by any vertex in its support and the mixed strategy of the edge player.

• Second, for each edge e ∈ E such that sep(e) > 0, all Conditional Expected Individual
Profits IPs(ep, e) are the same and no less than any Conditional Expected Individual
Profit IPs(ep, e′) with sep(e′) = 0. It follows that for the edge player ep, for any edge
(u, v) ∈ Supports(ep),

IPs(ep) =
∑

i∈Nvp

(si(u) + si(v)) .

Thus, the Expected Individual Profit of the edge player in a Nash equilibrium is deter-
mined by any edge in its support and the mixed strategies of the vertex players.

We now prove a simple but crucial fact about mixed Nash equilibria:

Lemma 2.1 Fix a mixed Nash Equilibrium s. Then, for any pair of vertex players vpi and
vpk, IPs(i) = IPs(k).

Proof. Assume, by way of contradiction, that there are vertex players vpi and vpk such
that IPs(i) 	= IPs(k). Assume, without loss of generality, that IPs(i) < IPs(k). Recall that
IPs(k) = 1 − ∑

e∈Edgess(v) sep(e) for any vertex v ∈ Supports(k). Construct from s a mixed
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profile s′ by changing si to sk. For any vertex v ∈ Supports′(i), our construction implies that
v ∈ Supports(k). So,

IPs′(i)

= 1 − ∑
e∈Edgess′ (v) s′ep(e) (since v′ ∈ Supports′(i))

= 1 − ∑
e∈Edgess(v) sep(e) (since s′ep = sep)

= IPs(k) (since v ∈ Supports(k))

> IPs(i) (by assumption),

which contradicts the fact that s is a Nash equilibrium.

Note that for each vertex player vpi, there is some vertex v such that si(v) > 0; since a Nash
equilibrium s maximizes the Individual Profit of the edge player ep, it follows that IPs(ep) > 0
for a Nash equilibrium s.

2.2 Graph Theory

For a vertex set U ⊆ V , denote NeighG(U) = {u /∈ U : (u, v) ∈ E for some vertex v ∈
U}; denote G(U) = (V (U), E(U)) the subgraph of G induced by the vertices in U . (So,
V (U) = U and E(U) = {(u, v) : u ∈ U, v ∈ U, and (u, v) ∈ E}.) For the edge set F ⊆ E, de-
note Vertices(F ) = {v ∈ V : (u, v) ∈ F for some vertex u ∈ V }. For edge set F ⊆ E, denote
G(F ) = (V (F ), E(F )) the subgraph of G induced by the edges in F . (So, E(F ) = F and
V (F ) = {u ∈ V : (u, v) ∈ F for some vertex v ∈ V }.) Given any vertex set U ⊆ V , the graph
G\U is obtained by removing from G all vertices of U and their incident edges.

The graph G is bipartite if V = V1 ∪ V2 for some disjoint vertex sets V1, V2 ⊆ V so that for
each edge (u, v) ∈ E, u ∈ V1 and v∈V2. Call (V1, V2) a bipartition of the bipartite graph G.

A vertex set IS ⊆ V is an Independent Set of the graph G if for all pairs of vertices u, v ∈ IS,
(u, v) /∈ E. A Maximum Independent Set is one that has maximum size; denote α(G) the size
of a Maximum Independent Set of G.

A Vertex Cover of G is a vertex set V C ⊆ V such that for each edge (u, v) ∈ E either u ∈ V C

or v ∈ V C. A Minimum Vertex Cover is one that has a minimum size; denote β(G) the size of
a Minimum Vertex Cover of G. It is immediate to see that for any graph G, α(G)+β(G) = |V |.
An Edge Cover of G is an edge set EC ⊆ E such that for every vertex v ∈ V , there is an edge
(v, u) ∈ EC.

A Matching of G is a set M ⊆ E of non-incident edges. For an edge (u, v) ∈ M , say
that the Matching M matches vertex u to vertex v. A Maximum Matching is one that has
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maximum size; denote ν(G) the size of a Maximum Matching of G. The classical König-
Egerváry Minimax Theorem [7, 14] shows that for a bipartite graph G, β(G) = ν(G). Implicit
in the proof is a polynomial rime algorithm to compute a Minimum Vertex Cover of a bipartite
graph though computing a Maximum Matching of the graph (see, for example, [3, Theorem
10-2-1, p. 180]). For the class of bipartite graphs, the currently most efficient algorithm to
compute a Maximum Matching for a bipartite graph is due to Feder and Motwani [8] and runs

in time O

(√|V | · |E| · log|V |
|V |2
|E|

)
.

Fix now a vertex set U ⊆ V . The graph G is a U -Expander graph (and the set U is an
Expander for G) if for each set U ′ ⊆ U , |U ′| ≤ |NeighG(U ′) ∩ (V \U)|. Hall’s Theorem [12]
establishes a necessary and sufficient condition for one of the bipartitions of a bipartite graph
to be an Expander for the graph.

Theorem 2.2 (Hall’s Theorem) Consider a bipartite graph G = (V, E) with bipartition
(V1, V2). Then, V1 is an Expander for G if and only if G has a Matching that matches each
vertex in V1 to a vertex in V2.

Hall’s Theorem implies a more general result, known as the Marriage Theorem, which is due
to Frobenius [10] and holds for all graphs.

Theorem 2.3 (Marriage Theorem) Consider a graph G = (V, E) and a vertex set U ⊆ V .
Then, U is an Expander for G if and only if G has a Matching that matches each vertex of U

to a vertex of V \U .

An Expanding Independent Set of the graph G is an Independent Set IS of G such that
the complementary vertex set V \IS is an Expander for G. The following is an immediate
consequence of the definition of an Expanding Independent Set and Theorem 2.3:

Corollary 2.4 Consider a graph G = (V, E) with an Expanding Independent Set IS. Then,
|V \IS| ≤ |IS|.

3 A Characterization of Nash Equilibria

We prove:

Theorem 3.1 (Characterization of Nash Equilibria) A profile s is a Nash equilibrium if
and only if the following two conditions hold:
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(1) For any vertex v ∈ Supports(vp), Ps(Hit(v)) = minv′∈V Ps(Hit(v′)).

(2) For any edge e ∈ Supports(ep), VPs(e) = maxe′∈E VPs(e′).

Proof. Assume first that s is a mixed Nash Equilibrium. To show (1), consider any vertex
v ∈ Supports(vp); so, v ∈ Supports(i) for some vertex player vpi. Recall that, IPs(i) = 1 −∑

e∈Edgess(v) sep(e).

For any vertex v′ ∈ Supports(i), it holds similarly that IPs(i) = 1 − ∑
e∈Edgess(v

′) sep(e). It
follows that

∑
e∈Edgess(v) sep(e) =

∑
e∈Edgess(v

′) sep(e) or Ps(Hit(v)) = Ps(Hit(v′)). So, consider
any vertex v′ /∈ Supports(i). Assume, by way of contradiction, that Ps(Hit(v′)) < Ps(Hit(v)), or
equivalently that

∑
e∈Edgess(v

′) sep(e) <
∑

e∈Edgess(v) sep(e). Construct from s the mixed profile
s′ by only changing si to s′i so that v′ ∈ Supports′(i). Then,

IPs′(i)

= 1 − ∑
e∈Edgess′ (v′) s′ep(e) (since v′ ∈ Supports′(i))

= 1 − ∑
e∈Edgess(v

′) sep(e) (since s′ep = sep)

> 1 − ∑
e∈Edgess(v) sep(e) (by assumption)

= IPs(i) (since v ∈ Supports(i))

which contradicts the fact that s is a Nash equilibrium.

To show (2), consider any edge e ∈ Supports(ep). Recall that, IPs(ep) = VPs(e). For any
edge e′ ∈ Supports(ep), it similarly holds that IPs(ep) = VPs(e′). It follows that, VPs(e) =
VPs(e′). So, consider any edge e′ 	∈ Supports(ep). Assume, by way of contradiction, that
VPs(e′) > VPs(e). Construct from s the mixed profile s′ by only changing sep to s′ep so that
e′ ∈ Supports′(ep). Then,

IPs′(ep)

= VPs′(e′) (since e′ ∈ Supports′(ep))

= VPs(e′) (since s′i = si for all vertex players vpi ∈ Nvp)

> VPs(e) (by assumption)

= IPs(ep) (since e ∈ Supports(ep))

which contradicts the fact that s is a Nash equilibrium.

Assume now that s is a mixed profile that satisfies conditions (1) and (2). We will prove
that s is a (mixed) Nash equilibrium.

• Consider first any vertex player vpi. Then, for any vertex v ∈ Supports(i),

IPs(i)
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= 1 − ∑
e∈Edgess(v) sep(e) (since v ∈ Supports(i))

≥ 1 − ∑
e∈Edgess(v

′) sep(e) (by condition (1)),

for any vertex v′ ∈ V . So, the vertex player vpi cannot increase its Expected Individual
Profit according to s by changing its mixed strategy si so that its support would include
vertex v′. Since its Expected individual Profit only depends on its support (and not on its
probability distribution), it follows that the vertex player vpi cannot increase its Expected
Individual Profit by changing its mixed strategy.

• Consider now the edge player ep. Then, for any edge e ∈ Supports(ep),

IPs(ep)

= VPs(e) (since e ∈ Supports(ep))

≥ VPs(e′) (by condition (2)),

for any edge e′ ∈ E. So, player ep cannot increase its Expected Individual Profit according
to s by changing its mixed strategy sep so that its support would include edge e′. Since
its Expected Individual Profit only depends on its support (and not on its probability
distribution), it follows that the edge player ep cannot increase its Expected Individual
Profit by changing its mixed strategy.

Hence, it follows that s is a Nash equilibrium.

4 Structure of Nash Equilibria

In this section, we prove several graph-theoretic properties of (mixed) Nash equilibria. Neces-
sary and sufficient graph-theoretic conditions are presented in Sections 4.1 and 4.2, respectively.

4.1 Necessary Conditions

In this section, we present our necessary, graph-theoretic conditions for Nash equilibria. We
first prove:

Proposition 4.1 For a Nash Equilibrium s, Supports(ep) is an Edge Cover of G.

Proof. Assume, by way of contradiction, that Supports(ep) is not an Edge Cover of G. Consider
any vertex v ∈ V such that v 	∈ Vertices(Supports(ep)). Thus, Edgess(v) = ∅ and Ps(Hit(v)) = 0.
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Since s is a local maximizer for the Expected Individual Profit of each player vpi ∈ Nvp,
which is at most 1, it follows that vertex player vpi chooses some such v with probability
1 while si(u) = 0 for each vertex u ∈ Vertices(Supports(ep)). It follows that for each edge
e = (u, v) ∈ Supports(ep),

VP(e) =
∑

i∈Nvp

(si(u) + si(v))

= 0,

so that

IPs(ep) =
∑

e∈Supports(ep)

sep(e) · VPs(e)

= 0.

Since s is a Nash equilibrium, IPs(ep) > 0. A contradiction.

We continue to prove:

Proposition 4.2 For a Nash Equilibrium s, Supports(vp) is a Vertex Cover of the graph
G(Supports(ep)).

Proof. Assume, by way of contradiction, that Supports(vp) is not a Vertex Cover of the graph
induced by Supports(ep). Consider any edge e ∈ Supports(ep) such that e 	∈ Edges(Supports(vp)).
Thus, Verticess(e) = ∅ and VPs(e) = 0. Since s is a local maximizer for the Expected Individual
Profit of the edge player ep, it follows that sep(e) = 0. So, e 	∈ Supports(ep). A contradiction.

We remark that the necessary conditions in Propositions 4.1 and 4.2 express covering prop-
erties of Nash equilibria. We now use Proposition 4.1 to prove:

Theorem 4.3 The graph G admits no pure Nash equilibrium unless it is trivial.

Proof. Note first that the trivial graph admits the (trivial) pure Nash equilibrium where the
edge player chooses the single edge and each vertex player chooses any of the two vertices. So
consider a non-trivial graph G. Assume, by way of contradiction, that G admits a pure Nash
equilibrium s. Clearly, the support of the edge player is a single edge. Proposition 4.1 implies
that the graph G has an Edge Cover consisting of a single edge. It follows that G is trivial. A
contradiction.

Inspired by the necessary graph-theoretic conditions in Propositions 4.1 and 4.2 is the
definition of a Covering profile that follows.
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v1 v2

v3 v4 v5

Figure 2: The graph G used in the proof of Proposition 4.4

Definition 4.1 A Covering profile is a profile s such that Supports(ep) is an Edge Cover
of G and Supports(vp) is a Vertex Cover of the graph G(Supports(ep)).

It is now natural to ask whether a Covering Profile is necessarily a Nash equilibrium. We
provide a negative answer to this question:

Proposition 4.4 A Covering profile is not necessarily a Nash equilibrium.

Proof. Consider the graph G is Figure 2 and a profile s with Supports(vp) = {v1, v4} and
Supports(ep) = {(v1, v2), (v3, v4), (v4, v5)}. Clearly, Supports(ep) is an Edge Cover of G and
Supports(vp) is a Vertex Cover of the graph G(Supports(ep)). We will prove that s is not a
Nash equilibrium. Assume, by way of contradiction, that s is a Nash equilibrium. Theorem 3.1
implies that Ps(Hit(v3)) ≥ Ps(Hit(v4)), or sep(v3) ≥ sep(v3)+sep(v4). It follows that sep(v4) = 0,
so that v4 	∈ Supports(vp). A contradiction.

4.2 Sufficient Conditions

In this section, we present sufficient, graph-theoretic conditions for Nash equilibria. In partic-
ular, we will enrich the definition of a Covering profile with additional conditions; we will then
prove that the enriched set of conditions is a set of sufficient conditions for Nash equilibria. We
start with the definition of an Independent Covering profile.

Definition 4.2 An Independent Covering profile is a uniform, vp-symmetric Covering
profile s satisfying the additional conditions:

(1) Supports(vp) is an Independent Set of G.

(2) Each vertex in Supports(vp) is incident to exactly one edge in Supports(ep).

We first prove a preliminary property of Independent Covering profiles.

Lemma 4.5 Consider an Independent Covering profile s. Then, for each edge e = (u, v) ∈
Supports(ep), exactly one of u and v is in Supports(vp).
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Proof. Since Supports(vp) is an Independent Set of of G (by additional Condition (1)) either
u ∈ Supports(vp) or v ∈ Supports(vp) but not both. Since Supports(vp) is a Vertex Cover of the
graph G(Supports(ep), it follows that either u ∈ Supports(vp) or v ∈ Supports(vp) or both. It
follows that exactly one of u and v is in Supports(vp), as needed.

We are now ready to prove:

Proposition 4.6 An Independent Covering profile is a Nash equilibrium.

Proof. We shall employ the characterization of Nash equilibria in Theorem 3.1 consisting of
Conditions (1) and (2). We first prove Condition (1). Consider any vertex v ∈ Supports(vp).

• Consider first a vertex v′ ∈ Supports(vp). By additional Condition (2), v′ is incident to
exactly one edge e ∈ Supports(ep). So, Ps(Hit(v′)) = sep(e). Since s is uniform, sep =

1
|Supports(ep)| . It follows that Ps(Hit(v′)) = 1

|Supports(ep)| . In particular, Ps(Hit(v)) =

1
|Supports(ep)| .

• Consider now a vertex v′ 	∈ Supports(vp). Since Supports(ep) is an Edge Cover of G (by
Condition (1) in the definition of a Covering Profile), there is some edge e ∈ Supports(ep)
such that u′ ∈ e. Then, clearly, Ps(Hit(v′)) ≥ sep = 1

|Supports(ep)| (since s is uniform).

It follows that Ps(Hit(v)) = minv∈V Ps(Hit(v′)), which proves (1).

We now prove Condition (2). Consider any edge e = (u, v) ∈ Supports(ep).

• Consider first an edge e′ = (u′, v′) ∈ Supports(ep). By Lemma 4.5, exactly one of u′ and v′

is in Supports(ep). So, assume, without loss of generality, that u′ ∈ Supports(vp) and v′ 	∈
Supports(vp). Then, VPs(e′) = VPs(u′). Since s is vp-symmetric and uniform, VPs(u′) =

ν
|Supports(vp)| . So, VPs(e′) = ν

|Supports(vp)| . In particular, VPs(e) = ν
|Supports(vp)| .

• Consider now an edge e′ = (u′, v′) 	∈ Supports(ep). Since Supports(vp) is an Independent
Set (by additional Condition (2)), either u′ ∈ Supports(vp) or v′ ∈ Supports(vp) but not
both. So, assume, without loss of generality, that v′ 	∈ Supports(vp). Then, VPs(e′) ≤
VPs(u′). If u 	∈ Supports(vp), then VPs(u′) = 0; else, since s is vp-symmetric and uniform,
VPs(u′) = ν

|Supports(vp)| . It follows that VPs(e′) ≤ ν
|Supports(vp)| .

It follows that VPs(e)) = maxe′∈E VPs(e′), which proves (2).

By Theorem 3.1, it follows that s is a Nash equilibrium.

We continue to prove a necessary condition for Independent Covering profiles.
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Proposition 4.7 For an Independent Covering profile s, there is a Matching M ⊆ Supports(ep)
that matches each vertex in V \Supports(vp) to some vertex in Supports(vp).

Proof. Consider any vertex v ∈ V \Supports(vp). Since Supports(ep) is an Edge Cover of G,
there is an edge (u, v) ∈ Supports(ep) for some u ∈ V . Lemma 4.5 implies that u ∈ Supports(vp).
By additional Condition (2) in the definition of an Independent Covering profile, vertex u is
incident to exactly one edge in Supports(ep). So, clearly, the set {(u, v) ∈ Supports(ep) : v ∈
Supports(vp)} is a Matching contained in Supports(ep) that maps each vertex in V \Supports(vp)
to a vertex in Supports(vp), as needed

An immediate consequence of Proposition 4.7 follows:

Corollary 4.8 For an Independent Covering profile s, |Supports(vp)| ≤ |V \Supports(vp)|.

Propositions 4.6 and 4.7 together imply that an Independent Covering profile is a Nash
equilibrium which induces a suitable Matching contained in the support of the edge player.
So, in the rest of this paper, an Independent Covering profile will be called a Matching Nash
equilibrium.

5 Matching Nash Equilibria

A characterization of graphs admitting Matching Nash equilibria is proved in Section 5.1; in
Section 5.2, the characterization is turned into a non-deterministic, polynomial time algorithm
to compute a Matching Nash equilibrium. Section 5.3 uses the characterization to establish the
non-triviality of the class of graphs admitting Matching Nash equilibria.

5.1 Characterization

We prove:

Theorem 5.1 A graph G admits a Matching Nash equilibrium if and only if G has an Expand-
ing Independent Set.

Proof. Assume first that G has an Expanding Independent Set IS. The proof that G admits
a Matching Nash equilibrium is constructive. For emphasis, the constructive parts of the proof
will be boxed.

Since V \IS is an Expander for G, Theorem 2.3 implies that G has a Matching M that
matches each vertex in V \IS to a vertex in V \(V \IS) = IS. Use the Matching M to partition
the Expanding Independent Set IS into vertex sets IS1 and IS2 as follows:
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• IS1 consists of vertices v ∈ IS for which there is an edge (v, u) ∈ M for some vertex
u ∈ V \IS.

• IS2 consists of the remaining vertices of IS; that is, IS2 = IS\IS1.

Intuitively, IS1 consists of vertices in IS to which M maps some vertex in V \IS.

Since IS is an Independent Set and G has no isolated vertices, it follows that for each vertex
v ∈ IS2, there is a vertex u ∈ V \IS such that (v, u) ∈ E. So, use IS2 to construct an edge set
M1 as follows:

• For each vertex v ∈ IS2, M1 contains exactly one edge (v, u), where u ∈ V \IS.

Note that by the construction of the edge set M1, each edge in M1 is incident to exactly one
vertex in IS2.

Use now the sets IS, M and M1 to construct a uniform, vp-symmetric profile s as follows:

• Supports(vp) := IS and Supports(ep) := M ∪ M1.

We now prove that the profile s is a Matching Nash equilibrium. By Proposition 4.6, it
suffices to prove that s is an Independent Covering profile.

• By construction, s is uniform and vp-symmetric.

• To prove that s is a Covering profile, we proceed as follows:

– We first prove that Supports(ep) is an Edge Cover of G. Consider any vertex v ∈ V .
There are two cases to consider:

∗ Assume first that v ∈ V \IS. Recall that v is matched by M to some vertex in
IS. So, v is incident to an edge in M1 ⊆ Supports(ep).

∗ Assume now that v ∈ IS. Either v ∈ IS1 or v ∈ IS2. If v ∈ IS1, then by
the definition of IS1, v is incident to some edge in M . If v ∈ IS2, then by the
definition of M1, v is incident to some edge in M1.

So, in all cases, v is incident to some edge in M∪M1 = Supports(ep). So, Supports(ep)
is an Edge Cover of G.
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– We now prove that Supports(vp) is a Vertex Cover of G(Supports(ep)). Consider any
edge e ∈ Supports(ep). There are two cases to consider:

∗ Assume first that e ∈ M . Recall that M maps each vertex in V \IS to a vertex
in IS. Thus, e is incident to a vertex in IS = Supports(vp).

∗ Assume now that e ∈ M1. Recall that each edge in M1 corresponds to some
vertex in IS2 ⊆ IS = Supports(vp). Hence, e is incident to some vertex in
Supports(vp).

So, in all cases, e is incident to some vertex in Supports(vp). Hence, Supports(vp) is
a Vertex Cover of G(Supports(ep)).

Our proof that s is a Covering profile is now complete. We proceed to prove the additional
conditions in the definition of an Independent Covering profile.

• To prove additional Condition (1), recall that, by construction, Supports(vp) = IS. Since
IS is an Independent Set of G, the claim follows.

• We finally prove additional Condition (2). Consider any vertex v ∈ Supports(vp) = IS.
There are two cases to consider

– Assume first that v ∈ IS1. By definition of IS1, there is an edge (v, u) ∈ M (for
some vertex u ∈ V \IS). Since M is a Matching, there is exactly one such edge.

– Assume now that v ∈ IS2. By definition of IS2, there is an edge (v, u) ∈ M1 (for
some vertex u ∈ V \IS).

So, in all cases, v is incident to exactly one sedge in M ∪ M1 = Supports(ep); thus,
additional Condition (2) follows.

Hence, s is an Independent Covering profile. Proposition 4.6 implies that s is a Nash
equilibrium.

Assume now that G admits a Matching Nash equilibrium (that is, an Independent Cov-
ering profile). By additional Condition (2), in the definition of an Independent Covering
profile, Supports(vp) is an Independent Set of G. By Proposition 4.7, there is a Matching
M ⊆ Supports(ep) that maps each vertex in V \Supports(vp) to some vertex in Supports(vp).
Theorem 2.3 implies that V \Supports(vp) is an Expander for G. It follows that Supports(vp) is
an Expanding Independent Set, as needed.

5.2 Computation

The sufficiency part of the proof of Theorem 5.1 immediately yields a non-deterministic algo-
rithm MatchingNE to compute a Matching Nash equilibrium for a graph satisfying the charac-
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Algorithm MatchingNE

Input: A graph G(V, E) assumed to have an Expanding Independent Set.
Output: The support of the vertex players and the support of the edge player of a
Matching Nash equilibrium for G.

(1) Choose an Expanding Independent Set IS of G.

(2) Choose a Matching M of G that matches each vertex in V \IS to a vertex in

V \(V \IS) = IS.

(3) Partition IS into vertex sets IS1 and IS2 as follows:

• IS1 consists of vertices v ∈ IS for which there is an edge (v, u) ∈ M for some

vertex u ∈ V \IS.

• IS2 consists of the remaining vertices of IS; that is, IS2 = IS\IS1.

(4) Determine an edge set M1 ⊆ E such that for each vertex v ∈ IS2, M1 contains

exactly one edge (v, u), where u ∈ V \IS.

(5) Supports(vp) := IS and Supports(ep) := M ∪ M1.

Figure 3: The non-deterministic, polynomial time algorithm MatchingNE

terization. Figure 3 presents the algorithm in suitable pseudocode.

The non-deterministic steps (1) and (2) in the algorithm MatchingNE correspond to choosing
an Expanding Independent Set for the graph G and a corresponding Matching M , respectively.
(Recall that the first exists by assumption, while the second exists by Theorem 2.3.)

Clearly, to turn this non-deterministic algorithm into a polynomial-time, deterministic al-
gorithm, it is necessary to replace (whenever possible) the two non-deterministic steps (1) and
(2) with corresponding deterministic, polynomial time algorithms. We are able to achieve such
replacement for the non-deterministic step (2).

To do so, define the graph G(IS) shrinked by the Expanding Independent Set IS as the
subgraph of G that does not include any edges (u, v) with both v ∈ V \IS and v ∈ V \IS.

• By assumption, IS is an Independent Set of the graph G. The construction of the graph
G(IS) implies that IS is also an Independent Set of the graph G(IS).

• By construction, V \IS is an Independent Set of the graph G(IS).
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It follows that (IS, V \IS) is a bipartition of the graph G(IS), so G(IS) is bipartite. Consider
a Maximum Matching M of the bipartite graph G(IS). Since IS is an Expanding Independent
Set of the graph G, Corollary 2.4 implies that |V \IS| ≤ |IS|. It follows that |M | ≤ |V \IS|.

We will prove that, in fact, |M | = |V \IS|. Since V \IS is an Expander for G, Theorem
2.3 implies that G has a Matching M ′ that matches each vertex in V \IS to a vertex in IS;
so, M ′ ≥ |V \IS|. Clearly, M ′ induces a Matching M ′′ for the graph G(IS) that matches each
vertex in V \IS to a vertex in V \IS to a vertex in IS; clearly, |M ′′| = |V \IS|. Since M ≥ |M ′′|,
|M | ≤ |V \IS| and |M ′′| = |V \IS|, it follows that |M | = |V \IS|.

Since |M | = |V \IS|, it follows that M matches each vertex in V \IS to a vertex in IS.
Since G(IS) is a subgraph of G, the Matching M of G(IS) is also a Matching of G. Hence, we
obtain:

Lemma 5.2 A Maximum Matching M of G(IS) is a Matching of G that matches each vertex
in V \IS to a vertex in IS.

Lemma 5.2 implies that the non-deterministic step (2) in the non-deterministic algorithm
MatchingNE can be replaced by a deterministic, polynomial time algorithm to compute a Max-
imum Matching of the bipartite graph G(IS). The modified algorithm MatchingNE appears in
Figure 4.

Clearly, the dominating step in the modified, still non-deterministic algorithm MatchingNE

is step (2): computing a Maximum Matching for a bipartite graph. Hence, it follows:

Theorem 5.3 The modified non-deterministic algorithm MatchingNE computes a Matching

Nash equilibrium in time O

(√|V | · |E| · log|V |
|V |2
|E|

)
.

5.3 Non-Triviality

We now prove that the class of graphs admitting a Matching Nash equilibrium is non-trivial
by presenting a graph that does not admit a Matching Nash equilibrium and a second graph
that admits one. Interestingly, the first graph is the odd cycle (a cycle with an odd number
of vertices); the second graph is the even cycle (a cycle with an even number of vertices). We
prove:

Proposition 5.4 An odd cycle admits no Matching Nash equilibrium.

Proof. Consider an odd cycle C2n+1 with an odd number of vertices 2n + 1, where n ≥ 1.
Clearly, the size of a Maximum Independent Set of C2n+1 is α(C2n+1) = n. Assume, by way of
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Algorithm MatchingNE

Input: A graph G(V, E), assumed to have an Expanding Independent Set.
Output: The support of the vertex players and the support of the edge player of a
Matching Nash equilibrium for G.

(1) Choose an Expanding Independent Set IS of G.

(2) Compute a Maximum Matching M for the bipartite graph G(IS).

(3) Partition IS into vertex sets IS1 and IS2 as follows:

• IS1 consists of vertices v ∈ IS for which there is an edge (v, u) ∈ M for some

vertex u ∈ V \IS.

• IS2 consists of the remaining vertices of IS; that is, IS2 = IS\IS1.

(4) Determine an edge set M1 ⊆ E such that for each vertex v ∈ IS2, M1 contains

exactly one edge (v, u), where u ∈ V \IS.

(5) Supports(vp) := IS and Supports(ep) := M ∪ M1.

Figure 4: The modified non-deterministic, polynomial time algorithm MatchingNE

contradiction, that C2n+1 has a Matching Nash equilibrium s. Theorem 5.1 implies that C2n+1

has an Expanding Independent Set IS. Corollary 2.4 implies that |IS| ≥ n + 1. However,
|IS| ≤ α(C2n+1) = n. A contradiction.

Finally, we prove:

Proposition 5.5 An even cycle admits a Matching Nash equilibrium.

Proof. Consider an even cycle C2n = (V (C2n), E(C2n)) with an even number of vertices 2n,
where n ≥ 1. Take any Maximum Independent Set IS of C2n; clearly, |IS| = n. (There are
only two Maximum Independent Sets for C2n: the set of vertices with even index and the set
of vertices with odd index.)

Note that there is an one-to-one mapping from V (C2n)\IS to IS, which maps a vertex to
its left neighbor. This induces an one-to-one mapping from sets of vertices V ′ ⊆ V (C2n)\IS

to sets of neighboring vertices V ′′ ⊆ IS, with |V ′′| = |V ′|. This implies that V (C2n)\IS is an
expander for C2n, so that IS is an Expanding Independent Set of C2n. Hence, Theorem 5.1
implies that C2n has a Matching Nash equilibrium, as needed.

Propositions 5.4 and 5.5 together imply:
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Theorem 5.6 The class of graphs admitting Matching Nash equilibria is non-trivial.

Theorem 5.6 implies that deciding whether a given graph admits a Matching Nash equilibrium
is a non-trivial decision problem.

6 Bipartite Graphs

In this section, we further investigate Matching Nash equilibria for the case of bipartite graphs.
In Section 6.1, we establish that every bipartite graph admits a Matching Nash equilibrium;
the proof is turned, in Section 6.1, into a deterministic, polynomial time algorithm to compute
a Matching Nash equilibrium for a given bipartite graph.

6.1 Existence

Proposition 6.1 A bipartite graph has an Expanding Independent Set.

Proof. Consider a bipartite graph G(V, E). Our proof is constructive. For emphasis, the
constructive parts will be boxed.

• Choose a Minimum Vertex Cover V C of the graph G.

We will use V C to construct an Expanding Independent Set IS of G.

Consider the bipartition (V1, V2) of the bipartite graph G. Consider the induced subgraphs
G1 = G((V C ∩ V1) ∪ (V2\V C)) and G2 = G((V C ∩ V2) ∪ (V1\V C)). That is, the vertices of
G1 are either vertices of V1 that also belong to the Vertex Cover V C or vertices of V2 that do
not belong to the Vertex Cover V C; the vertices of G2 are either vertices of V2 that also belong
to the Vertex Cover V C or vertices of V1 that do not belong to the Vertex Cover V C. Since
(V C ∩ V1)∪ (V C ∩ V2) is a Vertex Cover of the graph G, there is no edge between V1\V C and
V2\V C.

We claim that for each set U ′ ⊆ V C ∩ V1, |NeighG1
|(U ′)| ≥ |U ′|. Assume otherwise; that

is, assume that |NeighG1
|(U ′)| < |U ′|. Then, the set (V C\U ′) ∪ NeighG1

(U ′) is a Vertex Cover
of G which is smaller than V C, a contradiction. So, the claim follows. This implies that the
vertex set V C ∩ V1 is an Expander for the graph G1. Hence, Theorem 2.2 implies that G1

has a Matching M1 that matches each vertex in V C ∩ V1 to a vertex in V2\V C. By identical
reasoning, we obtain that G2 has a Matching M2 that matches each vertex in V C ∩ V2 to a
vertex in V1 ∩ V C.
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• Choose a Matching M1 of the graph G1 = G((V C ∩ V1) ∪ (V2\V C)) that matches each
vertex in V C ∩ V1 to a vertex in V2\V C.

• Choose a Matching M2 of the graph G2 = G((V C ∩ V2) ∪ (V1\V C)) that matches each
vertex in V C ∩ V2 to a vertex in V1\V C.

• M := M1 ∩ M2.

Since V C ∩ V1 is disjoint from V1\V C and V C ∩ V2 is disjoint from V2\V C, it follows that
M is a Matching of G. By the properties of the Matchings M1 and M2, it follows that the
Matching M matches each vertex in V C to a vertex in V \V C. So, set:

• IS := V \V C.

Clearly, IS = V \V C is an Expanding Independent Set of G, as needed.

Hence, Proposition 6.1 and Theorem 5.1 together imply:

Corollary 6.2 A bipartite graph admits a Matching Nash equilibrium.

6.2 Computation

Proposition 6.1 implies that choosing an Expanding Independent Set of a bipartite graph reduces
to computing a Minimum Vertex Cover of a bipartite graph. Recall that computing a Minimum
Vertex Cover of a bipartite graph reduces to computing a Maximum Matching of the bipartite
graph. Hence, for the case of bipartite graphs, the non-deterministic step (1) in the modified
non-deterministic algorithm MatchingNE can be substituted by a deterministic, polynomial
time algorithm to compute a Minimum Vertex Cover V C of a bipartite graph (via reduction
to computing a Maximum Matching), followed by setting IS to include all vertices in the
complementary vertex set of V C. This results in the deterministic, polynomial time algorithm
BipartiteMatchingNE appearing in Figure 5. Hence, as our main result, we obtain:

Theorem 6.3 For a bipartite graph G = (V, E), a Matching Nash Equilibrium can be computed

in time O

(√|V | · |E| · log|V |
|V |2
|E|

)
.
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Algorithm BipartiteMatchingNE

Input: A bipartite graph G(V, E).
Output: The support of the vertex players and the support of the edge player of a
Matching Nash equilibrium for G.

(1)

(1/a) Compute a Minimum Vertex Cover V C of the graph G through computing

a Maximum Matching of G.

(1/b) IS := V \V C.

(2) Compute a Maximum Matching M for the bipartite graph G(IS).

(3) Partition IS into vertex sets IS1 and IS2 as follows:

• IS1 consists of vertices v ∈ IS for which there is an edge (v, u) ∈ M for some

vertex u ∈ V \IS.

• IS2 consists of the remaining vertices of IS; that is, IS2 = IS\IS1.

(4) Determine an edge set M1 ⊆ E such that for each vertex v ∈ IS2, M1 contains

exactly one edge (v, u), where u ∈ V \IS.

(5) Supports(vp) := IS and Supports(ep) := M ∪ M1.

Figure 5: The deterministic, polynomial time algorithm BipartiteMatchingNE

7 Epilogue

In this work, we introduced a network game with attackers and a defender as an abstraction of
security attacks and defenses for emerging networks like the Internet.

We focused on the Nash equilibria associated with our network game and proved several
structural (graph-theoretic) properties of them. In particular, we obtained necessary graph-
theoretic conditions for Nash equilibria and sufficient graph-theoretic conditions for them as
well. Unfortunately, the set of sufficient conditions does not coincide with the set of neces-
sary ones: it includes two additional conditions which our sufficiency proofs required. It is
a challenging open problem to determine a single set of graph-theoretic conditions (hence, a
graph-theoretic characterization) that are both necessary and sufficient for a Nash equilibrium.

We used the set of sufficient graph-theoretic conditions we obtained to define the class of
Matching Nash equilibria. Since this set extends our necessary graph-theoretic conditions for
Nash equilibria, the new class of Matching Nash equilibria is quite natural.

We also obtained a characterization of graphs admitting Matching Nash equilibria: such
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graphs have an Expanding Independent Set. We do not know yet the complexity of deciding
whether a graph has an Expanding Independent Set. So, the complexity of deciding existence
of Matching Nash equilibria remains open for the class of general graphs. However, for the class
of bipartite graphs, we proved that a Matching Nash equilibrium always exists and provided an
efficient graph-theoretic algorithm to compute one. (In the subsequent work [17], we identified
additional classes of graphs permitting efficient computation of Matching Nash equilibria.)

Our work has identified some rich links between Game Theory and some central concepts
in Graph Theory such as Independent Sets, Covers, Expanders and Matchings. Besides their
pure scientific interest, we believe that such links will be instrumental to settling the complexity
of computing Nash equilibria for our network game and many possible variants of it. Indeed,
what happens, for example, if we have many defenders and one attacker? What if the defender
protects some subgraph (rather than a single edge)? Some preliminary steps to such extensions
already appear in [11, 17].
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[3] A. S. Asratian, T. M. J. Denley and R. Häggkvist, Bipartite Graphs and Their Applications,
Cambridge Tracts in Mathematics 131, Cambridge University Press, 1998.

[4] V. Bonifaci, U. Di Iorio and L. Laura, “On the Complexity of Uniformly Mixed Nash
Equilibria and Related Regular Subgraph Problems”, Proceedings of the 15th International
Symposium on Fundamentals of Computation Theory, M. Liskiewicz and R. Reischuk eds.,
pp. 197–208, Vol. 3623, Lecture Notes in Computer Science, Springer-Verlag, August 2005.

[5] V. Bonifaci, U. Di Iorio and L. Laura, “New Results on the Complexity of Uniformly
Mixed Nash Equilibria”, Proceedings of the First International Workshop on Internet and
Network Economics, X. Deng and Y. Ye eds., pp. 1023–1032, Vol. 3828, Lecture Notes in
Computer Science, Springer-Verlag, December 2005.

[6] E. R. Cheswick and S. M. Bellovin, Firewalls and Internet Security, Addison-Wesley, 1994.
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