
Computing on a Partially Eponymous Ring∗

Marios Mavronicolas† Loizos Michael‡ Paul Spirakis§

(April 6, 2008)

∗A preliminary version of this work appeared in the Proceedings of the 10th International Conference on Principles

of Distributed Systems, A. A. Shvartsman ed., Vol. 4305, pp. 380–394, Lecture Notes in Computer Science, Springer-

Verlag, December 2006. This work has been partially supported by the IST Program of the European Union under

contract number 015964 (AEOLUS).
†Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus, & Faculty of Computer

Science, Electrical Engineering and Mathematics, University of Paderborn, 33102 Paderborn, Germany. Email

mavronic@cs.ucy.ac.cy
‡School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A. Email

loizos@eecs.harvard.edu
§Department of Computer Engineering and Informatics, University of Patras, 265 00 Patras, Greece, & Research

Academic Computer Technology Institute, 265 00 Patras, Greece. Email spirakis@cti.gr

Abstract

We study the partially eponymous model of distributed computation, which simultaneously

generalizes the anonymous and the eponymous models. In this model, processors have identities,

which are neither necessarily all identical (as in the anonymous model) nor necessarily unique

(as in the eponymous model). In a decision problem formalized as a relation, processors receive

inputs and seek to reach outputs respecting the relation. We focus on the partially eponymous

ring, and we shall consider the computation of circularly symmetric relations on it. We consider

sets of rings where all rings in the set have the same multiset of identity multiplicities.

• We distinguish between solvability and computability: in solvability, processors are re-

quired to always reach outputs respecting the relation; in computability, they must do so

whenever this is possible, and must otherwise report impossibility.

– We present a topological characterization of solvability for a relation on a set of rings,

which can be expressed as an efficiently checkable, number-theoretic predicate.

– We present a universal distributed algorithm for computing a relation on a set of rings;

it runs any distributed algorithm for constructing views, followed by local steps.

• We derive, as our main result, a universal upper bound on the message complexity to

compute a relation on a set of rings; this bound demonstrates a graceful degradation with

the Least Minimum Base, a parameter indicating the degree of least possible eponymity

for a set of rings. Thereafter, we identify two cases where a relation can be computed on

a set of rings, with rings of size n, with an efficient number of O (n · lg n) messages.

2

1 Introduction

1.1 Motivation and Framework

Two of the best studied models in Distributed Computing Theory are the eponymous and the

anonymous models. Considered in both models are decision problems where processors may receive

inputs and seek to reach outputs that are admissible: they are related to the inputs according to

some (recursive) relation. In both models, processors have available identities.

• In the eponymous model, the identities are unique. Such availability enables the solvability

of all relations: processors first solve Leader Election [11] to elect a leader among them; then,

the leader undertakes computation and communicates the solution to the others.

• In the anonymous model, all identities are identical and all processors run the same local

algorithm. The impossibility of breaking this initial symmetry retains many relations un-

solvable in the anonymous model; the prime example is the impossibility of solving Leader

Election on an anonymous ring [1].

This long-known separation between the eponymous and the anonymous models invites the

investigation of an intermediate model where the available identities are neither necessarily unique

nor necessarily all identical; call it the partially eponymous model. Studying such a model is well

motivated since it may be practically difficult to keep all identities distinct in a network with an

increasing number of processors. In this work, we consider a particular case of the partially epony-

mous model, that of the (asynchronous) partially eponymous ring with bidirectional communication

and orientation.∗

We focus on circularly symmetric relations; these form the broadest class of relations that

are natural to consider for rings. Roughly speaking, in a circularly symmetric relation, shifting

any output vector that is admissible for a given input vector must yield an output vector that

is admissible for the correspondingly shifted input vector. Circularly symmetric relations were

originally motivated by the known fact that a function is solvable on an (asynchronous) anonymous

ring if and only if the function value does not change when the inputs are cyclically shifted [2,

Theorem 3.4 (Condition (i))].

A significant ingredient of some previous work on anonymous networks has been the require-

ment that there be a single distributed algorithm for a particular relation that runs on all networks

and allows processors to occasionally report impossibility — exactly, of course, when it is impossi-

ble to return admissible outputs. This computational requirement will be called computability in

this work; we explicitly provide the first formal definition of computability for a relation (Defini-

tions 3.2 and 3.3).

∗Bidirectional communication allows messages to be sent along both directions of an edge. A ring is oriented if

the two edges incident to each processor are consistently labelled as left and right.

3

An orthogonal viewpoint is to identify the subclass of networks on which it is always possible

for the processors to return admissible outputs. This viewpoint follows the motivation to obtain

tailored distributed algorithms that are possibly more efficient in terms of message complexity than

those running on all networks. This requirement will be here called solvability (Definition 3.1); a

relation is solvable on a set of networks if there is a distributed algorithm that runs on any network

in the set so that processors always reach admissible outputs (and never report impossibility).

We emphasize that we do not view solvability as a computational requirement. Hence, we

do not consider algorithms as procedures for solving relations; rather, we only use the notion of

solvability to attest that a relation is well-suited for a set of networks. Algorithms are thought of

as computing relations on networks even if the relations are solvable on those networks (and thus

impossibility is never reported); solvability may, of course, make computing a relation easier.

In this work, we are interested in the solvability and computability of circularly symmetric

relations on partially eponymous rings. In particular, we seek a characterization of circularly

symmetric relations that are solvable on particular classes of partially eponymous rings. We are

also interested in the message complexity for the computability of those relations on particular

classes of partially eponymous rings as a function of the ring size. (Bit complexity remains beyond

the scope of this work.† So also do randomized distributed algorithms.) We mostly consider non-

uniform distributed algorithms, where the ring size is available to the processors. Non-uniformity is

known to be essential for computing certain functions (e.g., Sum) on anonymous rings [2, Theorem

3.3].

1.2 State-of-the-Art

Computation on anonymous networks was first studied in the seminal work of Angluin [1], where the

fundamental impossibility of solving Leader Election was first established. Yamashita and Kameda

[12, 13] later considered the solvability of several representative relations (such as Leader Election,

Edge Election, Spanning Tree Construction, and Topology Recognition) on anonymous networks.

For those relations, Yamashita and Kameda characterized the class of (anonymous) networks on

which each relation is solvable under different assumptions on the network attributes (e.g., size,

topology, etc.) that are known by the processors.

Yamashita and Kameda [14] considered the computation of functions on anonymous networks.

They characterized the class of solvable functions and proved lower and upper bounds on their

message complexity. Attiya et al. [2] had initiated the study of the solvability of functions on

asynchronous anonymous rings.

The general model of an arbitrary, partially eponymous network was first considered by Ya-

mashita and Kameda [15]. They focused on Leader Election and provided a graph-theoretic char-

†We note, however, that since both identities and inputs come from arbitrary domains, the bit complexity for

transmitting either an identity or an input may not be bounded in terms of the ring size.

4

acterization of its solvability under different assumptions on the communication mode and the

available (a)synchrony.

Boldi and Vigna [3] provided a general study of the solvability of an arbitrary relation on an

arbitrary network, under any level of knowledge and anonymity (or eponymity) of the processors.

(The detail of the level of processor anonymity is modelled in [3] by using colors on the nodes or

on the edges.) Boldi and Vigna provided an effective (i.e., recursive) characterization of solvable

relations on an arbitrary network; the characterization is graph-theoretic and involves the concepts

of graph coverings and graph fibrations [1, 4, 10]. The work of Boldi and Vigna [3] has left open the

possibility of devising efficient characterizations of solvability on particular anonymous networks,

or even on (particular) partially eponymous networks.

Flocchini et al. [8, 8, Section 2.2] considered the Vertex Election (identical to Leader Election),

Edge Election, General Election (generalizing simultaneously the Vertex Election and Edge Election

relations) and Multiset Sorting relations on asynchronous anonymous rings where processors are

distinguished by input values that are not necessarily distinct. So, input values are treated in the

partially eponymous model of Flocchini et al. [8] either as identities (e.g., when studying Vertex

Election) or as inputs (e.g., when studying Multiset Sorting). We emphasize that the partially

eponymous model of Flocchini et al. [8] does not simultaneously consider identities and inputs,

while our model does.

Under the assumptions that input values are binary and the size n of the ring is prime, Flocchini

et al. [8, Theorems 4.1 and 4.2] provided lower and upper bounds on message complexity for those

four relations; the lower and upper bounds were Ω(
∑

k(z
2
k + t2k)) and O

(∑
k(z

2
k + t2k) + n · lgn

)
,

respectively, where zk and tk are the lengths of consecutive blocks of 1s and 0s, respectively, in

the input vector. Flocchini et al. [8, Section 3] characterized the set of (binary) vectors with the

property that restricting input vectors to this set suffices for the solvability of those four relations.

Hirschberg and Sinclair [9] provided the first efficient algorithm for Leader Election on asyn-

chronous eponymous rings; that algorithm was based on the intuitive idea of domination in local

neighborhoods with progressively doubling size. This algorithm is uniform: processors require no

externally provided information regarding the ring size, as this can be determined exactly thanks to

the assumption of ring eponymity. On rings of size n, the algorithm achieves an O (n · lg n) upper

bound on message complexity. A corresponding lower bound of Ω(n · lg n) has been established in

[5]; obviously, this lower bound carries to partially eponymous rings as well.

1.3 Contribution

Throughout, we only consider sets of rings (of the same size n) such that the multiset of identity

multiplicities is the same for each ring in any given set. Call it a set of rings with fixed multiplicities,

or simply a set of rings, and denote it as ID. So, each ring in a set of rings corresponds to a

different arrangement of the identities. All presented results on solvability, computability, and

5

message complexity apply to such sets of rings.

To derive the results, we develop a few preliminary technical notions, which we describe here

informally. To measure the circular symmetry in a vector, we use the period : the smaller the

symmetry, the larger the period. The (initial) configuration of a ring consists of the identities and

the inputs. The Minimum Base of the initial configuration is the period of a composite vector

obtained from the initial configuration; so, the Minimum Base measures the circular asymmetry

in the initial configuration. It turns out that the Minimum Base and some derivative parameters

enjoy elegant number-theoretic expressions, which allow for their efficient evaluation (Section 3.3).

1.3.1 Solvability

We present a topological characterization of solvability for circularly symmetric relations on a set of

rings. In more detail, we introduce a new, abstract topological concept, called compatibility (Def-

inition 4.1), to capture the possibility that symmetries in the initial configuration persist to the

reached outputs; this amounts to demanding that the period of some admissible output vector di-

vides the Minimum Base of the initial configuration. Hence, assuming that the relation is presented

explicitly as input to a sequential algorithm (and, therefore, it can be exhaustively searched in time

linear in its representation size), compatibility can be checked efficiently since it reduces to checking

(a linear number of times) an efficiently checkable number-theoretic predicate. Compatibility can

be extended to a pair of a relation and a set of rings in the natural way (Definition 4.2).

We prove that a circularly symmetric relation is solvable on a set of rings if and only if it is

compatible with it (Theorem 4.3). Since compatibility can be checked efficiently, this characteriza-

tion of solvability is efficient — in fact, the time complexity of deciding solvability‡ is proportional

to the representation size of the given relation.

As an application of this general characterization, we derive a characterization of solvability

for the special case of k-periodic relations (Theorem 4.6). A characterization of solvability for

the particular case of uniperiodic and aperiodic relations then follows (Corollaries 4.7 and 4.8,

respectively). Note that Leader Election is an example of aperiodic relations. Since Leader Election

and all aperiodic relations share the same characterization of solvability, it follows that the class of

aperiodic relations provides a topological characterization of relations that are equivalent to Leader

Election with respect to solvability.

1.3.2 Computability

We present a universal distributed algorithm to compute any arbitrary (circularly symmetric) re-

lation on a set of rings (Theorem 4.4). This universal distributed algorithm is comprised of any

‡We remark that the proof of the characterization invokes only synchronous executions; hence solvability of

circularly symmetric relations enjoys identical characterizations in both the synchronous and the asynchronous models,

which collapse in this regard. (In fact, the characterization applies to any set of executions that contains the

synchronous execution.)

6

distributed algorithm for constructing the view of each processor, followed by local steps; so, this

universal algorithm is designed with no concern about message complexity. The distributed algo-

rithm for constructing views is the same for all relations; the local steps are specific to the particular

relation. Note that the universal distributed algorithm is non-uniform if and only if the distributed

algorithm for constructing views is. Finally, we remark that this universal distributed algorithm

(and all later distributed algorithms that will invoke it) makes no assumption on synchrony; hence

it works correctly no matter what subset of executions one allows.

1.3.3 Message Complexity

We introduce Multiple Leader Election, a natural generalization of Leader Election in which a (non-

zero) number of leaders must be elected; the number is constrained by some arbitrary function.

We then present a distributed algorithm AMLE(α), which satisfies a correctness property remi-

niscent of Multiple Leader Election; specifically, it leads a certain number of processors to terminate

as leaders (Proposition 5.5), and the number depends on the initial configuration. The algorithm

runs advised with a lower bound α on the Minimum Base for any particular configuration. The

advice is “hard-wired” into the common local algorithm of all processors, much in the same way

the ring size is in a (standard) non-uniform distributed algorithm.

This distributed algorithm exploits the idea of doubling neighborhoods from the distributed

algorithm of Hirschberg and Sinclair [9] for solving Leader Election on eponymous rings. Roughly

speaking, processors compare prefixes of views to figure out if they should enter the next phase,

where the neighborhood size will be doubled. The number of elected leaders depends on the advice

α (Proposition 5.5); furthermore, the algorithm achieves message complexity O (n · lgα) for any

advice α (Proposition 5.4).

In turn, we use the distributed algorithm associated with Multiple Leader Election as the

chief building block inside a universal distributed algorithm to compute an arbitrary (circularly

symmetric) relation Ψ on a set of rings ID. This universal distributed algorithm is a particular

instantiation of the universal distributed algorithm described in Section 1.3.2; the instantiation is

designed with the goal of achieving low message complexity. The resulting distributed algorithm is

non-uniform, since it employs a non-uniform distributed algorithm for constructing views.

The obtained algorithm has message complexity O

(
n2

LMB(ID,Ψ)
+ n · lg LMB(ID,Ψ)

)
, where

LMB(ID,Ψ) is the Least Minimum Base — the least value of Minimum Base over all configurations

with an identity vector from ID and an input vector from the domain of Ψ (Theorem 5.6). Here,

LMB(ID,Ψ) is used as the advice α for the distributed algorithm associated with Multiple Leader

Election.§ Interestingly, the established upper bound demonstrates that the message complexity on

§Note that such advice is permissible when designing a distributed algorithm to compute the relation Ψ on the

set of rings ID, since it provides no information specific to the particular ring on which the distributed algorithm is

running each time; the advice only provides information pertaining to the membership of the ring in ID.

7

a set of rings ID degrades gracefully with the Least Minimum Base (which indicates the degree of

least possible eponymity for ID); it ranges from O (n · lgn) for sets of eponymous rings to O
(
n2
)
for

sets of anonymous rings. We remark that the universal upper bound is tight for these two extreme

models since O (n · lg n) and O
(
n2
)
are correspondingly tight for some particular relations [2, 5].¶

We are finally interested in determining sets of rings on which the universal upper bound on

message complexity from Theorem 5.6 is as low as possible. More specifically, on which sets of rings

is it possible to achieve the upper bound of O (n · lgn) for every relation? (Recall that O (n · lg n)

is optimal for eponymous rings [5].) We identify two such classes of sets of rings:

• Say that a set of rings is universal if Leader Election is solvable on it; so, every relation is

solvable on a universal set. We prove that a (circularly symmetric) relation is computable

with O (n · lg n) messages on a universal set of rings (Theorem 5.8). Hence, surprisingly,

Leader Election is either unsolvable on a given set of rings, or efficiently computable on the

given set with O (n · lg n) messages. This efficient bound implies that the message complexity

can indeed become smaller if one considers only networks on which a relation is solvable.

• Say that a set of rings is logarithmic if each identity appears at most O (lgn) times. We

prove that each (circularly symmetric) relation is computable with O (n · lg n) messages on

a logarithmic set of rings (Corollary 5.11). This follows from a more general result we prove

about µ-bounded sets of rings, where each identity appears at most µ times (Theorem 5.10).

Note that this efficient bound on message complexity (for computability) holds even if the

relation is not solvable on the given set of rings.

We remark that the two particular classes of sets of rings identified in Theorems 5.8 and 5.10,

namely universal and µ-bounded, are incomparable to each other.‖

1.4 Comparison

Computability was treated before in [7,8]; however, no explicit formal definition of computability

was provided there.

• Dobrev and Pelc [7, Section 1.2] defined the so called Generalized Leader Election problem

with the following requirements for the election of one leader: (1) Processors must be able to

decide that leader election is possible; inputs for which this is possible were called ambiguous.

¶
O (n · lgn) is optimal for Leader Election on eponymous rings (assuming uniform distributed algorithms) [5];

O
(
n

2
)
is optimal for the Sum function and certain other agreement-like relations on anonymous rings [2].

‖For instance, a set of rings where each identity has multiplicity 2 is clearly 2-bounded (and hence logarithmic),

but it is not universal. To see this, observe that the set contains a ring of (even) size n where the identities are

arranged so that the two copies of each identity appear at distance n

2 from each other. The symmetry induced by

this arrangement of identities makes the election of a single leader impossible in a synchronous execution (cf. [1,

Theorem 4.2]).

8

(2) Processors must decide that leader election can be performed. The statements of both

requirements are informal.

• In each of the four relations they considered, Flocchini et al.[8, Section 2.2] required that a

leader be elected if possible; no formal interpretation of this possibility was provided.

To the best of our knowledge, our work is the first to provide a formal and crisp definition of

computability and attempt a formal distinction between solvability and computability.

Minimum Base was originally defined in [4, 10] in terms of graph coverings and graph fibrations;

it was used in [3, 6] to obtain characterizations of solvability on anonymous networks. In contrast,

we exploit the very simple structure of the ring in order to derive a particularly simple version of

Minimum Base for partially eponymous rings. For the case of the anonymous ring, Attiya et al.

[2] defined the Symmetry Index to measure the symmetry in an initial configuration (containing

only inputs); in contrast, (Least) Minimum Base measures asymmetry while taking both inputs

and identities into account.

Boldi and Vigna [3] provided an effective characterization of solvability for any arbitrary relation

on an arbitrary network (with any degree of anonymity); in contrast, this work provides the first

efficient characterization of solvability for any arbitrary (circularly symmetric) relation on partially

eponymous rings. It is not evident how the effective graph-theoretic characterization from [3] could

specialize to yield an efficient one for the special case of partially eponymous rings. In fact, our

goal has been to derive a direct characterization of solvability for the particular case of partially

eponymous rings that bypasses the complex graph-theoretic framework developed in [3] for the

general case. Although the work in [3] invested a great effort in translating concepts of Distributed

Computing into some complex graph-theoretic form, our proof techniques are elementary.

The major difference between the proposed algorithm AMLE(α) and the algorithm of Hirschberg

and Sinclair [9] is that AMLE(α) awards processors to proceed to the next phase on the basis of

constructed prefixes of processors’ views as opposed to processors’ identities. Since the lexicographic

ordering ensures that views and their corresponding prefixes are consistently ordered, the compar-

ison of prefixes by processors in AMLE(α) is essentially a comparison of views; it is an efficient

one since it avoids the full construction of all views. This is an essential feature of the algorithm

AMLE(α), and we view its achieved message efficiency as being due to this feature.

Theorem 5.6 improves [8, Theorem 4.2] in three fronts. First, it applies to rings of an arbitrary

size n, while [8, Theorem 4.2] assumed that n is prime. Second, [8, Theorem 4.2] assumed binary

inputs, while Theorem 5.6 makes no assumption on either inputs or identities. (We stress that the

assumption of binary inputs was responsible for the n · lgn term in the upper bound of [8, Theorem

4.2]; in contrast, the n · lg LMB(ID,Ψ) = O(n · lgn) term in the upper bound of Theorem 5.6 is due

to the application of the neighborhood doubling technique from [9].) Third, and most important,

Theorem 5.6 applies to any arbitrary (circularly symmetric) relation, while [8, Theorem 4.2] is

tailored to four specific relations (Vertex Election, Edge Election, General Election and Multiset

9

Sorting). We remark, however, that the worst-case message complexity in both Theorem 5.6 and

[8, Theorem 4.2] is Θ
(
n2
)
. Note also that [8, Theorem 8] is the special case of Corollary 4.8 where

Ψ is the General Election relation.

Dobrev and Pelc [7, Theorem 3.1] proved an Ω(M · n) lower bound on message complexity for

the computability of Leader Election on partially eponymous rings, where M is an upper bound

on the ring size n known to the processors; this implies a corresponding Ω(n2) lower bound when

the ring size is known exactly. This lower bound applies to the set of all rings of size n; hence, it

does not contradict the upper bound in Theorem 5.6, which only applies to a set of rings ID.

Chalopin et al. [6] independently considered a generalization of Leader Election, called k-

Grouping, which is similar to Multiple Leader Election. k-Grouping requires that processors in

a network N , with size |N | a multiple of k, partition themselves into
|N |
k
groups, each of size

exactly k; in contrast, Multiple Leader Election prescribes an upper bound on the number of pro-

cessors to be elected as leaders. Since any two elected leaders determine a group (consisting of the

clockwise left-most leader and all processors between the two leaders), Multiple Leader Election

implicitly prescribes an upper bound on the number of groups to be formed (with no fixed number

of processors per group). In this sense, k-Grouping imposes some more stringent requirement than

Multiple Leader Election. Chalopin et al. [6, Section 3] provide necessary and sufficient conditions

for the solvability of k-Grouping under several assumptions on available information about the

network (e.g., its size) by the processors.

The motivation for considering sets of rings where each identity appears only a small number

of times comes directly from the work of Yamashita and Kameda [15, Section 8]:

“The anonymous network can be considered as a model of the worst case where the uniqueness [of

processor identity numbers] is completely violated. In most practical situations, only a small number of

processors may have the same identity number as a result of some failure or design error, and algorithms

for solving different problems could take advantage of the (non-unique) identity numbers.”

1.5 Road Map

Some mathematical preliminaries are articulated in Section 2. The model of a partially epony-

mous ring is outlined in Section 3. Section 4 treats solvability and computability, while message

complexity is treated in Section 5. We conclude, in Section 6, with some open problems.

2 Mathematical Preliminaries

2.1 Notation

Denote as N = {0, 1, 2, . . .}, Z
+ = {1, 2, 3, . . .}, and [n] = {0, 1, . . . , n− 1} for each integer n ≥ 1.

Denote as GCD and LCM the functions mapping a (multi)set of integers to their Greatest Common

Divisor and Least Common Multiple, respectively. Throughout, fix some integer n ≥ 2.

10

2.2 Vectors and Equivalence Classes

We assume a (possibly infinite) ground set Σ (containing 0 and 1), on which we make no a priori

assumptions.∗∗ We consider a vector x = 〈x0, x1, . . . , xn−1〉 ∈ Σ
n. We use λ to denote the empty

vector, while x ¦ y denotes the (vector) concatenation of vectors x and y. With each vector x, we

associate a multisetM(x) with the multiplicities of the entries of x; so, the sum of multiplicities is n.

We use the function M to partition Σn into equivalence classes, where all vectors in an equivalence

class have the same image under M. Denote as X the equivalence class containing the vector x.

By abuse of notation, M(X) will denote M(x) for any vector x ∈ X. Note that GCD(M(X)) divides

each multiplicity in vectors of X. Hence, GCD(M(X)) divides n as well.

Fix now an integer k ∈ [n] and a vector x ∈ Σn. The (cyclic) shift σk(x) of vector x is

defined as the vector 〈xk, xk+1, . . . , xk+n−1〉, with indices taken modulo n; so, σk shifts x k places

anti-clockwise. Note that σn(x) = x. The definition is extended to all (including negative) integers

k in the natural way.

2.3 Prefixes

For each integer k ∈ [n + 1], the prefix of order k of x, denoted as πk(x), is given by πk(x) =

〈x0, x1, . . . , xk−1〉, with π0(x) = λ. Observe that for every vector x ∈ Σn and integer k ∈ [n + 1],

πk(x) = πk(x ¦ y) for any vector y.

Lemma 2.1 Consider a vector x ∈ Σn and integers k, `,m ∈ [n + 1] such that k ≤ m − `. Then,

πk(σ`(πm(x))) = πk(σ`(x)).

Proof: Write x = x1 ¦ x2 ¦ x3, where x1 ∈ Σ
`, x2 ∈ Σ

m−`, and x3 ∈ Σ
n−m. Then,

πk(σ`(πm(x))) = πk(σ`(πm(x1 ¦ x2 ¦ x3)))

= πk(σ`(x1 ¦ x2))

= πk(x2 ¦ x1)

= πk(x2)

= πk(x2 ¦ x3 ¦ x1)

= πk(σ`(x1 ¦ x2 ¦ x3))

= πk(σ`(x)) ,

as needed.

∗∗In fact, depending on the sets of rings one considers, Σ could be of some finite size (e.g., for anonymous rings),

or should be necessarily infinite (e.g., for eponymous rings).

11

2.4 Periods of Vectors

The period T(x) of vector x is the least integer k, 0 < k ≤ n, such that σk(x) = x. So, σT(x)(x) = x,

and for every integer m ∈ N, σm(x) = σm mod T(x)(x). Intuitively, the period captures the degree

of circular asymmetry of a vector: the smaller the period, the more circular symmetries the vector

has. Say that x is T(x)-periodic; x is aperiodic if T(x) = n, and x is uniperiodic if T(x) = 1.

In general, x is k-periodic if T(x) = k.

Say that x is eponymous if each entry of x is unique; clearly, an eponymous vector is aperiodic,

but not vice versa. Say that x is anonymous if all entries of x are identical; so, a vector is

anonymous if and only if it is uniperiodic. It is simple to show that the period of a vector is

invariant under cyclic shifts.

Lemma 2.2 Consider a vector x ∈ Σn. Then, T(x) = T(σk(x)) for every integer k ∈ N.

Proof: Assume, by way of contradiction, that T(x) 6= T(σk(x)) for some integer k ∈ N. Without

loss of generality, take that T(x) < T(σk(x)). Since σT(x)(x) = x, σk(σT(x)(x)) = σk(x), or

σT(x)(σk(x)) = σk(x). This implies that T(σk(x)) ≤ T(x). A contradiction.

We continue to prove:

Lemma 2.3 For each vector x ∈ Σn and a pair of integers `,m ∈ N, σ`(x) = σm(x) if and only if

` ≡ m (mod T(x)).

Proof: Recall that σ`−m(x) = σ(`−m) mod T(x)(x). Assume first that σ`(x) = σm(x). Then,

σ(`−m) mod T(x)(x) = σ`−m(x)

= σ−m(σ`(x))

= σ−m(σm(x)) (by assumption)

= x .

It follows that (`−m) mod T(x) is a (possibly zero) multiple of T(x). Since (`−m) mod T(x) <

T(x), it follows that (`−m) mod T(x) = 0. Hence, ` ≡ m (mod T(x)), which establishes the first

direction. Assume now that ` ≡ m (mod T(x)). Then,

σ`(x) = σm(σ`−m(x))

= σm(σ(`−m) mod T(x)(x))

= σm(σ0(x)) (by assumption)

= σm(x) ,

which proves the second direction and completes the proof.

12

We finally prove some number-theoretic properties of period:

Lemma 2.4 Consider a vector x ∈ Σn. Then, (1) T(x) divides n, and (2) n
GCD(M(X))

divides T(x).

Proof: For Condition (1), note that σn(x) = σ0(x). From Lemma 2.3, it follows that n ≡

0 (mod T(x)). Thus, T(x) divides n, as needed.

For Condition (2), note that every entry of x appears a multiple of n
T(x)

times in x. Hence, the

multiplicity of every entry of x is divided by n
T(x)

. Recall thatM(X) is the multiset of multiplicities

of the elements in x ∈ X. Thus, every multiplicity in the multiset M(X) is divided by n
T(x)

. Recall

that a common divisor of a (multi)set of numbers is also a divisor of the Greatest Common Divisor

of the (multi)set of numbers. It follows that the common divisor n
T(x)

of the multiset M(X) is also

a divisor of GCD(M(X)). Since GCD(M(X)) divides n, this implies that n
GCD(M(X))

divides T(x),

as needed.

2.5 Min-Period Vectors

Call a vector x̃ ∈ X a min-period vector of X if it achieves the least period among all vectors

in X. Lemma 2.4 (Condition (2)) implies that a vector x ∈ X with T(x) = n
GCD(M(X))

is a

min-period vector of X. We prove:

Lemma 2.5 For each equivalence class X ⊆ Σn, (1) T(x̃) = n
GCD(M(X))

, and (2) for each vector

x ∈ X, T(x̃) divides T(x).

Proof: For Condition (1), it suffices to identify a min-period vector of X with period n
GCD(M(X))

.

Construct from M(X) the multiset 1
GCD(M(X))

M(X); that is, each entry in M(X) is divided by

GCD(M(X)). Fix any arbitrary vector x such thatM(x) = 1
GCD(M(X))

M(X); so, the multiplicity of

each element in x equals a corresponding multiplicity from M(X) divided by GCD(M(X)). Consider

the vector x ¦ . . . ¦ x obtained by concatenating x with itself GCD(M(X)) times. Note that by

construction, T(x¦ . . .¦x) ≤ n
GCD(M(X))

. Clearly, M(x¦ . . .¦x) = M(X) and x¦ . . .¦x ∈ X. Since

x¦. . .¦x ∈ Σn, Lemma 2.4 (Condition (2)) implies that n
GCD(M(X))

divides T(x¦. . .¦x). It follows

that T(x ¦ . . . ¦ x) = n
GCD(M(X))

, so that x ¦ . . . ¦ x is a min-period vector of X. Condition (1)

now follows.

Condition (2) now follows from Condition (1) and Lemma 2.4 (Condition (2)).

2.6 Periods of Equivalence Classes

Say that the equivalence class X is aperiodic if each vector x ∈ X is aperiodic; say that X is

uniperiodic if each vector x ∈ X is uniperiodic. Say that X is k-periodic if a min-period vector

13

x̃ of X is k-periodic. So, aperiodic and uniperiodic are synonyms for n-periodic and 1-periodic,

respectively.†† Lemma 2.5 (Condition (1)) implies that X is n
GCD(M(X))

-periodic. Hence, X is

aperiodic if and only if GCD(M(X)) = 1; X is uniperiodic if and only if GCD(M(X)) = n. Clearly,

every equivalence class X is k-periodic for some particular choice of k.

Say that X is anonymous if each vector x ∈ X is anonymous; say that X is eponymous if

each vector x ∈ X is eponymous. It follows that X is anonymous if and only if it is uniperiodic; X

is eponymous only if it is aperiodic.

2.7 Shift-Minimal Vectors

We use the standard (total) lexicographic ordering ¹ on Σn. We write x ≺ y to denote that x ¹ y

and x 6= y. Clearly, for all pairs of integers k < `, πk(x) ≺ πk(y) implies that π`(x) ≺ π`(y) (and,

in particular, x ≺ y). Say that x ∈ Σn is shift-minimal if it is minimal (with respect to ¹)

among all shifts of it; hence, x is shift-minimal if x ¹ σk(x) for all integers k ∈ [n]. We prove a

simple property of shift-minimal vectors:

Lemma 2.6 Consider a shift-minimal vector x ∈ Σn, and a pair of integers `,m ∈ [n]. Then, (1)

π`(x) ¹ π`(σm(x)), and (2) if m 6≡ 0 (mod T(x)) and ` ≥ m, then π`(x) ≺ π`(σ−m(x)).

Proof: For Condition (1), assume, by way of contradiction, that there is a pair of integers `,m ∈ [n]

such that π`(x) 6¹ π`(σm(x)). Then, π`(σm(x)) ≺ π`(x). By lexicographic ordering, this implies

that σm(x) ≺ x, so that x is not shift-minimal. A contradiction.

For Condition (2), assume, by way of contradiction, that there is a pair of integers `,m ∈ [n]

such that m 6≡ 0 (mod T(x)), ` ≥ m, and yet π`(x) 6≺ π`(σ−m(x)). Since T(x) divides n (by

Lemma 2.4 (Condition (1))), it follows that n −m 6≡ 0 (mod T(x)). Hence, Lemma 2.3 implies

that σn−m(x) 6= σ0(x) = x.

By Condition (1), π`(x) ¹ π`(σn−m(x)). Since σn−m(x) = σ−m(x), the assumption implies

that π`(x) 6≺ π`(σn−m(x)). It follows that π`(x) = π`(σn−m(x)). Since ` ≥ m, this implies that

πm(x) = πm(σn−m(x)).

Since x is shift-minimal, x ¹ σn−m(x). Since x 6= σn−m(x), it follows that x ≺ σn−m(x). Since

πm(x) = πm(σn−m(x)), this implies that σm(x) ≺ σm(σn−m(x)) = σn(x) = x, so that x is not

shift-minimal. A contradiction.

2.8 Shuffle Vectors

The shuffle of two vectors x = 〈x0, x1, . . . , xn−1〉 and y = 〈y0, y1, . . . , yn−1〉, denoted as x ‖y, is

the vector x ‖y = 〈(x0, y0), (x1, y1), . . . , (xn−1, yn−1)〉. Clearly, for any integer k ∈ N, σk(x ‖y) =

††For example, X is 1-periodic if and only if T(x̃) = 1, which is equivalent to x̃ being a constant vector. But x̃

is a constant vector if and only if every vector x ∈ X is constant (i.e., has period 1). This is equivalent to X being

uniperiodic. So, 1-periodic and uniperiodic equivalence classes coincide.

14

σk(x)‖σk(y); so, the shift operator and the shuffle operator commute. We prove:

Lemma 2.7 For each pair of vectors x,y ∈ Σn, T(x‖y) = LCM(T(x),T(y)).

Proof: Clearly,

σLCM(T(x),T(y))(x‖y) = σLCM(T(x),T(y))(x)‖σLCM(T(x),T(y))(y) .

Since, LCM(T(x),T(y)) ≡ 0 (mod T(x)) and LCM(T(x),T(y)) ≡ 0 (mod T(y)), Lemma 2.3 implies

that σLCM(T(x),T(y))(x) = σ0(x) = x and σLCM(T(x),T(y))(y) = σ0(y) = y. It follows that

σLCM(T(x),T(y))(x‖y) = x‖y .

By Lemma 2.3, this implies that T(x‖y) divides LCM(T(x),T(y)).

Assume, by way of contradiction, that LCM(T(x),T(y)) does not divide T(x‖y). It follows that

either T(x) does not divide T(x ‖y) or T(y) does not divide T(x ‖y). Without loss of generality,

take that T(x) does not divide T(x ‖ y). Thus, T(x ‖ y) 6≡ 0 (mod T(x)). By Lemma 2.3, this

implies that σT(x ‖y)(x) 6= σ0(x) = x. It follows that

σT(x ‖y)(x‖y) = σT(x ‖y)(x)‖σT(x ‖y)(y)

6= x‖y .

By definition of period, σT(x ‖y)(x‖y) = x‖y. A contradiction.

Since LCM(T(x),T(y)) and T(x‖y) divide each other, the claim follows.

2.9 Relations

A (recursive) relation is a (non-empty) subset Ψ ⊆ Σn × Σn. For a vector x ∈ Σn, define

Ψ(x) = {y | (x,y) ∈ Ψ} ;

so, a vector y ∈ Ψ(x) is an image of x under Ψ. The set Dom(Ψ) of all vectors x ∈ Σn with at

least one image under Ψ is the domain of Ψ; so, Dom(Ψ) = {x ∈ Σn | Ψ(x) 6= ∅}. The relation Ψ

is total if Dom(Ψ) = Σn. The set of all images of all vectors x ∈ Σn is the image of Ψ, denoted

as Im(Ψ); so, Im(Ψ) =
⋃

x∈Σn Ψ(x).

The relation Ψ ⊆ Σn×Σn is aperiodic if each vector in Im(Ψ) is aperiodic; so, each image under

an aperiodic relation has no circular symmetries. On the other extreme, the relation Ψ ⊆ Σn ×Σn

is uniperiodic if each vector in Im(Ψ) is uniperiodic; so, each image under a uniperiodic relation

is constant. In the middle range, the relation Ψ ⊆ Σn×Σn is k-periodic if each vector in Im(Ψ) is

k-periodic. So, aperiodic and uniperiodic are synonyms for n-periodic and 1-periodic, respectively.

Note that not every relation is k-periodic for some particular choice of k since the image of a

relation may include vectors with different periods.

15

Given two relations Ψ1,Ψ2 ⊆ Σ
n × Σn, their composition is the relation

Ψ1 ◦Ψ2 = {(x,y) | (x, z) ∈ Ψ2 and (z,y) ∈ Ψ1 for some z ∈ Σ
n} .

For a relation Ψ ⊆ Σn × Σn, note that

σ1 ◦Ψ = {(x,y) | y = σ1(z) for some z ∈ Ψ(x)} ;

moreover,

Ψ ◦ σ1 = {(x,y) | y ∈ Ψ(z) where z = σ1(x)} .

In particular, for a vector x ∈ Σn,

σ1 ◦Ψ(x) = {y | y = σ1(z) for some z ∈ Ψ(x)}

and

Ψ ◦ σ1(x) = {y | y ∈ Ψ(z) where z = σ1(x)} .

So, σ1 ◦Ψ maps inputs to shifts of their images; Ψ ◦ σ1 maps inputs to images of their shifts.

The relation Ψ is circularly symmetric if σ1◦Ψ ⊆ Ψ◦σ1. Intuitively, in a circularly symmetric

relation, shifts of images are always images of shifts. A direct induction implies that σk ◦Ψ ⊆ Ψ◦σk

for any circularly symmetric relation Ψ and for all integers k ∈ N.

In the Leader Election relation LE ⊆ Σn × Σn, the set of images of each input vector x is

the set of all binary vectors with exactly one 1 and n − 1 0s; 1 and 0 correspond to elected and

non-elected, respectively. Clearly, Leader Election is total, aperiodic and circularly symmetric.

We now give a generalization of the Leader Election relation. Consider a function Φ : Σn → Z
+.

In the Φ-Leader Election relation Φ-LE ⊆ Σn × Σn, the set of images of each input vector x

is the set of all binary vectors with the number of 1s ranging from 1 to Φ(x) (both inclusive).

The special case where Φ(x) = 1 for all vectors x ∈ Σn is precisely Leader Election. A Multiple

Leader Election relation is a Φ-Leader Election relation for some such function Φ.

3 The Partially Eponymous Ring

3.1 General

We start with the standard model of an asynchronous, anonymous ring as studied, for example,

in [2, 9]. A ring of size n is a cyclic arrangement of n identical processors 0, 1, . . . , n − 1. The

ring is oriented and bidirectional, and processors have identities. We augment this model so

that the identities are neither necessarily all identical nor necessarily unique. Call it a partially

eponymous ring. In an anonymous ring, identities are all identical; in an eponymous ring,

identities are unique.

16

Processor j has an identity idj and receives an input inj . The identity vector is id =

〈id0, id1, . . . , idn−1〉; the input vector is in = 〈in0, in1, . . . , inn−1〉. Note that for an anonymous

ring, T(id) = 1; for an eponymous ring, T(id) = n. The (initial) configuration of the ring is

the tuple 〈id, in〉. Each processor seeks to reach an output outj by running a (local) algorithm and

communicating with its two neighbors. The output vector is out = 〈out0, out1, . . . , outn−1〉. The

i-neighborhood of a processor j is the set of processors {j − i, . . . , j − 1, j, j + 1, . . . j + i}.

There is a single (local) algorithm A run by all processors; A is represented as a (possibly

infinite) state machine. Each computation step of A at processor j is dependent on the current state

of j, the messages currently received at j and the local identity idj and input inj . A distributed

algorithm A is a collection of local algorithms, one for each processor. We restrict attention to

non-uniform distributed algorithms, where the size of the ring is “hard-wired” into the single

local algorithm. So, we consider rings of a certain size n. The distributed algorithm A induces a

set of (asynchronous) executions. A subset of the executions of the distributed algorithm A

are synchronous; there, processors proceed in lock-step to receive messages, perform some local

computations and send messages out.

Each identity vector id ∈ Σn specifies a single ring; by abuse of notation, denote as id the

specified ring. An equivalence class ID ⊆ Σn induces a set of rings, each corresponding to some

particular identity vector id ∈ ID; by abuse of notation, denote as ID the induced set. Recall that

each ring in the set ID has the same multiset of identity multiplicities.

3.2 Solvability and Computability

Fix a configuration 〈id, in〉. Say that the distributed algorithm A solves the set of output

vectors OUT on the configuration 〈id, in〉 if each execution of A on the ring id with input in

results to an output vector out ∈ OUT . Say that the set of output vectors OUT is solvable on

the configuration 〈id, in〉 if there is a distributed algorithm A that solves OUT on 〈id, in〉. We

are now ready for a significant definition.

Definition 3.1 (Solvable Relation) The relation Ψ ⊆ Σn × Σn is solvable on the set of

rings ID ⊆ Σn if there is a distributed algorithm A such that for each configuration 〈id, in〉 ∈

ID× Dom(Ψ), A solves Ψ(in) on 〈id, in〉.

The distributed algorithm A computes the set of output vectors OUT on the configura-

tion 〈id, in〉 if the following holds: if OUT is solvable on the configuration 〈id, in〉, then A solves

OUT in 〈id, in〉; else A solves {⊥n} on 〈id, in〉 (where ⊥ stands for an impossibility output).

We now develop the notion of a distributed algorithm working for a set of rings and on the entire

domain of the relation Ψ; intuitively, the set of rings and the relation Ψ represent information that

is available to the algorithm. Our next two definitions will simultaneously generalize sets of output

vectors to relations, and configurations to sets of rings. We start with the first definition.

17

Definition 3.2 (Distributed Algorithm Computing a Relation) The distributed algorithm

A computes the relation Ψ ⊆ Σn × Σn on a set of rings ID ⊆ Σn with g(n) messages if

g(n) is the least function such that for each configuration 〈id, in〉 ∈ ID × Dom(Ψ), A computes

Ψ(in) on the configuration 〈id, in〉 with no more than g(n) messages in any execution. g(n) is the

message complexity of A for computing Ψ on ID.

We conclude with another significant definition:

Definition 3.3 (Computable Relation) The relation Ψ ⊆ Σn × Σn is computable on a set

of rings ID ⊆ Σn with g(n) messages if there is a distributed algorithm A that computes Ψ on

ID with g(n) messages. The message complexity for computing Ψ on ID is the least message

complexity of a distributed algorithm for computing Ψ on ID.

Note that solvability of a relation Ψ on a set of rings ID implies computability of Ψ on ID (with

some number of messages). However, we shall soon see that the inverse does not necessarily hold.

3.3 The Least Minimum Base

We start with a significant definition:

Definition 3.4 The Minimum Base MB(id, in) of a configuration 〈id, in〉 ∈ Σn ×Σn is defined

as MB(id, in) = T(id‖ in).

Note that since id‖ in is a vector of length n, T(id‖ in) ≤ n; thus MB(id, in) ≤ n. Note also that

Lemma 2.7 immediately implies:

Lemma 3.1 For a configuration 〈id, in〉 ∈ Σn × Σn, MB(id, in) = LCM(T(id),T(in)).

For a set of rings ID ⊆ Σn and an input vector in ∈ Σn, the Min-Period Minimum Base

MB(ID, in) is defined as MB(ID, in) = MB(ĩd, in), where ĩd is a min-period vector of ID. Thus,

MB(ID, in) = LCM(T(ĩd),T(in)) (by Lemma 3.1)

= LCM

(
n

GCD(M(ID))
,T(in)

)
(by Lemma 2.5 (Condition (1))) .

Note that if ID is anonymous, then MB(ID, in) = LCM(1,T(in)) = T(in); if ID is eponymous,

then MB(ID, in) = LCM(n,T(in)) ≥ n ≥ T(in). So, intuitively, the Min-Period Minimum Base is

an indicator of the degree of least possible eponymity for a set of rings. We continue to prove:

Lemma 3.2 For a set of rings ID ⊆ Σn and an input vector in ∈ Σn, MB(ID, in) divides

MB(id, in) for each ring id ∈ ID.

18

Proof: By Lemma 2.5 (Condition (2)), T(ĩd) divides T(id) for each ring id ∈ ID. This implies

that LCM(T(ĩd),T(in)) divides LCM(T(id),T(in)) for each ring id ∈ ID. Since MB(ID, in) =

LCM(T(ĩd),T(in)) andMB(id, in) = LCM(T(id),T(in)) (by Lemma 3.1), it follows thatMB(ID, in)

divides MB(id, in) for each ring id ∈ ID, as needed.

We finally define:

Definition 3.5 The Least Minimum Base LMB(ID,Ψ) of a set of rings ID ⊆ Σn and a relation

Ψ ⊆ Σn × Σn is defined as

LMB(ID,Ψ) = min {MB(id, in) | 〈id, in〉 ∈ ID× Dom(Ψ)} .

Since MB(id, in) ≤ n for every configuration 〈id, in〉, it follows that LMB(ID,Ψ) ≤ n.

3.4 Views

We conclude with a definition that extends one in [15, Section 3] to a ring where processors receive

inputs. Given a configuration 〈id, in〉 ∈ Σn × Σn, the view of processor j is

viewj(id, in) = σj(id‖ in) = σj(id)‖σj(in) .

Lemmas 2.2 and 2.7 together imply that T(viewj(id, in)) = LCM(T(id),T(in)).

Clearly, views of different processors are cyclic shifts of each other. Note that the configuration

〈id, in〉 uniquely determines the set of views {viewj(id, in) | j ∈ [n]}. There is an immediate non-

uniform distributed algorithm ACV, which collects all identities and inputs at each processor, so

that each processor can locally construct its own view; the message complexity of ACV is Θ
(
n2
)
.

It is simple to prove by a symmetry argument (cf. [1, Theorem 4.2]):

Lemma 3.3 Fix a configuration 〈id, in〉 ∈ Σn×Σn and two processors j, k ∈ [n] with viewj(id, in) =

viewk(id, in). Then, in a synchronous execution on 〈id, in〉 of a distributed algorithm with output

vector out, outj = outk.

4 Solvability and Computability

4.1 Preliminaries

We start with a definition of compatibility between a set of output vectors and a configuration.

Definition 4.1 (Compatibility with a Configuration) The set of output vectors OUT ⊆ Σn

is compatible with the configuration 〈id, in〉 ∈ Σn × Σn if there is an output vector out ∈ OUT

such that T(out) divides MB(id, in).

19

Recall that MB(id, in) can be computed efficiently; thus, compatibility of a set of output vectors

with a configuration can be checked efficiently as well. Recall also that by Lemma 3.3, symmetry

in the initial configuration 〈id, in〉 may carry over to the outputs of the processors in certain

executions; moreover, the symmetry in the initial configuration is captured by MB(id, in). So,

intuitively, if all output vectors in OUT have symmetries that are inconsistent with the symmetry

of the initial configuration, then none of these output vectors can be returned in certain executions.

Thus, a set of output vectors is compatible with a configuration if not all output vectors are a

priori excluded from being returned. This intuition is formalized and established in the next claim.

Proposition 4.1 Assume that a set of output vectors OUT ⊆ Σn is solvable on a configuration

〈id, in〉 ∈ Σn × Σn. Then, OUT is compatible with 〈id, in〉.

Proof: By assumption, there is a distributed algorithm A that solves OUT on 〈id, in〉. Fix a

synchronous execution of A on 〈id, in〉, and consider the associated output vector out ∈ OUT .

Fix a processor j. Then,

viewj+T(id ‖ in)(id, in) = σj+T(id ‖ in)(id‖ in) (by definition of view)

= σj(id‖ in) (by Lemma 2.3)

= viewj(id, in) (by definition of view) .

Hence, Lemma 3.3 implies that outj = outj+T(id ‖ in). Since j was chosen arbitrarily, this implies

that σT(id ‖ in)(out) = out. Thus, Lemma 2.3 implies now that T(out) divides T(id ‖ in). Since

MB(id, in) = T(id‖ in), it follows that T(out) divides MB(id, in). Hence, OUT is compatible with

〈id, in〉, as needed.

We now present the distributed algorithm AΨ associated with an arbitrary circularly symmetric

relation Ψ ∈ Σn × Σn; the algorithm is described in pseudocode in Figure 1:

AΨ: code for processor j with identity idj and input inj

1: Upon receiving message 〈wake〉 do

2: Construct viewj(id, in) = vidj ‖vinj . \∗ vidj = σj(id), vinj = σj(in) ∗\

3: V iewsj [i] := 〈σi(vidj), σi(vinj)〉 for each i ∈ [n], where n is the size of viewj(id, in).

4: Choicesj := {(x,y, z) | 〈x,y〉 ∈ V iewsj ; z ∈ Ψ(y); T(z) divides MB(x,y)}.

5: If Choicesj = ∅ then outj := ⊥ and terminate.

6: (a) (x,y, z) := min {Choicesj};

(b) kj := min
{
i ∈ [n] | V iewsj [i] = 〈x,y〉

}
, where n is the size of viewj(id, in).

7: Set outj to the first entry of σ−kj
(z) and terminate.

Figure 1. Algorithm AΨ: code for processor j.

20

Note that the distributed algorithm AΨ does not specify how the views are constructed in Step 2.

These can be constructed by invoking, for example, the distributed algorithm ACV from Section 3.

All remaining steps of the distributed algorithm AΨ are local and only depend on information

collected during Step 2. Hence, the distributed algorithm AΨ is non-uniform if and only if the

invoked distributed algorithm for constructing views is.

Steps 3–6 enable processors to choose an output vector; Step 7 enables processor j to output

its individual coordinate in this vector. The set Choicesj contains all common candidates for the

output vector; in Step 6, all processors use a common function (e.g., min) to single out one of the

candidates. We prove:

Proposition 4.2 Fix a relation Ψ ⊆ Σn×Σn and a configuration 〈id, in〉 ∈ Σn×Σn. Then, either

AΨ solves Ψ(in) on 〈id, in〉 or AΨ solves {⊥
n} on 〈id, in〉.

Proof: Since the set of views {viewj(id, in) | j ∈ [n]} is uniquely determined, it follows by the

algorithm (Step 4) that the set Choicesj constructed at processor j is also uniquely determined

and common for all processors. We proceed by case analysis.

1. Assume first that Choicesj = ∅. Then, by the algorithm (Step 5), out = ⊥
n. So, AΨ solves

{⊥n} on 〈id, in〉.

2. Assume now that Choicesj 6= ∅. We now prove that the commonly chosen triple (x,y, z)

from Choicesj , and all chosen integers kj (in Step 6), with j ∈ [n], will lead to an output

vector that is an image of in under Ψ.

Since x and y are corresponding shifts of id and in, there is an index t ∈ [n] such that

σt(id) = x and σt(in) = y. By the algorithm (Step 4), z ∈ Ψ(y). Hence, σ−t(z) ∈ σ−t ◦Ψ(y).

Since Ψ is a circularly symmetric relation, σ−t◦Ψ ⊆ Ψ◦σ−t. It follows that σ−t(z) ∈ Ψ◦σ−t(y).

Since σt(in) = y, or equivalently in = σ−t(y), it follows that Ψ◦σ−t(y) = Ψ(σ−t(y)) = Ψ(in).

Hence, σ−t(z) ∈ Ψ(in). So, it suffices to prove that out = σ−t(z).

By the choice of kj (Step 6/b), x = σkj
(vidj) = σkj

(σj(id)) = σkj+j(id), and y = σkj
(vinj) =

σkj
(σj(in)) = σkj+j(in). Since x = σt(id) and y = σt(in), it follows that σkj+j(id) = σt(id)

and σkj+j(in) = σt(in). Hence, Lemma 2.3 implies that (kj + j) ≡ t (mod T(id)) and

(kj + j) ≡ t (mod T(in)). Thus, each of T(id) and T(in) divides kj + j − t. Since the

Least Common Multiple of two divisors of a number also divides the number, it follows that

LCM(T(id),T(in)) divides kj + j − t.

By Step 4, T(z) divides MB(x,y) = LCM(T(x),T(y)) (by Lemma 3.1). Since x and y are

cyclic shifts of id and in, respectively, Lemma 2.2 implies that T(x) = T(id), and T(y) =

T(in). So, T(z) divides LCM(T(id),T(in)).

It follows that T(z) divides kj + j − t, or (−kj) ≡ (j − t) (mod T(z)). Hence, by Lemma 2.3,

σ−kj
(z) = σj−t(z) = σj(σ−t(z)). By Step 7, this implies that outj is the j-th entry of σ−t(z).

Since j was chosen arbitrarily, it follows that out = σ−t(z), as needed.

21

The proof is now complete.

We remark that the proof of Proposition 4.2 requires that Ψ be circularly symmetric. It is not

evident whether this assumption is essential.

4.2 Main Results

We first consider the solvability of an arbitrary (circularly symmetric) relation Ψ on an arbitrary

set of rings ID. We provide a definition of compatibility between a relation Ψ and a set of rings

ID, as a generalization of Definition 4.1.

Definition 4.2 (Compatibility with a Set of Rings) The relation Ψ ⊆ Σn × Σn is compat-

ible with the set of rings ID ⊆ Σn if for each input vector in ∈ Dom(Ψ), there is some output

vector out ∈ Ψ(in) such that T(out) divides MB(ID, in).

Recall that MB(ID, in) can be computed efficiently; thus, compatibility with sets of rings can be

checked efficiently as well. We prove:

Theorem 4.3 (Partially Eponymous Solvability Theorem) A circularly symmetric relation

Ψ ⊆ Σn × Σn is solvable on a set of rings ID ⊆ Σn if and only if Ψ is compatible with ID.

Proof: Assume first that Ψ is solvable on ID. Then, there is a distributed algorithm A such that

for each configuration 〈id, in〉 ∈ ID×Dom(Ψ), A solves the set of output vectors Ψ(in) on 〈id, in〉.

So, fix the configuration 〈ĩd, in〉 for an arbitrary vector in ∈ Dom(Ψ). It follows that A solves the

set of output vectors Ψ(in) on 〈ĩd, in〉; so, Ψ(in) is solvable on 〈ĩd, in〉. By Proposition 4.1, this

implies that Ψ(in) is compatible with 〈ĩd, in〉. Hence, by definition of compatibility, there is some

output vector out ∈ Ψ(in) such that T(out) divides MB(ĩd, in) = MB(ID, in). Since in ∈ Dom(Ψ)

was chosen arbitrarily, it follows that Ψ is compatible with ID.

Assume now that Ψ is compatible with ID. Then, for each input vector in ∈ Dom(Ψ), there is

an output vector out ∈ Ψ(in) such that T(out) divides MB(ID, in). Fix an arbitrary configuration

〈id, in〉 ∈ ID×Dom(Ψ). By Lemma 3.2, this implies that there is some output vector out ∈ Ψ(in)

such that T(out) divides MB(id, in).

Recall the distributed algorithm AΨ from Section 4.1. Clearly, 〈id, in〉 is some entry of the

array V iewsj for each processor j ∈ [n]. Since out ∈ Ψ(in) and T(out) divides MB(id, in), Step

4 implies that (id, in,out) ∈ Choicesj for each processor j ∈ [n]; so, Choicesj 6= ∅. By Step 5,

it follows that AΨ does not solve {⊥
n} on 〈id, in〉. Hence, Proposition 4.2 implies that AΨ solves

Ψ(in) on 〈id, in〉. Since the configuration 〈id, in〉 ∈ ID×Dom(Ψ) was chosen arbitrarily, it follows

that Ψ is solvable on ID.

Since compatibility (with sets of rings) is efficiently checkable, Theorem 4.3 provides an efficient

characterization of solvability for partially eponymous rings.

22

We remark that the proof of Theorem 4.3 only uses synchronous executions: the proof only

invokes Proposition 4.1, which, in turn, invokes Lemma 3.3, which applies to the restriction to

synchronous executions; no asynchronous (but not synchronous) execution is needed for the proof

of Theorem 4.3. So, Theorem 4.3 provides an identical characterization of solvability for the special

case of synchronous, partially eponymous rings. Hence, Theorem 4.3 implies a collapse between

synchronous and asynchronous partially eponymous rings with respect to solvability of (circularly

symmetric) relations on sets of rings. We continue to prove:

Theorem 4.4 (Partially Eponymous Computability Theorem) Algorithm AΨ computes the

circularly symmetric relation Ψ ⊆ Σn × Σn on a set of rings ID ⊆ Σn.

Proof: Fix an arbitrary configuration 〈id, in〉 ∈ ID× Dom(Ψ). We will prove that AΨ computes

Ψ(in) on 〈id, in〉. We proceed by case analysis.

1. Assume first that Ψ(in) is solvable on 〈id, in〉. By Proposition 4.1, it follows that Ψ(in)

is compatible with 〈id, in〉. By definition of compatibility, this implies that there is some

output vector out ∈ Ψ(in) such that T(out) divides MB(id, in). From Step 3, 〈id, in〉 is

some entry of the array V iewsj for each processor j ∈ [n]. Since out ∈ Ψ(in) and T(out)

divides MB(id, in), it follows by Step 4 that (id, in,out) ∈ Choicesj ; so Choicesj 6= ∅. By

Step 5, this implies that AΨ does not solve {⊥
n} on 〈id, in〉. Hence, Proposition 4.2 implies

that AΨ solves Ψ(in) on 〈id, in〉.

2. Assume now that Ψ(in) is not solvable on 〈id, in〉. Hence, in particular, AΨ does not solve

Ψ(in) on 〈id, in〉. By Proposition 4.2, it follows that AΨ solves {⊥
n} on 〈id, in〉.

By definition of computability, the claim follows.

Theorem 4.4 immediately implies:

Corollary 4.5 Every circularly symmetric relation Ψ ⊆ Σn × Σn is computable on a set of rings

ID ⊆ Σn.

4.3 Applications

We continue with some applications of the Partially Eponymous Solvability Theorem. We prove:

Theorem 4.6 (Solvability of k-Periodic Relations) A total, circularly symmetric, k-periodic

relation Ψ ⊆ Σn × Σn is solvable on an `-periodic set of rings ID ⊆ Σn if and only if k divides `.

Proof: Since Ψ is k-periodic, we have that for each input vector in ∈ Dom(Ψ), for each output

vector out ∈ Ψ(in), T(out) = k. Since ID is `-periodic, T(ĩd) = `. For each input vector

in ∈ Dom(Ψ),

23

MB(ID, in) = MB(ĩd, in) (by definition of MB(ID, in))

= LCM(T(ĩd),T(in)) (by Lemma 3.1) .

Assume first that Ψ is solvable on ID. By Theorem 4.3, this implies that Ψ is compatible with

ID. Since Ψ is total, fix in ∈ Dom(Ψ) to be constant; so, T(in) = 1. Hence, MB(ID, in) = T(ĩd) =

`. By the compatibility of Ψ with ID, there is an output vector out ∈ Ψ(in) such that T(out)

divides MB(ID, in). It follows that k divides `.

Assume now that k divides `. This implies that T(out) divides T(ĩd). Since MB(ID, in) =

LCM(T(ĩd),T(in)), it follows that T(out) divides MB(ID, in). Hence, Ψ is compatible with ID.

Theorem 4.3 implies now that Ψ is solvable on ID.

A careful inspection of the proof of Theorem 4.6 reveals that it applies more generally to a (not

necessarily total) circularly symmetric, k-periodic relation Ψ such that Dom(Ψ) includes at least

one constant vector. Many natural relations assume no inputs; so, they are viewed as being total,

or as their domain consisting of a single, constant input vector. Theorem 4.6 applies to all such

relations. We conclude with two immediate consequences of Theorem 4.6.

Corollary 4.7 (Solvability of Uniperiodic Relations) A total, circularly symmetric, uniperi-

odic relation Ψ ⊆ Σn × Σn is solvable on a set of rings ID ⊆ Σn.

Corollary 4.8 (Solvability of Aperiodic Relations) A total, circularly symmetric, aperiodic

relation Ψ ⊆ Σn × Σn is solvable on a set of rings ID ⊆ Σn if and only if ID is aperiodic.

5 Message Complexity

5.1 Multiple Leader Election

We present an asynchronous distributed algorithm AMLE(α) with advice α. Here, α is an integer

that is available to each processor, and it will act as a parameter. AMLE(α) will satisfy a particular

correctness property for certain specific values of advice α; furthermore, the message complexity of

AMLE(α) will depend on α. The distributed algorithm AMLE(α) appears in pseudocode in Figure 2.

We start with an informal description of the algorithm AMLE(α).

Each processor explores neighborhoods around it whose sizes double in each phase. A processor

enters a phase when it initiates the first message tagged with the phase number; it enters phase 0

at Step 3, and phase r+1, with r ≥ 0, at Step 23. Before entering any phase, including phase 0, a

processor checks to see if it should terminate as a leader (Steps 2 and 22). Thus, a processor may

terminate before even entering phase 0 without sending any messages, exactly when α = 1.

When it enters a phase, a processor collects the identities and inputs of other processors in

its neighborhood that are 2r to the left or 2r+1 − 1 to the right. It then uses this information to

locally construct the 2r+1 prefixes of length 2r of the views of all processors that are 2r to the left

24

AMLE(α): code for processor j with identity idj and input inj

Initially, labelj = segmentj = left segmentj = right segmentj = λ.

1: Upon receiving message 〈wake〉 do

2: If α = 1 then terminate as a leader.

3: Else send message 〈probe, 0, 1〉 to left.

4: Upon receiving message 〈probe, r, d〉 from right do

5: If d < 2r then send message 〈probe, r, d+ 1〉 to left.

6: If d = 2r then send message 〈reply, 〈(idj , inj)〉, r, 1〉 to right.

7: Upon receiving message 〈reply, received seg, r, d〉 from left do

8: If d < 2r then send message 〈reply, received seg ¦ 〈(idj , inj)〉, r, d+ 1〉 to right.

9: If d = 2r then do

10: left segmentj := received seg.

11: Send message 〈probe, r, 1〉 to right.

12: Upon receiving message 〈probe, r, d〉 from left do

13: If d < 2r+1 − 1 then send message 〈probe, r, d+ 1〉 to right.

14: If d = 2r+1 − 1 then send message 〈reply, 〈(idj , inj)〉, r, 1〉 to left.

15: Upon receiving message 〈reply, received seg, r, d〉 from right do

16: If d < 2r+1 − 1 then send message 〈reply, 〈(idj , inj)〉 ¦ received seg, r, d+ 1〉 to left.

17: If d = 2r+1 − 1 then do

18: right segmentj := received seg.

19: segmentj := left segmentj ¦ 〈(idj , inj)〉 ¦ right segmentj .

20: labelj := π2r(σ2r(segmentj)).

21: If for each i ∈ [2r], labelj ≺ π2r(σi(segmentj)) and labelj ¹ π2r(σ2r+i+1(segmentj)),

then do

22: If 2r+1 ≥ α then terminate as a leader.

23: Else send message 〈probe, r + 1, 1〉 to left.

24: Else terminate as a non-leader.

Figure 2. Algorithm AMLE(α): code for processor j with advice α.

25

or to the right of it. The processor proceeds to compare the prefix of length 2r of its own view

to those prefixes it has constructed (Step 21); it survives the phase (and does not terminate as

a non-leader) if its own prefix is the lexicographically least among all 2r+1 constructed prefixes of

the views of its neighbors. Finally, it proceeds iteratively to check whether it should enter the next

phase.

Note that by Steps 2 and 22, a processor enters phase r if and only if 2r < α; thus, α determines

the size of the largest neighborhood that each processor may explore before terminating. Note also

that a processor enters a phase if and only if during the previous (if any) phase, the processor

terminated neither as a leader nor as a non-leader. Thus, a processor terminates as a leader if and

only if it survives the last phase (with r = dlgαe − 1).

We proceed to prove the message complexity and correctness properties of AMLE(α). We start

with a simple fact:

Lemma 5.1 Consider a processor j ∈ [n] that entered phase r of AMLE(α). Then, when processor

j is in Step 21,

segmentj = π3·2r(σ−2r(viewj(id, in)))

and

labelj = π2r(viewj(id, in)) .

Proof: Upon entering phase r, processor j initiated a probe message to its left (Step 3 if r = 0, and

Step 23 otherwise). This probe message was received (Step 4) by processors to the left of processor

j, and it was forwarded (Step 5) until the message reached the 2r-th processor j − 2r to the left

of processor j. At that point, processor j − 2r initiated a reply message to its right (Step 6); the

reply message travelled towards processor j collecting the identities and inputs of the processors it

encountered.

This reply message was received (Step 7) by processors to the left of processor j, and it was

forwarded (Step 8) until the message reached the 2r-th processor j − 2r + 2r = j to the right of

processor j − 2r (Step 9). At that point, processor j set left segmentj to the vector of received

identities and inputs (Step 10). Clearly, by construction, left segmentj is a prefix of length 2
r of

the view of processor j − 2r. So,

left segmentj = π2r(viewj−2r(id, in)) .

Processor j then initiated a probe message to its right (Step 11). This probe message was

received (Step 12) by processors to the right of processor j, and it was forwarded (Step 13) until

the message reached the (2r+1 − 1)-th processor j + (2r+1 − 1) to the right of processor j. At that

point, processor j + (2r+1 − 1) initiated a reply message to its left (Step 14); the reply message

travelled towards processor j collecting the identities and inputs of the processors it encountered.

26

This reply message was received (Step 15) by processors to the right of processor j, and it was

forwarded (Step 16) until the message reached the (2r+1−1)-th processor j+(2r+1−1)−(2r+1−1) =

j to the left of processor j+(2r+1− 1) (Step 17). At that point, processor j set right segmentj to

the vector of received identities and inputs (Step 18). Clearly, by construction, right segmentj is

a prefix of length (2r+1 − 1) of the view of processor j + 1. So,

right segmentj = π(2r+1−1)(viewj+1(id, in)) .

Processor j then set segmentj to left segmentj¦〈(idj , inj)〉¦right segmentj (Step 19). Overall,

segmentj is a prefix of length 3 · 2
r of the view of processor j − 2r. Thus,

segmentj = π3·2r(viewj−2r(id, in))

= π3·2r(σ−2r(viewj(id, in))) (by definition of view) .

Finally, observe that (i) left segmentj has length 2
r, and (ii) 〈(idj , inj)〉¦right segmentj has length

2r+1. Recall also that right segmentj is a prefix of viewj+1(id, in). This immediately implies that

(iii) 〈(idj , inj)〉 ¦ right segmentj is a prefix of viewj(id, in). Then,

labelj = π2r(σ2r(segmentj)) (by Step 20)

= π2r(σ2r(left segmentj ¦ 〈(idj , inj)〉 ¦ right segmentj)) (by Step 19)

= π2r(〈(idj , inj)〉 ¦ right segmentj ¦ left segmentj) (by observation (i))

= π2r(〈(idj , inj)〉 ¦ right segmentj) (by observation (ii))

= π2r(viewj(id, in)) (by observation (iii)) ,

as needed.

We continue to prove:

Lemma 5.2 Consider a processor j ∈ [n] that entered phase r of AMLE(α). Then, processor j

survives phase r if and only if for each i ∈ [2r], labelj ≺ labelj−(2r−i) and labelj ¹ labelj+(i+1).

Proof: Note that processor j survives phase r if and only if the predicate checked in Step 21 during

phase r is true. The predicate is true if and only if for every i ∈ [2r],

labelj ≺ π2r(σi(segmentj)) (by Step 21)

= π2r(σi(π3·2r(σ−2r(viewj(id, in))))) (by Lemma 5.1)

= π2r(σ−(2r−i)(viewj(id, in))) (by Lemma 2.1; 2r ≤ 3 · 2r − i)

= π2r(viewj−(2r−i)(id, in)) (by definition of view)

= labelj−(2r−i) (by Lemma 5.1)

and

labelj ¹ π2r(σ2r+i+1(segmentj)) (by Step 21)

= π2r(σ2r+i+1(π3·2r(σ−2r(viewj(id, in))))) (by Lemma 5.1)

= π2r(σi+1(viewj(id, in))) (by Lemma 2.1; 2r ≤ 3 · 2r − (2r + i+ 1))

= π2r(viewj+(i+1)(id, in)) (by definition of view)

= labelj+(i+1) (by Lemma 5.1) ,

27

and the claim follows.

We now prove an upper bound on the number of processors surviving phase r.

Lemma 5.3 At most n
2r + 1 processors survive phase r of AMLE(α).

Proof: It suffices to prove that any given processor j ∈ [n] survives phase r only if no processor in

the 2r-neighborhood of processor j survives phase r. Assume, by way of contradiction, that there is

a processor j ′ 6= j in the 2r-neighborhood of processor j such that both processors j ′ and j survive

phase r. Since j′ ∈ {j − 2r, . . . , j − 1, j + 1, . . . , j + 2r}, there is an index i ∈ [2r] such that either

j′ = j − (2r − i) or j′ = j + (i+ 1).

• Assume first that j ′ = j − (2r − i). Lemma 5.2 implies that labelj ≺ labelj′ . Note that

j = j′ + (2r − i) = j′ + (i′ + 1) for i′ = 2r − i − 1 ∈ [2r]. Hence, Lemma 5.2 implies that

labelj′ ¹ labelj . A contradiction.

• Assume now that j ′ = j + (i + 1). Lemma 5.2 implies that labelj ¹ labelj′ . Note that

j = j′ − (i + 1) = j ′ − (2r − i′) for i′ = 2r − i − 1 ∈ [2r]. Hence, Lemma 5.2 implies that

labelj′ ≺ labelj . A contradiction.

Since we obtained a contradiction in all possible cases, the claim follows.

We now analyze the number of messages sent by algorithm AMLE(α).

Proposition 5.4 Algorithm AMLE(α) sends O (n · lgα) messages on a ring of size n.

Proof: By Steps 2 and 22, the algorithm executes for phases 0 to dlgαe − 1. By Lemma 5.3, at

most n
2r + 1 processors survive phase r. At phase r, where 1 ≤ r ≤ dlgαe−1, each non-terminated

processor (out of those n
2r−1 + 1

that survived phase r− 1) initiates less than 6 · 2r messages (2 · 2r

to its left and 2 · (2r+1 − 1) to its right); at phase 0, each processor initiates at most 4 messages.

So, the total number of messages is less than

4n+

dlgαe−1∑

r=1

(
n

2r−1 + 1

)
· 6 · 2r = 4n+ 12n

dlgαe−1∑

r=1

(
1−

1

2r−1 + 1

)

< 4n+ 12n (dlgαe − 1)

= O (n · lgα) ,

as needed.

We continue with a correctness property of the algorithm AMLE(α) for specific values of advice α.

For any α ∈ Z
+, consider the function Φα : Σ

n → Z
+ such that Φα(in) =

⌈
2n
α

⌉
for each input

vector in ∈ Σn. We prove:

28

Proposition 5.5 Algorithm AMLE(α) with advice α, where 1 ≤ α ≤ MB(id, in), solves the set of

output vectors Φα-LE(in) on the configuration 〈id, in〉 ∈ Σ
n × Σn.

Proof: We start with an informal outline of the proof. We first prove in Part A that at least

one processor will terminate as a leader; this will be the processor with the least view under

lexicographic ordering. We will establish that this processor will survive every phase that it enters

and be elected as leader. We then prove in Part B that at most Φα(in) =
⌈
2n
α

⌉
processors will

terminate as leaders in the last phase. We now continue with the details of the formal proof.

Part A: Fix a processor j with the least view under lexicographic ordering. Since each shift of

viewj(id, in) is the view of some processor, it follows that viewj(id, in) is shift-minimal.

Fix an arbitrary phase r ≥ 0 such that processor j enters phase r. If r = 0, then Step 2 implies

that α ≥ 2. If r > 0, then Step 22 implies that 2r < α. In either case, it follows that 2r < α. Then,

2r < α

≤ MB(id, in) (by assumption)

= LCM(T(id),T(in)) (by Lemma 3.1) .

Fix an index i ∈ [2r]; we will examine the processors j − (2r − i) and j + (i + 1) in the left and

right segment of the 2r-neighborhood of processor j, respectively.

We will use Lemma 2.6 with viewj(id, in) for x. Since viewj(id, in) is shift-minimal, the

assumption in Lemma 2.6 holds. Recall that T(viewj(id, in)) = LCM(T(id),T(in)) (by Lem-

mas 2.2 and 2.7).

• Use first 2r for ` and i+ 1 for m. Then,

labelj = π2r(viewj(id, in)) (by Lemma 5.1)

¹ π2r(σi+1(viewj(id, in))) (by Lemma 2.6 (Condition (1)))

= π2r(viewj+(i+1)(id, in)) (by definition of view)

= labelj+(i+1) (by Lemma 5.1) .

• Use now 2r for ` and 2r − i for m, so that ` ≥ m. Since i ∈ [2r], and 2r < LCM(T(id),T(in)),

it follows that 1 ≤ 2r− i < LCM(T(id),T(in)). Hence, (2r− i) 6≡ 0 (mod LCM(T(id),T(in))),

so that the assumption for Condition (2) holds. It follows that

labelj = π2r(viewj(id, in)) (by Lemma 5.1)

≺ π2r(σ−(2r−i)(viewj(id, in))) (by Lemma 2.6 (Condition (2)))

= π2r(viewj−(2r−i)(id, in)) (by definition of view)

= labelj−(2r−i) (by Lemma 5.1) .

Since labelj ¹ labelj+(i+1) and labelj ≺ labelj−(2r−i), and i ∈ [2
r] was chosen arbitrarily, Lemma 5.2

implies that processor j survives phase r. Since r was chosen arbitrarily, it follows that processor

29

j survives every phase that it enters; so, Step 24 is never executed. Thus, processor j terminates

as a leader (either in Step 2 or in Step 22).

Part B: Consider the last phase r with r = dlgαe − 1 (Step 22). By Lemma 5.3, at most n
2r + 1 ≤

n
α
2 + 1

<
⌈
2n
α

⌉
= Φα(in) processors terminate as leaders, and the proof is now complete.

5.2 Universal Upper Bound

We now prove:

Theorem 5.6 (Partially Eponymous Message Complexity Theorem) The circularly sym-

metric relation Ψ ⊆ Σn × Σn is computable on a set of rings ID ⊆ Σn with

O

(
n2

LMB(ID,Ψ)
+ n · lg LMB(ID,Ψ)

)

messages.

Proof: Figure 3 depicts a distributed algorithm AΨ
′ (which is an instantiation of AΨ) to compute

Ψ on ID with the required number of messages:

AΨ
′: code for processor j with identity idj and input inj

1: Upon receiving message 〈wake〉 do

2:

\∗ Construct viewj(id, in) = vidj ‖vinj . ∗\ \∗ vidj = σj(id), vinj = σj(in) ∗\

(a) Execute the distributed algorithm AMLE(α) with advice α = LMB(ID,Ψ).

(b) If elected as leader then do

(c) Execute the distributed algorithm ACV to construct viewj(id, in).

(d) Send message 〈info, viewj(id, in)〉 to right.

(e) Else upon receiving message 〈info, received view〉 from left do

(f) viewj(id, in) := σ1(received view).

(g) Send message 〈info, viewj(id, in)〉 to right.

3: V iewsj [i] := 〈σi(vidj), σi(vinj)〉 for each i ∈ [n], where n is the size of viewj(id, in).

4: Choicesj := {(x,y, z) | 〈x,y〉 ∈ V iewsj ; z ∈ Ψ(y); T(z) divides MB(x,y)}.

5: If Choicesj = ∅ then outj := ⊥ and terminate.

6: (a) (x,y, z) := min {Choicesj};

(b) kj := min
{
i ∈ [n] | V iewsj [i] = 〈x,y〉

}
, where n is the size of viewj(id, in).

7: Set outj to the first entry of σ−kj
(z) and terminate.

Figure 3. Algorithm AΨ
′: code for processor j.

30

Fix a configuration 〈id, in〉 ∈ ID × Σn. Since algorithm AΨ
′ is an instantiation of AΨ, it suffices

to establish that processors construct their views in Step 2 with the required number of messages.

In Step 2/a the distributed algorithm AMLE(α) is executed with advice α = LMB(ID,Ψ). Since

α = LMB(ID,Ψ) ≤ MB(id, in), Proposition 5.5 implies that at least 1 and at most

⌈
2n

LMB(ID,Ψ)

⌉

processors terminate as leaders. All leaders execute the algorithm ACV (see Section 4) in Step 2/c

to construct their views; the rest of the processors forward messages appropriately during this step.

Lemma 5.7 In Step 2, every processor constructs its view, and sends exactly one info message.

Proof: Assume, by way of contradiction, that there is some processor that does not satisfy the

claim. Among all such processors, consider a processor j with the least distance to a leader in the

left segment of j’s neighborhood; at least one leader was elected, so this processor is well-defined.

Observe that processor j is not a leader, since by Step 2/c, all leaders construct their views,

and send exactly one info message in Step 2/d. So, j − 1 is a processor with less distance to a

leader in the left segment of j − 1’s neighborhood; hence, processor j − 1 satisfies the claim. It

follows that processor j − 1 constructs its view during Step 2 and sends exactly one info message.

Then, processor j receives an info message with processor j − 1’s view exactly once (Step 2/e). In

turn, processor j proceeds to construct its own view by shifting the received view received view

one place anti-clockwise (Step 2/f); it sends exactly one info message with its own view in Step

2/g. A contradiction to the assumption that processor j did not satisfy the claim.

It remains to show that the number of messages is as claimed. By Proposition 5.4, Step 2/a

contributes O (n · lg LMB(ID,Ψ)) messages. Step 2/c is only executed by the elected leaders, which

are at most

⌈
2n

LMB(ID,Ψ)

⌉
; each leader contributes n messages when constructing its view, for a

total of n ·

⌈
2n

LMB(ID,Ψ)

⌉
messages. Clearly, there are n info messages sent in Steps 2/d and 2/g,

since each processor sends exactly one such message (by Lemma 5.7). Thus, the total number of

messages sent in Step 2 is

O (n · lg LMB(ID,Ψ)) + n ·

⌈
2n

LMB(ID,Ψ)

⌉
+ n = O

(
n2

LMB(ID,Ψ)
+ n · lg LMB(ID,Ψ)

)
,

as needed.

Notice that AΨ
′ invokes the non-uniform distributed algorithm ACV for constructing views. Hence,

AΨ
′ is non-uniform as well. Finally, an inspection of all algorithms used inside AΨ

′ (namely, AMLE

and ACV) reveals that every message sent by AΨ
′ includes O(n) identities and inputs. Hence, the

number of identities and inputs communicated by AΨ
′ is O(n) times its message complexity. Recall

that the bit complexity of a single identity or input may not be bounded by some function of n;

hence, the bit complexity of AΨ
′ may not be so bounded as well.

31

5.3 Applications

We now identify two special classes of sets of rings ID ⊆ Σn where the upper bound on message

complexity from Theorem 5.6 drops to O (n · lg n).

5.3.1 Universal Sets of Rings

A set of rings ID ⊆ Σn is universal if LE is solvable on ID. Clearly, every (circularly symmetric)

relation is solvable on ID. We prove:

Theorem 5.8 (Message Complexity on Universal Set of Rings) A circularly symmetric re-

lation Ψ ⊆ Σn × Σn is computable on a universal set of rings ID ⊆ Σn with O (n · lg n) messages.

Proof: Since LE is solvable on ID, and LE is circularly symmetric, aperiodic and total, Corol-

lary 4.8 implies that ID is aperiodic. So, for each id ∈ ID, T(id) = n. By Lemma 2.4

(Condition (1)), for each in ∈ Dom(Ψ) ⊆ Σn, T(in) divides n. Hence, for each configuration

〈id, in〉 ∈ ID× Dom(Ψ),

MB(id, in) = LCM(T(id),T(in)) (by Lemma 3.1)

= n .

Hence, LMB(ID,Ψ) = min {MB(id, in) | 〈id, in〉 ∈ ID× Dom(Ψ)} = n. Thus, by Theorem 5.6, Ψ

is computable on ID with O
(
n2
n + n · lg n

)
= O (n · lg n) messages, as needed.

5.3.2 Multiplicity-Bounded Sets of Rings

A set of rings ID ⊆ Σn is µ-bounded if max{M(ID)} = µ; so, all identity multiplicities are bounded

by µ. Clearly, in a µ-bounded set of rings ID, GCD(M(ID)) ≤ µ. We prove a preliminary property

of µ-bounded sets of rings.

Lemma 5.9 Consider a circularly symmetric relation Ψ ⊆ Σn × Σn and a µ-bounded set of rings

ID ⊆ Σn. Then, LMB(ID,Ψ) ≥ n
µ .

Proof: Fix a configuration 〈id, in〉 ∈ ID × Dom(Ψ). By Lemma 2.5 (Condition (2)), T(ĩd) di-

vides T(id); so, T(ĩd) divides LCM(T(id),T(in)). Since MB(id, in) = LCM(T(id),T(in)) (by

Lemma 3.1), it follows that T(ĩd) divides MB(id, in); in particular, MB(id, in) ≥ T(ĩd). By

Lemma 2.5 (Condition (1)), T(ĩd) = n
GCD(M(ID))

. Since GCD(M(ID)) ≤ µ, it follows that

T(ĩd) ≥ n
µ . Hence, MB(id, in) ≥ n

µ . Definition 3.5 now implies that LMB(ID,Ψ) ≥ n
µ .

We finally prove:

32

Theorem 5.10 (Message Complexity on µ-Bounded Set of Rings) A circularly symmetric

relation Ψ ⊆ Σn×Σn is computable on a µ-bounded set of rings ID ⊆ Σn with O (n ·max {µ, lg n})

messages.

Proof: By Lemma 5.9, LMB(ID,Ψ) ≥ n
µ . Recall also that LMB(ID,Ψ) ≤ n, Thus, by Theo-

rem 5.6, Ψ is computable on ID withO

(
n2
n
µ
+ n · lg n

)
= O (n · µ+ n · lg n) = O (n ·max {µ, lg n})

messages, as needed.

We conclude with a special case of µ-bounded sets of rings. Say that a set of rings ID ⊆ Σn is

logarithmic if it is µ-bounded with µ = O(lg n). Theorem 5.10 immediately implies:

Corollary 5.11 (Message Complexity on Logarithmic Set of Rings) A circularly symmet-

ric relation Ψ ⊆ Σn × Σn is computable on a logarithmic set of rings ID ⊆ Σn with O (n · lg n)

messages.

6 Open Problems

We presented a comprehensive study of solvability, computability and message complexity for the

partially eponymous ring. Our work poses far more interesting questions than it answers. For

example, is there a matching lower bound to the universal upper bound on message complexity

from Theorem 5.6? Can we characterize the class of sets of rings of size n for which this (universal)

upper bound becomes O (n · lgn)? Finally, a challenging task is to extend the results obtained for

the partially eponymous ring to other network architectures (such as cliques, hypercubes, and tori).

Acknowledgements. We thank the anonymous OPODIS 2006 and Theoretical Computer Science

reviewers for helpful comments.

33

References

[1] D. Angluin, “Local and Global Properties in Networks of Processors,” Proceedings of the 12th

Annual ACM Symposium on Theory of Computing, pp. 82–93, May 1980.

[2] H. Attiya, M. Snir and M. Warmuth, “Computing on an Anonymous Ring,” Journal of the

ACM, Vol. 35, No. 4, pp. 845–875, October 1988.

[3] P. Boldi and S. Vigna, “An Effective Characterization of Computability in Anonymous Net-

works,” Proceedings of the 15th International Symposium on Distributed Computing, J. Welch

ed., Vol. 2180, pp. 33–47, Lecture Notes in Computer Science, Springer-Verlag, October 2001.

[4] P. Boldi and S. Vigna, “Fibrations of Graphs,” Discrete Mathematics, Vol. 243, No. 1–3, pp.

21–66, January 2002.

[5] J. E. Burns, “A Formal Model for Message Passing Systems,” Technical Report TR-91, De-

partment of Computer Science, Indiana University, September 1980.

[6] J. Chalopin, S. Das and N. Santoro, “Groupings and Pairings in Anonymous Networks,”

Proceedings of the 20th International Symposium on Distributed Computing, S. Dolev ed.,

Vol. 4167, pp. 105–119, Lecture Notes in Computer Science, Springer-Verlag, September 2006.

[7] S. Dobrev and A. Pelc, “Leader Election in Rings with Nonunique Labels,” Fundamenta In-

formaticae, Vol. 59, No. 4, pp. 333–347, February/March 2004.

[8] P. Flocchini, E. Kranakis, D. Krizanc, F. L. Luccio and N. Santoro, “Sorting and Election

in Anonymous Asynchronous Rings,” Journal of Parallel and Distributed Computing, Vol. 64,

No. 2, pp. 254–265, February 2004.

[9] D. Hirschberg and J. B. Sinclair, “Decentralized Extrema-Finding in Circular Configurations

of Processes,” Communications of the ACM, Vol. 23, No. 11, pp. 627–628, November 1980.

[10] F. T. Leighton, “Finite Common Coverings of Graphs,” Journal of Combinatorial Theory

(Series B), Vol. 33, No. 3, pp. 231–238, December 1982.

[11] G. LeLann, “Distributed Systems - Towards a Formal Approach,” Information Processing 77

— Proceedings of the IFIP Congress, B. Gilchrist ed., pp. 155–160, August 1977.

[12] M. Yamashita and T. Kameda, “Computing on Anonymous Networks, Part I: Characterizing

the Solvable Cases,” IEEE Transactions on Parallel and Distributed Systems, Vol. 7, No. 1,

pp. 69–89, January 1996.

[13] M. Yamashita and T. Kameda, “Computing on Anonymous Networks, Part II: Decision and

Membership Problems,” IEEE Transactions on Parallel and Distributed Systems, Vol. 7, No. 1,

pp. 90–96, January 1996.

34

[14] M. Yamashita and T. Kameda, “Computing Functions on Asynchronous Anonymous Net-

works,” Mathematical Systems Theory, Vol. 29, No. 4, pp. 331–356, July/August 1998. (Erra-

tum in Theory of Computing Systems, Vol. 31, No. 1, pp. 109, January 1998.)

[15] M. Yamashita and T. Kameda, “Leader Election Problem on Networks in Which Processor

Identity Numbers are not Distinct,” IEEE Transactions on Parallel and Distributed Systems,

Vol. 10, No. 9, pp. 878–887, September 1999.

35

