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Abstract

A packet-switching algorithm specifies the actions of the nodes in order to deliver
packets in the network. A packet-switching algorithm is universal if it applies to
any network topology and for any batch communication problem on the network. A
long standing open problem has concerned the existence of a universal packet-switching
algorithm with near optimal performance guarantees for the class of bufferless networks
where the buffer size for packets in transit is zero. We give a positive answer to this
question. In particular, we give a universal bufferless algorithm which is within a
poly-logarithmic factor from optimal for arbitrary batch problems:

T = O
(T ∗ · log3(n + N)

)
,

where T is the packet delivery time of our algorithm, T ∗ is the optimal delivery time,
n is the size of the network, and N is the number of packets.

At the heart of our result is a new deterministic technique for constructing a uni-
versal bufferless algorithm by emulating a store-and-forward algorithm on a transfor-
mation of the network. The main idea is to replace packet buffering in the transformed
network with packet circulation in regions of the original network. The cost of the
emulation on the packet delivery time is proportional to the buffer sizes used by the
store-and-forward algorithm. We obtain the advertised result by using a store-and-
forward algorithm with logarithmic sized buffers. The resulting bufferless algorithm is
constructive and it can be implemented in a distributed way.
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1 Introduction

1.1 Motivation

In a communication network, two or more packets collide when they wish to follow the

same link at the same time. Typically, some of the packets involved in a collision are

stored in a dedicated buffer at the node where the collision occurs, until the collision is

resolved (store-and-forward networks). Here, we examine the case where such buffers are

unavailable (bufferless networks). At the same time, we do not allow packets to be dropped

in collisions. Since buffers are unavailable and packets cannot be dropped, colliding packets

must be deflected to neighboring nodes. This behavior of packets in a collision has led to

communication algorithms on bufferless networks becoming known as hot-potato or deflection

algorithms; here, we will simply call them bufferless. Bufferless algorithms are of practical

interest since in optical networks the packets are propagated as light-waves which are hard

to buffer [44].

A packet switching algorithm specifies the actions that the nodes in the network will follow

in order to deliver the packets. A packet switching algorithm is universal if it applies to any

network topology and can solve any batch problem on it, where an arbitrary set of packets

has to be delivered in the network. There exist universal store-and-forward algorithms

[24, 33, 34, 39, 42] with optimal performance guarantees. A long standing and important

open problem is to determine whether there exists a universal bufferless algorithm with

performance close to that of store-and-forward algorithms. Here, we solve this problem in

the affirmative and we give the first known universal bufferless algorithm with near-optimal

performance. We formally analyze the performance of our algorithm for batch problems on

a synchronous network model, which we describe now.

1.2 Network Model

The communication network is a connected, unweighted and undirected graph G = (V, E),

where |V | = n. In a synchronous network, time is divided into a sequence of discrete time

steps. Edges are bidirectional and may be traversed by at most two packets at a time step,

one packet in each direction.

At every time step, a node processes the incoming packets, and then sends them to

adjacent nodes. In store-and-forward networks, each node has three kinds of buffers: (i) an

injection buffer, which stores the packets to be injected into the node (when the node is a

packet source), (ii) incoming edge-buffers, of size one for every incident edge, which will store

any packet received along the respective edge, (iii) outgoing edge-buffers, for every incident

edge, which is the actual buffer for packets in transit. At every time step the node takes
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the packets from the incoming and injection buffers and either forwards them along incident

links or places them in the outgoing buffers. If the outgoing buffer is full, then packets are

dropped.

In bufferless networks, there are no outgoing edge-buffers; in other words, all outgoing

edge-buffers have size zero. Further, packets may not be dropped. Thus, after the packet is

injected into the network, it must traverse some edge at every time step (until it is absorbed).

Preferably, the traversed edge brings the packet closer to the destination. However, due to

collisions, this is not always possible and the packet may be sent on an alternate edge taking

it further from the destination; this event is called deflection.

In our model, bufferless networks still have the injection and incoming buffers. The

incoming buffers help to process the incoming packets. The injection buffer is needed when

a node has to inject packets and there are no available edges. So, the distinction between

store-and-forward and bufferless networks is in the outgoing buffers which hold packets in

transit.

1.3 Batch Problems

We measure the efficiency of our bufferless algorithm on batch problems [31]. In a batch

problem, we are given an arbitrary set of packets with the objective to deliver them to

their destinations. Let Q = (G, Π,S) denote a batch problem on graph G, for a set of

N packets Π = {π1, π2, . . . , πN}. Each packet πi has source si and destination ti. The

set S contains all the pairs of sources and destinations for the respective packets; so S =

{(s1, t1), (s2, t2), . . . , (sN , tN)}.
We say that a set of paths P = {p1, p2, . . . , pN} satisfies batch problem Q if each path

pi is a path in G from the source si to the destination ti of packet πi. Typically, a packet

switching algorithm solves a batch problem Q by first selecting a set of paths P that satisfy

Q (routing), and then sending the packets along the paths (scheduling). The delivery time

of the packet switching algorithm is the number of time steps that elapse between the first

packet injection and the last packet absorbtion at its destination.

It is useful to define some properties associated with a set of paths P . A path p ∈ P could

be specified either as a sequence of nodes, or as a sequence of edges, and the length of the

path, |p|, is the number of edges in the path. The edge congestion C is the maximum number

of paths in P that use an edge in G; similarly, the node congestion C is the maximum number

of paths that use a node in G; the dilation D is the maximum path length, maxpi∈P |pi|.
Since at most one packet may traverse an edge in a particular direction during any time step,

a lower bound on the delivery time is given by Ω(C + D). Any packet switching algorithm,

either bufferless or store-and-forward, obeys this lower bound.

Given a set of paths with edge congestion C and dilation D, there exist store-and-forward
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scheduling algorithms that deliver the packets in time O(C + D) (plus logarithmic terms),

which are optimal within constant factors for the given paths [24, 33, 34, 39, 42]. Let P∗
denote the optimal set of paths which minimize C + D for a given batch problem Q. Using

the optimal paths, the packets can be delivered in optimal time (within constant factors)

in store-and-forward networks. A long standing open question is whether one can achieve

near optimal delivery time in bufferless networks as well. We answer this question in the

affirmative.

1.4 Contribution

We show that for any batch problem Q on an arbitrary bufferless network G, a delivery time

within logarithmic factors from optimal can be achieved. In particular, we give a randomized

algorithm which does so, given the optimal paths:

Theorem 1.1 With probability 1 − O((n + N)−λ), for some constant λ > 0, any batch

problem Q with N packets on an arbitrary bufferless network G with n nodes can be solved

with delivery time O(T ∗ · log3(n + N)), where T ∗ is the optimal delivery time for Q (with or

without buffers).

In order to obtain this result, we actually prove that for any set of paths P with congestion

C and dilation D, the packets can be delivered within time O((C + D) · log3(n + N)). Thus,

using the optimal set of paths P∗, we obtain Theorem 1.1.

Our algorithm is universal, since it applies to arbitrary network topologies. It also applies

to arbitrary batch problems. Given the set of paths P∗, the algorithm is also constructive

and can be implemented in a distributed manner. We do not address the issue of constructing

the good (optimal) set of paths P∗, which is an active area of research [5, 6, 43, 48]. Our

focus is on the fundamental difference between buffered versus bufferless packet switching,

which we show is small. We continue by describing the technique used in our algorithm.

1.5 Approach

Consider a batch problem Q = (G, Π,S) in a bufferless network G. Let P be a set of paths

that satisfy Q with edge congestion C and dilation D. Our goal is to deliver the packets in

time T = O((C + D) · log3(n + N)). This is sufficient for proving Theorem 1.1.

If the packets are to be sent without any collisions, then there are no deflections and the

only parameter that needs to be determined is the injection time of the packets. In [22], it is

shown that it is an NP-hard problem to approximate efficiently the optimal injection times

in a collision-free packet scheduling (by a reduction from the vertex coloring problem). Thus,

packets need to be deflected in order to obtain a near-optimal solution in polynomial time.
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However, with deflections, it is hard to preserve packets along specific paths, since a packet

may need to deviate from its path in order to give priority to packets that make progress.

Our approach to solve the problem is to control the packet deflections while the packets

follow the paths in P . We restrict the deflections in some particular areas of the network

which are close to the original paths. By controlling the deflections in those areas, we

effectively obtain a new set of paths P̂ in G along which we can send the packets in a

collision-free manner and with delivery time T . We implicitly obtain the new set of paths

and the collision-free schedule using a new technique that emulates a store-and-forward

algorithm. There are three main steps in the emulation, which we describe next.

1. Creation of store-and-forward network G′: We transform the bufferless network

G to a new store-and-forward network G′. Instead of separate outgoing edge-buffers, each

node in G′ has a unique outgoing node-buffer of size γ to store all the packets in transit. We

divide the graph G into regions which are pairwise edge-disjoint connected components each

consisting of about γ edges. Each node in G′ corresponds to a region in G. (G′ is also called

the region graph of G, see Figure 1.)

The set of paths P in G is translated to set of paths P ′ in G′. If path p ∈ P uses an

edge e in a region R of G, then in the respective path p′ ∈ P ′, edge e is mapped to the node

that represents R in G′. The final path p′ is obtained by removing any cycles. We observe

that the set of paths P ′ have node congestion C
′
= O(γC), since at most γC paths of G

are mapped to a single node in G′. Further, the dilation is D′ = O(D), since a path in G

shrinks in G′.

2. Store-and-forward scheduling in G′: We execute a store-and-forward scheduling

algorithm for the packets Π in G′ using the paths in P ′. The scheduling algorithm has

delivery time T ′ = O(C + D) and uses node-buffers of size γ = O(log(n + N)). The

algorithm is randomized and efficiently delivers the packets with high probability.

3. Creation of set of paths P̂ in G: The store-and-forward schedule in G′ is translated

back to the original bufferless network G to give the set of paths P̂ and a collision-free

schedule for the packets. The translation is achieved implicitly with a deterministic bufferless

emulation of the store-and-forward algorithm in G′. Each time step of the store-and-forward

scheduling algorithm in G′ is translated to a sequence of O(γ2 · log n) time steps in G. The

main trick is to emulate the buffering. If in a time step a packet is buffered in a node in

G′, then the same packet in G circulates on an Euler tour of the edges in the corresponding

region. Since a buffer in G′ may hold multiple packets (but no more than γ), all those packets

will circulate one after the other on the edges in the same region; recall that there are at
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Figure 1: An example of the decomposition to the region graph.

least γ edges in each region. If in a time step a packet moves from one node to another

node in G′, then the packet moves from the first respective region to the next region in G.

If a packet is injected (resp. absorbed) in G, the packet is injected (resp. absorbed) in the

source (resp. destination) of the respective region.

During the emulation, the packets may appear to be deflected, while they are in fact

circulating on the Euler tours in the region. By concatenating for each packet the respec-

tive Euler tours, we implicitly obtain the set of paths P̂ on which the deflections in effect

determine a collision-free schedule.

The cost of the emulation on the delivery time is a factor O(γ2 · log n) with respect to

the store-and-forward schedule; that is, the resulting delivery time is T = O(T ′ · γ2 · log n).

This gives the desired delivery time of T = O((C + D) · log3(n + N)), which holds with

high probability. We emphasize that the randomization is due to the store-and-forward

algorithm, while the emulation is deterministic. Further, if the nodes know the graph G and

the parameters C and N , then the resulting bufferless algorithm can be implemented in a

distributed way.

1.6 Related Work

There are no previously known results for universal bufferless packet switching algorithms

with near-optimal delivery time guarantees. However, there are efficient algorithms for spe-

cific bufferless models and architectures, which we summarize below.

In hot-potato algorithms, packets are deflected in a collision to available links [8]. Our

model of bufferless algorithms is based on the hot-potato model, with the significant ex-

ception that in collisions, packets are deflected on particular available edges specified by

the emulation, and not on any available edge as is typically done in hot-potato algo-
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rithms. This enables us to control the positions of the packets and implicitly obtain the

aforementioned paths P̂ and a collision-free schedule on them. Hot-potato algorithms

have been extensively studied for a variety of architectures such as the mesh and torus

[7, 9, 10, 14, 16, 18, 19, 20, 26, 25, 29, 30, 38, 47], hypercubes [13, 15, 26, 28, 41], trees

[23, 45], vertex-symmetric networks [35], and leveled networks [12, 17, 21]. Typically, by

allowing packets to deviate slightly from their pre-selected paths, one obtains delivery times

that are within poly-logarithmic factors of optimal.

In direct packet scheduling (collision-free packet scheduling), packets follow their paths

without buffering and without any collisions, [4, 49, 22]. Busch et al. [22] give a comprehen-

sive study of direct scheduling where they give a universal O(C ·D) centralized algorithm,

and near-optimal algorithms for the tree, mesh, butterfly and hypercube.

Wormhole algorithms are similar to direct algorithms, although here, packets occupy

more than one edge [24, 27]. Cypher et al. [24] give a randomized, universal distributed

wormhole algorithm with delivery time O(L ·C ·D), where L is the length of the packet; this

bound can be improved if the edges have higher bandwidths. A dual to direct scheduling

is time-constrained scheduling, where the task is to schedule as many packets as possible

within a given time frame [1, 2]. In the related class of matching routing algorithms, packets

are swapped at adjacent nodes. Under this model, permutation problems on trees have been

studied in [3, 40, 50].

There are two variants of store-and-forward algorithms. Those that use outgoing buffers

on every edge (edge-buffers) and those that use a single outgoing buffer on every node (node-

buffers). For non-bounded degree networks, these variants may not be equivalent, since

one model does not necessarily translate to the other. The existence of universal store-and-

forward scheduling algorithms with optimal delivery time O(C+D) (plus additive logarithmic

terms) and constant size edge-buffers was first established in the seminal work of Leighton,

Maggs and Rao [33]. Scheideler [46] showed that edge-buffers of size 2 are sufficient. These

results are non-constructive. Thereafter, the main focus has been on constructive algorithms

with optimal delivery time O(C + D) [11, 34, 36, 39, 42]. These algorithms use large buffers

(proportional to the congestion C). Leighton et al. [33] give a universal distributed algorithm

that uses edge-buffers of size O(log ND) and has delivery time O(C + D log ND). Cypher

et al. [24] give an algorithm with edge-buffers of size O(log CD) and slightly better delivery

time. There are no better constructive results known for arbitrary networks that achieve

smaller buffer sizes.

Our bufferless algorithm is based on emulating the universal distributed distributed store-

and-forward algorithm in Leighton et al. [33]. Here, we analyze the delivery time of this

algorithm in terms of the node congestion C and bound the node-buffer requirements, which

is necessary for determining the performance of the bufferless emulation.
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1.7 Paper Outline

In Section 2, we give a graph decomposition into regions which is fundamental to our buffer-

less algorithm. Next, in Section 3, we discuss store-and-forward algorithms, and introduce

a simple randomized algorithm using node-buffers. In Section 4, we show how to emulate

store-and-forward algorithms in a bufferless manner using the regions obtained by the graph

decomposition in Section 2. We apply the emulation on the randomized store-and-forward

algorithm to obtain near-optimal universal bufferless algorithm in Section 5. We finish with

a discussion, future directions, and an alternative graph decomposition algorithm in Sec-

tion 6.

2 Regions

The bufferless emulation uses regions in the graph to simulate buffering. Thus, we first need

to construct these regions. We will need to decompose the connected graph G into connected

components of approximately a specified size.

2.1 Graph Decomposition

Let G = (V,E) be a connected, unweighted, and undirected graph. Let F be a subset of the

edges in E. The subgraph induced by F is the graph H = (U, F ), where U is the union of

all vertices in V that are incident with edges in F . We say that the edge set F is connected

if the induced subgraph H is connected.

Definition 2.1 A connected decomposition of G is a partition of the edges in E into a

collection of disjoint sets {E1, E2, . . . , Ek} such that ∪k
i=1Ei = E and every Ei is connected.

We refer to the Ei’s as the connected edge sets or regions in the decomposition, and call the

number of edges in Ei, |Ei|, the size of Ei. Notice that the subgraphs H1 = (V1, E1), . . . , Hk =

(Vk, Ek) induced by the edge sets may have overlapping vertex sets. We say that Ei is

connected to Ej if and only if Vi ∩ Vj 6= ∅. Notice that if Ei is connected to Ej, then Ei ∪Ej

is a connected edge set.

An [α, β]-partition of G (if it exists) is a connected decomposition {E1, . . . , Ek} of G,

such that α ≤ |Ei| ≤ β for i = 1, . . . , k. Notice that if α ≈ β, then an [α, β]-partition

decomposes G into connected edge sets of size approximately equal to α. Our main goal in

this section is to show that such approximate decompositions are possible for any connected

graph. Our proof will be constructive; hence, it can be directly converted to an algorithm.

(The outline of an alternative partitioning algorithm which is based on the line graph of G

appears in Section 6.1.)

8



The following lemma will be instrumental in the proof. Essentially, it states that a

connected graph can be decomposed into two large connected edge sets.

Lemma 2.2 Let k ≥ 2. Any connected graph G = (V, E) with |E| ≥ 3k − 2 can be decom-

posed into two disjoint connected edge sets each of size at least k.

v

F

· · ·α3

α1

f

α2

e

u

Figure 2: F and its satellites αi.

Proof: Using a depth first search, determine a connected

edge set F with |F | = 2k − 2 ≥ k. Note that |E \ F | ≥
k. E \ F is composed of a number of connected edge

sets (called satellites) α1, α2, α3 . . ., each of which is not

connected to any other, but all of which are connected

to F . The situation is illustrated in Figure 2. Let α1 be

the largest such satellite edge set of F . If |α1| ≥ k then

α1 and F ∪ α2 ∪ α3 · · · are both connected edge sets that

have size ≥ k, so we are done. We only need to consider

the case where |α1| ≤ k− 1. We will show how to replace

|F | with another edge set F ′ of the same size, and whose

largest satellite α′1 will have size at least |α1| + 1. We can thus repeat this argument until

the size of α1 is at least k, concluding the proof. We now show how to construct F ′.

Suppose that |α1| ≤ k − 1, in which case there is at least one other satellite α2. Let u

and v be common nodes of α1 and F , and of α2 and F respectively. (Note that these nodes

must exist, and they are different since F is connected to both these satellites.) Let e be an

edge in F incident with u, and let f be an edge in α2 incident with v (as shown in Figure

2). Increase the size of α1 to |α1|+ 1 by adding e to it (and removing e from F ). Note that

α1 remains connected. If F \ e is a connected edge set, then add f to F \ e to get F ′. Note

that |F ′| = |F |. The edge set α1 ∪ e is now a connected edge set of size |α1| + 1 which is

part of the largest satellite of F ′ (note that while adding e to α1, we may have connected α1

to some other satellite). Thus the largest satellite α′1 of F ′ has size at least |α1|+ 1.

α1 ∪ e

e
γ2

γ1

F1

F2

Figure 3: e is a bridge in F .

The only remaining case to consider is that including

e into α1 disconnects F , so e is a bridge in F connecting

two connected edge sets F1, F2 ⊂ F . The situation is

illustrated in Figure 3, where we have merged F1 and F2

with their respective satellites to get edge sets γ1 and γ2

as illustrated. Note that since |α1 ∪ e| ≤ k, |γ1| + |γ2| ≥
2k − 2. If neither |γ1| ≥ k nor |γ2| ≥ k, this implies that

|γ1| = |γ2| = k − 1. In this case, merge γ2 with e to form

a connected edge set of size k. The remaining edges form

a connected edge set of size at least 2k− 2 ≥ k, so we are

done. Thus, suppose that one of γ1 or γ2 has size ≥ k;
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without loss of generality, suppose that it is γ1. Now consider α′1 = γ2 ∪ α1 ∪ e. There are

two cases: |α′1| ≥ k, and we are done; or |α1| < |α′1| < k, in which case |γ1| ≥ 2k − 1, so

that F1 together with its satellites contains more than 2k − 2 edges. We construct F ′ from

F1 by adding edges from its satellites (while keeping it connected) until |F ′| = 2k − 2. To

conclude, note that the largest satellite of F ′ must have size at least |α′1| ≥ |α1|+ 1.

Using an induction argument and Lemma 2.2 we will show that there always exists an

[α, β]-partition with β = Θ(α).

Theorem 2.3 (Existence of a [k, 3k − 3]-partition) Let G = (V,E) be a connected

graph. For any k, where 1 < k ≤ |E|, there exists a [k, 3k − 3]-partition of G.

Proof: If 2 ≤ k ≤ |E| ≤ 3k − 3, then E itself is an [k, 3k − 3]-partition so there is nothing

to prove. We will now prove the claim by strong induction on |E|. The induction hypothesis

is:

P(N) : There exists a [k, 3k − 3]-partition for any G = (V, E) whenever |E| ∈
[k, N ].

We claim that P(N) is true for all N . We know that P(3k − 3) is true, so suppose that

P(N) is true for some N ≥ 3k − 3, and consider P(N + 1). Let G = (V, E) be any graph

with |E| = N + 1. Since |E| ≥ 3k − 2, Lemma 2.2 implies that E can be decomposed

into two disjoint connected edge sets E1, E2 with k ≤ |E1| ≤ |E2| ≤ N . By the induction

hypothesis, there exist [k, 3k− 3]-partitions of E1 and E2. The union of these two partitions

is a [k, 3k − 3]-partition of E, concluding the proof.

G

G

G

The following example proves that the result of Theorem 2.3 is tight.

For a given k, let G be any connected graph with k − 2 edges, and

connect three such graphs in a wheel configuration as shown on the

right. It is easy to see that the only decomposition in which every edge

set has at least k edges is the entire graph itself, which has 3k−3 edges.

The proof in Theorem 2.3 is constructive, based upon the construction in Lemma 2.2. In

order to analyze the run time more easily, we convert the construction into the algorithmic

format in Algorithm 1. We use the same notation that was used in the proof of Theorem

2.3. The DFS and the computation of the satellites is O(E). The while loop executes at

most k times, since |α1| strictly increases in each execution (else the function calls itself and

returns). In each execution, at most O(E) work is done, and get components can possibly

be called on two smaller instances, both corresponding to graphs of size ≥ k. Thus, letting

T (|E|, k) denote the worst case run time to obtain a [k, 3k − 3]-partition for a graph with

size |E|, we have that for some constant c,

T (|E|, k) ≤ max
3k−3≤b≤|E|−3k+3

{T (b, k) + T (|E| − b, k)}+ ck|E|.
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Algorithm 1 get components(E, k)

1: // Returns a [k, 3k − 3]-partition for the edge set E; Assume |E| ≥ k;

2: if |E| ≤ 3k − 3 then

3: return E;

4: Using DFS, compute F ⊂ E and all its satellites; let α1 be its largest satellite;

5: while |α1| < k do

6: Choose an edge e ∈ F that is incident with a vertex in the subgraph induced by α1;

7: Choose an edge f in a satellite α2 6= α1 which is incident to a node induced by F ;

8: if F \ e is a connected edge set then

9: α1 ← α1 ∪ e; F ← (F \ e) ∪ f ;

10: else if F \ e is disconnected and |γ1| = |γ2| = k − 1 then

11: Label γ1, γ2 so that α1 is connected to γ1;

12: return {γ2 ∪ e} ∪ get components(α1 ∪ γ1, k);

13: else (F \ e is disconnected into γ1, γ2 which are labeled so that |γ1| ≥ k)

14: if |α1 ∪ γ2| ≥ k then

15: return get components(γ1, k) ∪ get components(α1 ∪ γ2, k);

16: else

17: α1 ← α1 ∪ γ2;

18: F ← connected subset of γ1 of size 2k − 2 that is adjacent to α1;

with T (|E|, k) = 1 for |E| ≤ 3k − 3. One can show by induction that T (k, |E|) ≤ 3
2
c|E|2 =

O(|E|2), and hence the algorithm to compute the decomposition is polynomial in |E|.

2.2 The Region Graph

Consider a connected graph G = (V, E), with n nodes. Take an [α, β]-partition of G, which

gives regions R1, R2, . . . , Rk. Let the subgraphs induced by these regions have vertex sets

U1, U2 . . . , Uk. The region graph G′ = (V ′, E ′) has a vertex set V ′ = {r1, r2, . . . , rk} where

each vertex ri corresponds to the region Ri of G. Two vertices ri, rj are adjacent in G′ (that

is, the edge (ri, rj) is in E ′) if and only if Ui ∩Uj 6= ∅ (that is, the corresponding regions are

connected). An example of a region graph is given in Figure 1. Since each region consists

of at least α and at most β edges, we immediately have that |E|/β ≤ |V ′| ≤ |E|/α. We

proceed to show that G′ is connected.

Lemma 2.4 Graph G′ is connected.

Proof: Let ri, rj be two nodes in V ′ corresponding to regions Ri, Rj in G. We show there is

a path in G′ from ri to rj. If Ri and Rj share a node then ri and rj are adjacent. Otherwise,
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let ei = (ui, vi) ∈ Ri and ej = (uj, vj) ∈ Rj be two edges in E. Since G is connected, there is

a path in G from vi to uj. This path consists of edges e1, e2, . . . , ek in regions R1, R2, . . . , Rk,

respectively. (Note that consecutive regions are not necessarily distinct.) Now consider the

path ei, e1, e2, . . . , ek, ej and the regions Ri, R1, R2, . . . , Rk, Rj; since every two consecutive

edges share a node, every two consecutive regions in this list are connected, which implies

the existence of a walk from ri to rj in G′. Since ri and rj are arbitrary nodes, it follows

that G′ is connected.

2.3 Paths on Region Graph

Let P denote a set of paths on G with edge congestion C, node congestion C and dilation D.

Let {R1, . . . , Rk} be an [α, β]-partition of G into regions. Every edge in G belongs to exactly

one region. Let G′ = (V ′, E ′) be the corresponding region graph. We define a mapping

f : E → V ′ from the edges of G to the nodes of G′ as follows.

For every e ∈ E, f(e) = ri if and only if e ∈ Ri.

Consider a path p ∈ P , with p = (e1, e2, . . . , el). We define a mapping g which maps a path

in G to a path in G′ as follows.

For any path p = (e1, e2, . . . , el) in G, consider the walk in G′ given by

w′ = (f(e1), f(e2), . . . , f(el)). The path g(p) denotes the walk w′ that

we obtain after removing all the cycles and repeated nodes in w′, g(p) =

(f(ei1), f(ei2), . . . , f(eik)) (see Figure 1).

We now transform the set of paths P of the original graph G into a set of paths P ′ on the

region graph G′ as follows.

P ′ = {p′1, p′2, . . . , p′N} where p′i = g(pi), for every path pi ∈ P .

Let C ′, C ′ and D′ denote the edge congestion, the node congestion and the dilation of the

paths in P ′, respectively. For any set of paths, the edge congestion is trivially bounded

by the node congestion; so C ′ ≤ C
′
. A path uses node ri only if it contains edges in Ri.

By construction, |Ri| ≤ β, so the number of edges in P that use Ri is at most βC, thus,

C ′ ≤ βC. Since |g(p)| ≤ |p| for any path p in G, we immediately have:

Lemma 2.5 (Congestion and dilation in the region graph) C ′ ≤ C ′ ≤ βC; D′ ≤ D.

2.4 Euler Cycles in Regions

Given an undirected graph G = (V,E), we define the directed representation of G to be the

graph Gdir = (V,Edir) where each (undirected) edge (u, v) ∈ E is replaced by two directed
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edges (u, v), (v, u) ∈ Edir. Consider a graph decomposition of G into regions R1, R2, . . . , Rk.

We associate with each Ri a region Rdir
i in Gdir, where each edge in Ri is replaced by the

two respective directed edges in Rdir
i . Take any node v induced by region Ri. Since every

edge in Ri is replaced by two edges in opposite directions in Rdir
i , the in-degree of v is equal

to its out-degree in Rdir
i .

An Euler cycle in a region Rdir
i is an edge-simple cycle that contains all the edges of Rdir

i .

Since in Rdir
i the in-degree equals the out-degree of every node, Rdir

i has an Euler cycle. Let

ψi denote an Euler cycle in Rdir
i . Let ψi = (v1, v2, . . . , v1) be the sequence of nodes that ψi

visits in Rdir
i . Since G and Gdir have the same set of nodes, ψi is mapped to a walk in Ri,

when we follow the same sequence of nodes as in Rdir
i . We will refer to ψi as the Euler cycle

of Ri as well.∗ In Ri, ψi will traverse the same edge twice, since the edge is traversed in two

opposite directions in Rdir
i . Thus, in an [α, β]-partition of G, every Euler cycle ψi satisfies

2α ≤ |ψi| ≤ 2β (since α ≤ |Ri| ≤ β).

3 Store-and-Forward Scheduling in G′

In graph G, the bufferless algorithm will emulate a store-and-forward algorithm which is

applied in region graph G′. Here, we discuss the specifications for the store-and-forward

algorithm. Let A denote such a store-and-forward algorithm. We will define the specifications

of A. We will then give an instantiation of such an algorithm below (Algorithm A1).

3.1 Specification of Algorithm A

Consider the batch problem Q = (G, Π,S) and a set of paths P that satisfy Q. Let P ′ be

the respective set of paths in G′ (recall Section 2.3). The objective of the store-and-forward

Algorithm A is to solve a packet scheduling problem Q′ = (G′, Π,P ′) in graph G′, where the

task is to send the packets Π along their respective set of paths P ′ in G′. Let γ denote the

size of the node-buffers that Algorithm A uses. Specifically, each node has a node-buffer of

size γ. A packet scheduling is valid whenever packets are not dropped (there are no buffer

overflows). During any single time step in Algorithm A, a packet may perform one of four

actions:
(i) Be injected into the network at its source node. [Injection]

(ii) Move from its current node to a neighboring node. [Transfer]

(iii) Move to and be absorbed in its destination node. [Absorbtion]

(iv) Remain in the buffer of its current node. [Buffering]

∗This is clearly an abuse of notation, since ψi is an Euler cycle of Rdir
i , not of Ri.
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Algorithm 2 Store-and-Forward Algorithm A1

1: Divide time into phases of length γ = 6 log(n′ + 2N) time steps.

2: for each packet π do

3: π will be injected at a phase φπ, where φπ is chosen uniformly and at random between

1 and 12C ′/γ;

4: Packet π is injected at the first time step of phase φπ;

5: Packet π follows its path traversing one edge per phase;

If a packet is received into a node’s buffer at time t or was already buffered there during

time step t, then at time t + 1, it must either be transmitted along the next edge in its path

or remain stored in the buffer. It is possible to divide any valid scheduling into a sequence

of phases, so that each phase has the following three properties:

(i) Each phase is a time interval consisting of at least one time step.

(ii) During a phase, each packet traverses at most one edge in G′.

(iii) During a phase, a node receives at most γ packets (by transfer or injection).

Suppose that algorithm A produces a valid schedule. A trivial division of the execution of

Algorithm A into phases that satisfies these three properties is to take each phase to be a

single time step, since at every time step, any valid execution of Algorithm A must satisfy

these three properties. (Property (iii) is satisfied for any valid scheduling because the size

of the buffer is γ.) As we will show later, any candidate store-and-forward algorithm which

produces valid schedules and satisfies these three properties may be used in our bufferless

emulation algorithm to create a universal bufferless algorithm. In this case, we will say that

the store-and-forward algorithm is emulatable. We now give a simple, randomized emulatable

store-and-forward algorithm, which with high probability gives a valid schedule that satisfies

the aforementioned three properties.

3.2 Store-and-Forward Algorithm A1

We now give an instantiation of a universal, emulatable store-and-forward algorithm, which

is actually the universal distributed algorithm of Leighton, Maggs, and Rao [33]. Here,

we analyze the node-buffer requirements of the algorithm and bound its delivery time with

respect to the node congestion, while originally in [33] the algorithm is analyzed with respect

to edge-buffers and edge-congestion. The algorithm is randomized, uses node-buffers whose

size γ is logarithmic with respect to the parameters of the scheduling problem, and has

near-optimal delivery time. We refer to this algorithm as Algorithm A1.
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Let Q′ = (G′, Π,P ′) be a scheduling problem with path set P ′ on an arbitrary graph

G′ = (V ′, E ′). Let C ′ be the node congestion and D′ the dilation for the paths in P ′. Let N

be the number of packets and n′ = |V ′|.
Algorithm 2 contains the details of the store-and-forward Algorithm A1. The intuition

behind this algorithm is that at most γ packets will be stored during a phase in any node.

The packets will leave the node by the end of the phase. This is feasible, since the phase

consists of γ time steps. However, we need to be a little careful to ensure that all γ packets

that are leaving a node will find buffer space to enter their destination node. The detailed

analysis of the algorithm follows below.

We will show that with high probability, Algorithm A1 successfully delivers the packets,

and at the same time it is emulatable. For Algorithm A1 and phase φ, we define the following

properties:

P1(φ): In phase φ every packet in the network successfully traverses one edge in its path.

P2(φ): No more than γ packets are buffered at any node during phase φ.

P3(φ): No more than γ/2 packets arrive at any node during phase φ.

P4(φ): No more than γ/2 packets remain at any node at the end of phase φ.

Note that P3 is stronger than we need. We introduce property P4 for technical convenience.

Since the maximum injection phase is 12C ′/γ and the maximum path length is D′, we have:

Lemma 3.1 If P1-P4 holds for 12C ′/γ + D′ phases, then ΦA1(Q
′) ≤ 12C ′/γ + D′, and

Algorithm A1 is a valid algorithm for bufferless emulation (emulatable).

Let Pr[φ0] be the probability that properties P1-P4 hold for all phases φ ≤ φ0. Pr[0] = 1 by

default. We now give a lower bound for Pr[φ0 + 1] in terms of Pr[φ0].

Lemma 3.2 If P1-P4(φ0) are true and P3(φ0 + 1) is true, then P1-P4(φ0 + 1) are true.

Proof: If no more than γ/2 packets arrive at a node during phase φ0+1, then since P4 (φ0)

is true, there are at most γ packets in the node during any time step of phase φ0+1, therefore

P2 (φ0 + 1) is true. In the worst case all the at most γ/2 packets in the node at the end of

phase φ0 may leave sequentially on a single edge, requiring at most γ/2 time steps, which

is less than the duration of the phase, so P1 (φ0 + 1) is true. The packets remaining in the

node at the end of phase φ0 + 1 are only those that entered, which is at most γ/2 packets,

thus P4 (φ0 + 1) is true.

By induction, we obtain the following corollary.

Corollary 3.3 P1-P4(φ) are true for all φ ≤ φ0 if and only if P3(φ) is true for all φ ≤ φ0.
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Thus, Pr[φ0 + 1] = Pr[{P1-P4 (φ) are true for φ ≤ φ0} ∧ {P3(φ0 + 1) is true}]. Noting that

Pr[A ∧B] = 1− Pr[∼ A∨ ∼ B] ≥ 1− Pr[∼ A]− Pr[∼ B],

Pr[φ0 + 1] ≥ Pr[φ0]− Pr[{P3 (φ0 + 1) is false}]. (1)

Consider a node v, and phase φ0 + 1. Let qπ be the probability that packet π arrives at

node v during phase φ0 + 1 which can happen only if it is injected at a particular phase.

Since the probability that it is injected at that particular phase is γ/12C ′, we conclude that

qπ ≤ γ/12C ′ if π uses node v (at most C ′ such packets), and 0 otherwise. Let Xi(v) = 1 if

packet πi appears at node v at phase φ0 +1. Xi(v) are independent random variables, whose

sum is the number of packets that appear i n node v at phase φ0 + 1. Let X(v) =
∑

i Xi(v).

E[X(v)] =
∑

i qπi
≤ C ′ · γ/12C ′ = γ/12. By applying a version of the Chernoff bound [37,

Exercise 4.1] we obtain

Pr[X(v) > γ/2] < 2−γ/2.

Applying the union bound now gives that Pr[max
v

X(v) > γ/2] < n′2−γ/2, giving

Lemma 3.4 Pr[{P3(φ0 + 1) is false}] < n′2−γ/2.

Using (1), Lemma 3.4 and the fact that Pr[0] = 1, we get the following result by induction.

Lemma 3.5 Pr[φ0] ≥ 1− φ0n
′2−γ/2.

Since n′ < n′ + 2N , 12C ′/γ + D′ < n′ + 2N (because C ′ ≤ N and D′ ≤ n′), and 2−γ/2 =

(n′ + 2N)−3, by setting φ0 = ΦA1(Q
′) in Lemma 3.5, and using Lemma 3.1, we obtain the

main result of this section:

Theorem 3.6 (Delivery time of Algorithm A1) With probability at least 1 − 1/(n′ +

2N), Algorithm A1 solves scheduling problem Q′ in at most 12C ′/γ + D′ phases, satisfying

P1-P4 in each phase (algorithm A1 is emulatable). The node-buffer size required is γ =

6 log(n′ + 2N).

4 Bufferless Emulation in G

Let G = (V,E) be a connected graph with n nodes and let {R1, . . . , Rk} be an [α, β]-partition

of G with corresponding region graph G′ = (V ′, E ′). Consider batch problem Q = (G, Π,S)

in G. Let P be a set of paths that satisfy Q. Let the corresponding path scheduling problem

in G′ be Q′ = (G′, Π,P ′).
Our goal is to design a bufferless algorithm to solve the batch problem Q, with delivery

time Õ(C+D). In other words, the goal is to construct a set of paths P̂ for which a bufferless

and collision-free schedule exists with delivery time Õ(C + D). We implicitly obtain this
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set of paths through emulation of a store-and-forward algorithm. The store-and-forward

algorithm solves the scheduling problem Q′ in G′. with set of paths P ′; the set of paths P ′
were derived from P . In solving Q in G, the bufferless algorithm will emulate Algorithm

A in G′ (in a step-by-step fashion). The set of paths P̂ derived by the bufferless algorithm

will depend on the set of paths in P ′, and hence also on the set of paths in P . Thus, the

preselected paths in P are crucial to the functioning of the bufferless algorithm, even though

the paths used may deviate significantly from the preselected paths.

4.1 The Emulation

Assume that we have already constructed an emulatable, store-and-forward Algorithm A

which solves the region graph scheduling problem Q′ = (G′, Π,P ′) using a buffer of size γ.

Assume that 2γ ≤ |E| (we will deal with this assumption later in Section 5). We now discuss

how to obtain a bufferless Algorithm B which will emulate the phases of Algorithm A, which

may possibly be faster than emulating the individual time steps of Algorithm A. During

a single phase of Algorithm A, a packet π performs one of four actions (in G′): injection;

transfer; absorbtion; or, buffering. Algorithm B emulates Algorithm A phase for phase by

emulating each of these actions that a packet can make. We continue with an informal

description of algorithm B.

Algorithm B emulates the buffering of packets and their transfer from node to node using

the [α, β]-partition of G, where we set α = 2γ (by assumption, α = 2γ ≤ |E|). By Theorem

2.3, we guarantee the existence of such an [α, β]-partition by choosing β = 6γ − 3. Recall

that we refer to nodes in the region graph by ri and their corresponding region in the original

graph by Ri.

• When in Algorithm A, a packet is buffered in a node ri of G′, Algorithm B emulates

this by letting the packet circulate in the edges of region Ri in G.

• When in Algorithm A, a packet is transferred from node ri to node rj of G′, in Algo-

rithm B the packet is transferred from region Ri to region Rj in G; If the packet is

absorbed by rj, it will be absorbed by the appropriate node in Rj.

• If a packet is injected into the buffer of a node ri by Algorithm A, then in Algorithm

B, it will be injected into its injection node in Ri; From then on, it will continue to

circulate in the region until it is transferred to the next region.

We now describe the details of the emulation.
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4.1.1 Phases and Rounds

Let Φ denote the number of phases Algorithm A uses to deliver the packets in the region

graph. In Algorithm B, time is divided into Φ phases. Each phase of Algorithm B emulates

a phase of Algorithm A. In order to perform the emulation of a phase, Algorithm B further

divides each phase into Ξ rounds, where Ξ will be specified later. The duration of each round

is Z = 4β2 + 4β time steps. (Recall that β = 6γ − 3.) Thus, the bufferless algorithm runs

for Φ · Ξ · Z time steps in total.

For the duration of an entire round, a region is either in the sending or the receiving

mode – we say that the region is sending or receiving. In the emulation, when a packet has

to be transferred from region Ri to the region Rj, Ri must be sending and Rj receiving. We

will show how to guarantee that for any pair of adjacent nodes ri, rj ∈ V ′, there is a round

in every phase in which region Ri is sending and Rj is receiving (and vice-versa).

In order to determine if a region is sending or receiving, we first obtain a vertex coloring

of G′. Let χ : V ′ 7→ [0, n′] be a valid vertex coloring of G′, where χ(r) is the color assigned

to node r ∈ V ′, and no two nodes have the same color. Let χ = maxi χ(ri) denote the

maximum color used in the the vertex coloring. A valid coloring can be obtained by a simple

greedy algorithm where the maximum color is bounded by the maximum node degree. Since

the maximum node degree is bounded by n′, where n′ = |V ′|, we have that χ ≤ n′.

We define the color of a region Ri as the color assigned to the corresponding node ri. Let

δi be the binary representation of χ(ri). Let σ denote the number of bits in χ, σ = dlog χe ≤
d log n′ e. By pre-padding with zeros, we assume that every color δi has σ bits. We define

the mode parameter xi for region Ri to be the 2σ long binary vector δ̄iδi, where δ̄i is the

binary complement of δi. For 1 ≤ k ≤ 2σ, we denote the k-th bit of xi by xi(k).

We set the number of rounds in a phase to be Ξ = 2σ ≤ 2d log n′ e; thus, each phase in

Algorithm B consists of the 2σ rounds, ω1, ω2, . . . , ω2σ. During round ωk, if xi(k) = 0 then

region Ri is sending, otherwise, if xi(k) = 1, then region Ri is receiving. Our assignment of

colors ensures that during every phase, any region Ri may send a packet to any neighboring

region Rj (i.e. Ri will be sending and Rj receiving), and similarly it may receive a packet

from any neighboring region Rj (i.e. Rj will be sending and Ri receiving).

Lemma 4.1 If Ri and Rj are adjacent, then during every phase, there is at least one round

ωs (ωr) in which Ri is sending (receiving) and Rj is receiving (sending).

Proof: Since χ is a valid coloring, and Ri and Rj are adjacent, δi and δj must differ at

some bit. Suppose they differ in the kth bit, 1 ≤ k ≤ σ. Thus, rounds k and k + σ satisfy

the requirements, since xi(k + σ) = xi(k) = xj(k) = xj(k + σ).

The fundamental operation that is needed for the emulation by Algorithm B is packet

circulation within a region.
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4.1.2 Packet Circulation

Packet circulation is a basic function for the emulation. During packet circulation, a packet

π repeatedly follows the Euler cycle ψi of the region Ri that it is in: at each time step, packet

π follows the next edge in ψi; when π reaches the end of the Euler cycle it continues from

the beginning of the cycle, and so on. At the time step in which packet π traverses an edge

e ∈ ψi, we say that e is the current edge of π.

At each round of a phase, a region is either sending or receiving. The speed at which a

packet circulates in its region depends on whether the region is sending or receiving:

• If the region is receiving, then the packet follows the Euler cycle in the normal fashion

(one link per time step).

• If the region is sending, then the packet moves at an effectively slower speed as follows.

At time step 0 (the beginning of the round), suppose that π is at node u with current

edge e = (u, v) ∈ ψi. At time step 0, packet π follows its current edge (u, v) and at

time step 1, π appears in node v. At time step 1, suppose that its new current edge

in ψi is (v, w); the packet does not follow its new current edge in ψi, but instead it

follows edge (v, u) from v back to u, and thus at time step 2, it appears back in node

u. Thus after two time steps, the packet has effectively not moved. We call such an

operation an oscillation, and we say that packet π oscillates on its current edge in the

Euler cycle. The time period of the oscillation is 2 time steps, The packet continues

in this fashion for subsequent time steps, so at even time steps t = 2i, it appears in

node u, and at odd time steps t = 2i + 1 it appears in node v, for i ≥ 0. The packet

performs β such oscillations on its current edge e; so, after 2β time steps, the packet

appears at u and follows edge e for the last time. At time step Ts = 2β +1, the packet

is now at v and at this point it stops oscillating on edge e and begins oscillating on its

new current edge (v, w) ∈ ψi. Thus, after Ts time steps, the packet advances by one

edge in the Euler cycle of ψi. Consequently, since |ψi| ≤ 2β, after 2βTs = 4β2 + 2β

time steps, a packet circulating in region Ri has oscillated at least once on every edge

of ψi.

From the above description of the packet movement in a sending region, we obtain:

Lemma 4.2 After 4β2 + 2β < Z time steps, a packet circulating in a sending region Ri has

oscillated at least once on every edge in ψi.

Suppose that the directed edge e = (u, v) ∈ ψi, is an edge in the Euler cycle of a receiving

region Ri. If at time step t, no packet has edge e as its current edge, then we say that e

is empty. At each time step, we say that an empty edge is associated with an empty slot.
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Empty slots are similar to packets in that they too circulate – as the packets in a receiving

region circulate (forwards) in ψi, the empty slots circulate (backwards) in ψi at the same

rate. They continue to circulate until some packet occupies the empty edge.

Once a packet enters the network, its default status is to be circulating in the region it

is in. Packets enter a region either through injection or packet transfer. We discuss how

these steps are emulated by bufferless Algorithm B. In particular, whenever a packet enters

a region, it must not interfere with packets that are already circulating in the region.

4.1.3 Emulation of Injection

Suppose that in phase φ, Algorithm A injects packet π into node ri. Let p be the path of

π in G, e the first edge in this path, and u the injection node. Since Algorithm A injects

the packet into node ri of G′, we know that e and u are in Ri. Algorithm B will inject π

into Ri in phase φ during the last round of the phase in which Ri is receiving. Algorithm B

will inject π into an empty edge in the Euler cycle ψi, i.e., one which is not a current edge

of any packet circulating in Ri. In this way, we guarantee that the injection of π will not

interfere with any currently circulating packets. After injection, π will continue to circulate

in Ri until the end of phase φ. All that remains is to show that it is possible to inject π so

that it does not interfere with any circulating packets. We will say that a region is ready for

phase φ of bufferless Algorithm B if at the begining of phase φ (end of phase φ − 1) there

are at most γ packets circulating in the region. By default, all regions are ready for the first

phase (since there are no packets in the network).

Remember that 2α ≤ |ψi| ≤ 2β, so 4γ ≤ |ψi|. Suppose that region Ri is ready for phase

φ of Algorithm B. Then, by definition of a phase in Algorithm A, at most γ packets will

need to enter region Ri during phase φ, i.e., at most γ − 1 packets other than π need to

enter. This means that only at most 2γ − 1 of the edges in ψ are current edges of packets,

the remaining |ψi|− (2γ−1) ≥ 2α− (2γ−1) = 2γ +1 edges are empty slots that continually

circulate backwards one edge at a time during the round. An empty time slot is available

for π if it will not be occupied by any packet other than π during its backward circulation.

Thus, there are at least 2γ + 1 available empty slots for π in region Ri. For any given edge

e, each of these available empty slots will be at e once every |ψi| ≤ 2β < Z time steps.

Let e = (u, v) ∈ ψi be the first edge of packet π in Ri. Packet π is injected into the

network and e becomes its current edge at the first time step when e becomes empty. Since

π is injected into an empty edge, it does not interfere with any packets already circulating

in Ri. There are at least 2γ + 1 available empty slots, so we know that e becomes empty at

least 2γ +1 times during the round. Thus, even if all (at most γ) packets entering Ri during

this phase are through injection at node u with the same first edge e = (u, v) in their path,

all of these packets can be injected into circulation in Ri in just this one round.
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Lemma 4.3 Suppose that packet π with first edge e ∈ Ri is injected into node ri during

phase φ of Algorithm A. If Ri is ready for phase φ of Algorithm B, then packet π can be

injected into Ri without interfering with any already circulating packets.

4.1.4 Emulation of Packet Transfer

Suppose that in phase φ of Algorithm A, packet π moves from node ri to node rj. Assume

that at the beginning of phase φ in Algorithm B, packet π is circulating in region Ri, and

that region Rj is ready for phase φ of Algorithm B. During phase φ in Algorithm B, π will

move from Ri to Rj as follows. Packet π will circulate in Ri until the first round ω of phase

φ in which Ri is sending and Rj is receiving. (The existence of such a round is guaranteed

by Lemma 4.1.)

Since ri and rj are adjacent in G′, there exists a node u which is common to Ri and

Rj. Since node u is in Ri, there exists an edge ei = (ui, u) ∈ ψi on the Euler cycle of Ri.

Similarly, there exists an edge ej = (u, uj) ∈ ψj on the Euler cycle of Rj. During round ω,

packet π circulates (in slow mode) in region Ri along the Euler cycle ψi. At some particular

slow time step τ of the round, the current edge of π will be ei. During the next Ts = 2β + 1

time steps, π oscillates on edge ei, and will appear at the common node u at the β +1 times

τ + 1, τ + 3, . . . , τ + 2β + 1. If at any of these times, the edge ej ∈ ψj is an empty slot, i.e.,

not the current edge of any packet circulating (in normal mode) in Rj, then π switches from

oscillation on edge ei, making ej its new current edge. Packet π now continues to circulate

in Rj at normal speed. Since π enters Rj on an empty edge, it will not interfere with any

packets already circulating in Rj. Note that π will have completed a full circuit on its Euler

path ψi in at most 4β2 + 2β time steps, thus, it will have completed its oscillations on edge

ei within the first 4β2 + 2β time steps of the round. Thus, π will enter Rj within the first

4β2 + 2β time steps of round ω, provided that it found an empty edge on which to enter.

We now show that during round ω, π will indeed find an empty edge on which to move

into Rj. Specifically, for at least one of the time steps τ + 1, τ + 3, . . . , τ + 2β + 1, the edge

ej ∈ ψj will be an empty slot. Remember that empty slots circulate backwards in Rj at the

rate of one edge per time-step. Thus, every available empty slot will pass ej at least once

during any consecutive 2β time steps. By the arguments in Section 4.1.3, we know that

there are at least 2γ +1 such available empty slots. Therefore, edge ej will become an empty

slot at least once in the 2β + 1 consecutive time steps τ + 1, τ + 2, τ + 3, . . . , τ + 2β + 1.

However, due to the nature of packet π’s oscillation on edge ei, packet π will only be able

to use an empty slot if the slot passes ej at time step τ + k for some odd k ∈ [1, 2β + 1]. To

show that such a situation is guaranteed to occur, we need to show that there is at least one

pair of consecutive available empty slots.
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Lemma 4.4 Suppose Rj is ready for phase φ of Algorithm B. There is at least one pair of

consecutive empty slots that is available for π.

Proof: Say that a slot is booked if it is not available for π. Let Γ ≤ 2γ − 1 be the number

of booked slots. The number of available empty slots is |ψj| − Γ. Since |ψj| ≥ 4γ, we have

that Γ < |ψj|/2. Suppose there is no pair of consecutive available slots for π. For every

available slot, the next slot must therefore be booked, hence the number of available slots

is at most |ψj|/2. Thus, |ψj|, the total number of slots (booked plus available), is at most

Γ + |ψj|/2 < |ψj|, a contradiction.

Let the two consecutive available slots implied by Lemma 4.4 be c1 and c2. Suppose that c1

passes ej first at time step τ + k1 for some k1 ∈ [0, 2β− 1]. If k1 is odd, then this empty slot

can be used by π. If not, then c2 passes ej at time step τ + k1 + 1, where k1 + 1 ∈ [1, 2β] is

odd, and so can be used by π. We have therefore shown:

Lemma 4.5 Suppose that packet π is transferred from ri to rj in phase φ of Algorithm A.

In Algorithm B, suppose that Rj is ready for phase φ, and that at the begining of phase φ, π

is circulating in region Ri. Then, π can be transferred from region Ri to Rj during the first

4β2 + 2β time steps of a round in phase φ of Algorithm B.

Note that since the packet transfers over into an empty edge, it does not interfere with any

packets that were already circulating.

4.1.5 Emulation of Absorbtion

Suppose that packet π moves from node ri to its destination node rj in phase φ in store-and-

forward Algorithm A (and is absorbed). Assume that Rj is ready for phase φ of Algorithm

B and that π is circulating in Ri at the beginning of phase φ. We use the packet transfer

emulation (Section 4.1.4) to first move the packet from region Ri to Rj in phase φ. By

Lemma 4.5, this can be done in the first 4β2 + 2β time steps of a round of phase φ in which

Ri is sending and Rj receiving. The packet then circulates in Rj at normal speed until it

reaches its destination node, at which point it is absorbed. Since the packet completes the

Euler cycle for Rj in at most 2β time steps, the number of time steps to be transferred,

circulate and be absorbed is at most 4β2 + 4β ≤ Z, and this implies:

Lemma 4.6 Suppose that packet π is transferred from ri to rj where it is absorbed in phase

φ of Algorithm A. In Algorithm B, suppose that Rj is ready for phase φ, and that at the

beginning of phase φ, π is circulating in region Ri. Then, π can be transferred from region

Ri to Rj and absorbed during a single round of phase φ in Algorithm B.
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4.1.6 Emulation of Buffering

Suppose that packet π is buffered at node ri during phase φ of Algorithm A. Assume that

in Algorithm B, packet π is already circulating in region Ri. Packet π will then continue to

circulate in Ri uninterrupted through the entire phase φ. This is certainly possible unless

some new packets entered the region (by transfer or injection) into the current edge of π.

As we have already shown, injected or transferred packets do not interfere with already

circulating packets, since they always enter on empty edges. We have the following lemma.

Lemma 4.7 If packet π is circulating in Ri at the end of phase φ− 1 of Algorithm B, and

in phase φ of Algorithm A, π is buffered at ri, then in phase φ of Algorithm B, it can be

buffered in Ri using circulation.

4.2 Analysis of Emulation

First, we prove that Algorithm B correctly emulates Algorithm A. We then analyze the

delivery time of Algorithm B in G in terms of the delivery time of Algorithm A in G′.

4.2.1 Correctness

Assume that α = 2γ ≤ |E| in order to guarantee the existence of the [α, β]-partition.

Algorithm B correctly emulates algorithm A phase by phase if, at the end of every phase φ,

the following two statements hold:

(i) in Algorithm A, packet π is in node ri iff in Algorithm B it is circulating in region Ri

(ii) in algorithm A packet π is injected (absorbed) at node ri, if and only if in Algorithm

B packet π is injected (absorbed) into region Ri.

We now prove by induction on the phase number φ that Algorithm B correctly emulates

Algorithm A. Observe that when φ = 1, Algorithm A can only inject packets into nodes.

The conditions of Lemma 4.3 are satisfied, and since at most γ packets are injected into a

node in G′, Algorithm B can successfully inject these packets into the corresponding regions.

Suppose that Algorithm B correctly emulates Algorithm A up to phase φ0 ≥ 1. At the end

of phase φ0, there are at most γ packets circulating in any region Ri since every packet π in

node ri in the execution of Algorithm A is in region Ri in the execution of Algorithm B, and

during the last time step of phase φ, Algorithm A can only be buffering at most γ packets

(all other packets have left to adjacent nodes). Thus, the conditions of Lemmas 4.3, 4.5, 4.6,

and 4.7, are satisfied for every packet π. Every action that π could take in phase φ0 + 1 of

Algorithm A can now be emulated in phase φ0 + 1 of Algorithm B. By induction, we now

have:
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Theorem 4.8 (Correctness of Emulation) Algorithm B correctly emulates in G every

phase in the execution of Algorithm A in G′. Hence, Algorithm B solves the batch problem

Q without outgoing edge-buffers, and implicitly constructs the paths P̂ and a collision-free

schedule in them.

4.2.2 Bufferless Delivery Time

Let TB(Q) be the delivery time for bufferless Algorithm B to solve the batch problem Q

(using initial paths P), and let ΦA(Q′) be the number of phases required by Algorithm A

to solve scheduling problem Q′ (corresponding to the batch problem Q) on the region graph

G′. Since Algorithm B emulates Algorithm A phase for phase, Algorithm B uses the same

number of phases as Algorithm B, i.e., ΦB(Q) = ΦA(Q′). The delivery time is given by

TB(Q) ≤ Ξ · Z · ΦB(Q),

≤ 576γ2d log χ e · ΦA(Q′),

where we have used Z = 4β2 + 4β ≤ 8β2, β = 6γ − 3 ≤ 6γ and Ξ = 2σ = 2d log χ e (χ is the

chromatic number of the region graph G′).

Theorem 4.9 (Bufferless delivery time) TB(Q) ≤ c·ΦA(Q′)·γ2 ·log χ for some constant

c.

Since χ ≤ n′ ≤ |E|/α = O(n2), we have that TB(Q) = O(ΦA(Q′) · γ2 · log n).

Recap. The bufferless algorithm solves the batch problem by deterministically emulating

a store-and-forward algorithm on a corresponding scheduling problem in the region graph.

Buffering is replaced by packet circulation, and the cost of the emulation is O(γ2 · log n),

where γ is the node-buffer size required by the store-and-forward algorithm. Any store-

and-forward algorithm that satisfies the two required properties for emulation (Section 3)

will give a valid bufferless algorithm. The more efficient the store-and-forward algorithm is

(in terms of phases) and the smaller the buffer size used, the more efficient the bufferless

algorithm will be.

5 A Universal Bufferless Algorithm

By combining the results in Sections 3 and 4 (specifically Theorems 3.6 and 4.9), we will

obtain a specific randomized universal bufferless algorithm which we denote Algorithm B1.

Algorithm B1 emulates the store-and-forward Algorithm A1. The buffer size required by

algorithm A1 is γ ≥ 6 log(n′ + 2N). Since n′ ≤ |E|/α ≤ |E|, we can set γ = 6 log(|E|+ 2N).
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In order to apply the bufferless emulation algorithm, we need an [α, β]-partition, where

α = 2γ and β = 6γ − 3. Since α ≤ |E|, we must have that 2γ ≤ |E|. Substituting the

expression for γ, we find that 2N ≤ 2|E|/12−|E|. Thus, for the case where 2N > 2|E|/12−|E|
we need to apply a different approach. We examine these two cases separately.

5.1 The Case 2N ≤ 2|E|/12 − |E|
In this case, we can apply the bufferless emulation with γ = 6 log(|E|+ 2N). Note that γ is

independent of the size of G′. Combining Theorems 3.6 and 4.9, we obtain

TB1(Q) ≤ c · ΦA1(Q
′) · γ2 log χ,

≤ c ·
(

12
C ′

γ
+ D′

)
· log2(|E|+ 2N) · log χ,

≤ c · (C + D) · log2(|E|+ 2N) · log |E|,

where c represents a generic constant, not necessarily the same from line to line. The last

inequality follows by using Lemma 2.5 and the facts that β ≤ 6γ and χ ≤ n′ ≤ |E|/α ≤ |E|.
Since the randomized store-and-forward Algorithm A1 succeeds with probability at least

1 − 1/(n′ + 2N), the bufferless Algorithm B1 has the same probability of success (i.e. it

correctly sends the packets with the advertised delivery time with the same probability).

Since n′ ≥ |E|/β, β = 6γ − 3, γ = 6 log(|E| + 2N), and |E| ≤ n2, we have that the

probability of success is at least

1− 1

n′ + 2N
≥ 1− 1

|E|
36·log(|E|+2N)−3

+ 2N
= 1−O((n + N)−λ),

for some constant λ > 0.

We now consider how the bufferless emulation of the store-and-forward algorithm can be

performed in a distributed manner by the nodes of network G; that is, packet forwarding

decisions can be made locally at each node. In order to do so, we need to assume that

every node in G knows the following before the algorithm starts: the network topology G,

the value of congestion C, and the number of packets N (such assumptions are commonly

made in distributed bufferless routing algorithms [17, 32]). Based on these parameters, each

node in G can compute the parameters which are necessary for the emulation: such as the

structure of G′, the buffer size γ, the duration of phases, etc.. In this way, the nodes in

G know what kind of actions to perform at each time step in order to emulate the actions

of the store-and-forward algorithm A1. Note that that a node does need to have a-priori

information about the packets with origin at other nodes.

Alternatively, instead of knowing G, each node could have been supplied a-priori infor-

mation about G′. In particular, each node needs to have information about the regions of
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G′ that it participates to. However, G′ depends on N , since each region has O(log(|E|+N))

edges. Different batch problems may have different values of N and use different graph G′.

If we write 2y ≤ N < 2y+1, where 0 ≤ y ≤ |E|/12, we observe that there are in total Θ(|E|)
different graphs G′ that we could use for the emulation, one graph for each range [2y, 2y+1)

of the value N . Each node in G could have been informed about all these possible graphs of

G′, and choose an appropriate one for the current value of N .

5.2 The Case 2N > 2|E|/12 − |E|
In this case, we send the N packets of batch problem Q to their destinations one after the

other along their pre-specified paths in G. Each packet takes time at most D to be delivered

to its destination; thus, the total delivery time to send all the packets is at most DN . By the

pigeonhole principle, C ≥ N/|E|, and thus C > (2|E|/12 − |E|)/2|E|. Since |E| = O(log N)

and D ≤ |E|, the delivery time is ND ≤ CD|E| = O(C log2 N).

This simple algorithm can be converted to a distributed algorithm, where nodes make

local decisions about packets, using packet priorities. There are two packet priorities, 0 and

1; in collisions, packets with priority 1 win, while packets with priority 0 are deflected. The

details are given below. The algorithm proceeds in phases of duration |E| = O(log N).

i. At the beginning of the first phase, for each out-going edge e, a node injects at most one

packet (if it has one) with e being the first edge in the path of the packet. All packets

start with priority 1.

ii. For the duration of the phase, priority 1 packets always try to move to their destinations

along their path, unless there is a collision. In a collision, priority 1 packets have

precedence over priority 0 packets. If multiple priority 1 packets collide, then one of

them (arbitrarily) wins the collision and all the other priority 1 packets involved in the

collision drop to priority 0.

iii. Once a packet becomes priority 0, it randomly follows any available edge from its current

node toward its destination in hot-potato style. If a packet of priority 0 happens to arrive

at its destination during a phase, then it is absorbed.

iv. At the end of the phase, each remaining packet resets its path to be the shortest path

from its current node to its destination.

v. For each subsequent phase, all nodes inject at most one packet per out-going edge as at

the beginning of the first phase, with one exception: they do not inject a packet with

initial edge e if some other packet is already at the node from the previous phase and
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has e as the next edge in its new (shortest) path to its destination. All packets (newly

injected and from previous phase) begin the phase with priority 1.

vi. The entire process repeats for N phases.

If at the beginning of the phase there are packets in the network (newly injected of from

previous phase), then all of them have priority 1. During the phase, at least one packet will

retain priority 1, since in collisions involving packets with priority 1, at least one priority 1

packet survives. Further, in every time step, a priority 1 packet (unless it drops to priority

0) moves one edge closer to its destination. Since any path is no longer than the number of

edges in the network, after D ≤ |E| time steps, all the priority 1 packets that did not drop

to priority 0 (at least 1 of them exists) have been absorbed at their respective destinations.

Thus, at least one packet is absorbed in each phase that starts with at least one packet.

Note that if nodes have packets to inject, then at the beginning of the phase there is at least

one packet in the network (newly injected or from the previous phase). Therefore, at most

N phases are needed. Since each phase has |E| time steps, the total delivery time is at most

N |E| ≤ C|E|2 = O(C log2 N).

5.3 Main Result

To wrap up, when 2N ≤ 2|E|/12−|E|, we use bufferless emulation which with high probability

obtains a delivery time of O((C + D) log2(|E| + 2N) log |E|). Otherwise, we use the the

simple brute-force algorithm of sending the packets one by one, which has delivery time

O(C log2 N). Combining these two results and using the fact that |E| = O(n2), we have a

universal bufferless algorithm B1 which with high probability has near optimal delivery time.

Theorem 5.1 (Delivery time of Algorithm B1) Given paths P that satisfy batch prob-

lem Q, bufferless algorithm B1 delivers the packets in time TB1(Q) = O((C+D)·log3(n+N)),

with probability 1−O((n + N)−λ), for some constant λ > 0.

When choosing optimal initial paths, Theorem 5.1 establishes our main result, Theorem

1.1. Furthermore, using the distributed version for each case 2N ≤ 2|E|/12 − |E| and 2N >

2|E|/12 − |E|, we obtain the distributed version of B1.

6 Discussion

Our main goal has been to establish the existence of universal, near optimal (to within

poly-log factors) bufferless communication algorithms. Our proof of this fact has been con-

structive, using a bufferless emulation technique to emulate a store-and-forward algorithm
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on a batch scheduling problem related to the original batch packet problem. The heart of

the emulation is to replace buffering with packet circulation. The algorithm we have given

is distributed modulo the need for nodes to know C and N . Note that in Theorem 5.1, it

is crucial to allow the paths to deviate from the pre-selected paths, otherwise it is possible

to construct problems for which the optimal bufferless routing time is at least a
√

N factor

from optimal [22]. We continue by discussing an alternative partitioning algorithm, and then

we finish with open problems.

6.1 Alternative Partitioning Algorithm

Here we present an alternative edge partitioning algorithm which is proposed by an anony-

mous referee of this journal. Consider a connected graph G = (V, E) for which we would like

to construct an [α, β]-partition of E into disjoint connected edge sets E1, ..., Ek. Consider

the line graph L(G) of G in which every node represents an edge in G and two nodes are

connected if their respective edges in G have a common endpoint. Take any spanning tree

T of L(G). T can be easily transformed into a spanning tree T ′ of constant degree by using

the fact that a node with a high degree in T must have two subsets of nodes forming cliques

(since their edges share a common endpoint in G), which can be translated to subtrees of

constant degree in T ′. The constant degree tree T ′ can easily be cut into disjoint node

sets U1, ..., Uk whose size is at least α and at most β (where β ≥ c1α + c2, for appropriate

constants c1 and c2). Transforming each Ui back into an edge set in G gives the desired

result.

6.2 Open Problems

We briefly discuss some interesting directions for future work. The most natural question

is whether some of the poly-log factors can be removed. Two of the poly-log factors arise

purely from the bufferless emulation, and our guess is that these poly-log factors may not

be necessary. Specifically, for a given batch problem Q with N packets on a network G, we

can define the Q-bufferless efficiency ρB(Q; N, G) as the ratio between the smallest possible

delivery time of a bufferless algorithm for Q and the smallest possible delivery time of a store-

and-forward algorithm for Q. The bufferless efficiency ρB(N,G) is the maximum possible

value of the Q-bufferless efficiency over all batch problems, ρB(N,G) = supQ ρB(Q; N, G).

Our result shows that the bufferless efficiency is poly-logarithmicaly bounded, ρB(N,G) =

O(log3(n + N)), where n is the size of G. An interesting problem is to determine tighter

asymptotic upper bounds as well as lower bounds for the bufferless efficiency for specific as

well as arbitrary networks (for example, it is shown in [21] that the bufferless efficiency for

leveled networks is only O(log(n + N))).
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A related question is whether special purpose store-and-forward scheduling algorithms

can be used with our emulation technique to obtain optimal bufferless delivery time on

specific classes of networks. If the region graph can be efficiently colored (for example fixed

degree region graphs) and if the node-buffering requirement on such region graphs is some

constant, then the resulting bufferless emulation only adds an additional constant factor to

the delivery time. A good candidate for such a result is the mesh network, since a natural

decomposition into regions would yield another mesh-like network, with good properties.

A slightly different line of enquiry is to determine whether the algorithm we have given

can be made dynamic (i.e., not requiring a priori knowledge of C and N), in addition to being

distributed. Such a result would show the existence of near-optimal bufferless algorithms for

dynamic packet problems.
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