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Abstract

In a routing problem, a set of packets must be routed from their sources to their destinations
along specified paths in a connected network. Given paths with congestion C and dilation D
a lower bound on the routing time is Ω(C + D). The celebrated result of Leighton, Maggs
and Rao (1988) established, non-constructively, the existence of a routing schedule which uses
constant size buffers and routes the packets in optimal time O(C + D). Since then, construc-
tive algorithms, as well as generalizations to distributed, buffered routing schedules have been
developed.

A long standing open problem is to give or show the existence of bufferless routing algorithms
with optimal performance guarantees. This is the problem we address here. Our main result
is a new deterministic technique that constructs a universal bufferless algorithm by emulating
a universal buffered algorithm. The heart of the emulation is to replace packet buffering with
packet circulation on regions of the network. The cost of the emulation on the routing time is
proportional to the square of the node buffer size used by the buffered algorithm. We apply this
emulation to a simple randomized universal buffered algorithm to obtain a distributed, universal
bufferless algorithm with routing time the optimal routing time within a poly-logarithmic factor:

O
(
(C + D) · log3(n + N)

)
,

where n is the size of the network and N is the number of packets.
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1 Introduction

Packet routing has received a large amount of attention over the past decade on account of its
importance to applications ranging from parallel and distributed algorithms to communication
networks. The task is to deliver packets from their sources to their destinations along specified
paths in a given network. A packet routing algorithm is universal if it can be applied to any
routing problem on any network topology. For a given set of paths, the routing time is the time at
which the last packet reaches its destination. Universal algorithms with optimal or near-optimal
routing time are known if packets may be buffered along their paths, [21, 28, 29, 33, 36].

A long standing and important open problem is to give universal bufferless routing algorithms
with near optimal performance guarantees. In this paper, we will present a distributed bufferless
routing algorithm that is optimal up to poly-logarithmic factors. We introduce a new technique for
developing bufferless algorithms based upon emulating buffered algorithms. Applying this technique
to a simple randomized buffered protocol gives the advertised result.

Preliminaries. A routing problem Q = (G, Π, P ) on the graph G with n nodes consists of a set of
N packets Π = {π1, π2, . . . , πN} that are to be routed on their respective paths P = {p1, p2, . . . , pN},
where pi is a path in G. We will represent paths either as a sequence of edges, or as a sequence
of nodes, and the length of a path |p| is the number of edges in the path. The edge-congestion C
is the maximum number of packets that use an edge in G, the node-congestion C is the maximum
number of packets that use a node in G, and the dilation D is the maximum path length in P .

We assume a synchronous routing model, in which time is divided into a sequence of discrete
time steps. An edge may be traveresed by at most one packet in either direction during a time
step. A well known lower bound on the routing time in this model is given by Ω(C + D), and so
the optimal routing time rt∗ = Ω(C + D). In a buffered algorithm, packets may either traverse
edges or be buffered at a node. In a bufferless algorithm, a packet must traverse an available edge
at every time step.

An Impossibility Result. If all packets must follow the paths specified in P , without collisions or
buffering, then the only degree of freedom for a bufferless routing algorithm is the injection times
of the packets. Such a routing paradigm is known as direct routing, [4, 19]. In this case, it is shown
in [19] that there exist routing problems for which bufferless routing times better than a

√
N factor

from optimal are not possible. Thus, if the paths remain unchanged, then near-optimal universal
bufferless algorithms do not exist (where near optimal means within poly-logarithmic factors from
the lower bound C + D). Thus, to obtain near-optimal bufferless schedules, we must allow packets
to deviate from their paths. However, we still measure performance with respect to C and D of
the original paths. The justification of this is that if the paths P themselves are optimal, i.e., they
minimize C +D, then we obtain bufferless routing times that are near-optimal for the given sources
and destinations. In this paper we are not concerned of how the optimal paths are obtained, but
rather how to send the packets to their destinations given the paths.

Contributions. Our main result is a deterministic technique for bufferless emulation of buffered
algorithms. Given a near-optimal universal buffered algorithm that routes problems with simple
paths, and uses buffers of size γ, we give a universal bufferless algorithm, which emulates the
buffered algorithm. The cost of the emulation on the routing time is O(γ2 · log n).

We apply this emulation result to a simple randomized buffered algorithm that uses O(log(n +
N)) buffers to obtain a bufferless routing algorithm with routing time O((C +D) · log3(n+N)) with
high probability, which approximates within poly-logarithmic factors the optimal routing time for
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Figure 1: An example of a region graph.

the given paths. If all the nodes know the network topology, and the values of C and N , then the
bufferless algorithm is distributed, i,e., routing decisions are made locally at each node.

Overview of the Approach. The main idea behind the bufferless emulation of a buffered algo-
rithm is to use regions in the network in order to emulate buffer space. We decompose the graph
into connected regions each containing approximately γ edges. The regions form a region graph, on
which the nodes are regions. Now, a buffered algorithm executes as if the regions were the nodes. In
the buffered algorithm, a packet is either buffered in a node (region) or “hops” from node to node.
The path of each packet in the original graph is translated on a path on the region graph. The
buffer needed at each node is at most γ. Figure 1 illustrates the general idea of decomposing the
graph into regions and then mapping a packet’s path to the graph in which every node corresponds
to a region.

The buffered algorithm on the region graph is emulated by a bufferless algorithm on the original
graph. If in the buffered algorithm a packet needs to be buffered in a node (region), then, in the
emulation the packet “circulates” in the respective region by moving from one edge of the region to
the next. A packet circulates until the buffered algorithm prescribes that the packet makes its next
hop, in which case the packet moves to the respective adjacent region. Since the buffered algorithm
requires γ buffer space per node (region), there is enough room to circulate all the packets in the
γ edges of the region in a buffereless fashion.

Related Work. There are no known results for universal bufferless routing with near-optimal
routing time guarantees. However, near-optimal bufferless routing has been obtained for specific
bufferless routing models and architectures, which we summarize. In hot-potato routing, packets
are deflected in a collision to available links [6]. Our model of bufferless routing is essentially the
same with the hot-potato routing model, with the restriction that in collisions packets are deflected
on particular available edges specified by the emulation (and not on any available edge as is done in
typical hot-potato algorithms). Hot-potato routing algorithms have been extensively studied for a
variety of architectures such as the mesh and torus [5, 7, 8, 12, 14, 16, 17, 18, 22, 23, 26, 27, 32, 39],
hypercubes [11, 13, 22, 25, 35], trees [20, 37], vertex-symmetric networks [30], and leveled networks
[10, 15]. Typically, by allowing packets to deviate from their paths slightly, one obtains routing times
that are within poly-logarithmic factors of optimal. In direct routing, packets follow their paths
without buffering and without any collisions, [4, 40, 19]. Busch et al. [19] give a comprehensive
study of direct routing where they give a universal O(C · D) centralized algorithm, and near-
optimal algorithms for the tree, mesh, butterfly, and hypercube. Wormhole routing is similar to
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direct routing, but here, packets occupy more than one edge [21, 24]. In [21] the authors give
a randomized, universal distributed wormhole routing algorithm with routing time O(L · C · D),
where L is the length of the packet, which can be improved if the edges have higher bandwidths.
A dual to direct routing is time constrained routing, where the task is to schedule as many packets
as possible within a given time frame [1, 2]. In matching routing, packets are swapped at adjacent
nodes, and permutation problems on trees have been studied in [3, 34, 41].

There are two variants of buffered algorithms. Those that use buffers on every edge (edge-
buffers) and those that use buffers in every node (node-buffers). For non-bounded degree networks,
these variants are distinct. The existence of optimal, universal buffered routing algorithms using
constant size edge-buffers was first established by Leighton, Maggs and Rao [28]. Scheideler [38]
showed that edge-buffers of size 2 are sufficient. Thereafter, the main focus has been on constructive
algorithms with optimal, O(C + D), routing time, [9, 29, 31, 33, 36]. These algorithms use large
(proportional to the congestion C) buffers. Leighton et al. [28] improve this result, requiring only
edge-buffers of size O(log ND) to obtain routing time O(C + D log ND). Cypher at al. [21] give
an algorithm with edge-buffers of size O(log CD) and slightly better routing time. Our bufferless
algorithm is based on emulating a universal buffered algorithm. However, the existing results,
though powerful, do no suit our purpose because we need algorithms where the node-buffers are
small (logarithmic), and so we offer a simple randomized algorithm that satisfies the conditions for
bufferless emulation.

Paper Outline. We first discuss how to decompose a graph into connected regions of approxi-
mately a given size (Section 2). We then show how these regions are used for bufferless emulation
of a buffered algorithm (Section 3). Finally we apply the emulation to a randomized buffered
algorithm (Section 4) to obtain near-optimal universal bufferless routing (Section 5).

2 Regions

We first discuss how to decompose a connected graph G into connected components of approxi-
mately a specified size. Such a decomposition will be required by the bufferless emulation algorithm.
Specifically, let G = (V,E) be an undirected connected graph. Let F be a subset of the edges in
E. The subgraph induced by F is the graph H = (U,F ), where U is the union of all vertices
in V that are incident with edges in F . We say that the edge set F is connected if the induced
subgraph H is connected. A connected decomposition of G is a partition of the edges in E into
disjoint sets E1, E2, . . . , Ek such that ∪k

i=1Ei = E and every Ei is connected. We refer to the Ei’s
as the connected edge sets or regions in the decomposition, and denote the number of edges in Ei

as the size of Ei, |Ei|. Notice that the subgraphs, H1 = (V1, E1), . . . , Hk = (Vk, EK) induced by
the edge sets may have overlapping vertex sets. We say that Ei is connected to Ej if and only if
Vi ∩ Vj �= ∅. Notice that if Ei is connected to Ej , then Ei ∪ Ej is a connected edge set.

An [α, β]-partition of G (if it exists) is a connected decomposition of G, {Ei, . . . , Ek}, such that
α ≤ |Ei| ≤ β for i = 1, . . . , k. Notice that if α ≈ β, then an [α, β]-partition decomposes G into
connected edge sets of size approximately equal α. The main purpose here is to show that such
approximate decompositions are possible for any connected graph. Our proof will be constructive,
hence it can be directly converted to an algorithm. The following lemma will be instrumental in
the proof. Essentially it states that a connected graph can be decomposed into two large connected
edge sets. The proof is constructive.

Lemma 2.1 Let k > 1. Any connected graph G = (V, E) with |E| > 3k − 3 can be decomposed
into two connected edge sets each of size at least k.
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Proof: Using a depth first search, determine a connected edge set F
of size 2k − 2. Note that |E −F | ≥ k. E −F is composed of a number
of connected edge sets α1, α2, α3 . . ., each of which are not connected
to any other, but all of which are connected to F . The situation is
illustrated in the figure to the right. Let α1 be the largest such satellite
edge set of F . If |α1| ≥ k then α1 and F ∪α2∪α3 · · · are both connected
and have size ≥ k. Suppose, on the other hand, that |α1| ≤ k − 1, in
which case there is at least one other satellite. We then include the
edge e as shown in the figure into α1, removing it from F . If F remains a connected edge set, then
we add to F one of the edges that connect it to one of its other satellites. It is also possible that one
of its other satellites is now connected to α1, in which case that can be merged with α1, however
this does not affect the argument. The end effect is that F now still has 2k − 2 edges, and the size
of α1, its largest satellite has strictly increased. We can repeat this process until either |α1| ≥ k,
and we are done, or in removing an edge from F and placing it in α1, F becomes disconnected into
exactly two edge sets F1, F2.

α1 ∪ e

e
γ2

γ1

F1

F2

The situation is illustrated in the figure to the right. The edge
e is therefore a bridge edge in F . We merge F1 and F2 with their
respective satellites to get γ1, γ2 as illustrated. Note that since |α1| ≤ k,
|γ1| + |γ2| ≥ 2k − 2. If neither |γ1| ≥ k nor |γ2| ≥ k, this means that
|γ1| = |γ2| = k − 1. In this case, merge γ2 with e to form a connected
edge set of size k. The remaining edges form a connected edge set of
size at least 2k − 2 ≥ k, so we are done. Thus, we suppose that one of
γ1 or γ2 has size ≥ k, and w.l.o.g., suppose that it is γ1. Now consider
α′

1 = γ2 ∪ α1. There are two cases: |α′
1| ≥ k, and we are done; or |α1| < |α′

1| < k, in which case
|γ1| ≥ 2k − 1, in which case we can add edges from F ′

1s satelites to F1 to bring it up to the size
2k − 2. At this point, renaming F1 → F and α′

1 → α1, we will have recreated our original picture
except that we have strictly increased the size of the largest satellite, and so once again we can
continue adding edges to α1. Thus we keep adding edges to α1 until we get two connected edge
sets both of size ≥ k, concluding the proof.

Theorem 2.2 (Existence of a [k, 3k − 3]-partition) Let G = (V, E) be a connected graph. For
any k, where 1 < k ≤ |E|, there exists a [k, 3k − 3]-partition of G.

Proof: If k = 1 the claim is obvious, so we will assume that k ≥ 2. If k ≤ |E| ≤ 3k − 3, then E
itself is an [k, 3k − 3]-partition so there is nothing to prove. We will now prove the claim by strong
induction on |E|. The induction hypothesis is:

P(N) : There exists a [k, 3k − 3]-partition for any G = (V,E) whenever |E| ∈ [k, N ].
We claim that P (N) is true for all N . We know that P (3k − 3) is true, so suppose that P (N) is
true for some N ≥ 3k − 3, and consider P (N + 1). Let G = (V,E) be any graph with |E| = N + 1.
Since |E| > 3k− 3, by Lemma 2.1, E can be decomposed into two connected edge sets E1, E2 with
k ≤ |E1| ≤ |E2| ≤ N . By the induction hypothesis, there exist [k, 3k − 3]-partitions of E1 and E2.
The union of these two partitions is a [k, 3k − 3]-partition of E, concluding the proof.

G

G

G

The following example proves that the result of Theorem 2.2 is tight. For
a given k, let G be any connected graph with k − 2 edges, and connect 3 such
graphs in a wheel configuration as shown on the right. It is easy to see that the
only decomposition in which every edge set has ≥ k edges is the entire graph
itself, which has 3k − 3 edges.

The proof in Theorem 2.2 is constructive, based upon the proof of Lemma 2.1, and one can
show that the complexity of the algorithm to compute a decomposition is in O(|E|2).
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2.1 Region Graph

Consider a connected graph G = (V, E), with n nodes. Take an [α, β]-partition of G, which gives
regions (connected edge sets) R1, R2, . . . , Rk. Let the subgraphs induced by these regions have
vertex sets U1, U2 . . . , Uk. The region graph G′ = (V ′, E′), has a vertex set V ′ = {r1, r2, . . . , rk}
where each vertex ri corresponds to the region Ri of G. Two vertices ri, rj are adjacent in G, i.e.,
(ri, rj) ∈ E′ if and only if Ui ∩Uj �= ∅, i.e., the corresponding regions have intersecting vertex sets.
An example of a region graph is given in Figure 1.

2.2 Routing Problems in Region Graph

Let Q = (G, Π, P ) denote a routing problem with edge-congestion C, node-congestion C and
dilation D. Let {R1, . . . , Rk} be an [α, β]-partition of G. Every edge in G belongs to exactly
one region. Let G′ = (V ′, E′) be the corresponding region graph. The mapping f : E → V ′

is defined for every e ∈ E by f(e) = ri if and only if e ∈ Ri. Consider a path p ∈ P , with
p = (e1, e2, . . . , el). We define a function g which maps a path in G to a path in G′ as follows. For
any path p = (e1, e2, . . . , el) in G, consider the walk in G′ given by w′ = (f(e1), f(e2), . . . , f(el)).
g(p) is the path obtained after removing all the cycles in w′, g(p) = (f(ei1), f(ei2), . . . , f(eil)).

We now transform the routing problem Q on the original graph into a routing problem Q′ =
(G′, Π, P ′) on the region graph, in which the paths in G′ are given by the transformed paths,
P ′ = {p′1, p′2, . . . , p′N} where p′i = g(pi), ∀pi ∈ P . Let C ′, C ′ and D′ denote the edge-congestion, the
node-congestion and the dilation of the paths in P ′. For any routing problem, the edge-congestion
is bounded by the node-congestion. A path uses node ri only if it contains edges in Ri. By
construction, |Ri| ≤ β, so the number of edges in P that use Ri is at most βC, thus C ′ ≤ βC.
Since |g(p)| ≤ |p| for any path p in G, we have the following lemma.

Lemma 2.3 (Congestion and dilation in the region graph) C ′ ≤ C ′ ≤ βC; D′ ≤ D.

2.3 Euler Tours in Regions

We define Euler tours with respect to the directed representation GD = (V,ED) of the undirected
graph G: each (undirected) edge (u, v) ∈ E is replaced by two directed edges (u, v), (v, u) ∈ ED.
Let RD

i denote the region of GD that corresponds to the region Ri in G. Since the in-degree equals
the out-degree of every node in RD

i , RD
i has an Euler tour. Let ψi = (v1, v2, . . . , v1) denote an

Euler tour in RD
i . Note that ψi is walk in Ri. We will refer to ψi as the “Euler tour” of Ri (an

abuse of notation, since ψi is not an Euler tour of Ri). Note that for an [α, β]-partition of G, every
Euler tour ψi satisfies 2α ≤ |ψi| ≤ 2β.

3 Emulation

Let G = (V,E) be a connected graph with n nodes and let {R1, . . . , Rk} be an [α, β]-partition of
G with corresponding region graph G′ = (V ′, E′). For routing problem Q = (G, Π, P ) in G, we
obtain the corresponding routing problem Q′ = (G′, Π, P ′) in G′. Let (si, di) denote the source and
destination of each packet πi ∈ Π, and let S = {(s1, d1), (s2, d2), . . . , (sN , dN )}. Let Qs = (G, Π, S)
denote the routing problem in G in which the packets need to be delivered from their sources to
their destination, without necessarily following the paths in P .

The general idea behind our approach is to design a bufferless routing Algorithm B to solve the
routing problem Qs. The bufferless algorithm will depend on a buffered Algorithm A to solve the
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routing problem Q′ in G′. The bufferless algorithm will then emulate the running of Algorithm A
in G′ to solve Qs in G.

3.1 Buffered Routing in G′ – Algorithm A

Our bufferless algorithm in G will emulate a buffered algorithm A in G′. Algorithm A solves routing
problem Q′ in G′ and uses node-buffers of size at most γ to do so. We require algorithm A to receive
at most γ packets at every time step. It is then possible to divide the execution of Algorithm A,
into a sequence of phases, in which each phase has the following two properties:

(i) Each phase is a fixed time period consisting of at least one time step;

(ii) During each phase, each packet traverses at most one edge in G′, and each node receives at
most γ packets from adjacent nodes or through injection.

A trivial division of the execution of Algorithm A into phases that satisfies these two properties is
to take each phase to be a single time step. In Section 4, we give a specific buffered Algorithm A1

in which each phase contains O(log(n + N)) time steps. During a single phase of Algorithm A, a
packet π may perform one of four actions (in G′):

(i) Remain in the buffer of its current node. [Buffering]
(ii) Move from its current node to a neighboring node. [Packet Transfer]
(iii) Be injected into the network at its source node. [Injection]
(iv) Move to and be absorbed in its destination node. [Absorbtion]

3.2 Bufferless Routing in G – Algorithm B

Algorithm B emulates the phases of Algorithm A (which is faster than emulating the individual
time steps of Algorithm A). Algorithm B emulates the buffering of packets and their transfer from
node to node using an [α, β]-partition of G, where α = 2γ. (We assume that 2γ ≤ |E| and by
Theorem 2.2, we can set β = 6γ − 3.) In Algorithm A, when a packet is buffered in a node ri of
G′, then Algorithm B emulates this by letting the packet circulate in the edges of region Ri in G.
When in Algorithm A a packet is transferred from node ri to node rj of G′, in Algorithm B the
packet is transferred from region Ri to region Rj in G. Similarly, algorithm B handles the packet
injection and absorbtion. Next we describe the emulation in more detail.

Phases and Rounds. Let Φ denote the number of phases in Algorithm A. In Algorithm B,
time is divided into Φ phases. Each phase of B emulates a phase of A. In order to perform the
emulation of a phase, Algorithm B further divides each phase into Σ rounds, where Σ is defined
below. The duration of each round is Tr = 4β2 +4β time steps. Thus the bufferless algorithm runs
for Φ · Σ · Tr time steps in total.

For the duration of a round, a region is either in the sending or the receiving state – we say that
the region is sending, or receiving. In the emulation, when a packet has to be transferred from one
region to the next, the first region should be sending while the other receiving. We guarantee that
for any pair of adjacent nodes there is a round in each phase in which one region is sending and
the other is receiving (and vice-versa), as follows.

In order to determine if a region is sending or receiving, we first obtain a vertex coloring of G′.
Let δi denote the color (non-negative integer in binary representation) assigned to node ri in G′

(which will also be the color of region Ri), and let δ denote the maximum color we obtain from the
vertex coloring. Note that δ ≤ n′, where n′ = |V ′| ≤ |E|/α. Let σ denote the number of bits in δ,
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σ = �log δ� ≤ � log n′ �. By pre-padding with zeros, we assume that every δi has σ bits. We define
the state parameter xi for region Ri to be the 2σ-bit integer δ̄iδi, where δ̄i is the binary complement
of δi. We use the notation xi(k) to denote the k-th bit of xi. We set Σ = 2σ ≤ 2� log n′ �, i.e., each
phase in Algorithm B, consists of 2σ rounds, ω1, ω2, . . . , ω2σ. During round ωk, if xi(k) = 0 then
region Ri is sending, otherwise, if xi(k) = 1, then region Ri is receiving. Our assignment of colors
ensures that during every phase, a region can send or receive from each of its neighbors.

Lemma 3.1 If Ri and Rj are adjacent, then during every phase φ, there is at least one round ωs

(ωr) in which Ri is sending (receiving) and Rj is receiving (sending).

Proof: Since Ri and Rj are adjacent, δi and δj must differ at some bit s, 0 ≤ s ≤ σ − 1. Thus,
rounds s and s + σ satisfy the requirements, since xi(s + σ) = xi(s) = xj(s) = xj(s + σ).

Packet Circulation. Packet circulation is a basic function for the emulation. During packet
circulation, a packet π repeatedly follows the Euler tour of the region Ri that it is in: at each time
step, packet π follows the next edge in the Euler tour; when π reaches the end of the Euler tour it
continues from the beginning of the tour, and so on. At the time step in which packet π traverses
an edge e ∈ ψi, we say that e is the current edge of π.

At each round of a phase, a region is either sending or receiving. The speed at which a packet
circulates in its region depends on whether the region is sending or receiving. If the region is
receiving, then the packet follows the Euler tour in the normal fashion.

If the region is sending, then the packet moves at an effectively slower speed as follows. At time
step 0 (the beginning of the round), suppose that π is at node u with current edge e = (u, v) ∈ ψi.
At time step 0, packet π follows its current edge (u, v) and at time step 1, π appears in node v.
At time step 1, suppose that its new current edge in ψi is (v, w); the packet does not follow its
new current edge in ψi, but instead it follows edge (v, u) from v back to u, and thus at time step
2, it appears back in node u. Thus after two time steps, the packet has effectively not moved. We
call such an operation an oscillation, and we say that packet π oscillates on its current edge in the
Euler path. The time period of the oscillation is 2 time steps, The packet continues in this fashion
for subsequent time steps, so at even time steps t = 2i, it appears in node u, and at odd time steps
t = 2i + 1 it appears in node v, for i ≥ 0. The packet performs β such oscillations on its current
edge e, and so after 2β time steps, the packet appears at u and follows edge e for the last time.
At time step Ts = 2β + 1, the packet is now at v and at this point it stops oscillating on edge e
and begins oscillating on its new current edge (v, w) ∈ ψi. Thus, after Ts time steps, the packet
advances by one edge in the Euler path of ψi. Consequently, since |ψi| ≤ 2β, after 2βTs = 4β2 +2β
time steps, a packet circulating in region Ri has oscillated at least once on every edge of ψi.

Lemma 3.2 After 4β2 + 2β < Tr time steps, a packet circulating in a sending region Ri has
oscillated at least once on every edge in ψi.

Suppose that the directed edge e = (u, v) ∈ ψi, is an edge in the Euler path of a receiving region
Ri. If at time step t, no packet has edge e as its current edge, then we say that e is empty. At each
time step, we say that an empty edge is associated with an empty slot. Empty slots are similar
to packets in that they too circulate – as the packets in a receiving region circulate (forwards) in
ψi, the empty slots circulate in ψi at the same rate. They continue to circulate until some packet
occupies the empty edge.

Emulation of Buffering. Suppose that packet π is buffered at node ri of G′ during the execution
of phase φ of Algorithm A. Assume that in Algorithm B, packet π is in region Ri of G. Packet π
will circulate in Ri through the entire phase φ.
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Lemma 3.3 If packet π is in Ri at the end of phase φ− 1 of bufferless Algorithm B, and in phase
φ of buffered Algorithm A it is buffered in node ri, then in phase φ of bufferless Algorithm B, it
can be buffered in region Ri using circulation.

Emulation of Packet Transfer. Suppose that in phase φ of Algorithm A, packet π moves from
node ri to node rj . Assume that at the beginning of phase φ in Algorithm B, packet π is in region
Ri. During phase φ in Algorithm B, π will move from Ri to Rj as follows. Packet π will circulate
in Ri until a round ω of φ in which Ri is sending and Rj is receiving (the existence of such a round
is guaranteed by Lemma 3.1).

Since ri and rj are adjacent in G′, there exists a node u which is common to Ri and Rj . Since
node u is in Ri, there exists an edge ei = (ui, u) ∈ ψi on the Euler path of Ri. Similarly, there
exists an edge ej = (u, uj) ∈ ψj on the Euler tour of Rj . During round ω, packet π circulates (in
slow mode) in region Ri along the Euler tour ψi. At some particular slow time step τ of the round,
the current edge of π will be ei. During the course of its Ts > β oscillations on edge ei, the packet
will appear at the common node u at the β + 1 times τ + 1, τ + 3, . . . , τ + 2β + 1. If at any of these
times, the edge ej ∈ ψj is an empty slot, i.e., not the current edge of any packet circulating (in
normal mode) in Rj , then π switches from oscillation on edge ei, making ej its new current edge. π
now continues to circulate in Rj at normal speed. Note that π will have completed its circulation
on edge ei in at most 4β2 + 2β time steps, thus π will enter Rj within the first 4β2 + 2β time steps
of round ω.

We now show that during round ω, for at least one of the time steps τ+1, τ+3, . . . , τ+2β+1, the
edge ej ∈ ψj will be an empty slot. Remember that empty slots circulate in Rj at the rate of one edge
per time-step. Thus, if an empty slot is not occupied by any packet during its circulation, then every
edge in ψj will become an empty slot at least once during a consecutive 2β time steps. In particular,
edge ej will become an empty slot at least once in the time steps τ + 1, τ + 2, τ + 3, . . . , τ + 2β + 1.
A problem arises if ej becomes empty at time τ + k where k is even, because then packet π will
not be at node u, able to utilize this edge. This problem is solved if there is a second consecutive
empty slot in Rj that will also not be occupied by any other packet during its circulation. This
second empty slot must also appear at least once in the time steps τ +1, τ +2, τ +3, . . . , τ +2β +1,
and since both these empty slots cannot appear at τ + k for k even, we are assured that π will be
able to transfer into Rj .

From the previous phase, suppose that there are at most γ packets circulating in Rj . During
the current phase, at most γ more packets will enter Rj , by definition of the buffered Algorithm
A. In the worst case, all the γ − 1 packets other than π that will enter have already entered, and
none of the packets that are to leave this region in this phase have left yet. In this case there are
at most 2γ − 1 packets that could be circulating in Rj during round ω. Since α = 2γ and there
are at least 2α = 4γ edges ψj , we conclude that there are at least 2γ + 1 empty slots during round
ω. By the pigeonhole principle, at least two of these empty slots must be consecutive, and we have
the following lemma.

Lemma 3.4 Suppose that in phase φ−1 of bufferless Algorithm B, at most γ packets are circulating
in region Rj, and that packet π is circulating in the adjacent region Ri. Suppose that in buffered
Algorithm A, packet π moves from ri to rj in phase φ. Then during phase φ of bufferless Algorithm
B, packet π can be transferred (using circulation) from region Ri to Rj.

Emulation of Injection. Suppose that π is a packet that is to be injected into the network in
Algorithm A. Let p be the path of π in G, and let e be the first edge in this path, and u the
injection node. Suppose that e ∈ Ri – note also that u ∈ Ri. In this case, π is injected into node ri
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in G′. Suppose that π is injected into ri during phase φ of buffered Algorithm A. Then π will be
injected into Ri in phase φ of bufferless Algorithm B during the last round in which Ri is receiving.
After injection, it will circulate in Ri until the end of phase φ. Let e = (u, v) be an edge on the
Euler path ψi of Ri. We know that from the previous analysis of packet transfer that if Ri had at
most γ packets circulating in phase φ− 1, then e will be an empty slot at least 2γ + 1 times during
every receiving round. At the time that e becomes empty, π is injected into the network and e
becomes its current edge. π then continues to circulate in Ri. Note that at least γ packets could
be injected into Ri from the same injection node during a single receiving round.

Lemma 3.5 Suppose that in phase φ−1 of bufferless Algorithm B, at most γ packets are circulating
in region Ri. Suppose that packet π has first edge e ∈ Ri and that during phase φ of buffered
Algorithm A, packet π is injected into node ri. Then during phase φ of bufferless Algorithm B,
packet π can be injected into Ri. Further, at least γ packets can be injected into the same node
during a single receiving round.

Emulation of Absorbtion. Suppose that packet π moves from node ri to its destination node
rj in phase φ in buffered Algorithm A. We use the packet transfer emulation to first move the
packet from region Ri to Rj in phase φ. This takes at most 4β2 + 2β time steps. Then the packet
circulates in the receiving region at normal speed until it reaches its destination node, at which
point it is absorbed. Since the packet completes the Euler tour for Rj in at most 2β time steps,
the number of time steps to move and be absorbed is 4β2 + 4β ≤ Tr, giving the following lemma.

Lemma 3.6 Suppose that in phase φ−1 of bufferless Algorithm B, at most γ packets are circulating
in region Rj, and that packet π is circulating in the adjacent region Ri. Suppose that in phase φ of
buffered Algorithm A, packet π is absorbed in rj. Then, during phase φ of bufferless Algorithm B,
packet π can be absorbed at its destination node in region Rj.

3.3 Analysis of Emulation by Bufferless Algorithm B

First, we prove that Algorithm B correctly emulates Algorithm A. We then analyse the routing
time of Algorithm B in G in terms of the routing time of Algorithm A in G′.

Correctness. Assume that α = 2γ ≤ |E| in order to guarantee the existence of the [α, β]-
partition. Algorithm B correctly emulates algorithm A if at the end of every phase φ:

i. In Algorithm A, packet π is in node ri iff in Algorithm B it is circulating in region Ri

ii. In algorithm A packet π is injected (absorbed) at node ri, if and only if in Algorithm B packet
π is injected (absorbed) into region Ri.

We show by induction on φ that Algorithm B correctly emulates Algorithm A. Observe that when
φ = 1, Algorithm A can only inject packets into nodes. The conditions of Lemma 3.5 are satisfied,
and since at most γ packets are injected into a node in G′, Algorithm B can succesfully inject these
packets into the corresponding regions. Suppose that Algorithm B correctly emulates Algorithm A
up to phase φ0 ≥ 1. At the end of phase φ0, there are at most γ packets circulating in any region
Ri since every packet π in node ri in the execution of Algorithm A is in region Ri in the execution
of Algorithm B. Thus, the conditions of Lemmas 3.3, 3.4, 3.5, and 3.6 are satisfied for every packet
π. Every action that π could make in phase φ0 + 1 of Algorithm A can now be emulated in phase
φ0 + 1 of Algorithm B. By induction, we have the following theorem.
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Theorem 3.7 (Correctness of Emulation) Algorithm B correctly emulates in G every phase
in the execution of Algorithm A in G′. Each packet in Algorithm B follows a path from its source
to destination, hence Algorithm B solves routing problem Qs without buffers.

Routing Time. Let rtB(Qs) be the routing time for Algorithm B to solve routing problem Qs.
Let ΦA(Q′) be the number of phases used by Algorithm A to solve routing problem Q′. Since
Algorithm B emulates Algorithm A phase for phase, the number of phases of algorithm B is also
ΦA(Q′). The routing time is therefore given by ΦA · Σ · Tr. Since Tr = 4β2 + 4β, β = 6γ − 3 and
Σ = 2� log δ �, we obtain:

Theorem 3.8 (Bufferless Routing Time) rtB(Qs) = Θ(ΦA(Q′) · γ2 · log δ).

Since δ ≤ |E|/α = O(n2), we have that rtB(Qs) = O(ΦA(Q′) · γ2 · log n)

4 A Randomized Buffered Algorithm

We give a buffered algorithm that can be used to obtaining bufferless routing on arbitrary networks.
Since the per-node buffer size enters into the routing time of the bufferless emulation, it is necessary
to have buffered algorithms that limit the amount of per-node buffering. We refer to this algorithm
as Algorithm A1.

Algorithm A1 is a randomized routing algorithm for routing porblems with simple paths, in
arbitrary networks. Let Q′ = (G′, Π, P ′) be a routing problem with acyclic paths P ′ on an arbitrary
graph G′ = (V ′, E′). Let C ′ be the node-congestion and and D′ the dilation. Let N be the number
of packets and n′ the size of V ′. Algorithm A1 uses buffers of size γ = 6 log(n′ + 2N).

Algorithm 1 Buffered Algorithm A1

1: Divide time into phases of length γ time steps.
2: for Each packet π do
3: π selects uniformly at random an injection phase φπ between phases 1 and 12C ′/γ;
4: Packet π is injected at the first time step of phase φπ;
5: Packet π follows its path at the speed of one edge per phase;

We will show that with high probability, Algorithm A1 succesfully routes the packets, and at the
same time satisfies the requirements in Section 3.1. For Algorithm A1 and phase φ, define the
following properties:

P1(φ): In phase φ every packet in the network succesfully traverses one edge in its path.
P2(φ): No more than γ packets are buffered at any node during phase φ.
P3(φ): No more than γ/2 packets arrive at any node during phase φ.
P4(φ): No more than γ/2 packets remain at any node at the end of phase φ.

Note that P3 is stronger than we need. We introduce property P4 for technical convenience. Since
the maximum injection phase is 12C ′/γ and the maximum path length is D′, we have:

Lemma 4.1 If P1-P4 holds for 12C ′/γ + D′ phases, then ΦA1(Q
′) ≤ 12C ′/γ + D′, and Algorithm

A1 is a valid algorithm for bufferless emulation.

Let P[φ0] be the probability that properties P1-P4 hold for all phases φ ≤ φ0. P[0] = 1 by default.
We now give a lower bound for P[φ0 + 1] in terms of P[φ0].

Lemma 4.2 If P1-P4(φ0) are true and P3(φ0 + 1) is true, then P1-P4(φ0 + 1) are true.
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Proof: If no more than γ/2 packets arrive at a node during phase φ0 + 1, then since P4 (φ0)
is true, there are at most γ packets in the node during any time step of phase φ0 + 1, therefore
P2 (φ0 + 1) is true. In the worst case all the at most γ/2 packets in the node at the end of phase
φ0 may leave sequentially on a single edge, requiring at most γ/2 time steps, which is less than the
duration of the phase, so P1 (φ0 +1) is true. The packets remaining in the node at the end of phase
φ0 + 1 are only those that entered, which is at most γ/2 packets, thus P4 (φ0 + 1) is true.

By induction, we obtain the following corollary.

Corollary 4.3 P1-P4(φ) are true for all φ ≤ φ0 if and only if P3(φ) is true for all φ ≤ φ0.

Thus, P[φ0+1] = P[{P1-P4 (φ) are true for φ ≤ φ0}∧{P3(φ0+1) is true}]. Noting that P[A∧B] =
1 − P[∼ A∨ ∼ B] ≥ 1 − P[∼ A] − P[∼ B],

P[φ0 + 1] ≥ P[φ0] − P[{P3 (φ0 + 1) is false}]. (1)

Consider a node v, and phase φ0 + 1. Let qπ be the probability that packet π arrives at node v
during phase φ0 +1 which can happen only if it is injected at a particular phase. Since the probility
that it is injected at that particular phase is γ/12C ′, we conclude that qπ ≤ γ/12C ′ if π uses node
v (at most C ′ such packets), and 0 otherwise. Let Xi(v) = 1 if packet πi appears at node v at
phase φ0 + 1. Xi(v) are independent random variables, whose sum is the number of packets that
appear in node v at phase φ0 + 1. Let X(v) =

∑
i Xi(v). E[X(v)] =

∑
i qπi ≤ C ′ · γ/12C ′ = γ/12,

so applying a version of the Chernoff bound gives

P[X(v) > γ/2] < 2−γ/2.

Applying the union bound now gives that P[max
v

X(v) > γ/2] < n′2−γ/2, giving

Lemma 4.4 P[{P3(φ0 + 1) is false}] < n′2−γ/2.

Using (1), Lemma 4.4 and the fact that P[0] = 1, we get the following result by induction.

Lemma 4.5 P[φ0] ≥ 1 − φ0n
′2−γ/2.

Since n′ < n′+2N , 12C ′/γ+D′ < n′+2N (because C ′ ≤ N and D′ ≤ n′), and 2−γ/2 = (n′+2N)−3,
by setting φ0 = ΦA1(Q

′) in Lemma 4.5, and using Lemma 4.1, we obtain the following result.

Theorem 4.6 (Routing time of Algorithm A1) With probability at least 1 − O(1/(n′ + 2N)),
Algorithm A1 solves routing problem Q′ in at most 12C ′/γ + D′ phases, satisfying P1-P4 in each
phase. The node-buffer size required is γ = 6 log(n′ + 2N).

5 A Universal Bufferless Routing Algorithm

We use buffered Algorithm A1 to construct bufferless Algorithm B1 for arbitrary networks. Al-
gorithm B1 emulates Algorithm A1. The buffer size used by algorithm A1 is γ = 6 log(n′ + 2N).
Since n′ ≤ |E|/α, in order to guarantee the existence of an [α, β]-partition, we assume that α ≤ |E|.
Since α = 2γ, we assume that 12 log(|E|/α + 2N) ≤ |E|. It is sufficient that 2N ≤ 2|E|/12 − |E|.

Suppose 2N ≤ 2|E|/12 − |E|. Since n′ ≤ n2/2, γ ≤ 6 log(n2/2 + 2N), independent of G′.
Combining Theorems 3.8 and 4.6, and the fact that in the emulation, ΦB1(Qs) = ΦA1(Q

′), we
obtain that rtB1(Qs) = O((12C ′/γ + D′) · log δ · log2(n + 2N)). Using Lemma 2.3 and the facts
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that β ≤ 6γ and δ ≤ n′ = O(n2), we obtain that rtB1(Qs) = O((C + D) · log n · log2(n + N)), with
probability at least 1 − O(1/(n′ + N)).

Consider now the case when 2N ≥ 2|E|/12−|E|. We can send the N packets of routing problem
Qs on G to their destinations one after the other. Each packet takes time O(D) to be delivered to its
destination, and thus the total routing time to send all the packets is O(DN). Clearly, C ≥ N/|E|,
and thus C ≥ (2|E|/12 − |E|)/2|E|. Since |E| = O(log(N)) and D ≤ |E|, the routing time is
ND ≤ CD|E| = O(C log2(N)). This simple algorithm can easily be converted to a distributed
algorithm with the same routing time. In this case, each node assigns to the packets it injects
priorities according to the node’s id and the order that the packet is injected. Thus, each packet
in the network has a distinct priority. Packets are injected whenever there are free links and in
conflicts higher priority packets win. If a packet is unable to remain on its original path, it follows
any shortest path to its destination, and it is possible to do so after all other packets with lower
priority have been delivered to their destinations.

Combining the above results for both cases of the number of packets, we obtain:

Theorem 5.1 rtB1(Qs) = O((C+D)·log n·log2(n+N)), with probability at least 1−O(1/(n′+N)).

6 Discussion

We have presented a distributed algorithm for routing packets in bufferless networks. Our algorithm
is based on the emulation of algorithms with buffers. We partition the original graph into regions,
and construct a respective region graph. Each region serves the purpose of a buffer. We then
consider an algorithm with buffers on the region graph, and emulate this algorithm by circulating
the packets in the regions, and thus avoiding the need of buffers. With this technique, the resulting
routing time of our algorithm is O

(
(C + D) · log3(n + N)

)
, which is poly-logarithmic factors away

from the optimal for the given paths.
For any set of packets there is an optimal selection of paths which minimizes C + D. Denote

by C∗ + D∗, the sum of congestion and dilation of the optimal paths. Given the optimal paths,
our algorithm sends the packets to their destinations in time within poly-logarithmic factors from
optimal, that is, O

(
(C∗ + D∗) · log3(n + N)

)
. For a set of packets we can define the bufferless

set ratio as the ratio between the smallest possible routing time of an algorithm without buffers
and the smallest possible routing time of an algorithm with buffers. The bufferless ratio is the
maximum set ratio of any packet set on any graph. Our result shows that the bufferless ratio is
at most log3(n + N). A interesting problem is to determine whether the bufferless ratio is even
smaller than this.
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