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Abstract. We study the partially eponymous model of distributed com-
putation, which simultaneously generalizes the anonymous and the epony-
mous models. In this model, processors have identities, which are neither
necessarily all identical, nor necessarily unique; processors receive inputs
and must reach outputs that respect a relation. We focus on the partially
eponymous ring R, and we are interested in the computation of circularly
symmetric relations on it.

• We distinguish between solvability and computability: in solvability,
processors must always reach outputs that respect the relation; in com-
putability, they must reach outputs that respect the relation whenever
possible, and report impossibility otherwise.

– We provide an efficient characterization of solvability of an arbitrary
(circularly symmetric) relation on an arbitrary set of rings. The
characterization is topological and can be expressed as a number-
theoretic property that can be checked efficiently.

– We present a universal distributed algorithm for computing any ar-
bitrary (circularly symmetric) relation on any set of rings.

• Towards obtaining message complexity bounds, we derive a distributed
algorithm for a natural generalization of Leader Election, in which a (non-
zero) number of leaders are elected. We use this algorithm as a subroutine
of our universal algorithm for collecting views; hence, we prove, as our
main result, an upper bound on the message complexity of this particular
instantiation of our universal algorithm to compute an arbitrary (circu-
larly symmetric) relation on an arbitrary set of rings. The shown upper
bound demonstrates a graceful degradation with the Least Minimum
Base, a parameter indicating the degree of topological compatibility be-
tween the relation and the set of rings. We employ this universal upper
bound to identify two interesting cases where an arbitrary relation can
be computed with an efficient number of O(|R| · lg |R|) messages: The set
of rings is universal (which allows the solvability of Leader Election), or
logarithmic (where each identity appears at most lg |R| times).

? This work has been partially supported by the IST Program of the European Union
under contract number IST-15964 (AEOLUS).



1 Introduction

Motivation and Framework. Two of the best studied models in Distributed
Computing Theory are the eponymous model and the anonymous model. In both
models, processors may receive inputs and must reach outputs that are related
to the inputs according to some (recursive) relation.

• In the eponymous model, processors have unique identities. This availability
enables the computability of all relations: processors first solve Leader Election
[11] to elect a leader among them; then, the leader undertakes computation of
the relation and communicates the solution to the other processors.

• In the anonymous model, processors have identical identities and they run
the same local algorithm. The impossibility of breaking this initial symmetry
retains many relations unsolvable in the anonymous model; the prime example
is the impossibility of solving Leader Election on an anonymous ring [1].

This long-known separation between the eponymous model and the anony-
mous model invites the investigation of an intermediate model, where there are
identities available to the processors, but these are neither necessarily unique,
nor necessarily all identical. Call this intermediate model the partially eponymous
model. We consider a particular case of the partially eponymous model, that of
the (asynchronous) partially eponymous ring R with bidirectional communica-
tion and orientation. Which relations are solvable on the partially eponymous
ring? For which message complexity can an arbitrary relation be computed? (Bit
complexity remains beyond the scope of this work.)

We focus on circularly symmetric relations, the broadest class of relations
that are natural to consider for rings. Roughly speaking, in a circularly sym-
metric relation, shifting any output vector for a given input vector must yield a
correct output vector for the correspondingly shifted input vector.

An essential attribute of most previous work on anonymous networks has
been the requirement that the distributed algorithm for a particular relation
runs on all networks and occasionally reports impossibility (exactly, of course,
when it is impossible to return admissible outputs — ones that respect the
relation). This concept will be called computability in this work. An orthogonal
viewpoint is to actually isolate the subclass of networks on which it is always
possible to return admissible outputs, in order to obtain tailored algorithms that
are possibly more efficient (in terms of message complexity) than those running
on all networks. This motivation leads to the concept of solvability : a relation is
solvable on a set of networks if there is a distributed algorithm which, when run
on any network in the set, leads all processors to reach admissible outputs (and
never report impossibility).

Previous Work. Computation on anonymous networks was first studied in the
seminal work of Angluin [1], where the impossibility of solving Leader Election
was first established. Yamashita and Kameda [12, 13] have considered the solv-
ability of several representative distributed computing problems on anonymous
networks and characterized the class of (anonymous) networks on which each



problem is solvable under different assumptions on the network attributes (e.g.,
size, topology, etc.) that are made available to the processors.

The more general model of an arbitrary partially eponymous network has
been first considered by Yamashita and Kameda [15]. They focused on Leader
Election and provided a graph-theoretic characterization of its solvability under
different assumptions on the communication mode and the available (a)synchrony.
Further work on the partially eponymous ring has been carried out in [6, 7].
Chalopin et al. [6] very recently considered some specific generalizations of
Leader Election in an arbitrary partially eponymous network. Under the assump-
tion that processors have an approximate knowledge of the ring size, Dobrev and
Pelc [7] presented both lower and upper bounds on message complexity for both
the synchronous and the asynchronous cases of a partially eponymous ring.

Boldi and Vigna [3] have considered the more general solvability problem for
an arbitrary relation on an arbitrary network and for any level of knowledge and
anonymity (or eponymity) of the processors.

Attiya et al. [2] initiated the study of computing functions on the asyn-
chronous anonymous ring. Flocchini et al. [8] consider the problems of Leader
Election, Edge Election and Multiset Sorting on the asynchronous anonymous
ring R where processors are distinguished by input values that are not neces-
sarily distinct. So, input values are treated in the partially eponymous model of
Flocchini et al. [8] as either identities or as inputs. We emphasize that the par-
tially eponymous model of Flocchini et al. [8] does not simultaneously consider
identities and inputs. Under the assumptions that input values are binary and
|R| is prime, Flocchini et al. [8, Theorems 4.1 and 4.2] provide lower and upper
bounds on message complexity for these three problems. The lower and upper
bounds are Ω(

∑
j(z

2
j + t2j )) and O(

∑
j(z

2
j + t2j )+ |R| · lg |R|), respectively, where

zj and tj are the lengths of consecutive blocks of 1’s and 0’s, respectively, in the
vector of binary inputs.

The first efficient algorithm for Leader Election in the eponymous ring is
based on the intuitive idea of domination in neighborhoods with progressively
doubling size, which is due to Hirschberg and Sinclair [9]; it achieves an O(|R| ·
lg |R|) upper bound on message complexity. A corresponding lower bound of
Ω(|R| · lg |R|) has been established in [5].

Contribution. We start by studying solvability and computability.
• We discover (Theorem 1) that solvability is equivalent to compatibility, a

new abstract, topological concept we introduce to capture the possibility that
symmetries present in the initial configuration, comprised of the identities and
the inputs, persist to the reached outputs.

To measure the initial symmetry, we use the period of a vector consisting of
the identities and the inputs; the smaller the symmetry, the longer the period,
and we call it the Minimum Base. It turns out that Minimum Base enjoys an el-
egant number-theoretic expression allowing for its efficient evaluation. Similarly,
we measure the symmetry in an output vector using its period. The possibility
of persistence of initial symmetries to the final symmetries amounts to demand-
ing that the period of some admissible output vector divides that of the initial



vector, and this is our definition of compatibility. Compatibility can be checked
efficiently (since it reduces to a number-theoretic property that can be checked
efficiently); hence, our characterization of solvability is an efficient one.

• We present a universal algorithm for computing any arbitrary (circularly
symmetric) relation on any set of rings (Theorem 2). This algorithm is comprised
of any distributed algorithm for collecting views at each processor, followed by
local steps specific to the particular relation.

• As an application of our characterization of solvability, we derive a partic-
ular characterization of solvability for (circularly symmetric) aperiodic relations
(Theorem 3); Leader Election is an example of such relations. So, this deter-
mines a topological characterization of the class of relations that are equivalent
to Leader Election with respect to solvability.

We then study message complexity (with respect to computability).
• As our chief algorithmic instrument, we present a distributed algorithm

for a natural generalization of Leader Election in which a (non-zero) number of
leaders must be elected; call it Multiple Leader Election (Proposition 2). This
algorithm works correctly on a given configuration when advised with a lower
bound k on the Minimum Base for that configuration. This distributed algorithm
exploits the idea of doubling neighborhoods from the distributed algorithm of
Hirschberg and Sinclair [9] for solving Leader Election on the eponymous ring;
it achieves message complexity O(|R| · lg k) (Proposition 1) for any advice k.

• In turn, we use the distributed algorithm for Multiple Leader Election to
construct a universal algorithm to compute an arbitrary (circularly symmetric)
relation Ψ on a set of rings ID (consisting of all rings with the same, arbitrarily
chosen, identity multiplicities). The universal algorithm has message complex-
ity O

(
(n2/LMB(ID, Ψ)) + n · lg LMB(ID, Ψ)

)
, where LMB(ID, Ψ) is the Least

Minimum Base — the least value of Minimum Base over all configurations with
rings coming from ID and input vectors coming from the domain of Ψ (Theo-
rem 4). Here, LMB(ID, Ψ) is used as the advice k for the distributed algorithm to
solve Multiple Leader Election. (Note that this is permissible when designing a
distributed algorithm to compute the relation Ψ on the set of rings ID.) Interest-
ingly, the established upper bound demonstrates that the message complexity
on rings of size n degrades gracefully with the Least Minimum Base, ranging
from O(n · lg n) for the eponymous ring to O(n2) for the anonymous ring. So,
our universal upper bound is tight for these two extreme models.

• We are finally interested in determining sets of rings on which the universal
upper bound on message complexity from Theorem 4 is low. In particular, on
which sets of rings (of size n) is an upper bound of O(n · lg n) possible? We
identify two such (incomparable) classes of sets:
– Say that a set of rings is universal if Leader Election is solvable on it. So,

every relation is solvable on such a universal set. We prove that a relation is
computable with O(n·lg n) messages on a universal set of rings (Theorem 5).
Hence, surprisingly, Leader Election is either unsolvable on a given set of
rings, or efficiently computable on the given set with O(n · lg n) messages.

– Say that a set of rings is logarithmic if each identity appears at most lg n
times. We prove that a relation is computable with O(n · lg n) messages on a



logarithmic set of rings (Theorem 6); note that this holds even if the relation
is not solvable on that set of rings.

Comparison to Directly Related Work. Whereas Boldi and Vigna [3] pro-
vide an effective characterization of anonymous solvability for any arbitrary
relation on any arbitrary network, our work provides the first efficient char-
acterization of partially eponymous solvability for any arbitrary relation on the
ring (Theorem 4.1). It is not evident how the effective graph-theoretic character-
ization from [3] (involving graph coverings and graph fibrations) could yield an
efficient characterization for the special case of the partially eponymous ring. In
fact, our main goal has been to derive a direct solvability characterization for the
particular case of the partially eponymous ring that bypasses the complex frame-
work of graph coverings and graph fibrations developed in [3] for the general case
of an arbitrary network. Although the work in [3] invests a great effort in trans-
lating concepts of Distributed Computing into some complex graph-theoretic
form, our proof techniques for the solvability characterization are elementary.

Theorem 4 improves [8, Theorem 4.2] in three fronts. First, it works for an
arbitrary ring size |R|, while [8, Theorem 4.2] assumes that |R| is prime. Second,
[8, Theorem 4.2] assumes binary inputs, while Theorem 4 makes no assumption
on either inputs or identities. Third, and most important, Theorem 4 applies
to any arbitrary relation, while [8, Theorem 4.2] is tailored to three specific
relations (Leader Election, Edge Election and Multiset Sorting). We remark,
however, that the worst-case message complexity in both Theorem 4 and [8,
Theorem 4.2] is Θ(|R|2). Note also that [8, Theorem 5.1] is the special case of
Theorem 3 where Ψ is the Leader Election Relation.

Our definition for Least Minimum Base is built on top of Minimum Base,
originally defined in [4, 10] and used in [3, 6] to obtain characterizations of solv-
ability in anonymous networks. However, we exploit the very simple structure
of the ring network to derive and use a particularly simple version of Minimum
Base. For the case of the anonymous ring, Attiya et al. [2] defined the Symmetry
Index to measure the symmetry in an initial configuration (containing only in-
puts); in contrast, (Least) Minimum Base measures asymmetry, while also taking
identities into account.

Dobrev and Pelc [7, Theorem 3.1] prove an Ω(M ·n) lower bound on message
complexity for the computability of Leader Election on the partially eponymous
ring, where M is an upper bound on the ring size known to the processors; this
implies a corresponding Ω(n2) lower bound when the ring size is known exactly.
This lower bound applies to the class of all rings; hence, it does not contradict
the upper bound in Theorem 4, which applies to a set of rings ID.

2 Mathematical Preliminaries

Denote N = {0, 1, 2, . . .}, Z+ = {1, 2, 3, . . .}, and [n] = {0, 1, . . . , n− 1} for each
integer n ≥ 1. Denote GCD and LCM the functions mapping a set of integers to
their Greatest Common Divisor and Least Common Multiple, respectively. We



assume a global, possibly infinite set Σ (containing 0 and 1), and we consider
a vector x = 〈x0, x1, . . . , xn−1〉 ∈ Σn. λ denotes the empty vector, while x � y
denotes the concatenation of vectors x and y. With each vector x, we associate
a multiset M(x) with the multiplicities of the entries of x. We use the function
M to partition Σn into equivalence classes, where all vectors in an equivalence
class have the same image under M. Denote X the equivalence class containing
the vector x. By abuse of notation, M(X) will denote M(x) for any x ∈ X.

For any integer k ∈ [n], the (cyclic) shift σk(x) of vector x is the vector
〈xk, xk+1, . . . , xk+n−1〉, with indices taken modulo n; so, σk shifts x, k places
anti-clockwise. The definition is extended to all integers k in the natural way.

The period T(x) of vector x is the least integer k, 0 < k ≤ n, such that
σk(x) = x. Say that x is T(x)-periodic; x is aperiodic if T(x) = n, and x
is uniperiodic if T(x) = 1. Say that x is eponymous if each entry of x is
unique; clearly, an eponymous vector is aperiodic, but not vice versa. Say that
x is anonymous if all entries of x are identical; so, a vector is anonymous if
and only if it is uniperiodic. Clearly, the period of a vector is invariant under
shifting. So, the period captures the degree of circular asymmetry of a vector:
the smaller the period, the more circular symmetries the vector has. We prove:

Lemma 1. For each vector x ∈ Σn, and l,m ∈ N, σl(x) = σm(x) if and only
if l ≡ m (mod T(x)).

Call a vector x̃ ∈ X a min-period vector of X if it minimizes period among all
vectors in X. We prove:

Lemma 2. For each equivalence class X ⊆ Σn, (1) T(x̃) = n/GCD(M(X)), and
(2) for each vector x ∈ X, T(x̃) divides T(x).

Say that X is aperiodic if each vector x ∈ X is aperiodic; say that X is
uniperiodic if each vector x ∈ X is uniperiodic. Say that X is k-periodic
if the min-period vector x̃ of X is k-periodic. (So, aperiodic and uniperiodic
are identified with n-periodic and 1-periodic, respectively.) Clearly, Lemma 2
(condition (1)) implies that X is (n/GCD(M(X)))-periodic. Hence, X is aperiodic
if and only if GCD(M(X)) = 1, and X is uniperiodic if and only if GCD(M(X)) =
n. Say that X is anonymous if all vectors x ∈ X are anonymous; say that X
is eponymous if all vectors x ∈ X are eponymous.

We use the standard lexicographical ordering � on Σn. We write x ≺ y to
mean x � y and x 6= y. For each k ∈ [n+1], the prefix of order k of x, denoted
Pk(x), is given by Pk(x) = 〈x0, x1, . . . , xk−1〉, with P0(x) = λ. Clearly, for k < l,
Pk(x) ≺ Pk(y) implies Pl(x) ≺ Pl(y) (and, in particular, x ≺ y). The shuffle of
two vectors x = 〈x0, x1, . . . , xn−1〉 and y = 〈y0, y1, . . . , yn−1〉, denoted by x‖y,
is the vector x‖y = 〈(x0, y0), (x1, y1), . . . , (xn−1, yn−1)〉. We observe:

Lemma 3. For each pair of vectors x,y ∈ Σn, T(x‖y) = LCM(T(x),T(y)).

A (recursive) relation is a subset Ψ ⊆ Σn × Σn. For a vector x ∈ Σn,
Ψ(x) = {y | (x,y) ∈ Ψ}; every vector y ∈ Ψ(x) is an image of x under Ψ .



The set Dom(Ψ) of all vectors x ∈ Σn with at least one image under Ψ is
the domain of Ψ ; the set of all images of all vectors x ∈ Σn is the image
of Ψ , denoted as Im(Ψ). The relation Ψ is total if Dom(Ψ) = Σn. Given two
relations Ψ1, Ψ2 ⊆ Σn ×Σn, their composition is the relation Ψ1 ◦ Ψ2 = {(x,y) |
(x, z) ∈ Ψ2 and (z,y) ∈ Ψ1 for some z ∈ Σn}. For a relation Ψ ⊆ Σn × Σn,
note that σ1 ◦ Ψ = {(x,y) | y = σ1(z) for some z ∈ Ψ(x)}; note also that
Ψ ◦ σ1 = {(x,y) | y ∈ Ψ(z) where z = σ1(x)}. In other words, for a vector
x, σ1 ◦ Ψ(x) = {y | y = σ1(z) for some z ∈ Ψ(x)} and Ψ ◦ σ1(x) = {y | y ∈
Ψ(σ1(x))}. Thus, σ1 ◦Ψ maps inputs to shifts of their images, while Ψ ◦σ1 maps
inputs to images of their shifts. The relation Ψ is circularly symmetric if
σ1 ◦ Ψ ⊆ Ψ ◦ σ1. Intuitively, in a circularly symmetric relation, shifts of images
are always images of shifts. A direct induction implies that σk ◦ Ψ ⊆ Ψ ◦ σk for
any circularly symmetric relation Ψ and for all integers k ∈ N.

The relation Ψ ⊆ Σn ×Σn is aperiodic if each vector in Im(Ψ) is aperiodic;
so, each image under Ψ has no circular symmetries. On the other extreme, the
relation Ψ ⊆ Σn ×Σn is uniperiodic if each vector in Im(Ψ) is uniperiodic; so,
each image under Ψ is constant. In the middle, the relation Ψ ⊆ Σn ×Σn is k-
periodic if each vectors in Im(Ψ) is k-periodic. Thus, n-periodic and 1-periodic
relations are precisely the aperiodic and uniperiodic relations, respectively.

In the Leader Election Relation LE ⊆ Σn ×Σn, the set of images of an
input vector x is the set of all vectors with exactly one 1 and n − 1 0’s; 1 and
0 correspond to “elected” and “non-elected”, respectively. Clearly, the Leader
Election Relation is both circularly symmetric and aperiodic.

We now discuss a generalization of the Leader Election Relation. Consider a
function Φ : Σn → Z+. In the Φ-Leader Election Relation Φ-LE ⊆ Σn×Σn,
the set of images of an input vector x is the set of all binary output vectors
with the number of 1’s ranging from 1 to Φ(x) (both inclusive). The special case
where Φ(x) = 1 for all vectors x ∈ Σn is precisely the Leader Election Relation.
A Multiple Leader Election Relation is a Φ-Leader Election Relation for
some such function Φ.

3 The Partially Eponymous Ring

General. We start with the standard model of an asynchronous, anonymous
ring as studied, for example, in [2, 8]. We assume that the ring is oriented and
bidirectional. We augment this model so that processors have identities that
are neither necessarily all identical, nor necessarily unique. Call it a partially
eponymous ring. In the anonymous ring identities are all identical, while
in the eponymous ring identities are unique.

A ring R is a cyclic arrangement of |R| identical processors 0, 1, . . . , |R| − 1.
Processor j has an identity idj and receives an input inj . The identity vector
is id = 〈id0, id1, . . . , id|R|−1〉; the input vector is in = 〈in0, in1, . . . , in|R|−1〉.
Note that for the anonymous ring, T(id) = 1; for the eponymous ring, T(id) =
|R|. The (initial) configuration of the ring R is the pair 〈id, in〉. Each proces-



sor must reach an output outj by running a local algorithm and communicating
with its two neighbors. The output vector is out = 〈out0, out1, . . . , out|R|−1〉.

There is a single local algorithm A run by all processors; A is represented
as a state machine. Each computation step of A at processor j is dependent
on the current state of j, the messages currently received at j and on the local
identity idj and input inj . A distributed algorithm A is a collection of local
algorithms, one for each processor. We restrict our attention to non-uniform
distributed algorithms, where the size of the ring is “hard-wired” into the sin-
gle local algorithm. So, we consider rings of a certain size n. The distributed
algorithm A induces a set of (asynchronous) executions.

Each identity vector id ∈ Σn specifies a single ring; by abuse of notation,
denote as id the specified ring. An equivalence class ID ⊆ Σn induces a set of
rings, each corresponding to some particular identity vector id ∈ ID; by abuse
of notation, denote as ID the induced set.

Solvability and Computability. Consider a configuration 〈id, in〉. Say that
the distributed algorithm A solves the set of output vectors OUT on the
configuration 〈id, in〉 if each execution of A on the ring id with input in
results to an output vector out ∈ OUT . Say that the set of output vectors OUT
is solvable on the configuration 〈id, in〉 if there is a distributed algorithm A
that solves OUT on 〈id, in〉. Say that the relation Ψ is solvable on the set of
rings R if there is a distributed algorithm A such that for each configuration
〈id, in〉 ∈ ID× Dom(Ψ), A solves Ψ(in) on 〈id, in〉.

Say that the distributed algorithm A computes the set of output vectors
OUT on the configuration 〈id, in〉 if the following holds: ifOUT is solvable on
the configuration 〈id, in〉, then A solves OUT in 〈id, in〉; else A solves {⊥n} on
〈id, in〉 (an unsolvability output). We now develop the notion of a distributed
algorithm working for a set of rings and on the entire domain of the relation
Ψ ; intuitively, the set of rings represents the “knowledge” that the algorithm
requires. Formally, the distributed algorithm A computes the relation Ψ on
a set of rings R with g(n) messages if for each configuration 〈id, in〉 ∈
ID×Dom(Ψ), A computes Ψ(in) on the configuration 〈id, in〉. The relation Ψ is
computable on a set of rings R with g(n) messages if there is a distributed
algorithm A that computes Ψ on ID with g(n) messages. Note that solvability
of a relation Ψ on a set of rings ID implies computability of Ψ on ID (with some
number of messages). However, the inverse does not necessarily hold.

The Least Minimum Base. The Minimum Base MB(id, in) of a config-
uration 〈id, in〉 is defined by MB(id, in) = T(id ‖ in) (cf. [4, 10]). For a set of
rings ID with a common input vector in, the Min-Period Minimum Base
MB(ID, in) is defined by MB(ID, in) = MB(ĩd, in), where ĩd is the min-period
vector of ID. Recall that T(ĩd) = n/GCD(M(ID)). Hence, Lemma 3 implies that
MB(ID, in) = LCM(T(ĩd),T(in)) = LCM (n/GCD(M(ID)),T(in)). By Lemma 2
(condition (2)), T(ĩd) divides T(id) for each ring id ∈ ID. Thus, it follows that
MB(ID, in) divides LCM(T(id),T(in)) for each ring id ∈ ID. Note that if ID
is the set of anonymous rings, then MB(ID, in) = LCM(1,T(in)) = T(in); if ID



is the set of eponymous rings, then MB(ID, in) = LCM(T(ĩd),T(in)) ≥ T(in).
So, intuitively, the Minimum Base is an indicator of computability. The Least
Minimum Base LMB(ID, Ψ) of a set of rings ID and a relation Ψ is defined
by LMB(ID, Ψ) = min{MB(id, in) | 〈id, in〉 ∈ ID× Dom(Ψ)}.

Views. We conclude with a definition that extends one in [15, Section 3] to a
ring where processors receive inputs. Given a ring id with input vector in, the
view of processor j is viewj(id, in) = σj(id ‖ in) = σj(id) ‖ σj(in). Clearly,
views of processors are cyclic shifts of each other. There is a direct, non-uniform
distributed algorithm ACV with message complexity Θ(|R|2) that allows each
processor to construct its own view on a ring R. It is simple to prove:

Lemma 4. Consider a ring id with input in and two processors j and k with
viewj(id, in) = viewk(id, in). Then, in a synchronous execution of a distributed
algorithm with output vector out, outj = outk.

4 Solvability and Computability

Preliminaries. We provide a definition of compatibility between a set of output
vectors OUT and a configuration 〈id, in〉. The set of output vectors OUT is
compatible with the configuration 〈id, in〉 if there is an output vector out ∈
OUT such that T(out) divides MB(id, in). We prove:

Lemma 5. Assume that a set of output vectors OUT is solvable on a configu-
ration 〈id, in〉. Then, OUT is compatible with 〈id, in〉.

Proof (sketch). By assumption, there is a distributed algorithm A that solves
OUT on 〈id, in〉. Fix a synchronous execution of A on 〈id, in〉, and consider
the associated vector out ∈ OUT . Recall that viewj(id, in) = σj(id ‖ in), so
that viewj+T(id‖in)(id, in) = σj+T(id‖in)(id ‖ in). By Lemma 1, it holds that
σj(id ‖ in) = σj+T(id‖in)(id ‖ in). So viewj(id, in) = viewj+T(id‖in)(id, in), and
Lemma 4 implies that outj = outj+T(id‖in). Since j was chosen arbitrarily, this
implies that σT(id‖in)(out) = out. By definition of period, Lemma 1 implies that
T(out) divides T(id‖ in) = MB(id, in). ut

We now introduce the distributed (non-uniform) algorithm AΨ associated
with an arbitrary circularly symmetric relation Ψ ∈ Σn × Σn; the algorithm is
described in Figure 1. Note that the distributed algorithm AΨ does not specify
how the views are constructed in Step 2. The views can be constructed by in-
voking, for example, the distributed algorithm ACV which collects the identities
and inputs of processors using n2 messages. All remaining steps are local. Steps
3–6 enable processors to choose a common output vector, while Step 6 enables
processor j to output its individual coordinate in this vector. The set Choices
contains all candidates for the common output vector; in Step 6, processors use
a common function (e.g., min) to single out one of the candidates. We prove:

Lemma 6. For a configuration 〈id, in〉, either AΨ solves Ψ(in) on 〈id, in〉, or
AΨ solves {⊥n} on 〈id, in〉.



AΨ : code for processor j with identity idj and input inj

1: Upon receiving message 〈wake〉 do
2: Construct viewj(id, in) = vidj ‖vinj . \∗ vidj = σj(id), vinj = σj(in) ∗\
3: V iewsj [i] := 〈σi(vidj), σi(vinj)〉 for each i ∈ [|R|].
4: Choices := {(x,y, z) | 〈x,y〉 ∈ V iewsj ; z ∈ Ψ(y); T(z) divides MB(x,y)}.
5: If Choices = ∅ then outj := ⊥ and terminate.
6: (a) (x,y, z) := min(Choices); (b) kj := min{i ∈ [|R|] | V iewsj [i] = 〈x,y〉}.
7: Set outj to be the first entry of σ−kj (z) and terminate.

Figure 1. Algorithm AΨ : code for processor j.

The proof of Lemma 6 requires Ψ to be circularly symmetric. It is not evident
whether this assumption is essential for the partially eponymous ring, although
it is known to be so for computing functions on the anonymous ring [2].

Main Results. Our first result concerns the solvability of an arbitrary (cir-
cularly symmetric) relation on an arbitrary set of rings ID. We provide a def-
inition of compatibility between a relation Ψ ⊆ Σn × Σn and a set of rings
ID ⊆ Σn. The relation Ψ is compatible with the set of rings ID if for each
input vector in ∈ Dom(Ψ), there is some output vector out ∈ Ψ(in) such that
T(out) divides MB(ID, in). Recall that MB(ID, in) can be computed efficiently;
thus, compatibility can be checked efficiently. We prove:

Theorem 1 (Partially Eponymous Solvability Theorem). A circularly
symmetric relation Ψ is solvable on a set of rings ID if and only if Ψ is
compatible with ID.

Proof (sketch). Assume that Ψ is solvable on ID. By definition of solvability,
there is a distributed algorithmA such that for each configuration 〈id, in〉 ∈ ID×
Dom(Ψ), A solves the set of vectors Ψ(in) on 〈id, in〉. So, fix the configuration
〈ĩd, in〉 for an arbitrary vector in ∈ Dom(Ψ). If follows that the set of vectors
Ψ(in) is solvable on 〈ĩd, in〉. By Lemma 5, this implies that Ψ(in) is compatible
with 〈ĩd, in〉. By definition of compatibility between a set of output vectors and a
configuration, it follows that there is some output vector out ∈ Ψ(in) such that
T(out) divides MB(ĩd, in) = MB(ID, in) (by definition of Min-Period Minimum
Base). By definition of compatibility, the claim follows.

Assume now that Ψ is compatible with ID. By definition of compatibility,
for each input vector in ∈ Dom(Ψ), there is an output vector out ∈ Ψ(in)
such that T(out) divides MB(ID, in). Fix an arbitrary configuration 〈id, in〉 ∈
ID× Dom(Ψ). Recall that MB(ID, in) divides MB(id, in). It follows that there
is some output vector out ∈ Ψ(in) such that T(out) divides MB(id, in). Recall
the distributed algorithm AΨ . Clearly, 〈id, in〉 is an entry of V iewsj for each
processor j ∈ [n]. Since out ∈ Ψ(in) and T(out) divides MB(id, in), it follows
that (id, in,out) ∈ Choices; so Choices 6= ∅. By the algorithm AΨ (Step 5),
it follows that the algorithm does not solve {⊥n} on 〈id, in〉. Hence, Lemma 6



implies that AΨ solves Ψ(in) on 〈id, in〉. Since the configuration 〈id, in〉 ∈ ID×
Dom(Ψ) was chosen arbitrarily, it follows that Ψ is solvable on ID. ut

Since compatibility is efficiently checkable, Theorem 1 provides an efficient
characterization of solvability for the partially eponymous ring. We now prove:

Theorem 2 (Partially Eponymous Computability Theorem). Algo-
rithm AΨ computes the circularly symmetric relation Ψ on a set of rings ID.

Proof (sketch). Fix an arbitrary configuration 〈id, in〉 ∈ ID × Dom(Ψ). We
will prove that AΨ computes Ψ(in) on 〈id, in〉. We proceed by case analysis:
Assume first that Ψ(in) is solvable on 〈id, in〉. By Lemma 5 it follows that
Ψ(in) is compatible with 〈id, in〉. By definition of compatibility of a set of out-
put vectors with a configuration, this implies that there is some output vector
out ∈ Ψ(in) such that T(out) divides MB(id, in). From the distributed algo-
rithm AΨ , 〈id, in〉 is an entry of V iewsj for each processor j ∈ [n]. Since, out ∈
Ψ(in) and T(out) divides MB(id, in), it follows that (id, in,out) ∈ Choices; so
Choices 6= ∅. By the algorithm AΨ (Step 5), it follows that AΨ does not solve
{⊥n} on 〈id, in〉. Hence, Lemma 6 implies that AΨ solves Ψ(in) on 〈id, in〉, as
needed. Assume now that Ψ(in) is not solvable on 〈id, in〉. This implies that AΨ
does not solve Ψ(in) on 〈id, in〉. By Lemma 6, AΨ solves {⊥n} on 〈id, in〉. ut

Applications. For uniperiodic relations, Theorem 1 immediately implies that
every circularly symmetric, uniperiodic relation is solvable on any set if rings
ID. As a natural application of Theorem 1 on aperiodic relations, we prove:

Theorem 3 (Solvability of Aperiodic Relations). A total, circularly
symmetric, aperiodic relation Ψ is solvable on a set of rings ID if and only
if ID is aperiodic.

Actually, Theorem 3 applies more generally to a non-total, circularly symmetric,
aperiodic relation Ψ , as long as there is at least one constant vector in Dom(Ψ).
Many relations from the literature assume no inputs, so that their domain con-
sists of a single, constant input vector; Theorem 3 applies to all such relations.
Finally, note that Theorem 3 can be further generalized to prove that a circularly
symmetric, k-periodic relation Ψ , with at least one constant vector in Dom(Ψ),
is solvable on a set of rings ID if and only if ID is l-periodic, and k divides l.

5 Message Complexity

Multiple Leader Election as a Tool. We present an asynchronous distributed
algorithm AMLE(k) with advice k. Here, k is an integer that is available to each
processor (e.g., it is “hard-wired” into its local algorithm much in the same way
the ring size is in a non-uniform distributed algorithm). k will act as a parameter
to AMLE(k): AMLE(k) will satisfy a particular correctness property for certain
specific advices k; furthermore, the message complexity of AMLE(k) will depend



on k. The algorithm AMLE(k) is similar in spirit to the well-known (neighbor-
hood doubling) asynchronous distributed algorithm of Hirschberg and Sinclair
[9] that computes Leader Election on the eponymous ring R. (Recall that the
algorithm of Hirschberg and Sinclair uses O(|R| · lg |R|) messages.) So, each pro-
cessor explores neighborhoods around it whose size doubles in each phase; in
phase r, the processor collects identities of other processors in the neighborhood
that are 2r to the left (counter-clockwise) of it, or 2r+1 − 1 to the right (clock-
wise) of it. It then uses these identities to locally compute the prefixes of length
2r of the views of all processors that are 2r to the left or to the right of it.
Then, the processor compares the prefix of length 2r of its own view to those
prefixes it has computed; it survives the phase (so that it can proceed to the
next phase) if and only if its own prefix is the lexicographically least among all
2r+1 prefixes of the views of its neighbors that it has computed. Note that by
Step 21, r ≤ dlg ke − 1; thus, k determines the size of the largest neighborhood
that each processor will explore before terminating. Also, note that the major
difference between our algorithm for the partially eponymous ring and the clas-
sical algorithm of Hirschberg and Sinclair to compute Leader Election on the
eponymous ring is that our algorithm awards processors to proceed to the next
phase on the basis of the computed prefixes of processors’ views (which change
across phases), as opposed to processors’ identities (that remain constant across
phases). Note that the lexicographic ordering provides the property that views
and their corresponding prefixes are consistently ordered. Hence, the compari-
son of prefixes in Step 20 is essentially a comparison of views (hence, an efficient
one since it avoids the full construction of views). This is an essential feature
of our algorithm, and its achieved message efficiency is due to this feature. The
distributed algorithm AMLE(k) appears in pseudocode in Figure 2. We proceed
to prove certain message complexity and correctness properties of AMLE(k).

Using an analysis similar to the analysis of the message complexity for the
algorithm of Hirschberg and Sinclair [9], we prove an upper bound on the message
complexity of the distributed algorithm AMLE(k). Since k determines the size
of the largest neighborhood that each processor will explore before terminating,
the message complexity of the distributed algorithm AMLE(k) increases with k.

Proposition 1. Algorithm AMLE(k) uses O(|R| · lg k) messages on the ring R.

We continue with a correctness property of the algorithm AMLE(k) for spe-
cific advices k. For any k that divides n consider the function Φk : Σn → Z+

such that Φk(in) = 2n/k for each input vector in ∈ Σn. We continue to prove:

Proposition 2. Algorithm AMLE(k) with advice k, 1 ≤ k ≤ MB(id, in) solves
the set of output vectors Φk-LE(in) on the configuration 〈id, in〉.

Intuitively, we wish to elect as few leaders as possible, since each leader will
be subsequently asked to undertake an additional (message intensive) distributed
computation. Proposition 2 establishes that the larger the advice k is, the less
leaders are elected; on the other hand, k cannot be chosen to be arbitrarily large.



AMLE(k): code for processor j with identity idj and input inj

Initially, labelj = segmentj = left segmentj = right segmentj = λ.

1: Upon receiving message 〈wake〉 do
2: Send message 〈probe, 0, 1〉 to left.

3: Upon receiving message 〈probe, r, d〉 from right do
4: If d < 2r then send message 〈probe, r, d + 1〉 to left.
5: If d = 2r then send message 〈reply, 〈(idj , inj)〉, r, 1〉 to right.

6: Upon receiving message 〈reply, s, r, d〉 from left do
7: If d < 2r then send message 〈reply, s � 〈(idj , inj)〉, r, d + 1〉 to right.
8: If d = 2r then do
9: left segmentj := s.

10: Send message 〈probe, r, 1〉 to right.

11: Upon receiving message 〈probe, r, d〉 from left do
12: If d < 2r+1 − 1 then send message 〈probe, r, d + 1〉 to right.
13: If d = 2r+1 − 1 then send message 〈reply, 〈(idj , inj)〉, r, 1〉 to left.

14: Upon receiving message 〈reply, s, r, d〉 from right do
15: If d < 2r+1 − 1 then send message 〈reply, 〈(idj , inj)〉 � s, r, d + 1〉 to left.
16: If d = 2r+1 − 1 then do
17: right segmentj := s.
18: segmentj := left segmentj � 〈(idj , inj)〉 � right segmentj .
19: labelj := P2r (σ2r (segmentj)).
20: If labelj ≺ P2r (σi(segmentj)) and labelj � P2r (σ2r+i+1(segmentj)),

for all i ∈ [2r] then do
21: If 2r+1 ≥ k then terminate as a leader.
22: Else send message 〈probe, r + 1, 1〉 to left.
23: Else terminate as a non-leader.

Figure 2. Algorithm AMLE(k): code for processor j.

A Universal Upper Bound on Message Complexity. Recall that we have
established correctness guarantees for the algorithm AMLE(k) only when k ≤
MB(id, in) on configuration 〈id, in〉. Recall also that we wish to maximize k, so as
to minimize the number of elected leaders. Furthermore, if algorithmAMLE(k) is
to be used for electing a number of leaders, the value of k must be “known” to the
processors. This raises the natural question of what such an appropriate value for
k is. In what follows, we choose k = LMB(ID, Ψ), the least upper bound imposed
on k by Proposition 2, across all configurations 〈id, in〉. We next ask how this
advice k relates to the message complexity of computing an arbitrary (circularly
symmetric) relation Ψ ⊆ Σn ×Σn on an arbitrary set of rings ID ⊆ Σn; recall
that Ψ is computable on ID with O(n2) messages (Theorem 2). We prove:

Theorem 4 (Partially Eponymous Message Complexity Theorem).
The circularly symmetric relation Ψ is computable on a set of rings ID with
O

(
(n2/LMB(ID, Ψ)) + n · lg LMB(ID, Ψ)

)
messages.



Proof (sketch). Here is a distributed algorithm A (which is an instantiation
of AΨ) to compute Ψ on ID with that many messages. Consider an arbitrary
configuration 〈id, in〉 ∈ ID×Σn. A proceeds as follows:

• On top, the distributed algorithm AΨ (see Figure 1) is invoked to compute Ψ
on ID. Step 2 is implemented by the following steps:
– First, the processors run the distributed algorithm AMLE(k) with advice

k = LMB(ID, Ψ) ≤ MB(id, in) using O (n · lg LMB(ID, Ψ)) messages (by
Proposition 1); by Proposition 2, there are now elected at least 1 and at
most O (n/LMB(ID, Ψ)) leaders.

– All elected leaders run the algorithm ACV (see Section 4) to collect their
views, for a total of O ((n/LMB(ID, Ψ)) · n) = O

(
n2/LMB(ID, Ψ)

)
mes-

sages. Then, the leaders communicate the collected views to all processors
for a total of O ((n/LMB(ID, Ψ)) · n) = O

(
n2/LMB(ID, Ψ)

)
messages. Now,

each processor locally derives its view, which it returns to top.

So, the message complexity of A is as claimed. ut

Applications. For which sets of rings ID is the upper bound on message com-
plexity from Theorem 4 low? We identify two such classes of sets.

Say that a set of rings ID ⊆ Σn is universal if Leader Election is solvable on
ID. Clearly, every (circularly symmetric) relation is solvable on a universal set
of rings. Recall that Leader Election is both circularly symmetric and aperiodic.
Hence, Theorem 3 implies that ID is aperiodic. Thus, for each 〈id, in〉 ∈ ID ×
Dom(LE), MB(id, in) = n. Hence, LMB(ID, LE) = min{MB(id, in) | 〈id, in〉 ∈
ID× Dom(LE)} = n. Theorem 4 now immediately implies:

Theorem 5 (Message Complexity on Universal Set of Rings). A cir-
cularly symmetric relation is computable on a universal set of rings ID with
O(n · lg n) messages.

Consider an arbitrary circularly symmetric relation Ψ . Consider a ring id ∈
Σn where each identity has multiplicity at most lg n; call it a logarithmic ring.
The corresponding set of rings ID will be called a logarithmic set of rings.
Lemma 2 (condition (1)) implies that T(ĩd) = n/GCD(M(ID)) ≥ n/ lg n. So,
for each input vector in ∈ Dom(Ψ), MB(ĩd, in) = LCM(T(ĩd),T(in)) ≥ n/ lg n.
This implies that LMB(ID, Ψ) ≥ n/ lg n. Since also LMB(ID, Ψ) ≤ n, Theorem 4
immediately implies:

Theorem 6 (Message Complexity on Logarithmic Set of Rings). A
circularly symmetric relation is computable on a logarithmic set of rings ID
with O(n · lg n) messages.

We can obtain additional upper bounds on the message complexity of computing
a circularly symmetric relation by further generalizing Theorem 6. Towards this
end, we generalize the definition of a logarithmic set of rings to a set of rings with
an upper bound m on the multiplicity of each identity in any ring from the set.
The corresponding upper bound on message complexity is O(n ·max{m, lg n}).



6 Epilogue

We presented a comprehensive study of solvability, computability and message
complexity for the partially eponymous ring. Several interesting questions re-
main. For example, is there a matching lower bound to the universal upper
bound on message complexity from Theorem 4? Can we characterize the class of
sets of rings of size n for which this (universal) upper bound becomes O(n · lg n)?
Finally, a challenging task is to extend our theory for the partially eponymous
ring to other network architectures (such as hypercubes and tori).
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