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Abstract. In this work, we introduce and study a new model for selfish
routing over non-cooperative networks that combines features from the
two such best studied models, namely the KP model and the Wardrop
model in an interesting way.
We consider a set of n users, each using a mixed strategy to ship its
unsplittable traffic over a network consisting of m parallel links. In a
Nash equilibrium, no user can increase its Individual Cost by unilaterally
deviating from its strategy. To evaluate the performance of such Nash
equilibria, we introduce Quadratic Social Cost as a certain sum of In-
dividual Costs – namely, the sum of the expectations of the squares of
the incurred link latencies. This definition is unlike the KP model, where
Maximum Social Cost has been defined as the maximum of Individual
Costs.
We analyse the impact of our modeling assumptions on the computation
of Quadratic Social Cost, on the structure of worst-case Nash equilibria,
and on bounds on the Quadratic Coordination Ratio.

1 Introduction

1.1 Motivation and Framework

Nash Equilibria and Outline. Nash equilibrium [23,24] is arguably the most
robust equilibrium concept in (non-cooperative) Game Theory.1 At a Nash equi-
librium, no player of a strategic game can unilaterally improve its objective by
switching to a different strategy. In a pure Nash equilibrium, each player chooses
exactly one strategy (with probability one); in a mixed Nash equilibrium, the
choices of each player are modeled by a probability distribution over strategies.
Of special interest to our work is the fully mixed Nash equilibrium [22], where
� This work has been partially supported by the IST Program of the European Union

under contract numbers IST-1999-14186 (ALCOM-FT) and IST-2001-33116 (FLAGS),
and by research funds at University of Cyprus.

�� Part of the work of this author was performed while visiting Faculty of Computer
Science, Electrical Engineering and Mathematics, University of Paderborn.

1 See [25] for a concise introduction to contemporary Game Theory.
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each user chooses each strategy with non-zero probability. Nash equilibria have
some very nice properties; most notably, for finite games, there always exists a
mixed Nash equilibrium [24].

In this work, we embark on a systematic study, within a new model for selfish
routing over non-cooperative networks that we introduce, of some interesting
algorithmic and mathematical properties of Nash equilibria for some specific
routing game formulated in this context. Our new model for selfish routing is an
interesting hybridization of the two most famous models for selfish routing that
were studied in the literature before; these are the so called KP model [19] and
Wardrop model [4,30].
The KP Model and the Wardrop Model. The KP and the Wardrop models
differ with respect to the assumptions they are making about: 1. the structure of
the routing network; 2. the splittability or unsplittability of the users’ traffics; 3.
the definition of Individual Cost for a user they use for defining Nash equilibria;
4. the type of Nash equilibria (pure or mixed) they consider; 5. the specific defi-
nitions they employ for Social Cost, a performance measure for Nash equilibria,
and for Social Optimum, an optimality measure for traffic assignments (not nec-
essarily equilibria). The definitions for Social Cost usually relate to Individual
Costs. In either model, these two definitions give rise to Coordination Ratio, the
maximum value of the ratio of Social Cost over Social Optimum; a worst-case
Nash equilibrium is one that maximizes its particular Social Cost.

In the KP model, a collection of n users is assumed; each user employs a mixed
strategy, which is a probability distribution over m parallel links, to control the
shipping of its own assigned traffic. In the KP model, traffics are unsplittable. For
each link, a capacity specifies the rate at which the link processes traffic. Allowing
link capacities to vary arbitrarily gives rise to the standard model of related links.
A special case of the model of related links is the model of identical links, where
all link capacities are identical. Reciprocally, in the model of identical users,
all user traffics are equal; they may vary arbitrarily in the model of arbitrary
users. In a Nash equilibrium, each user selfishly routes its traffic on those links
that minimize its Individual Cost: its expected latency cost on that link, given
the network congestion caused by the other users. In the KP model, the Social
Cost of a Nash Equilibrium, henceforth called Maximum Social Cost, is the
expectation, over all random choices of the users, of the maximum, over all links,
latency through a link; the Social Optimum, henceforth called the Maximum
Social Optimum, is the least possible maximum, over all links, latency through a
link that could be attained had global regulation been available; correspondingly,
the Coordination Ratio in the KP model will henceforth be called the Maximum
Coordination Ratio. It follows that the Maximum Social Cost in the KP model
is the maximum of Individual Costs.

In the Wardrop model [11,30], there have been considered arbitrary networks
with latency functions for edges. Moreover, the traffics are splittable into arbi-
trary pieces. Here, unregulated traffic is modeled as a network flow. Equilibrium
flows have been classified as flows with all flow paths used between a given pair
of a source and a destination having the same latency. Equilibrium flows are
optimal solutions to a convex program, in case the edge latency functions are
convex. An equilibrium in this model can be interpreted as a Nash equilibrium
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in a game with infinitely many users, each carrying an infinitesimal amount of
traffic from a source to a destination. Thus, the Wardrop model restricts to pure
Nash equilibria. The Individual Cost of a user is defined as the sum of the edge
latencies on a path from the user’s source to its destination. The Social Cost of
a Nash equilibrium is the sum of all Individual Costs. The Social Optimum is
the least possible, over all network flows, sum of Individual Costs.
The New Model for Selfish Routing. Our new model for selfish routing
over non-cooperative networks is a hybridization of the KP model [19] and the
Wardrop model [11,30]. More specifically, we follow the KP model to consider
the simple parallel links network (which, however, is also a special case for the
Wardrop model). We also follow the KP model to consider unsplittable traffics
and mixed Nash equilibria. The Individual Cost we adopt is also identical to
that adopted in the KP model – the expected latency cost on a link. However,
we follow the Wardrop model to model Social Cost as a certain sum of Indi-
vidual Costs, which we will later describe. In some sense, our new model is the
Wardrop model restricted to the simple parallel links network but modified to
allow for unsplittable traffics and for mixed strategies; these two features were
borrowed from the KP model. Our work is the first step toward accommodating
unsplittable traffics within the Wardrop model.

For any link, consider the square of the traffic through the link divided by the
link capacity; taking the expectation of this and adding up over all links yields
the Social Cost for our model. Call it Quadratic Social Cost. In correspondence
with Quadratic Social Cost, we also define and study in our new model Quadratic
Optimum and Quadratic Coordination Ratio. Naturally, the former is the least
possible sum of the squares of total traffic through a link divided by the link
capacity; the latter is the maximum value of the ratio of Quadratic Social Cost
over Quadratic Social Optimum. Since Nash equilibria are defined with respect
to Individual Costs (but are independent of Social Cost), the Nash equilibria
in our new model coincide with those in the KP-model since the two adopt the
same Individual Costs.

Note that the commutativity between expectation and sum in the defini-
tion of Quadratic Social Cost has been unavailable (between expectation and
maximum) in the definition of Maximum Social Cost for the KP model. So, this
commutativity allows hopes for some more tractable analysis of several problems
regarding some interesting algorithmic, combinatorial, structural and optimality
properties of Nash equilibria in the new model.

1.2 Contribution and Significance

We partition our results into three major groups.
Combinatorial Expressions for Quadratic Social Cost. In the most gen-
eral model of arbitrary users and arbitrary links, we obtain an elegant, recursive
combinatorial formula for Quadratic Social Cost, implying a dynamic program-
ming algorithm to compute Quadratic Social Cost. Furthermore, we derive sim-
ple, combinatorial expressions for the Quadratic Social Cost of the fully mixed
Nash equilibrium in case of arbitrary users and identical links, and identical
users and arbitrary links, respectively.



550 T. Lücking et al.

The Worst-case Nash Equilibrium. A natural problem that arises in the
context of Quadratic Social Cost is to identify the worst-case Nash equilibrium –
the one that maximizes, for each specific choice of user traffics and link capacities,
the Quadratic Social Cost. We address this problem in the particular setting of
the model of identical users and identical links, where the fully mixed Nash
equilibrium always exists. We prove that, in this particular setting, the worst-
case Nash equilibrium is the fully mixed Nash equilibrium.
Bounds on Quadratic Coordination Ratio. For the model of arbitrary users
and identical links we prove that the Quadratic Coordination Ratio for pure Nash
equilibria is precisely 9

8 . In case of identical users and related links, we discover
that the Quadratic Coordination Ratio for pure Nash equilibria increases slightly
to 4

3 . We next turn to the model of arbitrary users and identical links. Here, we
restrict ourselves to the fully mixed Nash equilibrium. For this setting, we prove
an upper bound of 2 − 1

m on Quadratic Coordination Ratio. For identical users
the Quadratic Social Cost of the fully mixed Nash equilibrium slightly drops
to 1 + min{m−1

n , n−1
m } times the optimal Quadratic Social Cost. Since in this

setting the fully mixed Nash equilibrium is the worst-case Nash equilibrium, this
bound holds for the Quadratic Coordination Ratio.

1.3 Related Work and Comparison

The KP model was first introduced in the work of Koutsoupias and Papadim-
itriou [19]; it was further studied in [9,10,12,14,16,17,18,21,22]. Fully mixed Nash
equilibria were introduced and analyzed in [22]. Bounds on Maximum Coordi-
nation Ratio were proved in [9,14,18,22]. The works by Fotakis et al. [16], by
Gairing et al. [17], and by Lücking et al. [21] dwelved into the combinatorial
structure and the computational complexity of Nash equilibria for the KP model.
In particular, the Fully Mixed Nash Equilibrium Conjecture was motivated by
some results in [16], explicitly formulated in [17] and further studied in [21]. The
Wardrop model was defined in [30] and further studied in [3,4,11]. Recent studies
of selfish routing within the Wardrop model include [27,28,29].

Fotakis et al. [16, Theorem 8] proved that computing the Maximum Social
Cost of an arbitrary Nash equilibrium is a #P-complete problem. This hardness
result stands in very sharp contrast to our general, pseudopolynomial algorithm
to compute Quadratic Social Cost (Theorem 1).

For the KP model, there are known bounds on Maximum Coordination Ratio
of Θ

(
lg m

lg lg m

)
for the model of arbitrary users and identical links [9,18,19,22],

of Θ
(

lg m
lg lg lg m

)
for the model of arbitrary users and related links [9], and of

O (
√

m) for the model of arbitrary users and related links and for pure Nash
equilibria [14], which improves the previous bound for small values of m. Some
of these super-constant bounds stand in very sharp contrast to some of the
constant bounds (independent of m and n) on Quadratic Coordination Ratio
we prove in this work. However, for the Wardrop model, there have been shown
constant bounds on Coordination Ratio [27,28,29].

Other works that have studied Coordination Ratio include [13] for a network
creation game and [2] for a network design game. For a survey of recent work
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on selfish routing in non-cooperative networks, see [15]. Work in the scheduling
literature that has considered quadratic cost functions for makespan includes [1,
6,8,20]; work in the networking literature that has considered quadratic cost
functions for network delay includes [7].

1.4 Road Map

The rest of this paper is organized as follows. Section 2 presents our definitions
and some preliminaries. The Quadratic Social Cost of Nash equilibria is studied
in Section 3. Section 4 proves that the fully mixed Nash equilibrium maximizes
Quadratic Social Cost in the model of identical users and identical links. Our
bounds on Quadratic Coordination Ratio are presented in Section 5. Due to lack
of space the proofs are omitted. They can be found in the full version.

2 Framework

2.1 Mathematical Preliminaries and Notation

Throughout, denote for any integer m ≥ 2, [m] = {1, . . . , m}. For a random
variable X, denote E(X) the expectation of X. We continue to prove a simple
combinatorial inequality.

Lemma 1. For any k, a, b ∈ N with 0 < k ≤ a ≤ b, 1
ak

(
a
k

) ≤ 1
bk

(
b
k

)
.

Finally, we prove a combinatorial lemma that will be useful in a later proof.

Lemma 2. Fix any real number a, where 0 < a < 1, and positive integer r,and
set A = r

a . Then,
∑

1≤k≤r

(
r
k

)
k2
( 1

a

)k (1 − 1
a

)r−k = A + r−1
r A2 .

2.2 General

We consider a network consisting of a set of m parallel links 1, 2, . . . , m from a
source node to a destination node. Each of n network users 1, 2, . . . , n, or users
for short, wishes to route a particular amount of traffic along a (non-fixed) link
from source to destination. (Throughout, we will be using subscripts for users
and superscripts for links.)

Denote wi the traffic of user i ∈ [n]. Define the n × 1 traffic vector w in the
natural way. Assume throughout that m > 1 and n > 1. Assume also, without
loss of generality, that w1 ≥ w2 ≥ . . . ≥ wn. Denote W =

∑
i∈[n] wi.

A pure strategy for user i ∈ [n] is some specific link. A mixed strategy for user
i ∈ [n] is a probability distribution over pure strategies; thus, a mixed strategy
is a probability distribution over the set of links. The support of the mixed
strategy for user i ∈ [n], denoted sup(i), is the set of those pure strategies (links)
to which i assigns positive probability. A pure strategy profile is represented by
an n-tuple 〈�1, �2, . . . , �n〉 ∈ [m]n; a mixed strategy profile is represented by an
n × m probability matrix P of nm probabilities pj

i , i ∈ [n] and j ∈ [m], where pj
i

is the probability that user i chooses link j.
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For a probability matrix P, define indicator variables Ij
i ∈ {0, 1}, where

i ∈ [n] and j ∈ [m], such that Ij
i = 1 if and only if pj

i > 0. Thus, the support of
the mixed strategy for user i ∈ [n] is the set {j ∈ [m] | Ij

i = 1}. For each link
j ∈ [m], define the view of link j, denoted view(j), as the set of users i ∈ [n]
that potentially assign their traffics to link j; so, view(j) = {i ∈ [n] | Ij

i = 1}.
For each link j ∈ [m], denote V j = |view(j)|.

A mixed strategy profile P is fully mixed [22, Section 2.2] if for all users i ∈ [n]
and links j ∈ [m], Ij

i = 1. Throughout, we will cast a pure strategy profile as a
special case of a mixed strategy profile in which all (mixed) strategies are pure.

2.3 System, Models, and Cost Measures

Denote c� > 0 the capacity of link � ∈ [m], representing the rate at which the link
processes traffic. So, the latency for traffic w through link � equals w/c�. In the
model of uniform capacities, all link capacities are equal to c, for some constant
c > 0; link capacities may vary arbitrarily in the model of arbitrary capacities.
Assume throughout, without loss of generality, that c1 ≥ c2 ≥ . . . ≥ cm. Denote
C =

∑
j∈[m] c

j . In the model of identical traffics, all user traffics are equal to 1;
user traffics may vary arbitrarily in the model of arbitrary traffics.

For a pure strategy profile 〈�1, �2, . . . , �n〉, the latency cost for user i ∈ [n],
denoted λi, is (

∑
k:�k=�i

wk)/c�i ; that is, the latency cost for user i is the latency
of the link it chooses. For a mixed strategy profile P, denote δ� the actual traffic
on link � ∈ [m]; so, δ� is a random variable. For each link � ∈ [m], denote θ� the
expected traffic on link � ∈ [m]; thus, θ� = E(δ�) =

∑n
i=1 p�

iwi. Given P, define
the m × 1 expected traffic vector Θ induced by P in the natural way. Given P,
denote Λ� the expected latency on link � ∈ [m]; clearly, Λ� = θ�

c� . Define the
m × 1 expected latency vector Λ in the natural way. For a mixed strategy profile
P, the expected latency cost for user i ∈ [n] on link � ∈ [m], denoted λ�

i , is the
expectation, over all random choices of the remaining users, of the latency cost
for user i had its traffic been assigned to link �; thus,

λ�
i =

wi +
∑

k=1,k �=i p�
kwk

c�
=

(1 − p�
i)wi + θ�

c�
.

For each user i ∈ [n], the minimum expected latency cost, denoted λi, is the
minimum, over all links � ∈ [m], of the expected latency cost for user i on link
�; thus, λi = min�∈[m] λ

�
i . For a probability matrix P, define the n × 1 minimum

expected latency cost vector λ induced by P in the natural way.
Associated with a traffic vector w, a capacity vector c and a mixed strategy
profile P is the Quadratic Social Cost, denoted QSC(w, c,P), which is the ex-
pectation of the sum of squares of the incurred link latencies; thus,

QSC(w, c,P) = E

∑

�∈[m]

(∑
k:�k=� wk

)2
c�




=
∑

〈�1,�2,... ,�n〉∈[m]n




n∏
k=1

p�k

k ·
∑

�∈[m]

(∑
k:�k=� wk

)2
c�


 .
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Since the expectation of a sum is equal to the sum of expectations, we can write

QSC(w, c,P) =
∑

�∈[m]

∑
A⊂[n]

(∏
i∈A

p�
i

)
∏

i �∈A

(1 − p�
i)



(∑

k:�k=� wk

)2
c�

. (1)

The Quadratic Optimum associated with a traffic vector w and a capacity vector
c, denoted QOPT(w, c), is the least possible sum of squares of the incurred link
latencies. Note that while QSC(w, c,P) is defined in relation to a mixed strategy
profile P, QOPT(w, c) refers to the optimum pure strategy profile.

The Maximum Social Cost, denoted MSC(w, c,P), which is used in the orig-
inal KP model, is defined as the expectation of the maximum of the incurred
link latencies. Correspondingly, the Maximum Optimum, denoted MOPT(w, c),
is the minimum, over all assignments, maximum incurred link latency.

2.4 Nash Equilibria

We are interested in a special class of mixed strategies called Nash equilib-
ria [24] that we describe below. Formally, the probability matrix P is a Nash
equilibrium [19, Section 2] if for all users i ∈ [n] and links � ∈ [m], λ�

i = λi if
I�
i = 1, and λ�

i > λi if I�
i = 0. Thus, each user assigns its traffic with positive

probability only on links (possibly more than one of them) for which its expected
latency cost is minimized; this implies that there is no incentive for a user to
unilaterally deviate from its mixed strategy in order to avoid links on which its
expected latency cost is higher than necessary.

Mavronicolas and Spirakis [22, Lemma 15] show that in the model of arbi-
trary users and identical links, all links are equiprobable in a fully mixed Nash
equilibrium.

Lemma 3 (Mavronicolas and Spirakis [22]). Consider the model of arbi-
trary users and identical links. Then, there exists a unique fully mixed Nash
equilibrium with associated Nash probabilities p�

i = 1/m, for any user i ∈ [n] and
link � ∈ [m].

2.5 Coordination Ratio and Quadratic Coordination Ratio

The Quadratic Coordination Ratio is the maximum value, over all traffic vec-
tors w, capacity vectors c, and Nash equilibria P of the ratio QSC(w,c,P)

QOPT(w,c) . In a
corresponding way, the Maximum Coordination Ratio is defined in [19] as the
maximum value, over all traffic vectors w, capacity vectors c and Nash equilibria
P of the ratio MSC(w,c,P)

MOPT(w,c) .

3 The Quadratic Social Cost of Nash Equilibria

In this section, we study the Quadratic Social Cost of arbitrary (mixed) Nash
equilibria. We start by proving:
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Theorem 1 (Quadratic Social Cost of Arbitrary Nash Equilibrium).
Fix any traffic vector w, any capacity vector c, and any arbitrary Nash equilib-
rium P. Then, QSC (w, c,P) can be computed in time O(nmW ).

We next establish that the Quadratic Social Cost takes a particularly nice
form for the case of the fully mixed Nash equilibrium. We prove:

Theorem 2 (Quadratic Social Cost of Fully Mixed Nash Equilibrium).
Consider the model of arbitrary users and identical links. Then, for any traffic
vector w,

QSC (w,F) = W1 +
2
m

W2 ,

where W1 =
∑

i∈[n] w
2
i and W2 =

∑
i,k∈[n],i �=k wiwk.

The next Lemma is used in the proof of Proposition 1.

Lemma 4. Let a, n ∈ N, a even, let pi ∈ [0, 1] for all 1 ≤ i ≤ n. Denote
P = (p1, . . . , pn) and p =

∑
1≤i≤n pi. Set

H(P ) =
∑

A⊂[n]

|A|a
{∏

i∈A

pi

}

∏
j �∈A

(1 − pj)



 .

Define P̃ by p̃i = 1
n · p for all 1 ≤ i ≤ n. Then H(P ) ≤ H(P̃ ).

Proposition 1. Consider the model of identical users and identical links. Then,
for any arbitrary Nash equilibrium P,

QSC (P) ≤
∑

j∈[m]

(
θj +

rj − 1
rj

(θj)2
)

,

where θj =
∑

i∈[n] p
j
i and rj = |view(j)|.

We finally prove:

Theorem 3. Consider the model of identical users and related links. Then,

QSC (c,F) =
n (n + m − 1)

C
.

Corollary 1 (Quadratic Social Cost of Fully Mixed Nash Equilibrium).
Consider the model of identical users and identical links. Then,

QSC (w, c,F) =
n (n + m − 1)

m
.
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4 The Worst-Case Nash Equilibrium

We now establish that, for the model of identical users and identical links, the
worst-case Nash equilibrium is the fully mixed Nash equilibrium. We start our
proof with a technical lemma which holds in the more general model of arbitrary
users, and then return to the model of identical users and identical links.

Lemma 5. Consider n arbitrary users on m identical links, and let j, k ∈ [m].

1. If view(j) = view(k) �= ∅, then |view(j)| = 1 or θj = θk and pj
i = pk

i for all
i ∈ [n].

2. If view(j) � view(k), then θj > θk.

Theorem 4. Consider the model of identical users and identical links. Then,
for any arbitrary Nash equilibrium P, QSC (w, c,P) ≤ QSC (w, c,F).

5 Bounds on Quadratic Coordination Ratio

In this section, we present our bounds on Quadratic Coordination Ratio. We
start by proving:

Theorem 5 (Quadratic Coordination Ratio for Pure Nash Equilibria).
Consider the model of arbitrary users and identical links, restricted to pure Nash
equilibria. Then,

max
w,P

QSC (w,P)
QOPT (w)

=
9
8

.

We give here only a sketch of the proof. Let there be n users and m links. If
n ≤ m, then every pure Nash equilibrium has optimal social cost. Now assume
n > m. Let P be any pure Nash equilibrium. Let us first assume that wi ≤ W

m

holds for all users i ∈ [n]. Let B = minj∈[m] δ
j be the minimum traffic on any

of the links. Then B > 0, and it has been shown in [17], that on every link the
load is bounded by 2B.
We use some iterative procedure to compute an upper bound for QSC(w, c,P).
When the algorithm terminates, then we know that there exists some k ∈ [m],
such that

– QSC(w, c,P) ≤∑j∈[m] x
2
j ,

– xj = 2B for k links,
– xj = B + x, 0 ≤ x ≤ B, for one link, and
– xj = B for m − k − 1 links.

Note, that QOPT(w, c) ≥ W2
m , and therefore

QSC(w, c,P)
QOPT(w, c)

≤ ((3k + m − 1)B2 + (B + x)2)m
(mB + kB + x)2

= f(k) .
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Maximizing the function f(k) shows the upper bound for the case that wi ≤ W
m

for all i ∈ [n].
In case that wi > W

m holds for some user i ∈ [n], such a user is alone on
its link in every Nash equilibrium P, and both the user and the link can be
omitted, increasing the coordination ratio. To show tighness, we give an instance.

We continue by a similar result for the reciprocal case of identical users and
related links:

Theorem 6 (Quadratic Coordination Ratio for Pure Nash Equilibria).
Consider the model of identical users and related links, restricted to pure Nash
equilibria. Then,

max
w,c,P

QSC (w, c,P)
QOPT (w, c)

=
4
3

.

We give here only a sketch of the full proof. First, we show that no instance
with traffic vector w = {1}n, capacity vector c and pure Nash equilibrium P
exists with Quadratic Coordination Ratio greater than 4

3 . Therefore, we assume,
by way of contradiction, that such an instance exists, and fix the minimal (in the
number of links) such counterexample, its worst case Nash equilibrium P and
an optimal assignment Q. We denote the traffic of each link j by δj(P) when
referring to P, and by δj(Q) when referring to the optimum assignment. Lemma
6 shows, that δj(P) is at most by one smaller than δj(Q) for any link j. Lemma
7 shows, that for the instance under consideration, only for exactly one link k,
δk(P) is greater than δk(Q), and that no link has the same traffic according to P
and Q. This implies δk(P) = δk(Q)+m−1, because all remaining links must have
δj(P) = δj(Q) − 1. Lemma 8 shows, that, if not all links except for k have the
same capacity cj and the same traffic, then we can create a new instance with
m − 1 identical links, having the same traffic, and one additional link, which
has at least the same Quadratic Coordination Ratio. Hence, we can consider
this new instance in order to bound the Quadratic Coordination Ratio of the
original instance from above. To do so, we write down an optimization problem
which overestimates the Quadratic Coordination Ratio of the new instance and
includes, as constraints, the Nash equilibrium property and optimality criterion
from Lemma 9. The optimization problem evaluates to 4

3 , which contradicts the
initial assumption.
To proof that the bound is tight, we construct an instance with Quadratic Co-
ordination Ratio 4

3 for any number of links m.

Lemma 6. Let (w, c), Q, P, δj(Q) and δj(P) be as in the proof of Theorem 6.
Then, δj(Q) − δj(P) ≤ 1 for all j ∈ [m].

Lemma 7. Let (w, c), Q, P, δj(Q) and δj(P) be as in the proof of Theorem 6.
Then, δk(P) = δk(Q) + m − 1 for some k ∈ [m], and δj(P) = δj(Q) − 1 for all
j ∈ [m]\{k}.
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Lemma 8. Let (w, c), Q, P, δj(Q) and δj(P) be as in the proof of Theorem
6. Then, there exists an instance (w̃, c̃) that has the same number m of links
as (w, c) with optimal assignment Q̃, Nash equilibrium assignment P̃, such that
δk(P̃) = δk(Q̃) + m − 1 for some link k ∈ [m], δi(Q̃) = δj(Q̃) and c̃i = c̃j for
all i, j ∈ [m]\{k} and QSC(w̃,c̃,P̃)

QOPT(w̃,c̃) ≥ QSC(w,c,P)
QOPT(w,c) .

Lemma 9. Let Q be any pure assignment for an instance (w, c) of the model
of identical traffics and related links, let w = (w, . . . , w). Then, Q is optimal,
i.e., QSC(w, c,Q) = QOPT(w, c), if and only if for every pair of links i, j ∈ [m]

(δi(Q) + w)2

ci
+

(δj(Q) − w)2

cj
≥ (δi(Q))2

ci
+

(δj(Q))2

cj
.

We next prove:

Theorem 7. Consider the model of arbitrary users and identical links. Then,

max
w,c

QSC (w, c,F)
QOPT (w, c)

≤ 2 − 1
m

.

We next prove:

Theorem 8. Consider the model of identical users and identical links. Then,
for any traffic vector w, capacity vector c and mixed Nash equilibrium P,

QSC (w, c,P)
QOPT (w, c)

≤ 1 + min
{

m − 1
n

,
n − 1

m

}
≤ 2 − 1

m
.
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9. A. Czumaj and B. Vöcking, Tight Bounds for Worst-Case Equilibria, Proc. of
SODA 2002, pp. 413–420.
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