
FIFO is Unstable at Arbitrarily Low Rates∗

Dimitrios Koukopoulos† Marios Mavronicolas‡ Paul Spirakis§

Abstract

In this work, we study the stability of the FIFO (First-In-First-Out) protocol in the context of
Adversarial Queueing Theory. As an important intermediate step, we consider dynamic capacities,
where each network link capacity may arbitrarily take on values in the two-valued set of integers
{1, C} for C > 1 being the high capacity (a parameter). In this context:

(1) We construct a FIFO network of only eight nodes which is already unstable at rate r = 0.41.
This is the current record for instability of FIFO over networks of fixed-size (independent of r).

(2) For every r > 0 we then construct a FIFO network (whose size increases with 1

r
) which is

unstable at rate r.

Subsequently, we show how to simulate the particular FIFO network in (2) above with dynamic
capacities 1, C, in order to produce a FIFO network with all link capacities being equal, while
preserving instability thresholds. Hence, we eventually show our main result: FIFO can become
unstable in the usual model of unit capacities links, for arbitrarily low packet injection rates. This
closes a major open problem (the question of FIFO stability) in the field of Adversarial Queueing
Theory posed in the pioneering work of Borodin et al. [5].

Keywords: Routing, Adversarial Queueing Theory, FIFO, Stability.

Note 1: Many of our proofs are only sketched in this extended abstract; full proofs are included in a clearly

marked Appendix.

∗This work has been partially supported by the IST Program of the European Union under contract numbers IST-
1999-14186 (ALCOM-FT) and IST-2001-33116 (FLAGS), by funds from the Joint Program of Scientific and Technological
Collaboration between Greece and Cyprus (research project “Efficiency and Performance of Distributed Systems: Capabilities
and Limitations”), by the Greek General Secretariat for Research and Technology (project ΠENE∆ 99/ALKAD), and by
funds for the promotion of research at University of Cyprus.

†
Contact Author. Department of Computer Engineering and Informatics, University of Patras, Rion, 265 00 Patras,

Greece, & Computer Technology Institute, 61 Riga Feraiou, P. O. Box 1122, 261 10 Patras, Achaia, Greece. Fax: +30-
261-0-960442, Email: Dimitrios.Koukopoulos@cti.gr

‡Departemnt of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus. Email: mavronic@ucy.ac.cy
§Department of Computer Engineering and Informatics, University of Patras, Rion, 265 00 Patras, Greece, & Computer

Technology Institute, P. O. Box 1122, 261 10 Patras, Greece. Email: spirakis@cti.gr

Electronic Colloquium on Computational Complexity, Report No. 16 (2003)

ISSN 1433-8092

1 Introduction

Motivation-Framework. We are interested in the behavior of packet-switched networks in which
packets arrive dynamically at the nodes and they are routed in discrete time steps across the links.
Recent years have witnessed a vast amount of work on analyzing packet-switched networks under non-
probabilistic assumptions (rather than stochastic ones); We work within a model of worst-case continuous
packet arrivals, originally proposed by Borodin et al. [5] and termed Adversarial Queueing Theory to
reflect the assumption of an adversarial way of packet generation and path determination.

A major issue that arises in such a setting is that of stability– will the number of packets in the
network remain bounded at all times? The answer to this question may depend on the rate of injecting
packets into the network, the capacity of the links, which is the rate at which a link forwards outgoing
packets, and the protocol that is used when more than one packet wants to cross a given link in a single
time step. The underlying goal of our study is to establish stability properties of FIFO protocol when
packets are injected by an adversary (rather than by an oblivious randomized process).

In this work we consider that the adversary besides the packet injections in paths which it determines,
it also can set the capacities of edges in each time step as an important intermediate step in our
constructions. Note that we continue to assume uniform packet sizes. Furthermore, we consider greedy
contention-resolution protocols- always advance a packet across a queue (but one packet at each discrete
time step) whenever there resides at least one packet in the queue. Roughly speaking a protocol P is
stable [5] on a network G against an adversary A of rate r if there is an integer B (which may depend
on G and A) such that, starting from an empty configuration, the number of packets in the system is
bounded at all times by B.

One of the main interesting open problems in this area that first posed by “Borodin et al.” [5] is to
determine if FIFO can be made unstable for arbitrarily small positive rates of injection in the adversarial
model. This is an important problem taking into account that FIFO is the most popular protocol for
contention resolution in the Internet and other networks due to its simplicity and it has received a lot
of interest in the last years (see, e.g., [1, 2, 4, 9, 10, 11, 12]).

Contribution. In this paper we prove that FIFO can be unstable at arbitrarily low packet injection
rates in the Adversarial Queueing Model. Our method of proving this main result uses the model
of dynamic link capacities as an important intermediate step. More specifically, we initially consider
networks whose links can have a dynamically changing capacity which may have any of the two integer
values, 1 and C. Here C > 1 is an integer called the high capacity. In this framework, we first obtain
the following results:

(a) We construct a FIFO network of only 8 links that is unstable for any rate r ≥ 0.41 (for large enough
C values). This is the current record for FIFO instability over fixed-size networks (networks where
size is independent of r).

(b) We present an innovative parameterized adversarial construction A and a parameterized network
family Gr which, for any r > 0, gives a system (Gr,A,FIFO) that is unstable at rates ≥ r.

Our results above use the model of simple paths for packet paths (paths that do not contain over-
lapping edges). We then modify the construction (Interpreter A1) via suitable changes in the network
topology and packet paths (Figure 1), and thus we obtain, for any r > 0, a system (G

′

r,A
′
,FIFO) where

all links have capacity C all the times, which is unstable at rates ≥ r. Finally, we demonstrate how to
simulate the above family of FIFO networks by a family of FIFO networks where all links have capacity
1 all the times (Interpreter A2) and thus, for any r > 0, we provide a system (G

′′

r ,A
′′
,FIFO) which is

unstable at rates ≥ r. These simulation steps require the use of non-simple packet paths (paths that

1

(Gr,A,FIFO)
{1,C}

(Gr',A',FIFO)
{C}

Interpreter
A1 (Gr'',A'',FIFO)

{1}

Interpreter
A2

Figure 1: Simulations

contain overlapping edges). We take care here so that the non-simple paths have a length bounded by
a fixed function of the network size. Thus, taking the simulation steps together we show that, for any
injection rate r > 0, we can construct a FIFO network in the usual Adversarial Queueing Theory setting
that is unstable at rates ≥ r. The size of our final network is exponential in 1

r
. Our result closes one of

the major remaining open questions in the field of Adversarial Queueing Theory.

Related Work. The problem of dynamic packet arrivals and routing has been a major topic of study
within the field of Queueing Theory [8]. Typical assumption in this field are that packets are generated
according to a Poisson process, and that the time to traverse an edge is an exponentially-distributed
random variable, rather than a fixed constant. Instability in stochastic networks was first demonstrated
in [13]. Adversarial Queueing Theory was developed by Borodin et al. [5] as a more realistic model
that replaces traditional stochastic assumptions in Queueing Theory by more robust, worst-case ones.
Adversarial queueing theory received a lot of interest in the study of stability and instability issues (see,
e.g., [2, 9, 11, 12, 14]). Borodin et al. in [6] studied for the first time the impact on stability when
the edges in a network can have capacities and slowdowns and proved that the universal stability of
networks is preserved for dynamically changing capacities and speeds, while the universal stability of
Longest-In-System protocol is not preserved. In this work we continue this study as an intermediate step
in our constructions to the stability properties of the FIFO protocol.

The problem of FIFO stability has been investigated under various models leading to a number of
contrasting results. Till now there is no model for which FIFO has been proved unstable for arbitrarily
low injection rates. Kelly [10] showed that in stochastic networks where packet sizes and service times
are exponentially distributed, if the service time distribution at a server is session-independent then FIFO

is stable. Our result here is in contrast to Kelly’s result showing that the Stochastic and Adversarial
Queueing models are different. Andrews [1] showed that FIFO is unstable for network loads close to 1
in session-oriented networks [7]. Bramson [4] proved that FIFO is stable in the session-oriented model
if time is scaled, such that the packet sizes and the burstiness tend to zero and the injection rate of
the adversary is constant. The instability of FIFO for small-size networks in the adversarial queueing
model where the network size is independent of r was first established by Andrews et al. [2, Theorem
2.10] for injection rates r ≥ 0.85. Lower bounds of 0.8357 and 0.749 on FIFO instability were presented
by Diaz et al. [9, Theorem 3] and Koukopoulos et al. [11, Theorem 5.1] respectively. Here we further
improve the current record for FIFO instability over fixed-size networks presenting a FIFO network that is
unstable for r = 0.41. Except adversarial constructions for small-size networks, there are parameterized
constructions for networks with unbounded size. In the context of FIFO instability Lotker et al. [12]
proved an injection rate lower bound of 0.5 through a very nice parameterized construction on rate r;
the network size is a function of r that goes to infinity very fast as r goes down to 0.5. Here using a
parameterized construction in the same spirit as Lotker et al. [12] we prove that FIFO is unstable at
arbitrarily low injection rates.

Road Map. The rest of this paper is organized as follows. Section 2 presents our model definitions.
the model of dynamic link capcities.Section 3 deals with FIFO instability in networks with dynamic
capacities where packet injections follow the simple path model. Section 4 presents how to simulate
the family of the unstable FIFO networks Gr that described in Section 3 by a family of FIFO networks
where all links have capacity C all the times that are also unstable at rates ≥ r. Then, it shows how the
family of FIFO networks with uniform capacities C that are unstable for any r > 0, can be simulated by

2

a family of FIFO networks with unit link capacities that are also unstable at rates ≥ r. We conclude, in
Section 5, with a discussion of our results and some open problems.

2 The Model

Our model definitions are patterned after those in [5, Section 3]. For our intermediate step, we extend
this model to reflect the fact that edge capacities may vary arbitrarily as in [6, Section 2]. A routing
network is a directed graph with nodes and edges. Time proceeds in discrete steps. A packet is an atomic
entity that resides at a node at the end of any step. It must travel along paths in the network from its
source to its destination, both of which are nodes in the network. When it reaches its destination, we
say that it is absorbed. During each step, a packet may be sent from its current node along one of the
outgoing edges from that node. Edges can have different integer capacities, which may or may not vary
over time. Denote Ce(t) the capacity of edge e at time step t. That is, we assume that edge e is capable
of simultaneously transmitting up to Ce(t) packets at time t.

Any packets that wish to travel along an edge e at a particular time step but are not sent wait in
a queue for edge e. The delay of a packet is the number of steps spent by the packet while waiting in
queues. At each step, an em adversary generates a set of requests. A request is a path specifying the
route followed by a packet.1 We say that the adversary generates a set of packets when it generates
a set of requested paths. The adversary we use to prove instability in the case of the small-size FIFO

network predetermines the paths of the injected packets such that the path traversed by each packet
is fixed at the time of injection. However, in the other adversarial constructions the packets have long
paths. In order to handle this difficulty, we adopt a technique introduced by Lotker et al. [12, Lemma
3.1] that permits the adversary to specify packet paths in an “on-line” fashion without changing the
power of the adversary. That is, we can construct an adversary that does not specify the complete path
of the packets when they are injected, but it constructs it in a succession of refinements. There are no
computational restrictions on how the adversary chooses its requests in any given time step.

Fix any arbitrary positive integer w ≥ 1. For any edge e of the network and any sequence of w
consecutive time steps, define N(w, e) to be the number of paths injected by the adversary during the
time interval of w consecutive time steps that traverse edge e. For any constant r, 0 < r ≤ 1, a (w, r)-
adversary is an adversary that injects packets subject to the following load condition: For every edge e

and for every sequence τ of w consecutive time steps, N(τ, e) ≤ r
∑

t∈τ Ce(t) .

We say that a (w, r)-adversary injects packets at rate r with window size w. The assumption that
r ≤ 1 ensures that it is not necessary a priori that some edge of the network is congested (which would
surely happen when r > 1). We say that a (w, r)-adversary follows the model of uniform capacities
if for every link e Ce(t) = C at all times t. We remark that the model of unit capacities is the usual
Adversarial Queueing Model setting. Roughly speaking, this model views the time evolution of a packet-
switched communication network as a game between an adversary and a contention-resolution protocol.
A contention-resolution protocol specifies, for each pair of an edge e and a time step, which packet
among those waiting at the tail of edge e will be moved along edge e. In this work, we restrict attention
to FIFO that gives priority to the packets that arrived in the queue at the earliest time.

In the adversarial constructions we study here for proving instability, we assume that there is a
sufficiently large number of packets s0 in the initial system configuration. This will imply instability
results for networks with an empty initial configuration, as established by Andrews et al. [2, Lemma
2.9]. For simplicity, and in a way similar to that in [2] and in works following it, we omit floors and
ceilings from our analysis, and we sometimes count time steps and packets only roughly. This may only
result to loosing small additive constants, while it implies a gain in clarity.

1In Section 3, it is assumed, as it is common in packet routing, that all such paths are simple paths with no overlapping
edges. In Section 4, we use non-simple paths whose size is bounded by the network size.

3

f3'

e0

f1

e1

f5

f4

f3

f2
f5'

f4'
f1'

f2'

f6

f6'

Figure 2: The network G

3 FIFO Networks with Dynamic Capacities

3.1 A Small-Size FIFO Unstable Network

Theorem 3.1 For any r > 0.41, there is a a network G whose size is independent of r and an adversary
A of rate r, such that the system (G, A, FIFO) is unstable in the model of dynamic capacities.

Sketch of Proof: Consider the network G in Figure 2. We break the construction of the adversary A
into phases.

Inductive Hypothesis: At the beginning of phase j (suppose j is even), there are sj packets that are
queued in the queues f

′

1, f
′

2, f
′

4, f
′

5, f
′

6 (in total) requiring to traverse the edges e0, f2 and the number of
packets in queues f

′

1, f
′

4 is larger than in queues f
′

2, f
′

5.

Induction Step: At the beginning of phase j + 1 there will be more than sj packets (sj+1 packets) that
are queued in the queues f1, f2, f4, f5, f6 (in total) requiring to traverse the edges e1, f

′

2 and the number
of packets in queues f1, f4 is larger than in queues f2, f5.

We will construct an adversary A such that the induction step holds. The main ideas of the
construction of A are (a) the careful tuning of the duration of each round of every phase j (as a
function of the high capacity C, the injection rate r and the number of packets in the system at the
beginning of phase j, sj) to maximize the growth of the packet population in the system and, (b) the
careful setting of the capacities of some edges to 1 for specified time intervals in order to accumulate
packets. Proving that the induction step holds, we ensure that the inductive hypothesis will hold at
the beginning of phase j + 1 for the symmetric edges with an increased value of sj , sj+1 > sj . From
the inductive hypothesis, initially, there are sj packets (called S − flow) in the queues f

′

1, f
′

2, f
′

4, f
′

5, f
′

6

requiring to traverse the edges e0, f2. In order to prove the induction step, it is assumed that there is a
set S with a large enough number of |S| = sj packets in the initial system configuration. During phase
j the adversary plays three rounds of injections. The sequence of injections is as follows:

Round 1: This round lasts |T1| =
sj

C
time steps. During this round the edges f

′

1, e0, f1, f4, f6, e1, f
′

2

have capacity C, while all the other edges have unit capacity.

Adversary’s behavior. During this round the adversary injects a set X of |X| = rC|T1| packets in
queue f

′

1 wanting to traverse the edges f
′

1, e0, f1, f4, f6, e1, f
′

2. Also, the adversary injects a set S1 of
|S1| = r|T1| packets in queue f2 wanting to traverse the edge f2.

Evolution of the system configuration. All the S packets will traverse their initial edges in sj time steps
blocking the packets of set X in queue e0. At the same time, the packets of set S are delayed in queue
f2 due to the packets of set S1 and the unit capacity of the edge f2. The remaining packets of the set
S in f2 at the end of this round are |S

′
| = |S| − |T1|

|S|
|S|+r|T1|

packets, while the rest traverse the edge
f2 and they are absorbed. The remaining packets of the set S1 in queue f2 at the end of this round

4

are |S
′

1| = |S1| − |T1|
|S1|

|S|+|S1|
. The rest packets of the set S1 traverse the edge f2 and they are absorbed.

Therefore, the number of packets in queue f2 at the end of this round requiring to traverse edge f2 is
|S

′′
| = |S

′
|+ |S

′

1|.

Round 2: It lasts |T2| =
C−1+r

C2 sj time steps. During this round the edges f2, f5, f6, e1, f
′

2 have capacity
C, while all the other edges have unit capacity.

Adversary’s behavior. The adversary injects a set Y of |Y | = rC|T2| packets in queue f2 requiring to
traverse the edges f2, f5, f6, e1, f

′

2. Furthermore, the adversary injects a set S2 of |S2| = r|T2| packets
in queue f1 requiring to traverse the edge f1.

Evolution of the system configuration. The packets of set Y are blocked by the set S
′′
in queue f2. At

the same time, X packets are delayed in queue f1 by the S2 packets with which they get mixed with
proportion equal to their sizes. Also, X packets delay in f1 because it uses unit capacity. Therefore,
the remaining packets of X in queue f1 is |X

′
| = |X| − |T2|

|X|
|X|+|S2|

. The remaining packets of the set

S2 in f1 at the end of this round are |S
′

2| = |S2| − |T2|
|S2|

|X|+|S2|
. The rest packets of the set S2 traverse

the edge f1 and they are absorbed. Therefore, the total number of packets in queue f1 at the end of
this round requiring to traverse the edge f2 is |F | = |X

′
|+ |S

′

2|.

Round 3: It lasts |T3| =
r3+r2[2C2+2C−3]+r[C4+2C3−2C2−4C+3]−C3+2C−1

C3[C2+C−1+r]
sj time steps. During this round

the edges f1, f3, e1, f
′

2 have capacity C, while all the other edges have unit capacity.

Adversary’s behavior. During this round the adversary injects a set Z of packets in queue f1 requiring
to traverse the edges f1, f3, e1, f

′

2 where |Z| = rC|T3|.

Evolution of the system configuration. The F packets block the Z packets in queue f1, while they
traverse f1. From the F packets only the X

′
packets have as destination another edge than f1, while

the rest are absorbed after traversing f1. Because edge f4 has unit capacity, X
′
packets are delayed

in this queue. From these packets a portion X
′′
of packets requiring to traverse the edges f4, f6, e1, f

′

2

remain there where |X
′′
| = |X

′
| − |T3|. Because edge f5 has unit capacity, Y packets are delayed in

this queue. From these packets a portion Y
′
of packets requiring to traverse the edges f5, f6, e1, f

′

2

remain there where |Y
′
| = |Y | − |T3|. Note that during this round |K| = 2|T3| packets arrive in queue

f6 from queues f4, f5. However, the edge f6 has unit capacity and the duration of this round is |T3|
steps. Consequently, half of these packets will remain in queue f6 at the end of this round. Therefore, L
packets will remain in queue f6 at the end of this round requiring to traverse the edges f6, e1, f

′

2 where
|L| = |T3|. Therefore, the number of packets in queues f1, f2, f4, f5, f6 requiring to traverse the edges
e1, f

′

2 at the end of this round is sj+1 = |X
′′
|+ |Y

′
|+ |Z|+ |L| (1). In order to have instability, we must

have sj+1 > sj (2). Replacing sj+1 in (2) from (1) we take r4 + r3[2C3 + 3C2 − 3C − 1] + +r2[C5 +
3C4 + C3 − 8C2 + C + 3] + r[2C5 − C4 − 7C3 + 5C2 + 3C − 3] > C5 + 2C4 − 3C3 + 2C − 1 (3).

This argument can be repeated for an infinite number of phases showing that the number of packets
in the system increases forever. Furthermore in order to guarantee that the number of packets in queues
f1, f4 is larger than in queues f2, f5, we must have |Z| + |X

′′
| > |Y

′
|. Replacing the above quantities

we take r4C + r3[2C3 + C2 − 3C] + r2[C5 + C4 − 3C3 − 2C2 + C] + r[C2 − C] > C4 − C3 (4). Any
r that satisfies Inequality (3) satisfies Inequality (4), too. Therefore the instability threshold of rate r

for the system (G, A, FIFO) is defined by the Inequality (3). When C tends to infinity, the instability
threshold converges to 0.41.

3.2 An Infinite Family of FIFO Unstable Networks

Theorem 3.2 For any r > 0, there is a network Gr and an adversary A of rate r, such that the system
(Gr, A, FIFO) is unstable in the model of dynamic capacities.

5

xi' yi'

yi

xi

li

ei,n
fi,1 fi,nki ki+1fi,n-1

zi

ei,0

Figure 3: The gadget F(i)

xi' yi'

yi

xi

li
ei,nfi,1

fi,nki ki+1
fi,n-1

zi

ei,0

xi+1' yi'

yi

xi+1

li+1

ei+1,nfi+1,1
fi+1,n ki+2

zi+1

ei+1,0fi+1,n-1

Figure 4: A chain of two gadgets N

The proof of the theorem is structured into two parts. In Section 3.2.1, we demonstrate the basic
component (gadget) of the infinite network family Gr and the construction of Gr. In Section 3.2.2, we
present the adversarial construction that leads the system (Gr, A, FIFO) to instability.

3.2.1 The Network Gr

Gadget topology. The network Gr is a cascade ofM similar subnetworks called gadgets (see Figure 3).
The ith gadget, F(i), of the network Gr where 1 ≤ i ≤M is a directed acyclic graph that consists of:

• An input edge ki, and an output edge ki+1.

• Three parallel edges, two of which xi, x
′

i have common source and destination and one li with
opposite source and destination to the other two edges.

• A chain of n edges fi,j where 1 ≤ j ≤ n that has as source the destination of the edge ki and
destination the source of the edge xi and an edge zi that has common source with the edge fi,n−1

and common destination with the edge fi,n.

• A chain of n+ 1 edges ei,j where 0 ≤ j ≤ n that has as source the destination of the edge xi and
destination the source of the edge ki+1 and two edges yi, y

′

i where the edge yi has common source
with the edge ei,0 and common destination with the edge ei,n, while the edge y

′

i has opposite
source and destination to the edge yi.

Gadgets concatenation. Given two gadgets G, H define G ◦ H to be the gadget that results from
identifying the sink of G with the source of H, the source of G ◦H with the source of G, and the sink of
G ◦ H with the sink of H. We call the operation ◦ chaining.

Network topology. The network Gr is a concatenation of M gadgets F(1), . . . ,F(M) with one
additional edge e0 bridging the output edge of F(M) to the source of the input edge of F(1) (Figure 5).

Network size. Each gadget’s size is Gs = 2n + 9 where C > n > max{ lg(ε)−lg(2)
lg(r) , 1 − 1

lg(r)}.

Thus, Gs > 2(max{ lg(ε)−lg(2)
lg(r) , 1 − 1

lg(r)}) + 9. The network Gr consists of M gadgets where M >

lg(16C6)−lg[(8C3−8C2−1)2r3]
lg(1+ε) , for any r > ε > 0. Hence, the size of the network is polynomial in 1

lg(r) .

6

k1

F(1)
k2 kM

F(M)
kM+1

e0

Figure 5: The network Gr

System configuration. The configuration C t of the system (Gr, A, FIFO) in every time step t is a
collection of sets {St

e : e ∈ Gr}, such that S
t
e is the set of packets waiting in the queue of the edge e at

the end of step t. Because of the construction of our adversary the packets move between consecutive
gadgets such that at specific time steps the packets are queued inside only one gadget. This permits
us to define the system configuration at a time t as C t(s,F) where F is the only gadget in the system
whose queues have packets at time t and the number of these packets is 2s. Therefore, we can see the
time evolution of the system as a sequence of such configurations. At time t the system (Gr, A, FIFO)
has the following configuration (C t(s,F(i))): (i) there are 2s packets in total that are queued in the
queues ei,0, . . . , ei,n and xi, x

′

i, none of which is empty. The packets in queues ei,j , where 0 ≤ j ≤ n,
have remaining routes ei,j , . . . , ei,n, ki+1, while the packets in queues xi, x

′

i require to traverse the edges
yi, ki+1 and, (ii) no other queue in F(i) has any packets.

3.2.2 The Adversary

Basic Idea. Time is divided into phases. We will show that the number of packets at the end of
each phase increases comparing to the beginning of the phase. Each phase is divided into a number of
M + 2 subphases. From this number, M subphases (load subphases) refer to the evolution of system
configuration as the packets move from gadget to gadget. At the beginning of each of these subphases,
there is a number of packets that are queued in the queues of only one gadget some of which will continue
to the next gadget during the subphase. The other two subphases (connection subphases) are used for
bridging consecutive phases. One of the connection subphases is used for avoiding path overlapping. It
replaces the number of packets arriving at the output edge kM+1 of the F(M) gadget with a number of
packets in the input edge k1 of the F(1) gadget that do not have previous history. The other one is used
along with a number of proper injections for the reproduction of the initial system configuration of the
F(1) gadget (packets are queued in a specific subset of queues of the first gadget). At the end of each of
these subphases we will show that the number of packets in the system increases except the connection
subphase that is used for avoiding path overlapping. At the end of this subphase, the number of packets
in the system decreases. However we manage to overcome this decrease and guarantee the increase
of the number of packets in the system at the end of the phase comparing to its beginning choosing
suitably the number M of gadgets.

Packet rerouting. Based on the technique introduced by Lotker et al. [12, Lemma 3.1] the adversary
at the beginning of each subphase assigns to the packets that are queued into the system an extension to
their path, which consists of edges that do not overlap with the path that has been already traversed by
the packets. The new path covers edges of the gadget where the packets at the beginning of a subphase
are queued and edges of the next gadget. For example the paths of the packets that are queued in the
gadget F(i), where 1 ≤ i ≤M , are extending to the next gadget F(i+1) during a subphase as follows:
(i) the packets in queue ei,j , where 0 ≤ j ≤ n, have remaining routes ei,j , . . . , ei,n, ki+1, fi+1,1, . . . ,

fi+1,n−2, zi+1, x
′

i+1, ei+1,0, . . . , ei+1,n, ki+2 and, (ii) the packets in queues xi, x
′

i require to traverse the

edges yi, ki+1, fi+1,1, . . . , fi+1,n−2, zi+1, x
′

i+1, ei+1,0, . . . , ei+1,n, ki+2.

7

Note that in our adversarial construction we assume that all the packets that leave the gadget, in
which packets are queued at the end of a subphase, during the subphase are absorbed and they do not
continue to the next gadget. This ensures that there are no packets in other gadgets.

Flow through a chain. The lemma below is based on Lotker et al. [12, Lemma 3.2 (Claims 3.5, 3.7)].

Lemma 3.3 If a packet set L of t packets is inserted into a chain of n edges with unit capacities in the
first t steps of a time period of t + n steps wanting to traverse all the edges of the chain, then there is
an adversary of rate r, such that the number of packets remaining into the system is |L

′
| ≤ rt, all the

edges have at least one packet and only L
′
packets are queued into the chain queues at time step t+ n.

Sketch of Proof: The basic idea behind this adversarial construction is that the adversary injects
packets that require to traverse only the edge where they are injected in order to block packets that
want to traverse all the edges of the chain. The packets that want to traverse a single edge are injected
in proper chosen time intervals such that at the end of the examined time period there are no such
packets in the queues of the chain and all the queues of the chain are not empty.

Subphase Population Growth. The following Lemma proves that the number of packets in the
system (Gr, A, FIFO) increases for a subphase with duration |T | = 2si

C
+ 2 (C−1)si

C2 + n. We assume that

r > ε > 0, C > n > max{ lg(ε)−lg(2)
lg(r) , 1− 1

lg(r)}, and s0 > 4nC3.

Lemma 3.4 Let r = 3C2−1
2C3−2C

+ ε. Then, there is a network N that consists of two chained gadgets
F(i),F(i + 1), an adversary A of rate r and a time period T (defined above), such that the number of
packets in the system (N , A, FIFO) increases at the end of the time period T .

Sketch of Proof: Consider the network N in Figure 4. Assume that the initial system configuration
at time τ is as follows: (i) there are 2si packets in total that are queued in the queues ei,0, . . . , ei,n and
xi, x

′

i, none of which is empty. The packets in queues ei,j , where 0 ≤ j ≤ n, have remaining routes
ei,j , . . . , ei,n, ki+1 fi+1,1, . . . , fi+1,n−2, zi+1, x

′

i+1, ei+1,0, . . . , ei+1,n, ki+2, while the packets in queues xi, x
′

i

require to traverse the edges yi, ki+1 fi+1,1, . . . , fi+1,n−2, zi+1, x
′

i+1, ei+1,0, . . . , ei+1,n, ki+2, and (ii) no
other queue in F(i) and no queue in F(i+ 1) has any packets.

In order to prove that the final system configuration holds, it is assumed that there is a large enough
number of 2si packets in the initial system configuration (packet set S). This permits us to ignore floors
and ceilings in the adversary specification for simplicity of presentation as they add only additive terms
that are compensated for. Furthermore, for simplicity of notation we assume that τ = 0. The adversary
makes injections in a time period T with duration |T | = 2si

C
+ 2(C−1)si

C2 + n. During this time period
all the edges of the network N have capacity C except some edges that have unit capacity in specific
time intervals of period T : (i) The edge x

′

i+1 and the edges ei+1,0, . . . , ei+1,n have unit capacity in time
interval [1, 2si

C
+ n], while (ii) the edge xi+1 and the edges ei+1,0, ei+1,1, . . . , ei+1,n have unit capacity in

time interval [2si

C
+ n+ 1, 2si

C
+ 2(C−1)si

C2 + n].

Adversary’s behavior. During this period the adversary makes the following injections: (i) During time

interval [1, 2si

C
+ n] the adversary injects a set X of |X| = 2(C−1)rsi

C
packets in queue xi requiring

to traverse the edges xi, li, x
′

i, yi, y
′

i, ei,0, ei,1, . . . , ei,n, ki+1, fi+1,1, . . . , fi+1,n, xi+1, yi+1, ki+2. (ii) During

time interval [n + 1, 2si

C
+ 2(C−1)si

C2 + n] the adversary makes injections into the path ei+1,1, . . . , ei+1,n,

based on Lemma 3.3. (iii) During time interval [2si

C
+n+1, 2si

C
+ 2(C−1)si

C2 +n] the adversary injects a set

Y of |Y | = 2r(C−1)si

C
packets in queue x

′

i+1 requiring to traverse the edges x
′

i+1, yi+1, ki+2. (iv) During

time interval [2si

C
+ n+ 1, 2si

C
+ 2(C−1)si

C2 + n] the adversary injects a set Z of |Z| = 2r(C−1)si

C2 packets in
queue xi+1 requiring to traverse the edge xi+1.

Evolution of the system configuration. At the end of this period, the number of packets in queue

ei+1,j for 0 ≤ j ≤ n that have remaining routes ei+1,j , . . . , ei+1,n, ki+2 are a set S3 of |S3| = 2si
(C−1)2

C2

packets in ei+1,0, a set H of |H| = n packets and a number of |S7| = [2si
2C−1
C2 − n] r−rn+1

1−rn+1 packets in

8

ei+1,1, . . . , ei+1,n. Furthermore, at the end of this period, a portion X
′
of |X

′
| = 2si[r

C−1
C
− C−1

C2+C
]

packets from the X packets are queued in xi+1 and the set Y of packets are queued in x
′

i+1. Thus, at

the end of the time period T the number of packets in the system is 2si+1 = X
′
+ Y + S3 +H + S7.

Replacing the quantities in the right part of the previous equation we take 2si+1 = 2si[
(C−1)2

C2 − C−1
C2+C

+

2rC−1
C
+ r 2C−1

C2
1−rn

1−rn+1] + n− nr 1−rn

1−rn+1 . However
1−rn

1−rn+1 ≤ 1 as r ≤ 1. Thus, nr
1−rn

1−rn+1 ≤ nr. Therefore

n− nr 1−rn

1−rn+1 ≥ n− nr ≥ 0. Thus, 2si+1 ≥ 2si[
C4−2C3+C

C4+C3 + 1
C2 [r(2C − 2)C + (2C − 1)

r−rn+1

1−rn+1]] (1). But,

1− rn ≤ 1 and n > max{ lg(ε)−lg(2)
lg(r) , 1− 1

lg(r)}. Therefore rn ≤ 1
2 and 2r

n < ε. Also, consider that r > ε.

Then, from inequality (1) we take 2si+1 ≥ 2si[
C4−2C3+C

C4+C3 + 1
C2 (r(2C − 2)C + (2C − 1)(r − ε))] (2). It

suffices to show C4−2C3+C
C4+C3 + 2C−2

C2 rC > 1⇒ r > 3C2−1
2C3−2C

(3). Replace r = 3C2−1
2C3−2C

+ε for r > ε > 0 in (2).

Then, 2si+1 ≥ 2si[
C4−2C3+C

C4+C3 + 1
C2 [2(C−1)C

3C2−1
2C3−2C

+2(C−1)Cε+(2C−1) 3C2−1
2C3−2C

]] ≥ 2si[1+
2(C−1)

C
ε] ≥

2si(1 + ε). Therefore, 2si+1 ≥ 2si(1 + ε) for r such that r = 3C2−1
2C3−2C

+ ε where r > ε > 0.

Phase Population Growth. Now we will prove that the number of packets in the system (Gr, A,
FIFO) increases in a phase. First, we will show that if there is a number of packets s ≥ a suitable number
of initial packets s0 in queue k1, then after a time period the configuration of F(1) gadget will have more
than s packets positioned as it is described in Section 3.2.1. Then, we will prove that as the packets
move in consecutive gadgets in network Gr their number increases. After that, we will show how we can
avoid path overlapping in our adversarial construction replacing the number of packets that arrive at
the output edge of the F(M) gadget with a number of packets in the edge k1 that are injected in k1 and

they do not have previous history. We assume that r > ε > 0, r > 1
C
, C > n > max{ lg(ε)−lg(2)

lg(r) , 1− 1
lg(r)}

and s0 > 4nC3.

Lemma 3.5 Let a number 2s of packets in queue k1 at time t. Then, there is an adversary A of rate r

with r = 3C2−1
2C3−2C

+ ε and some time t1 where the system has more than 2s
′
packets which configuration

will be Ct1(s
′
,F(1)), for s

′
≥ s(1 + ε).

Sketch of Proof: The proof of this Lemma is similar to the proof of Lemma 3.4. The differences
concern the edges that change capacities and the paths that are assigned to the injected packets by
the adversary. Thus, the edges x

′

1, x1 and e1,0, . . . , e1,n change capacities from C to 1 in corresponding
time intervals as the edges x

′

i+1, xi+1 and ei+1,0, . . . , ei+1,n in Lemma 3.4. Furthermore, the adversary
makes packet injections with similar paths in corresponding time intervals as in Lemma 3.4 in some
edges of the gadget F(1). However there is one exception concerning the first injection of packets (set X
in Lemma 3.4). Here the path assigned to these packets consists of edges that belong to F(1), while in
Lemma 3.4 it contains edges that belong to the gadget where the packets in the system at the beginning
of a subphase are queued and edges of the next consecutive gadget.

Lemma 3.6 Let at time τ the system (Gr,A,FIFO) has configuration Cτ (s,F(1)). Then, there is an

adversary A of rate r such that at some time t > τ , there are s
′
> s

(8C3−8C2−1)s
4C3 (1 + ε)M−1 packets in

the system that are queued at the output edge kM+1 of the gadget F(M).

Sketch of Proof: In order to prove this lemma, we need the following claim.

Claim 3.7 Let 1 ≤ i ≤M . If at time τ all the packets in the network Gr have been injected after time
τ0, the system configuration is Cτ (s,F(1)) for s ≥ s0 and there are no other packets in the gadgets F(i)
of Gr, then there is an adversary A of rate r and some time ti ≥ τ , such that the system configuration
is Cti(s

′
,F(i)) for s

′
> s(1 + ε)i−1 and there are no other packets in the gadgets F(i), . . . ,F(M) of Gr.

From the Claim 3.7 we take that, at time tM the system configuration is CtM (s
′
,F(M)) for s

′
≥

s(1+ ε)M−1. Also, we consider that there is not any injection in the time interval [tM , tM +
2s

′

C
+1] and

all the edges have capacity C except the output edge kM+1 of the gadget F(M) that has unit capacity.
After that we estimate the number of packets remaining in kM+1 at the end of the above time interval
concerning that 1 < n < s0

4C3 .

9

Lemma 3.8 Let s packets that are queued in kM+1 at time t. Then, for any r > 0 there is an adversary
A of rate r, such that at a time t1 there are r3s packets in queue k1 that have been injected there after
time t.

Sketch of Proof: We consider that all the edges have capacity C that permit us to use standard
techniques to prove this lemma. The basic idea of the construction of the adversary is to replace the
packets arriving at the output edge kM+1 of the F(M) gadget with a number of packets in the edge
k1 that are injected in k1 and they do not have previous history. This is done in three steps. In the
first step the adversary injects a set of packets X requiring to traverse the edges kM+1, e0, k1 that are
blocked by the s packets in edge kM+1 at the beginning of this step. In the second step the adversary
injects a set Y of packets requiring to traverse k1 that mix with X. In the third step we inject a set of
new packets in k1 that are blocked there by the previously injected packets that are absorbed.

Proof of Instability (Theorem 3.2). Consider the network Gr in Figure 5. Choose M such that

M >
lg(16C6)−lg[(8C3−8C2−1)2)r3]

lg(1+ε) , In the initial configuration, there are s
′
> 2s0 packets in total that are

queued in k1. The adversarial construction is built iteratively as follows:

0. Let s1 = |s
′
|.

1. Apply Lemma 3.5 to get a configuration C(s2,F(1)), where the gadget F(1) has s2 ≥
s1(8C3−8C2−1)(1+ε)

4C3

packets.

2. Apply Lemma 3.6 to get a configuration where the number of packets that are queued at the
output edge kM+1 of gadget F(M) is s3 ≥ s2

8C3−8C2−1
4C3 (1 + ε)M−1.

3. Apply Lemma 3.8. This results in s4 newly injected packets at the tail of the edge k1 that are
queued in k1 and s4 ≥ r3s3.

4. Let s1 = s4, and go to Step 1.

We will show that following this adversary construction the number of packets (s1) in the system

increases unboundedly. After the execution of Step (1), we have s2 ≥
s1(8C3−8C2−1)(1+ε)

4C3 . After Step (2)

we have that s3 ≥ s2
8C3−8C2−1

4C3 (1+ ε)M−1 ≥ s1
(8C3−8C2−1)2(1+ε)M

16C6 . Finally, after Step (3), we have that

the number of packets stored at the tail of the edge k1 is s4 ≥ r3s3 ≥ s1
(8C3−8C2−1)2r3(1+ε)M

16C6 . Choosing

M to be such that (8C3−8C2−1)2r3(1+ε)M

16C6 > 1 ⇒ M >
lg(16C6)−lg[(8C3−8C2−1)2r3]

lg(1+ε) , we have that s4 > s1.
This suffices to guarantee that the number of packet in the system increases unboundedly for an infinite
time period. The instability threshold of rate r for the system (Gr, A, FIFO) is defined by the inequality

r > 3C2−1
2C3−2C

. For C tends to infinity, the threshold of rate r tends to zero.

4 Instability in FIFO Networks with Uniform Capacities

The first of our theorems below refers to a system where all capacities are uniform i.e. when all the
capacities are equal to the same value C with C > 1, while the second one refers to a system where all
links have capacity C = 1.

Theorem 4.1 Let Gr be a FIFO network and A an adversary of rate r, and suppose that the system
(Gr, A, FIFO) is unstable for any r > 0 in the model of dynamic capacities. Then, there exists a system
(G

′

r, A
′
, FIFO) that is unstable in the model of uniform capacities where A

′
is an adversary of rate r.

Sketch of proof: Theorem 4.1 plays the role of a simulator. It takes as input the unstable system
(Gr, A, FIFO) constructed in the previous section at rate ≥ r where r is the injection rate of the

10

adversary A and Gr a network whose links face changes in their capacities according to the model of
dynamic capacities and gives as output an unstable system (G

′

r, A
′
, FIFO) at rate ≥ r with uniform

link capacities. In order to achieve this the simulator suitably changes the topology of the network Gr

with the replacement of its edges that face changes in their capacity, with a subnetwork whose edges
have uniform capacity C. We call this subnetwork simulation bridge. There are two different topologies
B1, B2 for a simulation bridge (see Figure 6). The topology of the simulation bridge that we use in G

′

r

to replace an edge e that faces changes in its capacity on Gr depends on how many packet flows with
different paths want to traverse e on overlapping time intervals. If one packet flow traverses e on Gr or if
more than one packet flows want to traverse e during the same time intervals then we use topology B1.
Otherwise, if more than one packet flows want to traverse e in overlapping but not equal time intervals
then we use topology B2 that is used in G

′

r to replace e.

Furthermore, the simulator changes the adversary A to A
′
permitting the injection of packets that

follow the not simple-path model where paths can contain overlapping edges. This change in packet
paths takes place when packets enter into the simulation bridges. The adversary modifications are
based on the idea of packet rerouting in two levels. In the first level we make packet rerouting at the
beginning of each subphase as in the case of dynamic capacities (Section 3.2.2). In the second level
we make packet rerouting of the packets that try to traverse a simulation bridge during a subphase.
Packet rerouting is based on the technique introduced by Lotker et al. [12, Lemma 3.1]. We should
mention here that while packet rerouting in the first level concerns path extensions to not overlapping
edges that do not overlap with edges already present in the path (simple-path model), packet rerouting
in the second level concerns path extensions to edges that do not overlap with edges already present in
a path (simple-path model) but there are overlaps among them (not simple-path model). However, we
carefully do this so that the total packet length of the injected packets is of bounded size. Using the
idea of packet rerouting in two levels we manage to simulate the behavior of edges that face changes
in their capacity on the network Gr by the behavior of the simulation bridges that are used to replace
them on the network G

′

r. In order to achieve this, it suffices to show two properties. The first property
simulates the behavior of an edge when there is transition to its capacity from C to 1, while the second
one simulates the behavior of an edge when there is transition to its capacity from 1 to C.

Property 4.2 If a packet set X of t packets where t > C3

C−1 is inserted into a simulation bridge B1 (B2)

during a time period of t
C
steps wanting to traverse the simulation bridge B1 (B2), then after t

C
steps

the number of packets leaving the simulation bridge is |X
′
| = t

C
packets and all the queues in B1 except

the first one have at least C packets (the total number of packets in B2 is more than C2).

Property 4.3 If a packet set Y of t packets with t > C3

C−1 is queued into a simulation bridge B1 (B2)
such that all the queues in B1 except the first one have at least C packets (or the total number of packets
in B2 is more than C2), then during a time period of t

C
steps all the Y packets will leave the simulation

bridge B1 (B2).

Combining both properties we guarantee that the used simulation bridges in each gadget of G
′

r behave
like the corresponding edges in Gr they replace. Therefore, the system (G

′

r, A
′
, FIFO) simulates the

instability behavior of the system (Gr, A, FIFO). Remark that in order to satisfy the additional restriction
in the number of packets that traverse a simulation bridge we should assume that the initial number of
packets in Section 3.2.2 is s0 > 4nCn+5. This guarantees that t > C3

C−1 as s0 > 4nCn+5 > t. Therefore
this restriction is satisfied. For simplicity during the simulation we slightly relax the FIFO property
for the packets that enter into a simulation bridge that simulates the transition of the capacity of an
edge in G

′

r from C to 1. In our construction this relaxation takes place only among packets of the same
packet flow (packets that have the same route) and have a distance between them in the flow that is a
function of C. Therefore, it does not affect the behavior of the system. However, this relaxation can be
removed doing simple variations in the simulation bridge topology and the paths construction.

Theorem 4.4 Let G
′

r be a FIFO network and A
′
an adversary of rate r, and suppose that the system (G

′

r,

11

A
′
, FIFO) is unstable for any r > 0 when all edges have the same capacity C > 1. Then, there exists a

system (G
′′

r , A
′′
, FIFO) that is unstable when all edges have unit capacities where A

′′
is an adversary of

rate r.

Sketch of Proof: Theorem 4.4 plays the role of a simulator. It takes as input the unstable system (G
′

r,
A

′
, FIFO) described in the previous theorem whose links have uniform capacity C at rate ≥ r and gives

as output an unstable system (G
′′

r , A
′′
, FIFO) at rate ≥ r with unit link capacities. In order to achieve

this it changes the topology of the network G
′

r with the replacement of all its edges with a subnetwork
called analyzer whose edges have unit capacity (Figure 8) and it also modifies properly the adversary
in order the paths assigned to the packets to be adjusted to the modified network topology.

5 Discussion and Directions for Further Research

We have shown a methodology that simulates a given unstable system (Gr, A, FIFO) at rate r > 0
with dynamic capacities with an unstable system (G

′′

r , A
′′
, FIFO) at rate r > 0 with unit capacities

using as an intermediate step an unstable system (G
′

r, A
′
, FIFO) at rate r > 0 with uniform capacities.

This closes a major open problem (the question of FIFO stability) in the field of Adversarial Queueing
Theory. Furthermore, in the model of dynamic capacities we presented a small-size network that leads
FIFO to instability at a rate r ≥ 0.41 that represents the current record for the instability threshold of
FIFO over networks of fixed size (network size is independent of r). An open question that arises in this
context is given an arbitrarily low injection rate r if there is a fixed-size network and an adversary for
which FIFO is unstable at r.

References

[1] M. Andrews, “Instability of FIFO in session-oriented networks,” In 11th. ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 440–447, 2000.

[2] M. Andrews, B. Awerbuch, A. Fernandez, J. Kleinberg, T. Leighton, and Z. Liu, “Universal Stability Results for
Greedy Contention-Resolution Protocols,” Journal of the ACM, Vol. 48, No. 1, pp. 39-69, January 2001.

[3] M. Andrews and L. Zhang, “The Effect of Temporary Sessions on Network Performance,” Proceedings of the 11th
Annual ACM-Symposium on Discrete Algorithms, pp. 448–457, January 2000.

[4] M. Bramson, “Convergence to Equilibria for Fluid Models of FIFO Queueing Networks,” Queueing Systems, Vol. 22,
pp. 5–45, 1996.

[5] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan and D. Williamson, “Adversarial Queueing Theory,” Journal of the
ACM, Vol. 48, No. 1, pp. 13–38, January 2001.

[6] A. Borodin, R. Ostrovsky and Y. Rabani, “Stability Preserving Transformations: Packet Routing Networks with Edge
Capacities and Speeds,” Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, January 2001.

[7] R. L. Cruz, “A Calculus for Network Delay. Part I: Network Eelements in Isolation,” IEEE Transactions on Information
Theory, Vol. 37, pp. 114–131, 1991.

[8] H. Chen and D. D. Yao, Fundamentals of Queueing Networks, Springer, 2000.

[9] J. Diaz, D. Koukopoulos, S. Nikoletseas, M. Serna, P. Spirakis and D. Thilikos, “Stability and Non-Stability of the
FIFO Protocol,” Proceedings of the 13th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 48–52,
July 2001.

[10] F. P. Kelly, Reversability and stochastic networks, Wiley, New York, 1979.

[11] D. Koukopoulos, M. Mavronicolas, S. Nikoletseas and P. Spirakis, “On the Stability of Compositions of Universally Sta-
ble, Greedy, Contention-Resolution Protocols,” 16th International Symposium on DIStributed Computing (DISC’02),
LNCS 2508, pp. 88–102, October 2002.

[12] Z. Lotker, B. Patt-Shamir and A. Rosén, “New Stability Results for Adversarial Queueing,” Proceedings of the 15th
Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 192–199, August 2002.

[13] A. N. Rybko, and A. L. Stolyar, “Ergodicity of Stochastic Processes Describing the Operation of Open Queueing
Networks,” Problems of Information Transmission, Vol. 28, pp. 199–220, 1992.

[14] P. Tsaparas, Stability in Adversarial Queueing Theory, M.Sc. Thesis, Computer Sc. Dept., Univ. of Toronto, 1997.

12

Appendix

A Proof of Lemma 3.3

Consider the path of n queues ei with 1 ≤ i ≤ n and the packet set L of t packets that require to
traverse this path during a time period of t + n steps. The adversary injects a set Ki of packets with
1 ≤ i ≤ n in queue ei requiring to traverse only the queue ei. Ki packets are injected in queue ei with
rate r at the time steps of the time interval [i, i + ti] where ti =

t
r+Ri

with Ri =
1−r
1−ri . Also, from the

definition of Ri, we can estimate the quantity Ri+1 recursively. Thus, Ri+1 =
Ri

Ri+r
. Therefore, the

number of injected Ki packets in queue ei is |Ki| =
t

r+Ri
. Notice that the adversary do not inject the

larger number of packets it can into each queue ei but a smaller number. No packet arrives at queue
ei at times [0, i]. At times [i + 1, t + i] packets from the set L arrive in queue ei with rate Ri where
they are mixed with Ki packets. This has as a result, at the end of this period of t+ n time steps, the
queues ei not to contain any Ki packets, but only L packets.

In order to show that indeed packets from the set L arrive in queue ei with rate Ri at time i we can
use induction. For the basis of the induction, i = 1, packets arrive in ei from set L with rate R1 = 1.
For the induction step let i > 1. The inductive hypothesis states that packets from the set L arrive in
queue e

′

i−1 at rate Ri−1 during t+ n time steps. However, the adversary injects into ei−1 a set Ki−1 of
|Ki−1| =

rt
r+Ri−1

packets at the first |t1| =
t

r+Ri−1
time steps. Therefore, during the first t1 time steps of

t a number of Ki−1 +Ri−1t1 =
rt

r+Ri−1
+Ri−1

t
r+Ri−1

= t packets in total mixed with each other, while
all the other packets that belong to the set L are queued after them. Therefore, a number of L packets
remain in ei at the end of this time period, while all the Ki−1 packets are absorbed. The number of
L packets that leave ei−1 arriving in ei has rate

Ri−1

Ri−1+r
which is exactly Ri. Hence, the number of L

packets that remain in the queues ei is |Rem| = t− Rnt
Rn+r

= t−
1−r

1−rn t

r+ 1−r
1−rn

= rt 1−rn

1−rn+1 ≤ rt.

B Proof of Lemma 3.4 (Evolution of the system configuration)

During time interval [1, 2si

C
+ 2(C−1)si

C2 + n] the S packets that are queued in the system at the initial

system configuration traverse their path. The first packets of set S arrive in queue x
′

i+1 after the first n
steps of this time interval as S packets have to traverse the chain of edges ki+1, fi+1,1, . . . , fi+1,n−2, zi+1

that have capacity C. During time interval [n + 1, 2si

C
+ n] the S packets are delayed in queue x

′

i+1

because x
′

i+1 has unit capacity. Therefore, a number of |S1| =
2(C−1)si

C
packets remain in queue x

′

i+1

at time step 2si

C
+ n, while |S2| =

2si

C
packets traverse the edge x

′

i+1 requiring to traverse the edges
ei+1,0, . . . , ei+1,n, ki+2.

At the rest 2(C−1)si

C2 time steps of the time interval [1, 2si

C
+ 2(C−1)si

C2 + n] the S1 packets traversing

their path arrive in the queue ei+1,0. From S1 packets, a set S3 of |S3| = 2si
(C−1)2

C2 packets remain

queued in queue ei+1,0 at time step
2si

C
+ 2(C−1)si

C2 + n because this edge has capacity 1. Therefore,

|S4| =
2(C−1)si

C2 packets from S1 packets can traverse edge ei+1,0 in
2(C−1)si

C2 time steps. Hence, during

time interval [n+1, 2si

C
+ 2(C−1)si

C2 +n], except S4 packets, the number of packets which arrive (in total)
in the path ei+1,1, . . . , ei+1,n and they can traverse it is |S5| = |S2|+ |S4| packets.

From Lemma 3.3 if a packet set L of t packets is inserted into a path of length n during a time
period of t + n steps, then there is an adversary of rate r, such that the number of packets remaining
into the system is |L

′
| ≤ rt, all the path edges have at least one packet and only L

′
packets are queued

into the queues of the path at the end of the time period. In our case S5 =
2si

C
+ 2(C−1)si

C2 packets

i

want to traverse the path of n edges ei+1,1, . . . , ei+1,n in
2si

C
+ 2(C−1)si

C2 time steps. From these packets
|H| = n packets arrive in queue ei+1,1 at the last n steps of the subphase. Since the adversary operates
according to Lemma 3.3 these packets remain queued there till the end of the subphase and a number of
|S7| = [2si

2C−1
C2 − n] r−rn+1

1−rn+1 packets are preserved in queues ei+1,1, . . . , ei+1,n, such that all these queues

are not empty at time step 2si

C
+ 2(C−1)si

C2 + n.

The X packets that are injected in queue xi during time interval [1,
2si

C
+ n] are blocked by the

initial packets in queue ki+1 till time step
2si

C
. This happens because in 2si

C
time steps all the S packets

traverse the edge ki+1 in their path as all the edges they traverse till the edge ki+1 have capacity C.
During the rest n time steps, all the S packets have traverse the path fi+1,1, . . . , fi+1,n−2, zi+1 along
with nC packets from X packets the first of which are queued in queue fi+1,n at time step

2si

C
+ n.

During time interval [2si

C
+n+1, 2si

C
+ 2(C−1)si

C2 +n] all the X packets traverse their path arriving in

queue xi+1 as the number of X packets is |X| = 2(C−1)rsi

C
, this time interval has duration 2(C−1)si

C2 and
all the edges in Fi and the edges ki+1, fi+1,1, . . . , fi+1,n have capacity C. In queue xi+1, X packets are
mixed with Z packets. This mixing along with the unit capacity of edge xi+1 results in the delay (in xi+1)
of a portion X

′
of packets from the X packets. The number of X

′
packets is |X

′
| = 2si[r

C−1
C
− C−1

C2+C
].

The Y packets that are injected in queue x
′

i+1 during time interval [
2si

C
+n+1, 2si

C
+ 2(C−1)si

C2 +n] are

blocked by the S1 packets in queue x
′

i+1. This happens because in this time interval
(2C−2)si

C
packets

can traverse this edge that has capacity C which is equal to the number of S1 packets that are queued
in x

′

i+1 at the beginning of this time interval.

C Proof of Lemma 3.5

Consider the network Gr in Figure 5. At time t there is a set S of |S| = 2s packets queued in the queue

k1. We want to show that for any r > ε > 0, r > 1
C
, C > n > max{ lg(ε)−lg(2)

lg(r) , 1− 1
lg(r)} and s0 > 4nC3,

there is an adversary A of rate r with r = 3C2−1
2C3−2C

+ ε, such that at time t1 = t+ 2s
C
+ (2C−2)s

C2 + n the

final system configuration will be C t1(s
′
,F(1)), for s

′
≥ s(1 + ε). Assume for convenience that t = 0.

The adversary makes injections in a time period T with duration |T | = 2s
C
+ 2(C−1)s

C2 +n. During this
time period all the edges of the network N have capacity C except some edges that have unit capacity
in specific time intervals of period T :

• The edge x
′

1 and the edges e1,0, . . . , e1,n have unit capacity in time interval [1,
2s
C
+ n].

• The edge x1 and the edges e1,0, . . . , e1,n have unit capacity in time interval [
2s
C
+n+1, 2s

C
+ 2(C−1)s

C2 +
n].

Adversary’s behavior. During this period the adversary makes the following injections:

• During time interval [1, 2s
C
+ n] the adversary injects a set X of |X| = 2(C−1)rs

C
packets in queue

k1 requiring to traverse the edges k1, f1,1, . . . , f1,n−2, z1, y1, k2.

• During time interval [n + 1, 2s
C
+ 2(C−1)s

C2 + n] the adversary makes injections into the path
e1,1, . . . , e1,n, based on Lemma 3.3.

• During time interval [2s
C
+ n+ 1, 2s

C
+ 2(C−1)s

C2 + n] the adversary injects a set Y of |Y | = 2r(C−1)s
C

packets in queue x
′

1 requiring to traverse the edges x
′

1, y1, k2.

ii

• During time interval [2s
C
+ n+ 1, 2s

C
+ 2(C−1)s

C2 + n] the adversary injects a set Z of |Z| = 2r(C−1)
C2

packets in queue x1 requiring to traverse the edge x1.

Evolution of the system configuration. During time interval [1, 2s
C
+ 2(C−1)s

C2 + n] the S packets that are
queued in the system at the initial system configuration traverse their path. The first packet of set S
arrive in queue x

′

1 after the first n steps of this time interval as S packets have to traverse the chain
of edges k1, f1,1, . . . , f1,n−2, z1 that have capacity C. During time interval [n+ 1, 2s

C
+ n] the S packets

are delayed in queue x
′

1 because x
′

1 has unit capacity. Therefore, a number of |S1| =
2(C−1)s

C
packets

remain in queue x
′

1 at time step
2s
C
+ n requiring to traverse the edges x

′

1, e1, 0, e1,1, . . . , e1,n, k2, while

|S2| =
2s
C
packets traverse the edges x

′

1 requiring to traverse the edges e1,0, . . . , e1,n, k2.

At the rest 2(C−1)s
C2 time steps of the time interval [1, 2s

C
+ 2(C−1)s

C2 + n] the S1 packets traversing

their path arrive in the queue e1,0. From S1 packets, a set S3 of |S3| = 2s
(C−1)2

C2 packets remain queued

in queue e1,0 at time step
2s
C
+ 2(C−1)s

C2 + n because this edge has capacity 1. Therefore, |S4| =
2(C−1)s

C2

packets from S1 packets traverse the edge e1,0 in
2(C−1)s

C2 time steps arriving in queue e1,1. Hence, during

time interval [n+ 1, 2s
C
+ 2(C−1)s

C2 + n], except S4 packets, the number of packets which arrive (in total)
in the path e1,1, . . . , e1,n and can traverse it is |S5| = |S2|+ |S4| packets.

From Lemma 3.3 if a packet set L of t packets is inserted into a path of length n during a time period
of t+ n steps, then there is an adversary of rate r, such that the number of packets remaining into the
system is |L

′
| ≤ rt, all the path edges have at least one packet and only L

′
packets are queued into the

queues of the path at the end of the time period. In our case S5 =
2s
C
+ 2(C−1)s

C2 packets want to traverse

the path of n edges e1,1, . . . , e1,n in
2s
C
+ 2(C−1)s

C2 time steps. From these packets |H| = n packets arrive
in queue ei+1,1 at the last n steps of the subphase. Since the adversary operates according to Lemma 3.3

these packets remain queued there till the end of the subphase and a number of |S7| = [2s
2C−1
C2 −n] r−rn+1

1−rn+1

packets are preserved into the queues e1,1, . . . , e1,n, such that all these queues are not empty at time

step 2s
C
+ 2(C−1)s

C2 + n.

The X packets that are injected in queue k1 during time interval [1,
2s
C
+n] are blocked by the initial

packets in queue k1 till time step
2s
C
. This happens because in 2s

C
time steps all the S packets traverse

the edge k1 as the edge k1 has capacity C. During the rest n time steps, all the S packets have traverse
the path f1,1, . . . , f1,n−2, z1 along with nC packets from X packets the first of which are queued in queue
f1,n at time step

2s
C
+ n.

During time interval [2s
C
+ n+ 1, 2s

C
+ 2(C−1)s

C2 + n] all the X packets traverse their path arriving in

queue x1 as the number of X packets is |X| = 2(C−1)rs
C

, this time interval has duration 2(C−1)s
C2 time

steps and the edges k1, f1,1, . . . , f1,n have capacity C. In queue x1 X packets are mixed with Z packets.
This mixing along with the unit capacity of edge x1 results in the delay (in x1) of a portion X

′
of

packets from the X packets. The number of X
′
packets is |X

′
| = 2s[rC−1

C
− C−1

C2+C
].

The Y packets that are injected in queue x
′

1 during time interval [
2s
C
+ n+ 1, 2s

C
+ 2(C−1)s

C2 + n] are

blocked by the S1 packets in queue x
′

1. This happens because in this time interval
(2C−2)s

C
packets can

traverse this edge that has capacity C which is equal to the number of S1 packets that are queued in
x
′

1 at the beginning of this time interval.

At the end of this period, the number of packets in queue e1,j for 1 ≤ j ≤ n that have remaining
routes e1,j , . . . , e1,n, k2, and in queues x1, x

′

1 requiring to traverse the edges y1, k2 are 2si+1 = X
′
+ Y +

S3 +H + S7.

From Lemma 3.4 this number of packets is larger than the number of initial packets. Thus, 2s
′
≥

(1 + ε)2s for r = 3C2−1
2C3−2C

+ ε. Therefore, for any r > ε > 0, r > 1
C
, C > n > max{ lg(ε)−lg(2)

lg(r) , 1− 1
lg(r)}

iii

and s0 > 4nC3 at time t1 = t + 2s
C
+ 2 (C−1)s

C2 + n the final system configuration will be C t1(s
′
,F(1)),

for s
′
≥ s(1 + ε).

D Proof of Lemma 3.6

In order to complete the proof of Lemma 3.6, we consider Claim 3.7. Then, at time tM the system
configuration is CtM (s

′
,F(M)) for s

′
≥ s(1 + ε)M−1. If we do not make any injection in the time

interval [tM , tM +
2s

′

C
+1] and consider that all the edges have capacity C except the output edge kM+1

of the gadget F(M) that has unit capacity, then the 2s
′
packets that have been queued at the queues

of the gadget F(M) at time tM will arrive at the output edge kM+1 of the gadget F(M). Furthermore,
2s

′

C
+1 packets depart from the output edge kM+1 during the time interval [tM , tM +

2s
′

C
+1]. Therefore,

at time tM +
2s

′

C
+ 1, there are s

′
= 2s

′
− 2s

′

C
− 1 ≥ 2s0 −

2s0
C
− 1 packets in the output edge kM+1. If

we consider 1 < n < s0
4C3 , then s

′
≥ 2s0 −

2s0
C
− s0

4C3 =
(8C3−8C2−1)s0

4C3 . However, because s ≥ s0 and

s
′
≥ s(1+ε)M−1, then s

′
≥ (8C3−8C2−1)s

4C3 (1+ε)M−1 packets exist at the output edge kM+1 of the gadget
F(M).

E Proof of Claim 3.7

Base case. For i = 1, the claim is trivial with t1 = τ . Induction step. Consider that there is an
adversary A〉 of rate r and some time ti ≥ τ , such that the system configuration is C ti(si,F(i)) for
si > s(1 + ε)i−1. Let now consider a subnetwork that consists of the chain of two gadgets F(i) and
F(i + 1). Applying Lemma 3.4, there is an adversary A〉 of rate r and a time period Ti, such that in

the model of dynamic capacities the system configuration at time ti + Ti is Cti+Ti(si+1,F(i + 1)) for
si+1 ≥ si(1 + ε) ≥ s(1 + ε)i. Note that at time ti + Ti the packets in the system are only queued in the

gadget F(i+ 1) from Lemma 3.4. If we assign ti+1 = ti + Ti = ti +
2si

C
+ 2 (C−1)si

C2 + n and concatenate
the adversaries A and A〉 the claim has been proved.

F Proof of Lemma 3.8

Consider the network Gr in Figure 5. At time t there is a set S of |S| = s packets queued in the queue
kM+1 of the gadget F(M) requiring to traverse the edge kM+1. We will show that for any r > 0 there is
an adversary A of rate r, such that at time t1 = t+ s

C
+ r s

C
+ r2 s

C
all the packets in the system are the

r3s packets that are queued in k1. These packets have been injected in k1 after time t. We consider that
all the edges have capacity C during time interval (t, t1]. The adversary plays three rounds of injections
as follows:

• Round 1: This round lasts for s
C
time steps. During this round the edges kM+1, e0, k1 have capacity

C. The adversary injects a set X of |X| = r sC
C
= rs packets in kM+1 requiring to traverse the

edges kM+1, e0, k1. The X packets are blocked in queue kM+1 because of the S packets that are
queued in kM+1 at the beginning of this round. The S packets have been absorbed at the end of
this round.

• Round 2: This round lasts for rs
C
time steps. During this round the edges kM+1, e0, k1 have

capacity C. The adversary injects a set Y of |Y | = r rsC
C
= r2s packets in k1. The Y packets

arrive simultaneously at k1 with the X packets and they mix in proportion equal to their sizes.

iv

b11 b1C-1b12

b1C g11
g1C-1

g12

g1C

g21 g2C-1
g22

g2C

B1 B2

Figure 6: The simulation bridge B1 and B2

At the end of this round, there is a set Z of |Z| = r2s packets in the system that are queued in
k1, and no other packets exist in the system. Note that some of these packets have been injected
in kM+1 and the rest in k1.

• Round 3: This round lasts for r2s
C
time steps. During this round the edge k1 has capacity C. The

adversary injects a set L of |L| = r r2sC
C
= r3s packets in k1. The L packets blocked in k1 by the

Z packets. At the end of this round, all the Z packets have been absorbed. Therefore, at time
t+ s

C
+ r s

C
+ r2 s

C
all the packets in the system are the |L| = r3s packets that have been injected

in k1 during this round and they are queued in k1.

G Proof of Theorem 4.1

The Simulation Bridge topology. There are two different topologies B1, B2 for a simulation bridge
(see Figure 6). The topology of the simulation bridge that we use in network G

′

r to replace an edge e

that faces changes in its capacity on network Gr depends on how many packet flows with different paths
want to traverse e on overlapping time intervals. If one packet flow traverses e on Gr or if more than
one packet flows want to traverse e during the same time intervals then the topology of the simulation
bridge B1 we use in the network G

′

r to replace e consists of:

• a chain of C − 1 edges b1j where 1 ≤ j ≤ C − 1,

• an edge b1C , which source is common with the destination of the edge b1C−1 and the destination
is common with the source of the edge b12.

Otherwise, if more than one packet flows want to traverse e in overlapping but not equal time
intervals then the topology of the simulation bridge B2 we use in the network G

′

r to replace e consists
of:

• two parallel chains of C − 1 edges g1j and g2j with common source and destination where 1 ≤
j ≤ C − 1,

• one edge g1C , which source is common with the destination of the edge g1C−1 and destination is
common with the source of the edge g12,

v

yi'

yili

fi,1 fi,nki ki+1fi,n-1

zi

B1

B1

B1 B2B2

Figure 7: A gadget of G
′

r

• one edge g2C , which source is common with the destination of the edge g2C−1 and destination is
common with the source of the edge g22.

The Network topology. The network G
′

r has the same structure as the network Gr (see Figure 5).
Hence, it is a cascade of M

′
similar subnetworks F

′
(i) called gadgets (see Figure 3) where 1 ≤ i ≤M

′
.

The gadgets of the network G
′

r have similar topology with the ones of the network Gr with one difference.
All the edges of each gadget in Gr that face changes in their capacity during an execution of the system
(Gr, A, FIFO) are replaced by a simulation bridge. Therefore, the ith gadget, F(i)

′
(see Figure 7), of

the network G
′

r where 1 ≤ i ≤ M
′
is the same as the ith gadget, F(i) (Section 3.2.1, gadget topology),

of the network Gr where 1 ≤ i ≤M with the following differences:

• Each of the edges xi, x
′

i, ei,0 are replaced by a simulation bridge B1,

• Each edge of the chain of n edges ei,j where 1 ≤ j ≤ n are replaced by a simulation bridge B2.

Network size. The size of each gadget is Gs = 3C+n(2C+1)+6 where C > n > max{ lg(ε)−lg(2)
lg(r) , 1−

1
lg(r)}. Thus, Gs > 3C + (2C + 1)(max{ lg(ε)−lg(2)

lg(r) , 1− 1
lg(r)}) + 6. Furthermore, the network G

′

r consists

of a number M
′
of gadgets such that M

′
>

lg(16C2(n+5))−lg[(8Cn+5−8Cn+4−1)2r3]
lg(1+ε) for any r > ε > 0. Hence,

the size of the network is polynomial in 1
lg(r) .

The Adversary

The adversary A
′
of the system G

′

r,A
′
,FIFO is similar to the adversary A of the system Gr,A

′
,FIFO

(see Section 3.2.2). The basic difference here is that the adversary can assign paths to the injected pack-
ets that contain overlapping edges (non-simple path model). Based on this property of the adversary,
we define packet rerouting differently here.

Packet rerouting in two levels. Besides packet rerouting at the beginning of each subphase (see
Section 3.2.2) there is also a second level of packet rerouting during each subphase when the packets
arrive in the simulation bridges of the next gadget to which they are queued at the beginning of the
subphase. As in Section 3.2.2 at the beginning of each subphase the adversary assigns to the packets
that are queued into the system an extension to their path, which consists of non-overlapping edges
that, also, do not overlap with the path that have been already traversed. The new path covers edges
of the gadget where the packets at the beginning of a subphase are queued and edges of the next
gadget. However, when the packets arrive in the simulation bridges of the next gadget to which they
are queued at the beginning of each subphase, they are rerouted by the adversary with paths that
consist of overlapping edges of the simulation bridges. Note that packet rerouting takes place not only
when packets are inserted into a simulation bridge but also after packets complete a full cycle traversing
the edges of the simulation bridge.

In order to explain better this second level of packet rerouting consider the simulation bridge B1(i)
of the gadget F

′
(i) on G

′

r that replaces the edge xi in the F(i) gadget of network Gr. The paths of the

vi

packets that arrive in the simulation bridge B1(i) of the gadget F
′
(i) traversing the gadget F

′
(i − 1),

where 1 ≤ i ≤M during a subphase, are extended as follows:

• The first C packets that arrive in queue b1(i, 1) are assigned to traverse the edges b1(i, 1), . . . , b1(i, C−
1).

• The rest (C−1)C packets that arrive in queue b1(i, 1) are assigned to traverse the edges b1(i, 1), . . . ,
b1(i, C − 1), b1(i, C), . . . , b1(i, 2).

• All the next packets are assigned to traverse the edges b1(i, 1), b1(i, 2). These packets are mixed
in b1(i, 2) with the packets that come from queue b1(i, C).

• All the packets that arrive in b1(i, 2) from queues b1(i, 1), b1(i, C) are rerouted such that the
first C packets are assigned to traverse the edges b1(i, 2), . . . , b1(i, C − 1), while the rest (C −
1)C packets that arrive in queue b1(i, 2) are assigned to traverse the edges b1(i, 2), . . . , b1(i, C −
1), b1(i, C), . . . , b1(i, 2).

Notice that the simulation bridge B2 is used in G
′

r to replace edges in Gr that not only face capacity
changes but also they are traversed by different packet flows in different but overlapping time intervals.
To explain this better consider the simulation bridge B2(i, j) in G

′

r that replaces the edge ei,j in the ith

gadget of network Gr where 1 ≤ i ≤ M and 1 ≤ j ≤ n. Also consider that two packet flows X and Y

arrive in B2(i, j) wanting to traverse it in the time intervals [t1, t2] and [t1, t3] with t2 < t3 respectively.
Then the paths of the packets that arrive in the simulation bridge B2(i, j) are extending in two phases.
During the first phase that covers the time interval [t1, t2] the packet paths are extended as in the
simulation bridge B1(i) above as only the edges g1(i, j) are used. During the second phase that covers
the interval [t2, t3] only packets from set Y are inserted into the simulation bridge. Then, packet paths
are extended as follows:

• The packet rerouting (similar to the first phase) for the packets that are queued in the edges
g1(i, 1), . . . , g1(i, C) continues till time step t3 or till all the packets leave the simulation bridge
B2(i, j).

• The packets that inserted into the simulation bridge during the interval [t2, t3] are forwarded into
queue g2(i, 1). These packets traverse the edges g2(i, 1), . . . , g2(i, C), g2(i, 2) . . . , g2(i, C) till time
t3 or till the last packets in queues g1i, j leave B2(i, j). If the last packets in queues g1i, j leave
B2(i, j) before t3 then the second C packets in queue g2i, 2 are assigned to traverse the edges
g2(i, 2), . . . , g1(i, C − 1), while the rest packets that arrive in B2(i, j) are assigned to traverse the
edges g2(i, 1), g2(i, 2). These packets are mixed in g2(i, 2) with the packets that come from queue
g2(i, C).

• All the packets that arrive in g2(i, 2) from queues g2(i, 1), g2(i, C) are rerouted such that the
first C packets are assigned to traverse the edges g2(i, 2), . . . , g2(i, C − 1), while the rest (C −
1)C packets that arrive in queue g2(i, 2) are assigned to traverse the edges g2(i, 2), . . . , g2(i, C −
1), g2(i, C), . . . , g2(i, 2).

Note that in both simulation bridges after the end of the time period in which the corresponding
edge in Gr has capacity 1 and returns to capacity C all the packets that are queued in the queues
b1(j) (g1(j), g2(j)) where 1 ≤ j ≤ C of the simulation bridge B1 (B2) are rerouted to follow the path
b1(j), . . . , b1(C − 1) (g1(j), . . . , g1(C − 1) and g2(j), . . . , g2(C − 1)).

Simulating the Transition from Capacity C to 1 (Proof of Property 4.2). The adversary using
the packet rerouting property in the second level as it has been described previously achieves C packets

vii

q1

qC

ch1,1 ch1,2 chC,1

chC,2

Figure 8: The analyzer

to leave the simulation bridge B1 (B2) every C time steps. Therefore, in a period of t
C
time steps t

C

packets will leave the simulation bridge B1 (B2). The number of packets that remain into the simulation

bridge after t
C
time steps is |X

′′
| = (C−1)t

C
. In order all the queues in B1 except the first one to have at

least C packets after t
C
time steps (the total number of packets in B2 is more than C2) we should have

(C−1)t
C

> C2 ⇒ t > C3

C−1 because the simulation bridge B1 has C edges with capacity C (the simulation
bridge B2 has two parallel chains of C edges each one with capacity C). This has as a result to need to
remain at least C2 packets in the simulation bridge after t

C
time steps.

Simulating the Transition from Capacity 1 to C (Proof of Property 4.3). All the edges have
capacity C. Furthermore, the topology of each one of the simulation bridges is such that any packet
have to traverse at most C edges in order to leave it. Also, every queue in B1 except the first one has
at least C packets (the total number of packets in B2 is more than C2). Therefore, in 1 time step C

packets will leave the simulation bridge. Hence in t
C
steps all the Y packets will leave the simulation

bridge.

H Proof of Theorem 4.4

Theorem 4.4 plays the role of a simulator. The simulator suitably changes the topology of the network G
′

r

with the replacement of all its edges with a subnetwork called analyzer whose edges have unit capacity.
The analyzer (Figure 8) consists of C parallel edges ql with unit capacity that have common source and
destination where 1 ≤ l ≤ C. In the destination of the analyzer for each edge ql there is a small chain of
two edges ch(l, k) where 1 ≤ k ≤ 2 that has as source and destination the destination of the analyzer.
The additional chains of two edges in the analyzer are used by the adversary when it wants to delay for
one time step the first C packets of a packet flow that are inserted in the analyzer one in each queue
ql. This happens when the corresponding edge replaced by the analyzer in the system (G

′

r, A
′
, FIFO)

has a packet flow queued into it at some time and a new packet flow is inserted into it which should
leave this edge after all the already queued packets in it leave it. Furthermore, the simulator modifies
the adversary A

′
to A

′′
in order to deal with the new network structure. The main modification of

the adversary A
′
that suffices for the simulation of the system (G

′

r, A
′
, FIFO) by the system (G

′′

r , A
′′
,

FIFO) is that the adversary now instead of injecting a packet flow of rCt packets into a queue of G
′

r with
capacity C during t time steps, it injects rt packets into each queue ql of the corresponding analyzer in
G
′′

r with unit capacity requiring to traverse it. Moreover, the adversary A
′′
simulates the behavior of

an edge e in G
′

r which blocks a packet flow X into it till all the packets of a flow Y that are already
queued in it leave. This simulation is achieved by forwarding the first C packets of the packet flow X

that enter the queues ql of the analyzer where the packets of Y are already queued to traverse the chain
ch(l, k) after traversing ql.

viii

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

