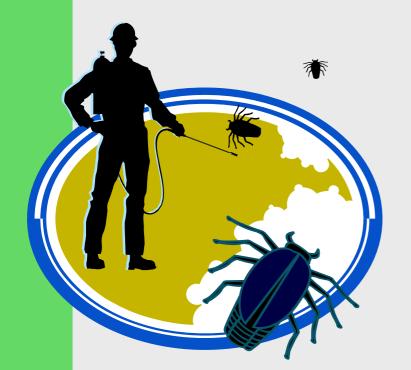
The Power of the Defender



M. Gelastou*
M. Mavronicolas*
V. Papadopoulou*
A. Philippou*
P. Spirakis[§]

IBC' 06, Lisbon, Portugal

*University of Cyprus, Cyprus *University of Patras and RACTI, Greece

Outline

- Introduction
- Model
- Previous Work and Motivation
- Results
- Conclusions
- Future work

General Motivation

- Network Security: a critical issue in networks
 - Large network size
 - Dynamic nature of current networks
 - Economic factors
 - Low performance of protected nodes

\Rightarrow Realistic Assumption:

a Partially Secure Network security provided to a limited part of the network

A Network Security Problem

- A partially secure network
 - Defender (firewall): protects the network
 - Attackers (viruses): damage the network (avoid the defender)
- ⇒ Attackers and defender have conflicting objectives
- ⇒ A strategic game with attacker players and a defender player

Research Approach

- Algorithmic Game Theory
- Graph Theory

Related Work

- [Mavronicolas, Papadopoulou, Philippou, Spirakis; ISAAC 2005]
 - Defender cleans a single edge:
 - Edge model
 - Pure Nash equilibria:
 - Non existence
 - Mixed Nash equilibria:
 - characterization
 - Matching Nash equilibria:
 - characterization and computation for bipartite graphs

Related Work (cont.)

- [Mavronicolas, Papadopoulou, Philippou, Spirakis; WINE 2005]
 - Matching Nash equilibria:
 - computation for other classes of graphs
- [Mavronicolas, Michael, Papadopoulou, Philippou, Spirakis; MFCS 2006]
 - Price of Defense
 - Guarantees on Price of Defense for structured Nash equilibria

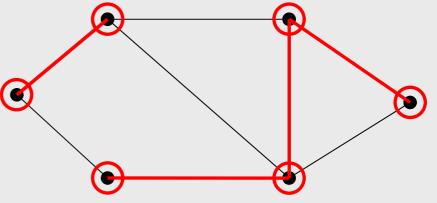
Less Related Work

[Aspnes, Chang, Yampolskiy; SODA 2005]

- A different security game
- Connection to the Graph Partition problem

Graph Theory Background

- A graph G=(V,E)
- Vertex Cover
- Edge Cover



- Independent Set
- Matching

A Strategic Game For $1 \le k \le |E|$, consider the strategic game $\Pi_k(G) = \langle \mathcal{N}, \{S_i\}_{i \in \mathcal{N}}, \{IP\}_{i \in \mathcal{N}} \rangle$

 $-\mathcal{N}=\mathcal{N}_{VP}\cup\mathcal{N}_{TP}$

-v attackers or vertex players vp_i , with strategy set $S_{vp_i} = V$

- a *defender* or the *tuple edge player* tep, with strategy set $S_{tep} = E^k$ (all sets of k edges)

Pure Strategies and Profiles

Pure Strategy for player i: a single strategy from its strategy set

Pure Profile:

a collection of pure strategies for all players

Individual Profits

Individual Profits in $\mathbf{s} = \langle s_1, \dots s_{\nu}, s_{tep} \rangle \in S$

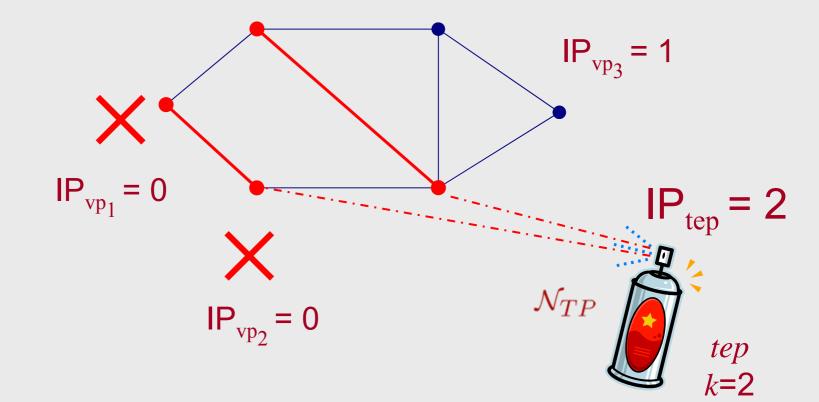
– Vertex player vp_i:

 $IP_i(s) = 0$ if $s_i \in s_{tep}$ or 1 otherwise

gains 1 if it is not caught by the tuple edge player, and 0 otherwise

- Tuple edge player tep: $IP_{tep}(s) = |\{i : s_i \in V(s_{tep})\}|$ gains the number of vertex players incident to its selected tuple

Model Game Example



Mixed Strategies and Profiles

- Mixed strategy s_i for player i:
 - a probability distribution over its strategy set
- Mixed profile s:
 - a collection of mixed strategies for all players
- **Support** of player *i*:

set of pure strategies receiving positive probability

• Expected Individual Profit IP_i :

expectation of Individual Profit of player *i* in profile s

Model Notation

- *tuple* t: a set of k edges
- V(t): vertices incident to the edges of tuple t
- E(S): distinct edges of the set of tuples S

In a profile s,

s_{tep}(t): probability that tep chooses tuple t

Notation (cont.)

In a profile s,

• Support_s(i):

the support of player *i*

• Support_s(VP):

the support of all vertex players

 Tuples_s(v) = { t : v ∈ V(t), t ∈ Support_s(tep) }: set of tuples of the support of the tuple edge player that contain vertex v

Notation (cont.)

In a profile s,

• **Hit(**v):

the event that the tuple edge player chooses tuple that contains vertex $\boldsymbol{\nu}$

 $P_s(Hit(v)) = \sum_{t \in Tuples_s(v)} s_{tep}(t)$

• VP_s(υ):

expected number of vertex players choosing vertex $\boldsymbol{\nu}$

• VP_s(t):

expected number of vertex players on vertices of the tuple \ensuremath{t}

Model Profiles

• Uniform:

uniform probability distribution on each player's support

Attacker Symmetric:

all vertex players have the same distribution

Nash Equilibrium (NE)

No player can unilaterally improve its Individual Profit by switching to another strategy.

Previous Work and Motivation Edge Model

- Edge Model [MPPS'05] = Tuple model for k =1
- In a *Covering* profile **s** [MPPS'05]:
 - Support_s(ep) is an Edge Cover
 - Support_s(VP) is a Vertex Cover of
 G(Support_s(ep))

Previous Work and Motivation Edge Model (cont.)

- [MPPS'05]. An Independent Covering profile is a Uniform, Attacker Symmetric Covering profile such that:
 - Support_s(VP) is Independent Set
 - Each vertex of Support_s(VP) is incident to only one edge of Support_s(ep)

Previous Work and Motivation

Edge Model (cont.)

• Theorem [MPPS'05].

An Independent Covering profile is a Nash equilibrium.

Previous Work and Motivation Motivation

- Extend the Edge model \Rightarrow Tuple model
 - Increased power to the defender
 - Increased quality of the protection provided in the network

Summary

- Graph-theoretic characterization of Nash Equilibria
- Necessary conditions for Nash Equilibria
 ⇒ k-Covering profiles
- Independent k-Covering profiles
 - are Nash equilibria
 - called k-Matching Nash equilibria

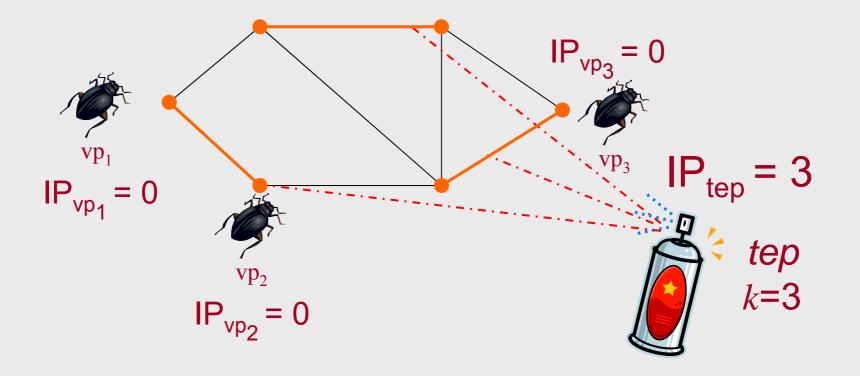
Summary (cont.)

- Characterization of graphs admitting
 k-Matching Nash equilibria
- Polynomial-time algorithm for computing a *k*-Matching Nash equilibrium
- The Individual Profit of the defender is multiplied by k compared to the Edge model

Pure Nash Equilibria

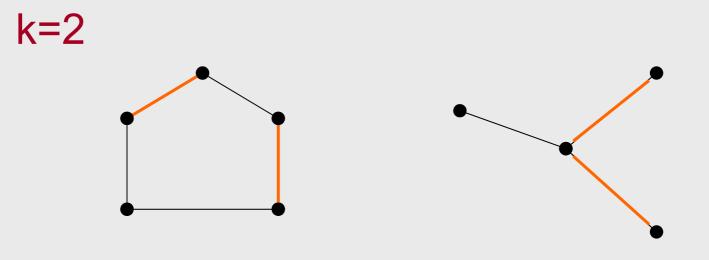
• Theorem 1.

G admits a pure Nash equilibrium if and only if G has an Edge Cover of size *k*.



Pure Nash Equilibria (cont.)

- If $|V(G)| \ge 2k + 1$, then G admits no pure NE.
- If $|V(G)| \leq 2k$, G does not necessarily admit a Nash equilibrium.



Characterization of Nash Equilibria

• Theorem 2.

A profile **s** is a Nash Equilibrum if and only if: - For any vertex $v \in \text{Support}_s(\text{VP})$, $P_s(\text{Hit}(v)) = \min_v P_s(\text{Hit}(v))$ - For any tuple $\mathbf{t} \in \text{Support}_s(\text{tep})$, $VP_s(t) = \max_t VP_s(\mathbf{t})$

Necessary Conditions for NE

- Definition 2.
 - A *k*-Covering profile **s** of $\Pi_k(G)$ satisfies:
 - Support_s(tep) is an Edge Cover
 - Support_s(VP) is a Vertex Cover of G(Support_s(tep))

Necessary Conditions for NE

• Proposition 3.

A Nash equilibrium is a *k*-Covering profile.

Independent *k*-Covering Profiles

Definition 3. An *Independent k-Covering* profile is a Uniform, Attacker Symmetric Covering profile such that:

- Support_s(VP) is an Independent Set
- Each vertex of Support_s(VP) is incident to only one edge of E(Support_s(tep)).
- Each edge in E(Support_s(tep)) belongs to an equal number of distinct tuples of Support_s(tep).

k-Matching Nash Equilibria

• Theorem 3.

An Independent *k*-Covering profile is a Nash Equilibrium.

Call it a k-Matching Nash Equilibrium

The Power of the Defender

• Proposition 3.

Computing a Matching Nash equilibrium s^1 for $\Pi_1(G)$ and computing a *k*-Matching Nash equilibrium s^k of $\Pi_k(G)$ are polynomial time equivalent.

The Power of the Defender

• Theorem 4.

Assume that G admits a Matching Nash Equilibrium s^1 for $\Pi_1(G)$. Then G admits a *k*-Matching Nash Equilibrium s^k for $\Pi_k(G)$ with $IP_{tep}(s^k) = k \cdot IP_{ep}(s^1)$.

Characterization of k-Matching NE

Definition 4.

The graph G is a *U*-Expander graph if for each set U' μ U, $|U'| \cdot |Neigh_G (U') Å (V \setminus U)|.$

Characterization of k-Matching NE

• Theorem 5.

A G admits a *k*-Matching Nash Equilibrium if and only if G contains an Independent Set IS such that G is a (V\IS)-Expander graph.

Polynomial Time Algorithm A_{tuple}

INPUT: A game $\Pi_k(G)$, with an Independent set of G such that G is a V\IS-Expander graph. **OUTPUT**: A Nash equilibrium **s**^{*k*} for $\Pi_k(G)$

- Compute a Matching Nash equilibrium s¹ for Π₁(G) [MPPS, ISAAC 2005]
- 2. Compute a tuple set **T**
- Construct a Uniform, Attacker Symmetric profile s^k with:
 - Support_{sk}(tep) = T

Computation of Tuple Set **T**

1. Label the edges of $Support_{s1}(ep)$

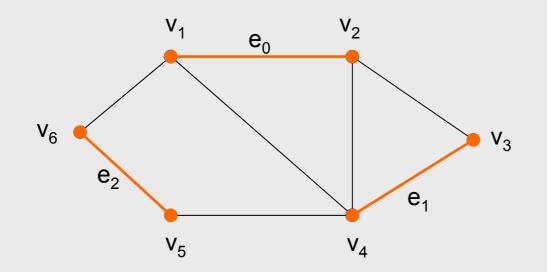
 $e_0, e_1, ..., e_{E_{num}}$

2. Do

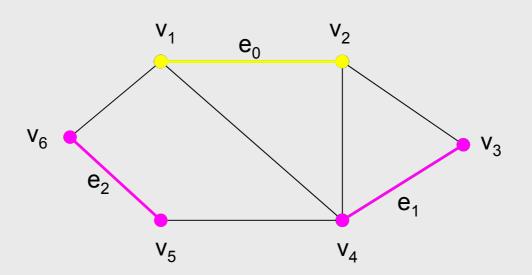
a) Construct a tuple \mathbf{t}_i of k edges such that $t_i = \langle e_{((i-1)\cdot k)mod(E_{num})}, \dots, e_{(i\cdot k-1)mod(E_{num})} \rangle$

b) $T = T \cup \{\mathbf{t}_i\}$ while $|T| = \frac{E_{num}}{GCD(E_{num},k)}$

- Example
- Support_{s1}(ep) = $< e_0, e_1, e_2 >$



Example (cont)



• *k*=2

$$|T| = \frac{E_{num}}{GCD(E_{num},k)} = \frac{3}{GCD(3,2)} = 3$$

 \Rightarrow **T** = { <e₀,e₁>, <e₂,e₀>,<e₁,e₂>}

Polynomial Time Algorithm (cont.)

• Theorem 6.

Algorithm A_{tuple} computes a *k*-Matching Nash equilibrium in time

O(k-n + T(G))

T(G): the time needed to compute a Matching Nash equilibrium for the Edge model.

Application

Corollary 1.

A bipartite graph G admits a *k*-Matching Nash equilibrium which can be computed in polynomial time

$$O\left(\sqrt{n}\cdot m\cdot \log_n \frac{n^2}{m}\right)$$
 .

Conclusions

Conclusions

- Characterized Pure and Mixed Nash Equilibria
- Polynomial-time algorithm for computing *k*-Matching Nash equilibria
- Increased protection of the network through the increased power of the defender

Future Work

Future Work

- Other families of structured Nash equilibria
- Path model: The defender protects a path of length k

Thank you !

