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General Motivation

• Network Security: a critical issue in 
networks 
– Large network size
– Dynamic nature of current networks
– Economic factors
– Low performance of protected nodes

Introduction
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⇒ Realistic Assumption:

a Partially Secure Network
security provided to a limited part of the 
network

Introduction
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A Network Security Problem
• A partially secure network 

– Defender (firewall): protects the network
– Attackers (viruses): damage the network 

(avoid the defender)

⇒ Attackers and defender have 
conflicting objectives

⇒ A strategic game with attacker players 
and a defender player

Introduction
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Research Approach

• Algorithmic Game Theory

• Graph Theory

Introduction
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Related Work
• [Mavronicolas, Papadopoulou, Philippou, Spirakis; ISAAC 2005] 

– Defender cleans a single edge: 
• Edge model

– Pure Nash equilibria: 
• Non existence

– Mixed Nash equilibria: 
• characterization

– Matching Nash equilibria:
• characterization and computation for bipartite 

graphs

Introduction
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Related Work (cont.)
• [Mavronicolas, Papadopoulou, Philippou, Spirakis; WINE 2005] 

– Matching Nash equilibria: 
• computation for other classes of graphs

• [Mavronicolas, Michael, Papadopoulou, Philippou, Spirakis; 
MFCS 2006]

– Price of Defense
– Guarantees on Price of Defense for 

structured Nash equilibria

Introduction
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Less Related Work

[Aspnes, Chang, Yampolskiy; SODA 2005]

– A different security game

– Connection to the Graph Partition problem

Introduction
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Graph Theory Background 

A graph G=(V,E)

• Vertex Cover

• Edge Cover

• Independent Set

• Matching

Introduction
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A Strategic Game
For 1 ≤ k ≤ |E|, consider the strategic game

–

– v attackers or vertex players vpi, with 
strategy set Svpi =V

– a defender or the tuple edge player tep,  
with strategy set Step= Ek (all sets of k
edges)

Model
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Pure Strategies and Profiles

• Pure Strategy for player i: 
a single strategy from its strategy set

• Pure Profile: 
a collection of pure strategies for all players 

Model
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Individual Profits
Individual Profits in 

– Vertex player vpi:

gains 1 if it is not caught by the tuple edge 
player, and 0 otherwise

– Tuple edge player tep:

gains the number of vertex players incident to its 
selected tuple

Model
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Game Example

tep
k=2

IPvp1
= 0 IPtep = 2

IPvp3
= 1

IPvp2
= 0

vp1 vp2 vp3

Model
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Mixed Strategies and Profiles
• Mixed strategy si for player i: 

a probability distribution over its strategy set

• Mixed profile s:
a collection of mixed strategies for all players 

• Support of player i:
set of pure strategies receiving positive probability

• Expected Individual Profit IPi : 
expectation of Individual Profit of player i in profile s

Model
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Notation

• tuple t: a set of k edges

• V(t): vertices incident to the edges of tuple t

• E(S): distinct edges of the set of tuples S

In a profile s,

• step(t): probability that tep chooses tuple t

Model
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Notation (cont.)
In a profile s,

• Supports(i): 
the support of player i

• Supports(VP): 
the support of all vertex players

• Tupless(υ) = { t : υ ∈ V(t), t ∈ Supports(tep) }: 
set of tuples of the support of the tuple edge player 
that contain vertex υ

Model
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Notation (cont.)
In a profile s,
• Hit(υ):

the event that the tuple edge player chooses 
tuple that contains vertex υ

Ps(Hit(υ)) =
• VPs(υ):

expected number of vertex players choosing 
vertex υ

• VPs(t):
expected number of vertex players on vertices of 
the tuple t

Model
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Profiles 

• Uniform: 

uniform probability distribution on each 
player’s support

• Attacker Symmetric: 

all vertex players have the same distribution

Model
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Nash Equilibrium (NE)

No player can unilaterally improve its 
Individual Profit by switching to another 
strategy.

Model
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Edge Model

• Edge Model [MPPS´05] = Tuple model for k =1

• In a Covering profile s [MPPS´05]:

– Supports(ep) is an Edge Cover

– Supports(VP) is a Vertex Cover of 

G(Supports(ep))

Previous Work and Motivation
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Edge Model (cont.)

• [MPPS´05]. An Independent Covering profile 

is a Uniform, Attacker Symmetric Covering 

profile such that:

– Supports(VP) is Independent Set 

– Each vertex of Supports(VP) is incident to 

only one edge of Supports(ep)

Previous Work and Motivation
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Edge Model (cont.)

• Theorem [MPPS’05].

An Independent Covering profile is a 
Nash equilibrium.

Previous Work and Motivation
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Motivation

• Extend the Edge model ⇒ Tuple model

• Increased power to the defender

• Increased quality of the protection 

provided in the network

Previous Work and Motivation
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Summary
• Graph-theoretic characterization of Nash 

Equilibria

• Necessary conditions for Nash Equilibria

 ⇒ k-Covering profiles

• Independent k-Covering profiles

– are Nash equilibria

• called k-Matching Nash equilibria

Results
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Summary (cont.)

• Characterization of graphs admitting

k-Matching Nash equilibria 

• Polynomial-time algorithm for computing a 

k-Matching Nash equilibrium

• The Individual Profit of the defender is 

multiplied by k compared to the Edge model

Results
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Pure Nash Equilibria
• Theorem 1. 

G admits a pure Nash equilibrium if and only if 
G has an Edge Cover of size k.

IPvp1
= 0

IPvp2
= 0

IPvp3
= 0

vp1

vp2

vp3

tep
k=3

IPtep = 3

Results
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Pure Nash Equilibria (cont.)
• If |V(G)| ≥ 2k +1, then G admits no pure 

NE.
• If |V(G)| ≤ 2k, G does not necessarily 

admit a Nash equilibrium.

k=2

Results
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Characterization of Nash Equilibria
Results

• Theorem 2. 

A profile s is a Nash Equilibrum if and only if:

– For any vertex v ∈ Supports(VP),

Ps(Hit(v)) = minv Ps(Hit(v))

– For any tuple t ∈ Supports(tep),

VPs(t) = maxt VPs(t)
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Necessary Conditions for NE

• Definition 2.

A k-Covering profile s of Πk(G)
satisfies:

– Supports(tep) is an Edge Cover

– Supports(VP) is a Vertex Cover of 
G(Supports(tep))

Results
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Necessary Conditions for NE

• Proposition 3. 
A Nash equilibrium is a k-Covering 
profile.

Results
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Independent k-Covering Profiles

Definition 3. An Independent k-Covering
profile is a Uniform, Attacker Symmetric 
Covering profile such that:
– Supports(VP) is an Independent Set 
– Each vertex of Supports(VP) is incident   

to only one edge of E(Supports(tep)).
– Each edge in E(Supports(tep)) belongs to 

an equal number of distinct tuples of 
Supports(tep).

Results
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k-Matching Nash Equilibria

• Theorem 3.
An Independent k-Covering profile is a 
Nash Equilibrium.

• Call it a k-Matching Nash Equilibrium

Results
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The Power of the Defender

• Proposition 3. 

Computing a Matching Nash equilibrium s1

for Π1(G) and computing a k-Matching Nash 

equilibrium sk of Πk(G) are polynomial time 

equivalent.

Results
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The Power of the Defender

• Theorem 4.
Assume that G admits a Matching Nash 

Equilibrium s1 for Π1(G). Then G admits a 

k-Matching Nash Equilibrium sk for Πk(G)

with                                                   .

Results
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Characterization of k-Matching NE

• Definition 4.
The graph G is a U-Expander graph if 
for each set U'µ U, 

|U'| · | NeighG (U') Å (V \ U) |.

Results
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Characterization of k-Matching NE

• Theorem 5.

A G admits a k-Matching Nash 

Equilibrium if and only if G contains an 

Independent Set IS such that G is a 

(V\IS)-Expander graph.

Results
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Polynomial Time Algorithm Atuple

Results

INPUT: A game Πk(G), with an Independent set of 
G such that G is a V\IS-Expander graph.

OUTPUT: A Nash equilibrium sk for Πk(G)

1. Compute a Matching Nash equilibrium s1 for 
Π1(G) [MPPS, ISAAC 2005]

2. Compute a tuple set T
3. Construct a Uniform, Attacker Symmetric 

profile sk with:
– Supportsk(tep) = T
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Computation of Tuple Set T

1. Label the edges of Supports1(ep)
e0, e1,…, eEnum

2. Do
a) Construct a tuple ti of k edges such that

b) T = T ∪{ti}

while

Results
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Example
• Supports1(ep) = <e0,e1,e2>

v1 v2

v3

v5 v4

v6

e0

e1

e2

Results
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Example (cont)

• k=2

⇒ T = { <e0,e1>, <e2,e0>,<e1,e2>}

v1 v2

v3

v5 v4

v6

e0

e1

e2

Results
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Polynomial Time Algorithm (cont.)

• Theorem 6.
Algorithm Atuple computes a k-Matching Nash 
equilibrium in time

O(k·n + T(G))
T(G): the time needed to compute a Matching Nash 
equilibrium for the Edge model.
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Application

• Corollary 1.

A bipartite graph G admits a k-Matching 
Nash equilibrium which can be computed in 
polynomial time

.

Results
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Conclusions
• Characterized Pure and Mixed Nash 

Equilibria

• Polynomial-time algorithm for 
computing k-Matching Nash equilibria

• Increased protection of the network 
through the increased power of the 
defender

Conclusions
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Future Work

• Other families of structured Nash 
equilibria

• Path model: The defender protects a 
path of length k

Future Work
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Thank you !
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