
Monotone Operations and Monotone Groups∗

Costas Busch† Marios Mavronicolas‡ Paul Spirakis§

Abstract

We survey an algebraic approach to proving impossibility results in distributed comput-
ing. The approach is emerging around monotone groups, a new class of algebraic groups
we define here as a tight suit to monotone Read&Modify&Write (or RMW) operations in a
distributed system. The yields of this approach have been the first impossibility results
for implementations of monotone RMW operations that are based on switching networks, a
class of concurrent, low-contention data structures in distributed computing.

∗This work has been partially supported by the Future and Emerging Technologies program of the Euro-

pean Union under EU contracts 001907 (DELIS) and 015964 (AEOLUS), and by research funds from Rensselaer

Polytechnic Institute and University of Cyprus.
†Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180. Email:

buschc@cs.rpi.edu
‡Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus. Email:

mavronic@ucy.ac.cy
§Department of Computer Engineering and Informatics, University of Patras, 265 00 Patras, Greece, &

Research and Academic Computer Technology Institute, 261 10 Patras, Greece. Email: spirakis@cti.gr

1 Introduction

1.1 Monotone RMW Operations and Monotone Groups

A Read&Modify&Write shared variable or register, henceforth abbreviated as RMW, is an ab-
stract variable type that allows reading its old value, computing via some specific operator a
new value as a function of the old value, and writing the new value back to the register, all in
a single, atomic (indivisible) RMW operation.

In this survey, we focus on a specific class of RMW operations whose associated operators
correspond to a certain class of algebraic groups introduced by Busch et al. [?], which we call
monotone groups. A monotone group has a total order and a monotone subdomain; the latter
enjoys a significant monotonicity property, which is called Monotonicity under Composition:
applying the operator on an element from the monotone subdomain results to another element
in the monotone subdomain that strictly dominates the initial one with respect to the total
order. The Fetch&Add and Fetch&Multiply operations are popular examples from the class. A
monotone RMW operation [?] is one that is associated with a monotone group.

An abstract concept defined in relation to monotone groups is that of n-wise independence.
Roughly speaking, n (other than the identity) elements of a monotone group are n-wise inde-
pendent if it is not possible to derive the identity element of the group through some sequence
of successive applications of the operator on n of the elements or their inverses. A significant
property of monotone groups proved in [?] is that every monotone group is n-wise independent,
in the sense of having n-wise independent elements.

It has been established in [?] that the existence of n-wise independent elements in a mono-
tone group is largely responsible for enforcing linearizability [?] for certain suitable executions
of a distributed system that implements the corresponding (monotone) RMW operation; recall
that an execution is linearizable [?] if the values returned to operations in it respect the real-
time ordering of the operations. Indeed, the main conclusion of Busch et al. [?] is that the
requirement to guarantee the inherent linearizability for certain particular executions incurs a
high cost in efficiency for a certain class of highly concurrent, low-contention implementations
of (monotone) RMW that are based on switching networks [?].

1.2 The Monotone Linearizability Lemma

The Monotone Linearizability Lemma [?, Proposition 5.1] (repeated here as Proposition ??)
establishes inherent ordering constraints of linearizability for a certain class of executions of
any distributed system that implements a monotone RMW operation. Interestingly, in these
executions, the arguments of the RMW operations performed by the n participating concurrent
processes enjoy together the group-theoretic property of n-wise independence over the associated

2

monotone group.
In order to gain some intuition for the Monotone Linearizability Lemma and its proof,

we offer a substantially simpler proof for a corresponding Monotone Sequential Consistency
Lemma (Proposition ??) that we prove here. In a corresponding way, the Monotone Sequential
Consistency Lemma establishes inherent ordering constrains of sequential consistency [?] for
a certain class of executions of any distributed system that implements a monotone RMW

operation. (Recall that an execution is sequentially consistent [?] if the values returned to
operations at the same process respect the real-time ordering of the operations.)

1.3 Switching Networks

The Monotone Linearizability Lemma has been applied to implementations of monotone RMW

operations based on switching networks. The application has yielded the first lower bounds on
size for any highly concurrent, low-contention switching network that implements a monotone
RMW operation.

More specifically, Busch et al. [?] have obtained the following results for any switching
network other than the trivial single-switch one:

• If the switching network is made up of switches with a finite number of states and it is
low-contention, then it must contain an infinite number of switches, even if concurrency
is restricted to remain bounded (Theorem ??).

• If the switching network is made up of switches with an infinite number of states and it
is low-contention, then it must still contain an infinite number of switches if concurrency
is now allowed to grow unbounded (Theorem ??).

2 Monotone Groups

In this section, we review monotone groups, closely following [?, Section 2], where all definitions
and results come from. Section ?? reviews some very basic definitions from Group Theory.∗

Some composite operators are introduced in Section ??. Section ?? provides the basic definitions
for monotone groups. Pairwise independence is introduced in Section ??, while Section ??

establishes that all monotone groups are pairwise independent. Similarly, n-wise independence
is introduced in Section ??, while Section ?? establishes that all monotone groups are n-wise
independent.

Throughout this section (and in the rest of the paper), denote Z, IN and Q the sets of
integers, natural numbers (including zero), and rational numbers (excluding zero), respectively.

∗The interested reader may consult [?] for a general background in Group Theory.

3

We will use + and · to denote the common (binary) operators of addition and multiplication,
respectively, on these sets. Denote ≤ the less-than-or-equal relation (total order) on these sets.

2.1 Groups and Abelian Groups

A (binary) operator (also called composition law) on a set IΓ is a mapping ⊕ : IΓ × IΓ → IΓ. A
group 〈IΓ,⊕〉 is a set IΓ, sometimes called the ground set, together with an operator ⊕ such that
the following properties hold:

1. Closure: For all pairs of elements a, b ∈ IΓ, a ⊕ b ∈ IΓ.

2. Associativity: For all triples of elements a, b, c ∈ IΓ, (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c).

3. Identity Element: There is an element a ∈ IΓ, called the identity element of IΓ, such that
for each element a ∈ IΓ, a ⊕ e = e ⊕ a = a.

4. Inverse Element: for each element a ∈ IΓ, there is an element a−1 ∈ IΓ, called the inverse
of a, such that a ⊕ a−1 = a−1 ⊕ a = e.

An Abelian group is a group 〈IΓ,⊕〉 which satisfies the following additional property:

5. Commutativity: For all pairs of elements a, b ∈ IΓ, a ⊕ b = b ⊕ a.

Note that e−1 = e. Note also that for any sequence of elements a, b, . . . ∈ IΓ, the Associativity
property implies that (a ⊕ b ⊕ . . . ⊕ w)−1 = w−1 ⊕ . . . ⊕ b−1 ⊕ a−1. Finally, the following
elementary property of groups will be used in some of our later proofs.

Property 2.1 (Cancellation Law) Consider any group 〈IΓ,⊕〉. Then, for any triple of ele-
ments a, b, c ∈ IΓ, a ⊕ b = a ⊕ c (resp., b ⊕ a = c ⊕ a) implies b = c.

2.2 Composite Operators

We proceed to define two composite operators by applying the (binary) operator ⊕ a number
of times.

2.2.1 The Power Operator

For any integer k, define the unary operator
⊕

k : IΓ → IΓ as follows:

⊕
k

a =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a ⊕ a ⊕ . . . ⊕ a︸ ︷︷ ︸
k times

, if k > 0

e , if k = 0
a−1 ⊕ a−1 ⊕ . . . ⊕ a−1︸ ︷︷ ︸

−k times

, if k < 0

4

Call
⊕

k the power operator. For any element a ∈ IΓ, use the power operator
⊕

k defined for
all integers k to define the set IΓa = {⊕k a | k ∈ Z}. Thus, 〈IΓa,⊕〉 is a cyclic group with
generator a.

By the definition for the power operator, it follows that for any element a ∈ IΓ and integer
k,
⊕

k a =
⊕

−k a−1. We continue to prove two elementary properties of the power operator
that will be used in some of our later proofs.

Property 2.2 (Superposition of Powers) For any Abelian group 〈IΓ,⊕〉, fix any element
a ∈ IΓ. Then, for any sequence of integers k1, k2, . . . , kn,⎛

⎝⊕
k1

a

⎞
⎠⊕

⎛
⎝⊕

k2

a

⎞
⎠⊕ . . . ⊕

⎛
⎝⊕

kn

a

⎞
⎠ =

⊕
∑n

i=1
ki

a .

Proof: By definition of the power operator, each factor
⊕

ki
a, 1 ≤ i ≤ n, contributes:

• either the element a ki times if ki > 0 (call these positive contributions),

• or the element a−1 −ki times if ki < 0 (call these negative contributions),

• or the identity element e if ki = 0 (call these zero contributions),

to the composite expression
(⊕

k1
a
)⊕(⊕k2

a
)⊕ . . .⊕(⊕kn

a
)
. By the Commutativity property,

positive, negative and zero contributions can be separated from each other in the composite
expression. By definition of the power operator, all zero contributions result to e; by the
Associativity property, each pair of a positive and a negative contribution cancels out. It
follows that the composite expression simplifies to

⊕∑n

i=1
ki

a, as needed.

We finally prove:

Property 2.3 (Composition of Powers) For any group 〈IΓ,⊕〉, fix any element a ∈ IΓ.
Then, for any integer k and natural number l,

⊕
k (
⊕

l a) =
⊕

k·l a.

Proof: Consider first the case l = 0.

• On one hand,
⊕

l a =
⊕

0 a = e (by definition of the power operator); so,

⊕
k

(⊕
l

a

)
=
⊕
k

e

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e ⊕ e ⊕ . . . ⊕ e︸ ︷︷ ︸
k times

, if k > 0

e , if k = 0
e−1 ⊕ e−1 ⊕ . . . ⊕ e−1︸ ︷︷ ︸

−k times

, if k < 0

= e ;

5

• On the other hand,
⊕

k·l a =
⊕

0 a = e (by definition of the power operator).

It follows that
⊕

k (
⊕

l a) =
⊕

k·l a for l = 0. So assume l > 0. Clearly,

⊕
k

(⊕
l

a

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(⊕
l

a

)
⊕
(⊕

l

a

)
⊕ . . . ⊕

(⊕
l

a

)
︸ ︷︷ ︸

k times

, if k > 0

e, if k = 0(⊕
l

a

)−1

⊕
(⊕

l

a

)−1

⊕ . . . ⊕
(⊕

l

a

)−1

︸ ︷︷ ︸
−k times

, if k < 0

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a ⊕ a ⊕ . . . ⊕ a)︸ ︷︷ ︸
l times

⊕ (a ⊕ a ⊕ . . . ⊕ a)︸ ︷︷ ︸
l times

⊕ . . . ⊕ (a ⊕ a ⊕ . . . ⊕ a)︸ ︷︷ ︸
l times︸ ︷︷ ︸

k times

, if k > 0

e, if k = 0
(a ⊕ a ⊕ . . . ⊕ a)−1︸ ︷︷ ︸

l times

⊕ (a ⊕ a ⊕ . . . ⊕ a)−1︸ ︷︷ ︸
l times

⊕ . . . ⊕ (a ⊕ a ⊕ . . . ⊕ a)−1︸ ︷︷ ︸
l times︸ ︷︷ ︸

−k times

, if k < 0

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a ⊕ a ⊕ . . . ⊕ a︸ ︷︷ ︸
k · l times

, if k > 0

e, if k = 0
(a−1 ⊕ a−1 ⊕ . . . ⊕ a−1)︸ ︷︷ ︸

l times

⊕ (a−1 ⊕ a−1 ⊕ . . . ⊕ a−1)︸ ︷︷ ︸
l times

⊕ . . . ⊕ (a−1 ⊕ a−1 ⊕ . . . ⊕ a−1)︸ ︷︷ ︸
l times︸ ︷︷ ︸

−k times

, if k < 0

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a ⊕ a ⊕ . . . ⊕ a︸ ︷︷ ︸
k · l times

, if k > 0

e, if k = 0
a−1 ⊕ a−1 ⊕ . . . ⊕ a−1︸ ︷︷ ︸

−k · l times

, if k < 0

=
⊕
k·l

a ,

as needed.

2.2.2 The Summation Operator

For any integer n, the operator
⊎

n : IΓn → IΓ is n-ary.

• For n = 0, it assumes the constant value
⊎

0 = e.

6

• For n = 1,
⊎

1{a} = a for all elements a ∈ IΓ. For n = −1,
⊎

−1{a} = a−1.

• For |n| ≥ 2.
⊎

n takes as input an ordered multiset of elements {a1, a2, . . . , a|n|} ∈ IΓ, and
it yields the result

⊎
n

{a1, a2, . . . , an} =

⎧⎨
⎩ a1 ⊕ a2 ⊕ . . . ⊕ a|n| , if n ≥ 2

a−1
1 ⊕ a−1

2 ⊕ . . . ⊕ a−1
|n| , if n ≤ −2

denoted also as
⊎n

i=1 ai. Note that, by associativity, the result of applying the operator
is well defined.

Call
⊎

the summation operator. Our definitions for the power and summation operators im-
mediately imply that for any element a ∈ IΓ and for any integer n
= 0,

⊕
n

a =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊎
n

⎧⎪⎨
⎪⎩a, a, . . . , a︸ ︷︷ ︸

n times

⎫⎪⎬
⎪⎭ , if n > 0

⊎
n

⎧⎪⎨
⎪⎩a, a, . . . , a︸ ︷︷ ︸
−n times

⎫⎪⎬
⎪⎭ , if n < 0

So, roughly speaking, the power operator is some special case of the summation operator where
all inputs are identical.

The result
⊎

n {a1, a2, . . . , an} of the summation operator will sometimes be called a com-
posite expression.

2.3 Monotone Groups

Assume now that the set IΓ is totally ordered;† thus, a total order � is defined on IΓ. For any
pair of elements a, b ∈ IΓ, write a ≺ b (and, equivalently, b a) if a � b and a
= b.

A monotone subdomain of IΓ is a subset IMI ⊆ IΓ that satisfies the following three properties:

1. Closure: For any two elements a, b ∈ IMI, a ⊕ b ∈ IMI.

2. Identity Lower Bound: For any element a ∈ IMI, e ≺ a.

3. Monotonicity under Composition: For any pair of elements a, b ∈ IMI, both a ≺ a⊕ b and
b ≺ a ⊕ b.

†The idea of augmenting the ground set of group with some order (total or partial) has also been followed

in defining and studying partially ordered algebraic structures, research on which has burgeoned in the last 50

years. However, the resulting partially ordered groups [?] are completely different than the monotone groups

introduced and studied in this work.

7

Notice that the Identity Lower Bound property used in the definition of the monotone sub-
domain IMI implies that e /∈ IMI, so that IMI ⊂ IΓ. Notice also that the Monotonicity under
Composition property used in the definition of the monotone subdomain IMI implies that IMI is
necessarily infinite. We are now ready to define monotone groups.

Definition 2.1 (Monotone Group) A monotone group is a quadruple 〈IΓ, IMI,⊕,�〉, where
〈IΓ,⊕〉 is an Abelian group, � is a total order on IΓ, and IMI ⊆ IΓ is a monotone subdomain of
IΓ.

We proceed with some examples of monotone groups that will be used in our later analysis.

Example 2.1 The quadruple 〈Z, IN \ {0}, +,≤〉.

Clearly, the quadruple 〈Z, IN \ {0}, +,≤〉 is a monotone group, called Integers with Addition. It
is associated with the monotone Fetch&Add operation.

• ¿From the definition of the power operator
⊕

k, for any integer k, we have that for any
integer a ∈ Z,

⊕
k a = k · a.

• ¿From the definition of the summation operator
⊎k2

k1
, for any pair of integers k1 and k2,

we have that for any sequence of k2 − k1 + 1 integers ak1 , ak1+1, . . . , ak2 ∈ Z,

k2⊎
i=k1

ai =
k2∑

i=k1

ai .

�

Example 2.2 The quadruple 〈Q, IN \ {0, 1}, ·,≤〉.

Clearly, the quadruple 〈Q, IN \ {0, 1}, ·,≤〉 is also a monotone group, called Rationals with
Multiplication. It is associated with the monotone Fetch&Multiply operation.

• ¿From the definition of the power operator
⊕

k, for any integer k, we have that for any
rational number a ∈ Q,

⊕
k a = ak.

• ¿From the definition of the summation operator
⊎

, for any set of n integers k1, k2, . . . , kn,
we have that for any set of n rational numbers ak1 , ak1+1, . . . , ak2 ∈ Q,

k2⊎
i=k1

ai =
k2∏

i=k1

ai .

8

�

We finally prove an elementary, non-idempotency property of monotone groups that will be
used in some of our later proofs.

Property 2.4 (No Idempotent Power) For any arbitrary monotone group 〈IΓ, IMI,⊕,�〉,
fix any element a ∈ IMI. Then, for any integer k,

⊕
k a = e implies k = 0.

Proof: Assume, by way of contradiction, that k
= 0. Consider first the case where k > 0.
Then, ⊕

k

a

= a ⊕ a ⊕ . . . ⊕ a︸ ︷︷ ︸
k times

(by definition of the power operator)

 e (by Monotonicity under Composition) ,

a contradiction.
Consider now the case where k < 0. By definition of the power operator and associativity,

it follows that

a−1 ⊕ a−1 ⊕ . . . ⊕ a−1︸ ︷︷ ︸
−k times

= e

=

⎛
⎜⎝a−1 ⊕ a−1 ⊕ . . . ⊕ a−1︸ ︷︷ ︸

−k times

⎞
⎟⎠⊕

⎛
⎜⎝a ⊕ a ⊕ . . . ⊕ a︸ ︷︷ ︸

−k times

⎞
⎟⎠ .

By Property ??, it follows that

e = a ⊕ a ⊕ . . . ⊕ a︸ ︷︷ ︸
−k times

.

Since −k > 0, we are reduced to the first case, and the proof is now complete.

We remark that the proof of Property ?? relied on using the Monotonicity under Com-
position property that holds specifically for monotone groups. So, it is no coincidence that
Property ?? does not necessarily hold for a general group.

2.4 Pairwise Independence

Consider any two distinct elements a1, a2 ∈ IΓ with a1, a2
= e. Say that a1 and a2 are pairwise
independent over 〈IΓ,⊕〉 if for any integer k, both a1
= ⊕k a2 and a2
= ⊕k a1. Thus, neither
a1 nor a2 may result by repetitive application of the operator on the other or on the inverse of
the other. We are now ready to define a pairwise independent monotone group.

9

Definition 2.2 (Pairwise Independent Monotone Group) Say that the monotone group
〈IΓ, IMI,⊕,�〉 is pairwise independent if there are two distinct elements a1, a2 ∈ IMI, with a1, a2
=
e, that are pairwise independent over 〈IΓ,⊕〉.

We continue with two examples of pairwise independent monotone groups.

Example 2.3 Pairwise independence of the monotone group 〈Z, IN \ {0}, +,≤〉.

¿From the definition of pairwise independence, two integers a1, a2 ∈ Z, with a1, a2
= 0, are
pairwise independent in 〈Z+〉 if for any integer k, both a1
= k · a2 and a2
= k · a1. For any
integer a ≥ 2, consider the consecutive natural numbers a and a + 1; so, a, a + 1 ∈ IN \ {0}.
Clearly, for any integer k, both a
= k · (a + 1) and a + 1
= k · a. It follows that a and a + 1
are pairwise independent over 〈Z, +〉. Hence, the monotone group 〈Z, IN \ {0}, +,≤〉 is pairwise
independent. �

Example 2.4 Pairwise independence of the monotone group 〈Q, IN \ {0, 1}, ·,≤〉.

¿From the definition of pairwise independence, two rational numbers a1, a2 ∈ Q, with a1, a2
= 1,
are pairwise independent in 〈Q, ·〉 if for any integer k, both a1
= ak

2 and a2
= ak
1. Consider any

pair of distinct prime numbers p1 and p2 greater than 1; so p1, p2 ∈ IN \ {0, 1}. Clearly, for any
integer k, both p1
= pk

2 and p2
= pk
1. It follows that p1 and p2 are pairwise independent over

〈Q, ·〉. Hence, the monotone group 〈Q, IN \ {0, 1}, ·,≤〉 is pairwise independent. �

2.5 Pairwise Independence of All Monotone Groups

We prove that every monotone group is pairwise independent.

Lemma 2.5 (Every Monotone Group is Pairwise Independent) Every monotone group
〈IΓ, IMI,⊕,�〉 is pairwise independent.

Proof: Since the monotone group 〈Z, IN\{0}, +,≤〉 is pairwise independent (see Example ??),
there exist distinct natural numbers l1 and l2 in IN \ {0} that are pairwise independent over
〈Z, +〉. Fix now any arbitrary element a ∈ IMI, and consider the elements

⊕
l1 a and

⊕
l2 a.

Clearly, by monotonicity under composition, these two elements are distinct. We will prove
that

⊕
l1 a and

⊕
l2 a are pairwise independent over 〈IΓ,⊕〉.

Assume, by way of contradiction, that the elements
⊕

l1 a and
⊕

l2 a are not pairwise inde-
pendent over 〈IΓ,⊕〉. So, there exists some integer k such that either

⊕
l1 a =

⊕
k

(⊕
l2 a
)

or⊕
l2 a =

⊕
k

(⊕
l1 a
)
. Assume, without loss of generality, that

⊕
l1 a =

⊕
k

(⊕
l2 a
)
. By Prop-

erty ??, this implies that
⊕

l1 a =
⊕

k·l2 a. It follows that
(⊕

l1 a
) ⊕ (⊕−k·l2 a

)
=
(⊕

k·l2 a
) ⊕

10

(⊕
−k·l2 a

)
. By Property ??, this implies that

⊕
l1−k·l2 a =

⊕
k·l2−k·l2 a, or

⊕
l1−k·l2 a = e. By

Property ??, it follows that l1 − k · l2 = 0 or l1 = k · l2. Thus, the natural numbers l1 and l2

are not pairwise independent over 〈Z, +〉. A contradiction.

2.6 n-Wise Independence

Fix any integer n ≥ 2. Consider any n distinct elements a1, a2, . . . , an ∈ IΓ with a1, a2, . . . , an
=
e. Say that a1, a2, . . . , an are n-wise independent over 〈IΓ,⊕〉 if for any sequence of n inte-
gers k1, k2, . . . , kn, where −1 ≤ ki ≤ 2 for 1 ≤ i ≤ n, that are not all simultaneously zero,⊎n

i=1

⊕
ki

ai
= e. We are now ready to define an n-wise independent monotone group.

Definition 2.3 (n-Wise Independent Monotone Group) Say that the monotone group
〈IΓ, IMI,⊕,�〉 is n-wise independent if there are n distinct elements a1, a2, . . . , an ∈ IMI, with
a1, a2, . . . , an
= e, that are n-wise independent over 〈IΓ,⊕〉.

Note that n-wise independence is not just a trivial generalization (from 2 to n) of pairwise
independence, since it imposes constraints on the integers ki, 1 ≤ i ≤ n (namely, that −1 ≤
ki ≤ 2). Notice that, in particular, 2-wise independence and pairwise independence are not
identical concepts.

¿From the definition of n-wise independence, n integers a1, a2, . . . , an ∈ Z, where n ≥ 2, are
n-wise independent over 〈Z, +〉 if for any sequence of n integers k1, k2, . . . , kn ∈ {−1, 0, 1, 2},
which are not all simultaneously zero,

∑n
i=1 ki · ai
= 0.

We prove that for any integer n ≥ 2, the monotone group 〈Z, IN \ {0}, +,≤〉 is n-wise
independent.

Lemma 2.6 For any integer n ≥ 2, the monotone group 〈Z, IN \ {0}, +,≤〉 is n-wise indepen-
dent.

Proof: Fix any integer � ≥ 0. Consider the n natural numbers 2�, 2�+2, . . . , 2�+2(n−1) ∈ IN\{0},
which are powers of two; we will prove that these n natural numbers are n-wise independent
over 〈Z, +〉. The proof is by induction on n.

For the basis case where n = 2, consider the natural numbers 2� and 2�+2. Fix any pair of
integers k1, k2 ∈ {−1, 0, 1, 2} that are not both simultaneously zero. Clearly, k12� + k22�+2 =
2�(k1 + 4k2), which can be zero only if k1 = k2 = 0. So, the natural numbers 2�, 2�+2 ∈ IN \ {0}
are 2-wise independent over 〈Z, +〉. Hence, the monotone group 〈Z, IN \ {0}, +,≤〉 is 2-wise
independent. This completes the proof of the basis case.

Assume inductively that the n− 1 natural numbers 2�, 2�+2, . . . , 2�+2((n−1)−1) = 2�+2(n−2) ∈
IN \ {0} are (n − 1)-wise independent over 〈Z, +〉.

11

For the induction step, we will show that the n natural numbers 2�, 2�+2, . . . , 2�+2(n−1) are
n-wise independent in 〈Z, +〉. Assume, by way of contradiction, that they are not. Thus, there
exist n integers k1, k2, . . . , kn ∈ {−1, 0, 1, 2} which are not all simultaneously zero, such that∑n

i=1 ki2�+2(i−1) = 0. We proceed by case analysis on the value of kn ∈ {−1, 0, 1, 2}.

• Assume first that kn = −1. Then,
∑n−1

i=1 ki2�+2(i−1)−2�+2(n−1) = 0, or
∑n−1

i=1 ki2�+2(i−1) =
2�+2(n−1), or

∑n−1
i=1 ki22(i−1) = 22(n−1). However, since ki ≤ 2 for all indices i, 1 ≤ i ≤ n−1,

n−1∑
i=1

ki22(i−1) ≤ 2
n−1∑
i=1

22(i−1)

< 2 ·
2n−4∑
i=0

2i

= 2
(
22n−3 − 1

)
< 22n−2 = 22(n−1) ,

a contradiction.

• Assume now that kn = 0. Then,
∑n−1

i=1 ki2�+2(i−1) = 0. Since the integers k1, k2, . . . , kn are
not all simultaneously zero while kn = 0, it follows that the integers k1, k2, . . . , kn−1 are not
all simultaneously zero. This implies that the n−1 natural numbers 2�, 2�+2, . . . , 2�+2(n−2)

are (n − 1)-wise independent over 〈Z, +〉, which contradicts the induction hypothesis.

• Assume finally that kn ∈ {1, 2}. Then,
∑n−1

i=1 ki2�+2(i−1) + kn · 2�+2(n−1) = 0, or, equiv-
alently, −∑n−1

i=1 ki2�+2(i−1) = kn · 2�+2(n−1), or −∑n−1
i=1 ki22(i−1) = kn · 22(n−1). However,

since ki ≥ −1 for all indices i, 1 ≤ i ≤ n − 1,

−
n−1∑
i=1

ki22(i−1) ≤
n−1∑
i=1

22(i−1)

<
2n−4∑
i=0

2i

= 22n−3 − 1 < 22n−2 = 22(n−1) ≤ kn · 22(n−1) ,

a contradiction.

Since we obtained a contradiction in all possible cases, the proof is now complete.

We finally prove:

Lemma 2.7 For any integer n ≥ 2, the monotone group 〈Q, IN\{0, 1}, ·,≤〉 is n-wise indepen-
dent.

12

Proof: ¿From the definition of n-wise independence, n rational numbers a1, a2, . . . , an ∈ Q
are n-wise independent over 〈Q, ·〉 if for any sequence of n integers k1, k2, . . . , kn ∈ {−1, 0, 1, 2},
which are not all simultaneously zero,

∏n
i=1 aki

i
= 1.
Consider any n distinct prime numbers p1, p2, . . . , pn ∈ IN \ {0, 1}. Then,

∏n
i=1 pki

i is a
rational number whose numerator and denominator have no common factors; so

∏n
i=1 pki

i
= 1.
Thus, the n prime numbers p1, p2, . . . , pn are n-wise independent over Q. Hence, the monotone
group 〈Q, IN \ {0, 1}, ·,≤〉 is n-wise independent, as needed.

2.7 n-Wise Independence of All Monotone Groups

We finally prove that every monotone group is n-wise independent.

Lemma 2.8 (Every Monotone Group is n-Wise Independent) For any integer n ≥ 2,
the monotone group 〈IΓ, IMI,⊕,�〉 is n-wise independent.

Proof: Since the monotone group 〈Q, IN\{0}, +,≤〉 is n-wise independent (Lemma ??), there
exist n distinct natural numbers l1, l2, . . . , ln ∈ IN\{0} that are n-wise independent over 〈Z, +〉.
Fix any element a ∈ IMI. and consider the n elements

⊕
l1 a,

⊕
l2 a, . . . ,

⊕
ln a of IMI. Clearly,

by the Monotonicity under Composition property of the monotone group 〈IΓ, IMI,⊕,�〉, these
n elements are distinct. We will prove that they are also n-wise independent over 〈IΓ,⊕〉.

Assume, by way of contradiction, that the elements
⊕

l1 a,
⊕

l2 a, . . . ,
⊕

ln a are not n-wise
independent over 〈IΓ,⊕〉. Thus, there exist n integers k1, k2, . . . , kn ∈ {−1, 0, 1, 2}, which are
not all simultaneously zero, such that

n⊎
i=1

⎛
⎝⊕

ki

⎛
⎝⊕

li

a

⎞
⎠
⎞
⎠ = e .

By Property ??, it follows that

n⊎
i=1

⎛
⎝⊕

ki·li
a

⎞
⎠ = e ,

which, by the definition of the summation operator, may be written as⎛
⎝⊕

k1·l1
a

⎞
⎠⊕

⎛
⎝⊕

k2·l2
a

⎞
⎠⊕ . . . ⊕

⎛
⎝⊕

kn·ln

⎞
⎠ = e .

By Property ??, it follows that

⊕
∑n

i=1
ki·li

a = e .

13

Property ??, now implies that
∑n

i=1 ki · li = 0. Since the integers ki, 1 ≤ i ≤ n, are from the set
{−1, 0, 1, 2}, and they are not all simultaneously zero, this implies that the n natural numbers
l1, l2, . . . , ln are not n-wise independent over 〈Z, +〉. A contradiction.

We remark that the proof of Lemma ?? employs the n-wise independence of the monotone
group 〈Q, IN \ {0, }, +,≤〉 (which was established in Lemma ??) in order to conclude the n-
wise independence of the arbitrary monotone group 〈IΓ, IMI,⊕,≤〉. So, this proof by reduction
indicates some kind of completeness of the monotone group 〈Q, IN \ {0, }, +,≤〉 for the class of
all n-wise independent monotone groups.

3 Distributed System

Our model of a distributed system is patterned after the one in [?, Section 2], adjusted to
incorporate the issue of implementing a monotone group 〈IΓ, IMI,⊕,�〉.

We consider a distributed system P consisting of a collection of sequential threads of control,
called processes. Processes are sequential, and each process applies a sequence of operations
to a distributed data structure, called the object, alternately issuing an invocation and then
receiving the associated response. Each invocation at process pi has the form Invokei(a) for
some value a ∈ IMI; each response at process pi has the form Responsei(b) for some value
b ∈ IMI ∪ {e}.

Formally, an execution of system P is a (possibly infinite) sequence α of invocation and
response events. We assume that for each invocation at process pi in execution α, there is a
later response in α that matches it and no invocation at pi that precedes the matching response
in α. Prefixes and suffixes of an execution are defined in the natural way. Say that an execution
γ extends a prefix β of execution α if β is a prefix of γ as well.

An operation at process pi in execution α is a matching pair opi = [Invokei(a), Responsei(b)]
of an invocation and response at pi; we will sometimes say that opi is of type a. For such an
operation, we will write a = In(opi) and b = Out(opi); thus, opi has input and output a and b,
respectively.

An execution α induces a partial order α−→ on the set of operations in α as follows.

For any pair of operations

opi1 = [Invokei1(a1), Responsei1
(b1)]

and

opi2 = [Invokei2(a2), Responsei2
(b2)]

14

at processes pi1 and pi2 , respectively, say that opi1 precedes opi2 in execution α,
denoted opi1

α−→ opi2 , if the response Responsei1
(b1) precedes the invocation

Invokei2(a2).

In particular, execution α induces, for each process pi a total order α−→i on the set of operations
at pi in α as follows.

For any two operations op(1)
i and op(2)

i , op(1)
i

α−→i op(2)
i if and only if op(1)

i
α−→ op(2)

i .

If, in execution α, operation opi1 does not precede operation opi2 , then we write opi1
 α−→
opi2 . If simultaneously opi1
 α−→ opi2 and opi2
 α−→ opi1 , then we say that opi1 and opi2 are
parallel in execution α, denotedk as opi1 ‖α opi2 .

For any execution α of system P, a serialization S(α) of execution α is a sequence whose
elements are the operations of α, and each operation of α appears exactly once in S(α). Thus,

a serialization S(α) is a total order
S(α)−→ on the set of operations in α. Notice that there may

be, in general, many possible serializations of the execution α.
Say that a serialization S(α) is valid for the monotone group 〈IΓ, IMI,⊕,�〉 if the following

two conditions hold:

1. Valid Start: If opi = [Invokei(a), Responsei(b)] is the first operation in S(α), then b = e.

2. Valid Composition: For any pair of operations op(1)
i1

= [Invokei1(a1), Responsei1
(b1)] and

op(2)
i2

= [Invokei2(a2), Responsei2
(b2)] that are consecutive in S(α), b2 = b1 ⊕ a1.

Sometimes we shall simply refer to a valid serialization, and avoid explicit reference to the
monotone group when such is clear from context. We are now ready to provide an important
definition.

Definition 3.1 (Implementation of Monotone Group) System P implements the mono-
tone group 〈IΓ, IMI,⊕,�〉 if every execution α of P has a serialization that is valid for the
monotone group.

Denote RMW (〈IΓ, IMI,⊕,�〉) the Read&Modify&Write operation associated with the mono-
tone group 〈IΓ, IMI,⊕,�〉 in the natural way. So, in particular, RMW (〈Z, IN \ {0}, +,≤〉) and
RMW (〈Q, IN \ {0, 1}, ·,≤〉) are the RMW operations Fetch&Add and Fetch&Multiply, respec-
tively. Monotone RMW operations are those associated with monotone groups. Say that sys-
tem P implements the (monotone) operation RMW (〈IΓ, IMI,⊕,�〉) whenever it implements the
associated monotone group.

In our later definitions and proofs, we will sometimes write Inα(op) and Outα(op) in order
to emphasize reference to execution α.

15

We conclude this section with an immediate consequence of the Valid Start and Valid Com-
position conditions assumed in Definition ??.

Property 3.1 Assume that system P implements the monotone group 〈IΓ, IMI,⊕,�〉. Then,
for any operation op in an execution α of P,

Outα (op) =
⊎

‖{op′ | op′ α−→op}‖

{
Inα
(
op ′) | op ′ α−→ op

}
.

Our particular definitions for sequential consistency and linearizability will refer to any
arbitrary execution α of the system P, and to its valid serialization S(α).

Say that a process pi is sequentially consistent in execution α [?] if the serialization S(α)
extends α−→i; that is, for any pair of operations op(1)

i and op(2)
i such that op(1)

i
α−→i op(2)

i ,

op(1)
i

S(α)−→ op(2)
i . The Valid Composition condition implies that for any two operations op(1)

i and

op(2)
i such that op(1)

i

S(α)−→ op(2)
i , Out(op(1)

i) ≺ Out(op(2)
i). Thus, it follows that for any process

pi that is sequentially consistent in execution α, for any pair of operations op(1)
i and op(2)

i such
that op(1)

i
α−→ op(2)

i , Out(op(1)
i) ≺ Out(op(2)

i).
Say that operation op(1)

i at process pi in execution α is sequentially inconsistent in execution
α if there is another operation op(2)

i at the same process in execution α such that op(2)
i

α−→ op(1)
i

while op(2)
i

S(α)−→ op(1)
i . Say that operation op(1)

i at process pi in execution α is sequentially
consistent in execution α if it is not sequentially inconsistent in execution α. Clearly, process
pi is sequentially consistent in execution α if every operation opi at process pi in execution α

is sequentially consistent in it.
Say that execution α is sequentially consistent [?] if every process pi is sequentially consistent

in α. It follows that execution α is sequentially consistent if every operation in execution α is
sequentially consistent in it. Finally, say that the system P is sequentially consistent if all its
executions are.

Say that execution α is linearizable [?] if the serialization S(α) extends α−→; that is, for

any pair of operations op(1) and op(2) such that op(1) α−→ op(2), op(1) S(α)−→ op(2). The Valid
Composition condition implies that for any two operations op(1) and op(2) such that op(1) S(α)−→
op(2), Out(op(1)) ≺ Out(op(2)). Thus, it follows that for any pair of operations op(1) and op(2)

such that op(1) α−→ op(2), Out(op(1)) ≺ Out(op(2)). Finally, say that system P is linearizable if
all its executions are.

4 The Monotone Linearizability Lemma

Throughout this section, we refer to a distributed system P implementing a monotone group
〈IΓ, IMI,⊕,�〉. The Monotone Linearizability Lemma [?, Proposition 5.1] establishes ordering

16

constraints of linearizability on the system P. However, in order to provide the reader with use-
ful intuition for the Monotone Linearizability Lemma and its proof, we first prove a correspond-
ing Monotone Sequential Consistency Lemma, which establishes similar ordering constraints of
sequential consistency on the system P. The proof of the Monotone Sequential Consistency
Lemma is substantially simpler and more succinct than the one of the Monotone Linearizability
Lemma.

Recall that, by Lemma ??, the monotone group 〈IΓ, IMI,⊕,�〉 is pairwise independent. So,
there are two distinct elements a1, a2 ∈ IMI, with a1, a2
= e, that are pairwise independent over
〈IΓ,⊕〉. The proof of the Monotone Sequential Consistency Lemma amounts to establishing a
contradiction to pairwise independence for a hypothetical non-sequentially consistent execution,
in which the types of the RMW operations issued by the processes are a1 and a2. We are now
ready to state and prove the Monotone Sequential Consistency Lemma.

Proposition 4.1 (Monotone Sequential Consistency Lemma) Consider an execution α

of system P in which process p1 issues only operations of type a1, while any other process pi,
i
= 1, issues only operations of type a2. Then, p1 is sequentially consistent in execution α.

Proof: We start with an informal outline of our proof. We will proceed by contradiction.
So, we will consider the earliest sequentially inconsistent operation op(1)

1 at process p1, and the
latest operation op(1)

1 (at p1) that precedes it. We will use these operations to construct two
executions γ1 and γ2 that are indistinguishable to process p1 with respect to operation op(2)

1 .
This indistinguishability implies that op(2)

1 receives the same output in these two executions.
Then, the contradiction will follow from the comparison of the two identical outputs. where
we use simple algebraic properties of (monotone) groups in order to contradict the assumed
pairwise independence. We now continue with the details of the formal proof.

Assume, by way of contradiction, that process p1 is not sequentially consistent in execution
α. So, there is at least one operation at p1 that is sequentially inconsistent in execution α.
Consider the earliest such operation op(1)

1 , and let op(2)
1 be the latest operation at process p1

that precedes op(1)
1 in α. So, op(2)

1
α−→ op(1)

1 while op(1)
1

S(α)−→ op(2)
1 , where S(α) is the (unique)

valid serialization of α.
Denote k ≥ 0 the number of operations at p1 that precede op(2)

1 in execution α. Since all
these operations are sequentially consistent in execution α, they precede op(2)

1 in S(α) as well.
In our proof, we will use the operations op(1)

1 and op(2)
1 in order to define and treat two

finite prefixes of execution α:

• the finite prefix β1 of execution α that ends with the response for operation op(1)
1 , and

• the finite prefix β2 of execution α that ends with the response for operation op(2)
1 .

17

Clearly, β2 is a prefix of β1 as well. We first treat separately each of the two prefixes β1 and
β2, and its corresponding extension; we then treat them together.
Properties of the prefix β1 and its extension γ1:

Consider a finite execution γ1, which is an extension of β1 that includes no additional invocations
by processes; so, γ1 is an extension of β1 that additionally includes only responses to invocations
that are pending in β1.

Since β1 is a prefix of both α and γ1, it follows that all operations whose responses are
included in β1 (or, in other words, they are not preceded in either α or γ1 by the response
for op(1)

1) have identical outputs in α and γ1. In particular, Outα
(
op(1)

1

)
= Outγ1

(
op(1)

1

)
and

Outα
(
op(2)

1

)
= Outγ1

(
op(2)

1

)
. Take now the (unique) valid serialization S(γ1) of γ1.

Since op(1)
1

S(α)−→ op(2)
1 , the Valid Composition condition (for S(α)) implies that Outα

(
op(1)

1

)
≺ Outα

(
op(2)

1

)
. Since Outα

(
op(1)

1

)
= Outγ1

(
op(1)

1

)
and Outα

(
op(2)

1

)
= Outγ1

(
op(2)

1

)
, it

follows that Outγ1

(
op(1)

1

)
≺ Outγ1

(
op(2)

1

)
. The Valid Composition condition (for S(γ1)) implies

now that op(1)
1

S(γ1)−→ op(2)
1 ,

Since the outputs of the k operations (of type a1) at p1 that precede op(2)
1 in execution

α. are identical in α and γ1, the Valid Composition condition (for γ1) implies that all these
operations precede op(2)

1 in S(γ1) as well.
Denote l1 the number of operations at other processes that precede op(2)

1 in the serialization
S(γ1); recall that all these operations are of type a2.

By Property ??, Outγ1

(
op(2)

1

)
is a composite expression involving k + 1 contributions of a1

and l1 contributions of a2. By the Commutativity property, these two types of contributions
can be separated from each other in the composite expression, so that

Outγ1

(
op(2)

1

)
=
⊕
k+1

a1 ⊕
⊕
l1

a2 .

Properties of the prefix β2 and its extension γ2:

Consider a finite execution γ2, which is an extension of β2 that includes no additional invocations
by processes; so, γ2 is an extension that only includes responses to invocations that are pending
in β2.

Since β2 is a prefix of both α and γ2, it follows that all operations whose responses are
included in β2 (hence, they are not preceded in either α or γ2 by the response for op(2)

1) have
identical outputs in α and γ2. In particular, Outα

(
op(2)

1

)
= Outγ2

(
op(2)

1

)
. Take now the

(unique) valid serialization S(γ2) of execution γ2.
Since the outputs of the k operations (of type a1) at p1 that precede op(2)

1 in execution
α. are identical in α and γ2, the Valid Composition condition (for γ2) implies that all these
operations precede op(2)

1 in S(γ2) as well.

18

Denote l2 the number of operations (all of type a2) at other processes that precede op(2)
1 in

the serialization S(γ2).
By Property ??, Outγ2

(
op(2)

1

)
is a composite expression involving k contributions of a1 and

l2 contributions of a2. By the Commutativity property, these two types of contributions can be
separated from each other in the composite expression, so that

Outγ2

(
op(2)

1

)
=
⊕
k

a1 ⊕
⊕
l2

a2 .

Joint properties of the prefixes β1 and β2 and their extensions γ1 and γ2:

Recall that Outα
(
op(2)

1

)
= Outγ1

(
op(2)

1

)
and Outα

(
op(2)

1

)
= Outγ2

(
op(2)

1

)
; hence, it follows

that Outγ1

(
op(2)

1

)
= Outγ2

(
op(2)

1

)
, so that

⊕
k+1

a1 ⊕
⊕
l1

a2 =
⊕
k

a1 ⊕
⊕
l2

a2 .

By Property ??,
⊕

l2 a2 =
⊕

l2−l1 a2 ⊕⊕l1 a2. Hence, by Property ??, it follows that a1 =⊕
l2−l1 a2. So, a1 and a2 are not pairwise independent over 〈IΓ,⊕〉. A contradiction.

We now return to the Monotone Linearizability Lemma. Recall that, by Lemma ??, the
monotone group 〈IΓ, IMI,⊕,�〉 is n-wise independent for any integer n ≥ 2. So, there are n

distinct elements a1, a2, . . . , an ∈ IMI, with a1, a2, . . . , an
= e, which are n-wise independent
over 〈IΓ,⊕〉. The proof of the Monotone Linearizability Lemma amounts to establishing a
contradiction to n-wise independence for a hypothetical non-linearizable execution, in which
the types of the RMW operations issued by the processes are a1, a2, . . . , an.

Proposition 4.2 (Monotone Linearizability Lemma) Consider any execution α of sys-
tem P in which each process pi issues only operations of type ai, where 1 ≤ i ≤ n. Then, α is
linearizable.

5 Application to Switching Networks

A switching network [?] is a directed, acyclic graph made up of nodes called switches and output
registers, and edges called wires. Whenever a process issues a RMW operation, it shepherds
a token through the network, which traverses a path of switches. Both switches and tokens
have internal states. A token arrives at a switch via an input wire. In a single atomic step, the
switch and the token change their states, and the token leaves the switch on an output wire.
The token is eventually returned a value when it arrives at an output register.

19

Clearly, concurrent processes are spatially dispersed in a switching network, which reduces
their simultaneous crossings in front of the same memory location (switch or output register).
This offers potential for low contention.

The size of a switching network is the total number of switches in it; its latency is the
maximum number of switches traversed by a token shepherding a RMW operation through
the network. Thus, size and latency are two natural measures for space complexity and time
complexity, respectively, in the model of switching networks.

The concurrency of a switching network is the maximum number of concurrent processes
that may simultaneously shepherd a RMW operation through the network.

In order to model the low-contention property for switching networks, Busch et al. [?]
introduced register bottleneck and layer bottleneck; roughly speaking, both register bottleneck
and layer bottleneck measure the minimum number of network elements (either switches or
output registers) that are accessed by processes in any infinite execution. (Layer bottleneck
assumes partitioning the switches of the network into layers in the natural way.) Intuitively, if
this minimum number is small, some network element will become a bottleneck (or a “hot-spot” in
the pool of memory locations) in some infinite execution and the network incurs high contention;
hence, a switching network is low-contention if register bottleneck and layer bottleneck are
sufficiently large.

For switching networks with switches with a finite number of states, Busch et al. [?, Theorem
6.1] prove:

Theorem 5.1 (Impossibility Result for Finite-Switch Networks) There exists no non-
trivial, finite-switch switching network N with concurrency (or(N) + 1)·

(
Ssize(N) + 1

)
that has

finite size, incurs register bottleneck at least 2 and implements a monotone group 〈IΓ, IMI,⊕,�〉.

For switching networks with switches with an infinite number of states, Busch et al. [?,
Theorem 6.2] prove:

Theorem 5.2 (Impossibility Result for Infinite-Switch Networks) There exists no non-
trivial, infinite-switch switching network with unbounded concurrency that has finite size, incurs
layer bottleneck at least 2 and implements a monotone group 〈IΓ, IMI,⊕,�〉.

6 Epilogue

We surveyed an algebraic approach toward proving impossibility results in distributed com-
puting, based on a new class of algebraic groups, called monotone groups, recently introduced
by Busch et al. [?]. The approach is both interesting and promising. We would like to use

20

monotone groups for investigating the possibility of implementing other, non-monotone RMW

operations with finite-sized, highly concurrent, low-contention switching networks, or in other
(than switching networks) models of distributed computing.

References

[1] C. Busch, M. Mavronicolas and P. Spirakis, ”The Cost of Concurrent, Low-Contention
Read&Modift&Write, Theoretical Computer Science, Vol. 333, No. 3, pp. 373–400, March
2005.

[2] P. Fatourou and M. Herlihy, “Read-Modify-Write Networks,” Distributed Computing,
Vol. 17, pp. 33–46, 2004.

[3] A. M. W. Glass, Partially Ordered Groups, Vol. 7, Series in Algebra, World Scientific, 1999.

[4] M. Hall, Jr., Theory of Groups, Second Edition, Chelsea Publishing Company, 1979.

[5] M. Herlihy and J. Wing, “Linearizability: A Correctness Condition for Concurrent Objects,”
ACM Transactions on Programming Languages and Systems, Vol. 12, No. 3, pp. 463–492,
July 1990.

[6] M. Klugerman and C. G. Plaxton, ”Small-Depth Counting Networks,” Proceedings of the
24th Annual ACM Symposium on Theory of Computing, pp. 417–428, May 1992.

[7] L. Lamport, “How to Make a Multiprocessor Computer that Correctly Executes Multipro-
cess Programs,” IEEE Transactions on Computers, Vol. C-28, No. 9, pp. 690–691, Septem-
ber 1979.

21

