
Max-Min Fair Flow Control Sensitive to Priorities∗

Panagiota Fatourou† Marios Mavronicolas‡ Paul Spirakis§

(June 22, 2004)

∗A preliminary version of this work appears in the Proceedings of the 2nd International Conference on Prin-

ciples of Distributed Systems (OPODIS’98), pp. 45–59, Amiens, France, December 1998. This work has been

partially supported by the ESPRIT Program of the European Union under the Long Term Research Project

ALCOM-IT (contract number 20244), by the IST Program of the European Union under Projects ALCOM-

FT (contract number IST-1999-14186) and FLAGS (contract number IST-2001-33116), by funds from the Pro-

gram E.Π.E.A.E.K. II of the Greek Ministry of Education, by research funds at University of Cyprus, and by

AT&T/NCR research funds.
†Department of Computer Science, University of Ioannina, Ioannina GR-45110, Greece. Part of the work of

this author was performed while at Department of Computer Engineering and Informatics, University of Patras,

Greece & Computer Technology Institute, Greece, while at Max-Planck Institut für Informatik, Germany, and

while visiting the Department of Computer Science, University of Cyprus, Cyprus. Email: faturu@cs.uoi.gr
‡Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus. Part of the work of this

author was performed while at Department of Computer Science and Engineering, University of Connecticut,

Storrs, and while at AT&T Labs – Research, NJ, as a visitor to the Special Year on Networks, DIMACS Center

for Discrete Mathematics and Theoretical Computer Science, NJ. Email: mavronic@ucy.ac.cy
§Department of Computer Engineering and Informatics, University of Patras, Patras GR-26500, Greece, &

Research and Academic Computer Technology Institute, Patras GR-26110, Greece. Email: spirakis@cti.gr

1

Abstract

Flow control is the dominant technique currently used in communication networks for
preventing excess traffic from flooding the network, and for handling congestion. In rate-
based flow control, transmission rates of sessions are adjusted in an end-to-end manner
through a sequence of operations. In this work, we present a theory of max-min fair, rate-
based flow control sensitive to priorities of different sessions, as a significant extension of the
classical theory of max-min fair, rate-based flow control to networks supporting applications
with diverse requirements on network resources.

Each individual session bears a priority, abstracting the session’s priority to bandwidth
access, and a priority function, which maps the session’s priority to a transmission rate. Pri-
ority functions enable the specification of requirements on bandwidth access by distributed
applications, and the formal handling of such requirements. We present priority max-min
fairness, as a novel and well motivated fairness condition which requires that assigned rates
correspond, through the priority functions, to priorities comprising a max-min vector. We
also introduce priority bottleneck algorithms gradually update a session’s rate until when its
priority is restricted on a priority bottleneck edge of the network. We establish a collection
of interesting combinatorial properties of priority bottleneck algorithms. Most significantly,
we show that they can only converge to priority max-min fairness.

As an application of our general theory, we embed priority bottleneck algorithms in the
more realistic optimistic framework for rate-based flow control. The optimistic framework
allows for both decreases and increases of session rates. We exploit these additionally
provided semantics to prove further combinatorial properties for the termination of priority
bottleneck algorithms in the optimistic framework. We use these properties to conclude the
first optimistic algorithms for efficient, max-min fair, rate-based flow control sensitive to
priorities.

2

1 Introduction

Current communication protocols, ranging from ATM with Available Bit Rate (ABR) traffic to
TCP/IP, have been mostly employing a simple, best-effort service policy in order to allow for
large amounts of high-speed traffic. Nevertheless, the emerging Integrated Services Network will
be supporting applications with diverse performance objectives (e.g., remote video, multimedia
conferencing and data visualization); these often require the network to go beyond the best-
effort policy and allow data traffic stream to individually determine its requirements on critical
network resources such as bandwidth. Thus, there has recently been an increasing tendency to
design new communication protocols and service models for the better utilization of resources.
So, the Quality-of-Service (QoS) metrics need to be appropriately adapted, while networks must
be enhanced in order to incorporate priorities into servicing diverse traffic classes.

Priorities can offer a basis for providing customized service to users with diverse require-
ments (see, e.g., [2, 7, 8]). Consider, for example, applications with a wide spectrum of delay
constraints, ranging from interactive conferencing with a need for small network delays, to play-
back of stored video, which can more conveniently tolerate larger network delays. Given this
diversity, it is only natural to prioritize differently applications with diverging requirements. In
addition, the need for assigning priorities to applications often arises in the contexts of network
management policies and pricing (cf. [17]).

A lot of research work has been put on incorporating priority mechanisms into both ATM
(see, e.g., [8, 23, 24]) and the Internet (see, e.g., [7, 25]). For example, a resource reservation
protocol called RSVP [26] has allowed distributed applications to signal to the network their
bandwidth preferences, and the protocol reserves resources via the network switches (see [26] for
an expanded discussion). RSVP has not relied on any underlying formal model of fairly servicing
diverging user requirements; instead, it has employed an intuitive scheme, called weighted fair
queuing, that reserves network resources on the basis of priorities called weights.

While priorities model resource requirements for distributed applications, fairness aims at
prohibiting highly prioritized applications from reserving excessive resource amounts on the
account of low priority applications. So, a fundamental challenge of modern networking is the
incorporation of both priorities and fairness into a formal, integrated services model. In this
work, we take a step in this direction by assembling a theory of max-min fair, rate-based flow
control sensitive to priorities, as a significant extension of the classical theory of max-min fair,
rate-based flow control (see, e.g., [3, 13, 14, 15]) to the setting with priorities.

In this work, we consider a communication network with a collection of virtual circuits, called
sessions, running on it. Associated with each session we envision a non-negative real number

3

called priority. Priority provides a working abstraction for modeling the session’s merit to
network bandwidth; this merit is useful for determining the rate subsumed by the session on
transmission. More importantly, we assume a priority function for each session, mapping its
priority to a rate. Priority functions may be postulated on the basis of network management
policies, traffic levels, or pricing considerations (cf. [17]). In our setting, priority functions
provide a vehicle for expressing the desired level of rate service for each particular application,
while the values of priority functions, on their abstract arguments that we call priorities, specify
the actual level of rate service supplied to them. We assume common mathematical properties,
such as increasing monotonicity, continuity and convexity, on the priority functions.

The most widely accepted fairness condition is max-min fairness [1, 3, 9, 10, 11, 12, 13, 14];
roughly speaking, it requires that it be impossible to infinitesimally increase the rate of any
application without decreasing the rate of some other with a smaller rate. However, this
condition is inadequate in case different applications have varying priorities. Our first major
contribution is the formulation of a crisp fairness condition that takes priorities into account
in an explicit and formal way. We define priority max-min fairness by requiring that it be
impossible to infinitesimally increase the rate of any application without decreasing the rate of
some other with smaller priority.

According to priority max-min fairness, the significant factor that determines whether or
not the rate of an application may further increase is its priority (rather than its rate itself).
So, priority max-min fairness allows for a quantifiable discrimination against different sessions
on the basis of their priorities; thus, an intensive and demanding distributed application may
invest in purchasing for itself a priority function taking large values, which, in turn, will secure
sufficient bandwidth for its transmission in a fair manner (in view of its investment). Thus,
priority max-min fairness explicitly allows for arbitrarily prioritized allocation of bandwidth.

We use priority max-min fairness to define the new class of priority bottleneck algorithms as
a stable generalization of the classical bottleneck algorithms [13, 14, 15]; we prove a collection
of interesting combinatorial properties of these new algorithms that generalize corresponding
properties of bottleneck algorithms in an elegant way. Most significantly, we establish the
priority analog of the relation between bottleneck algorithms and max-min fairness: we prove
that priority bottleneck algorithms may only converge to priority max-min fairness, much in
the same way bottleneck algorithms converge to max-min fairness (see [3, Section 6.5]).

We finally apply our generalized theory to the more realistic, optimistic framework for rate-
based flow control that was proposed by Afek et al. [1] and further examined by Fatourou et
al. [9, 10]. In contrast to the so called conservative algorithms where rates never decrease during
a sequence of adjustments, optimistic algorithms allow rates to intermediately go above their

4

final values. This assumption is more realistic since it provides for both increases and decreases
to rates in order to accommodate sessions entering in a dynamic manner.

We enhance the optimistic framework with a priority update operation, which is a simple
abstraction of the adjustment, on the basis of priorities and through the priority functions, of
the rates of individual sessions. The complexity of an algorithm converging to priority max-min
fairness, called here convergence complexity [1, 9, 10], is the number of priority update operations
executed in the worst case. We exploit the additional semantics of priority update operations
in order to establish further combinatorial properties of priority bottleneck algorithms within
the optimistic framework.

Our final result is the derivation of, and analysis of convergence complexity for, specific
priority bottleneck algorithms in the optimistic framework. This result provides an elegant
generalization of corresponding recent results of Fatourou et al. [9] for the much simpler case
of bottleneck algorithms to the setting with priorities.

The rest of this paper is organized as follows. Section 2 surveys and contrasts related work.
Our formal definitions are laid out in Section 3. Section 4 introduces priority max-min fairness,
while Section 5 defines and studies priority bottleneck algorithms; their termination properties
are shown in Section 6. Optimistic, priority bottleneck algorithms are studied in Section 7. We
conclude, in Section 8, with a discussion of our results.

2 Related Work and Comparison

Similar versions of max-min fairness were proposed independently by Hayden [13], Jaffe [14, 15],
and Luss and Smith [18]. The classical theory of fair, rate-based flow control, also referred to as
bottleneck flow control [14], was built around max-min fairness (see, e.g., [3, 12, 13, 14, 15]). All
of that theory adopted the conservative approach. The optimistic framework was introduced
by Afek et al. [1] and further studied by Fatourou et al. [9, 10]. None of these previous works
deals with priorities (with [14] being a single exception; see below).

Asynchronous distributed algorithms that converge to max-min fair rates have been pre-
sented in [5, 6, 16, 20] (this list is not exhaustive); all of them are conservative. Optimistic
algorithms have been pointed out by Afek et al. [1] and by Fatourou et al. [10]. Still, priority
issues were left untouched by those works.

Work by Jaffe [14, Section X] and by Gafni and Bertsekas [11] (motivated by a voice coder
scheme) are the only works known to us, published before the conference publication of this
paper, that embed priority issues into max-min fair, rate-based flow control.

5

Jaffe introduces the notion of throughput priority [14, Section X] to capture preferential
treatment of some sessions (users) in a heterogeneous network. Roughly speaking, the through-
put priority of a session is a positive real number that multiplies its rate to yield its desired
throughput. Jaffe [14, Section X] uses these concepts to provide an (equivalent) reformulation
of max-min fairness. Jaffe’s formulation is comparable to the special case in our general frame-
work where rates are linearly related to priorities. This special case is too restrictive to either
model bandwidth requirements in today’s networks, or to allow flexible and fair pricing mech-
anisms [17]. For example, elastic applications, which are rather tolerant of end-to-end delays
and throughput, can be accurately modeled by (non-linear) utility functions that are convex
in available bandwidth (cf. [22])∗. Also, real-time applications obeying real-time constraints
are best described by step utility functions. Since we allow priority functions to be arbitrary
functions, our framework provides larger flexibility.

Jaffe shows that a simple modification of some specific, conservative and iterative algorithm
that he provides for the case of a homogeneous set of sessions [14, Section V] still satisfies max-
min fairness. In contrast, we study and prove results for any priority bottleneck algorithm,
whether conservative or optimistic. In addition, we show results for any optimistic, priority
bottleneck algorithm, which we use to derive some specific such algorithms.

In a different avenue, Gafni and Bertsekas [11] formulate elegant, combinatorial conditions,
involving abstract functions of both rates and link capacities, which are intended to model the
effect of preferences among different sessions. Gafni and Bertsekas provide a single iterative
algorithm, which is conservative and works in synchronous rounds, for calculating rates that
satisfy these conditions. In contrast, we explicitly introduce priorities as functions of rates (and
vice versa) in a more direct and intuitive way, we formulate a fairness condition suitable for
any general setting with priorities, and we develop a coherent theory around this condition. In
addition, a major part of our work concerns the entire class of priority bottleneck algorithms,
and their further study and instantiation in the optimistic framework [1, 9, 10].

A number of papers (e.g., [4, 19, 21]) addressing possible generalizations of max-min fairness
in order to accomodate issues of priority and utility were independently published at least
one year after the original conference publication of our work in 1998. Cao and Zegura [4]
discuss utility max-min, a fairness condition similar to priority max-min fairness. Utility max-
min fairness was further discussed in [19, 21]. In particular, the necessity of the convexity
assumption in the context of utility max-min is discussed in [21].

∗The convexity assumption has been frequently used in modeling performance or cost functions in the network-

ing literature, especially in network optimization problems for which a unique solution is saught; see, e.g., [11, 22]

for studies adopting the convexity assumption in the contexts of routing and flow control.

6

S
1

S
2

S
3

S
1

S
2

S
3

S
44

S

e

e

1

2

100

126

Figure 1: A simple network

3 Model

Our definitions closely follow, adapt and generalize corresponding ones in [9, Section 3].

3.1 Network, Sessions and Rate Vectors

A communication network is a directed graph G = (V,E). Each vertex v ∈ V represents a
switching node; each edge e ∈ E represents a point-to-point link in the network. Associated
with each edge e ∈ E is a finite capacity cap(e) > 0.

The network supports a fixed set of sessions with virtual circuit routing. Formally, a session
is a sequence of edges, which is a simple path in G between a source and a destination. We
consider a set S = {S1, . . . , Sn} of n sessions laid out on G, where n ≥ 1. For each edge e ∈ E,
denote sessions(e) the set of sessions passing through e; for any set of sessions S ′ ⊆ S, denote
S ′ | e = S ′∩ sessions(e). We will often abuse notation by identifying a session Si with its index
i; we will sometimes treat a session Si as the set of its links, so that e ∈ Si for any edge e

traversed by Si.

Example 3.1 Figure 1 depicts a simple network with sessions S1, S2, S3 and S4, and edges, e1

and e2 with cap(e1) = 126 and cap(e2) = 100, respectively. Sessions S1 and S2 traverse only
edge e1; session S4 traverses only edge e2, while session S3 traverses both edges. �

Allocated to each session S is a rate r(S) ≥ 0. The vector r = 〈r(S1), r(S2), . . . , r(Sn)〉
is the rate vector. The capacity constraint requires that the sum of rates of sessions sharing
an edge does not exceed the edge capacity. A rate vector is feasible if it satisfies the capacity
constraint. Say that an edge e is saturated if the sum of rates of sessions sharing the edge equals
the edge capacity; we will also say that r saturates e in this case.

7

The network is abstracted as a state machine. Each state Q of the network consists of two
components: a feasible rate vector r ∈ �n and a set A ⊆ S, which is a set of active sessions
in state Q; that is, Q = 〈r,A〉. We will sometimes use Q as an index and write rQ and AQ

in order to declare the state of reference. Intuitively, an active session is one that has not yet
reached its final rate. Denote DQ = S \ AQ, the set of done (or terminated) sessions in state
Q whose rates have been finalized and will not change any further. The status of a session in
state Q is either active or done. In the initial state Qin, all sessions are active and have zero
rates. A state in which all sessions are done is final.

The set of active edges of the network in state Q, denoted AEQ, contains all edges of the
network traversed by at least one active session in state Q. For any edge e ∈ E and state Q,
the allotted capacity of e in state Q [1, Section 2.1], denoted alQ(e), is the total rate already
allocated to done sessions passing through the edge. Clearly, the capacity constraint implies
that

∑
i∈AQ|e rQ(Si) ≤ cap(e) − alQ(e).

3.2 Operations

An operation defines a procedure to compute new rates for a set of sessions on the basis of
their old rates. Formally, an operation is a function operation taking as input a session i and
a state Q and giving as output rates for i and for all sessions j such that Si ∩ Sj
= ∅ so that
the resulting rate vector r′ = operation(i,Q) is feasible†. Say that operation is conservative
if no rate decreases in the resulting rate vector; else operation is optimistic.

3.3 Schedulers and Terminators

A scheduler [1, 9] is a function Sched that maps a pair 〈G,S〉 of a network G and a set of sessions
S laid out on G, a state Q, and a state index l ≥ 1‡ to a session index i = Sched(〈G,S〉, Q, l).
Intuitively, Sched determines the order of applying operations on sessions.

A terminator [1, 9] is a function Term that maps a pair 〈G,S〉 of a network G and a set of
sessions S laid out on G, and a state Q to a set of sessions Term(〈G,S〉, Q) ⊆ AQ. Intuitively,
Term decides the sessions among those still active to be terminated. For sake of simplicity, we

†A complete specification of how the required information (for each specific operation) is gathered and dis-

seminated to interfering sessions is usually part of the design and implementation of a distributed algorithm that

entails successive applications of the operation. Such specification is beyond the scope of the present article.
‡We could have defined the state index as a component of state; in that case, we would also have to specify

how state transitions modify the state index. For clarity of presentation, we chose not to do so.

8

shall sometimes omit the argument 〈G,S〉 of Term when such is clear from context. Whenever
S ∈ Term(Q), we will say that S becomes done in state Q.

An algorithm Alg is a pair Alg = 〈Sched,Term〉. The classification of operations into con-
servative and optimistic leads to a corresponding classification of algorithms.

3.4 Executions

We model a computation manipulating the rates and statuses of sessions laid out on the
network as a sequence of operations, each of which changes the rates of a scheduled session
and of other sessions that interfere with it. Formally, an execution of Alg on network G

with session set S is a (possibly infinite) sequence of alternating states and session indices
α = Q0, i1, Q1, . . . , il, Ql, . . . , satisfying the following conditions:

(1) Q0 = Qin and AQ1 = S;

(2) for each integer l ≥ 1, il = Sched(〈G,S〉, Ql−1, l − 1);

(3) for each integer l ≥ 1, if il ∈ DQl
, then rQl

= rQl−1
and AQl+1

= AQl
, else

(a) rQl
:= operation(il, Ql−1);

(b) AQl+1
= AQl

\ Term(〈G,S〉, Ql).

Condition (1) asserts that the starting state in execution α is the initial state Qin, and that no
session termination takes place in the initial state. Condition (2) guarantees that the session
indices in α are determined according to Sched. Condition (3) specifies how the rates and
statuses of sessions change from a state to the next. If the scheduled session is done, then
nothing happens; otherwise, the new rates are determined by operation (condition (3/a)),
while condition (3/b) provides for any possible termination of sessions in the subsequent state
according to Term. For any integer l ≥ 1, we will say that session il is scheduled in front of
state Ql in execution α.

Two immediate consequences of the definitions of allotted capacity and execution were
observed in [9].

Claim 3.1 For any integer l ≥ 1 and edge e ∈ E,

alQl
(e) = alQl−1

(e) +
∑

i∈(AQl−1
\AQl

)|e
rQl−1

(Si) .

9

Claim 3.2 For any integers l0 and l, 0 ≤ l0 < l, and for any edge e ∈ E,

∑
i∈(AQl0

\AQl
)|e

rQl0
(Si) = alQl

(e) − alQl0
(e) .

Call each state Ql, l ≥ 0, a reachable state for execution α. For any reachable states Ql and
Ql′ in execution α, write Ql

α−→ Ql′ if Ql precedes Ql′ in execution α. For any reachable state
Q in an infinite execution α, define

−→
Q to be the state immediately following Q in α. For any

reachable state Q other than the initial state Q0 in an infinite execution α, define
←−
Q to be the

state immediately preceding Q in α.

3.5 Convergence Complexity

Intuitively, an operation counts as executed in execution α each time it holds, for any integer
l ≥ 1, that rQl

= rQl−1
;§ that is, an operation is executed each time changes in rates occur.

We are naturally interested in the shortest possible prefix (if any) of an execution that ends
with a final state. Thus, we define the number of operations in execution α to be the number
of integers l ≥ 1 such that both rQl

= rQl−1
and none of Q0, . . . , Ql−1 is a final state. The

convergence complexity of Alg on network G with session set S is the number of operations in
the execution of Alg on G with S. The convergence complexity of Alg is the maximum, over all
pairs of a network G and a session set S (with n sessions) laid out on G, of the convergence
complexity of Alg on network G with session set S.

4 Priority Max-Min Fairness and Priority Share

In this section, we introduce priorities and priority functions; in turn, we use them to define
and study priority max-min fairness and priority share.

4.1 Priorities and Priority Functions

Associated with each session Si is a real number P(Si), called priority; intuitively, P(Si) rep-
resents the priority to bandwidth access offered to session Si. For each session Si, the priority
function Fi : �+ → �+ is a continuous, strictly increasing and convex function that maps the
priority P(Si) to a rate r(Si); roughly speaking, the priority function allows the determination

§By definition of execution, this implies that Sil is active in state Ql−1.

10

of a session’s rate from its priority¶. Since Fi is strictly increasing, it is invertible; denote
F−1

i its inverse function, which is also strictly increasing. Clearly, the rate rQ(Si) of session Si

in state Q uniquely defines the priority PQ(Si) of the session in state Q by way of its inverse
priority function. Moreover, a rate adjustment implies a corresponding priority adjustment and
vice versa, by way of the priority function and its inverse. Thus, an execution may equivalently
be viewed as manipulating the priorities (and statuses) of sessions laid out on the network‖.

Clearly, rates are “real” network entities; in contrast, however, priorities are only abstract
parameters that are invoked in our framework and serve only as vehicles for the determination of
rates via the priority functions. Thus, prioritized rate allocation materializes by appropriately
selecting the priority functions and using them to determine the rates.

4.2 Priority Max-Min Fair Rate Vector and Adequacy

Loosely speaking, a priority max-min fair rate vector assigns to each session the maximum
possible rate, while respecting at the same time sessions with lower priorities. Formally, a
priority max-min fair rate vector is a feasible rate vector r such that for each session Si, r(Si)
cannot be increased, while still maintaining feasibility, without decreasing r(Sj) for some session
Sj such that P(Sj) ≤ P(Si).

Priority max-min fairness is easily seen to be a generalization of (classical) max-min fair-
ness [13, 14, 15, 18]. Indeed, a max-min fair rate vector [13, 14, 15, 18] is a feasible rate vector
r such that for each session Si, r(Si) cannot be increased, while still maintaining feasibility,
without decreasing r(Sj) for some session Sj such that r(Sj) ≤ r(Si). Hence, a max-min fair
rate vector can be cast in an intuitive way as a priority max-min fair rate vector for a set S of
sessions such that the rate and priority of each session coincide.

Example 4.1 Consider the network depicted in Figure 2. Assume that r(S1) = F1(P(S1)) =
P(S1), r(S2) = F2(P(S2)) = P(S2)/2 and r(S3) = F3(P(S3)) = 3P(S3).∗∗ Consider the rate

¶Increasing monotonocity expresses but the natural requirement that session rates be proportional to priorities.

Continuity provides some additional convenience when numerically handling priority functions in particular

applications; it is also used as a technical assumption in one of the proofs, as increasing monotonicity and

convexity also are.
‖We point out that we could have let F−1

i play the role of the priority function instead of Fi. Although it

could have been considered more natural to define priorities as functions of rates rather than vice versa, we chose

the opposite because it better fits in our later analysis where we need to calculate the rates from the priorities.

Since our priority functions are shown to be invertible, the two formulations are clearly equivalent and our results

carry through in both.
∗∗We clarify that it is only for the sake of simplicity and ease in calculations that priority functions have been

chosen to be linear in this and later examples.

11

S 1

S 2

S 3

S 1

S 2

S 3

e

126

Figure 2: A network consisting of a single edge

vector 〈28, 14, 84〉 saturating the edge e. Thus, no rate can be increased without decreasing the
rate of some other session; this implies a corresponding decrease to the priority of the session
whose rate is decreased. Simple calculations reveal that all priorities are equal to 28. Hence,
any such increase must necessarily decrease an equal priority. It follows that 〈28, 14, 84〉 is a
priority max-min fair rate vector. We encourage the reader to verify that the classical max-min
fair rate vector is the different vector 〈42, 42, 42〉. This simple example confirms that the more
rapidly increasing the priority function of a session is, the larger its rate will be. �

Assume now that for any session Si, Fi(0) ≥ 0. Since Fi is a strictly increasing function,
this implies that r(Si) = Fi(P(Si)) ≥ Fi(0) ≥ 0 in any state; that is, we allow each session Si

to specify a non-negative lower bound Fi(0), called rate demand, on its rate. So, the value at
zero of each particular priority function determines the lowest possible rate the corresponding
session may attain. An adequate edge is one whose capacity suffices to accomodate rate demands
of all sessions traversing it. The adequacy assumption assures that every edge is adequate.

4.3 Priority Share

Take any arbitrary edge e active in state Q. By the capacity constraint and the definition of
priority functions, it follows that

∑
i∈AQ|e Fi(F−1

i (rQ(Si))) ≤ cap(e) − alQ(e). Insisting that
for each i ∈ AQ | e, F−1

i (rQ(Si)) = p for some real number p ≥ 0, and also that the edge e

is saturated in state Q, yields the priority max-min fairness equation for edge e in state Q,
namely that

∑
i∈AQ|e

Fi(p) = cap(e) − alQ(e) .

The priority max-min fairness equation for edge e in state Q is an equation in the variable
p. Define the priority share of edge e in state Q, denoted PSQ(e), to be a positive root of this
equation. Thus,

∑
i∈AQ|e Fi(PSQ(e)) = cap(e) − alQ(e).

12

Example 4.2 Consider again the simple network in Figure 2, and retain all assumptions on
priority functions for this network made in Example 4.1. Consider state Q0 where alQ0 = 0
and all three sessions are active. The priority max-min fairness equation for edge e in state Q0

is
∑

i∈AQ0
|e Fi(p) = cap(e) − alQ0(e), or p + p/2 + 3p = 126, which implies that p = 28. Thus,

by definition of priority share, PSQ0(e) = 28. �

The priority share generalizes the notion of the fair share FSQ(e) [1, Section 2.1] to the
setting with priorities. Indeed, the point of departure of both is the saturation equation for
edge e in state Q, namely that

∑
i∈AQ|e rQ(Si) = cap(e)−alQ(e). Insisting that for each session

i ∈ AQ | e, rQ(Si) = r, for some parameter r > 0, allows the saturation equation to admit
(trivially) the fair share FSQ(e) = cap(e)−alQ(e)

|AQ|e| as its unique root in this case. In a similar
manner, the priority share is a root of the saturation equation once this is expressed, via the
priority functions, in terms of some priority p that is common for all active sessions traversing
the edge. We establish that, in fact, the priority share exists uniquely as well.

Proposition 4.1 For any edge e and state Q, PSQ(e) exists uniquely.

Proof: Since each individual priority function Fi, i ∈ AQ | e, is continuous, increasing and
convex, the sum

∑
i∈AQ|e Fi(p) is also a continuous, increasing and convex function of p. The

value at p = 0 of this function is
∑

i∈AQ|e Fi(0). By convexity, this function increases to infinity.
By continuity and increasing monotonicity, it follows that this function attains any single value
no less than

∑
i∈AQ|e Fi(0) exactly once. In particular, the function

∑
i∈AQ|e Fi(p) attains the

value cap(e) − alQ(e) if and only if cap(e) − alQ(e) ≥ ∑
i∈AQ|e Fi(0). Hence, by definition of

priority share, it suffices to show that the last inequality holds.

If Q = Q0, then,
∑

i∈AQ|e Fi(0) =
∑

i∈sessions(e) Fi(0) and cap(e) − alQ(e) = cap(e), so that
the inequality to show is but the adequacy assumption. So, assume that Q = Ql for some l > 0.
Clearly,

cap(e) − alQl
(e)

= cap(e) − alQl−1(e) −
∑

i∈(AQl−1\AQl
)|e rQl−1(Si) (by Claim 3.1)

= cap(e) − alQl−1(e) −
(∑

i∈AQl−1 |e
rQl−1(Si) −

∑
i∈AQl

|e rQl−1(Si)
)

= cap(e) − alQl−1(e) −
∑

i∈AQl−1 |e
rQl−1(Si) +

∑
i∈AQl

|e Fi(PQl−1(Si))

≥ cap(e) − alQl−1(e) −
(
cap(e) − alQl−1(e)) +

∑
i∈AQl

|e Fi(PQl−1(Si)
)

(by the capacity constraint)

=
∑

i∈AQl
|e Fi(PQl−1(Si))

≥
∑

i∈AQl
|e Fi(0) ,

as needed.

13

We continue to establish further properties of the priority share; these properties refer to
an execution α = Q0, i1, Q1, . . . , il, Ql, . . . of any algorithm; we shall omit reference to α when
such is clear from context. The first property describes the evolution of priority shares in α.

Lemma 4.2 For any integer l ≥ 1, and for any edge e ∈ E active in state Ql,∑
i∈AQl

|e
Fi(PSQl

(e)) =
∑

i∈AQl−1
|e
Fi(PSQl−1

(e)) −
∑

i∈(AQl−1
\AQl

)|e
rQl−1

(Si) .

Proof: Clearly,∑
i∈AQl

|e
Fi(PSQl

(e))

= cap(e) − alQl
(e) (by definition of PSQl

(e))

= cap(e) − alQl−1(e) −
∑

i∈(AQl−1\AQl
)|e rQl−1(Si) (by Claim 3.1)

=
∑

i∈AQl−1 |e
Fi(PSQl−1(e)) −

∑
i∈(AQl−1\AQl

)|e rQl−1(Si) (by definition of PSQl−1(e)) ,

as needed.

We next prove that the saturation of an edge depends critically on how priorities and priority
shares of sessions traversing the edge compare to each other.

Lemma 4.3 For any integer l0 ≥ 0, assume that edge e is active in state Ql0 . Then, for each
integer l ≥ l0, the following hold:

(1) if for each i ∈ AQl0
| e, PQl

(Si) = PSQl0
(e), then e is saturated in Ql;

(2) if for each i ∈ AQl0
| e, PQl

(Si) < PSQl0
(e), then e is not saturated in Ql;

(3) there exists no index j ∈ AQl0
| e such that PQl

(Sj) > PSQl0
(e), while for each i ∈ AQl0

| e,
i
= j, PQl

(Si) ≥ PSQl0
(e).

Proof: We start with (1). Clearly,∑
i∈AQl

|e
rQl

(Si)

=
∑

i∈AQl0
|e rQl

(Si) −
∑

i∈(AQl0
\AQl

)|e rQl
(Si) (since AQl

| e ⊆ AQl0
| e)

=
∑

i∈AQl0
|e Fi(PQl

(Si)) −
∑

i∈(AQl0
\AQl

)|e rQl
(Si)

=
∑

i∈AQl0
|e Fi(PQl

(Si)) − (alQl
(e) − alQl0

(e)) (by Claim 3.2)

=
∑

i∈AQl0
|e Fi(PSQl0

(e)) − alQl
(e) + alQl0

(e) (since PQl
(Si) < PSQl0

(e))

= cap(e) − alQl0
(e) − alQl

(e) + alQl0
(e) (by definition of PSQl0

(e))

= cap(e) − alQl
(e) ,

14

as needed to establish that e is saturated in state Ql.

Condition (2) is proved in an almost identical way. (The only difference is that now the
assumption implies that

∑
i∈AQl0

|e Fi(PQl
(Si))−(alQl

(e)−alQl0
(e)) <

∑
i∈AQl0

|e Fi(PSQl0
(e))−

alQl
(e) + alQl0

(e).)

We finally prove (3). Assume, by way of contradiction, that there exists some session i0 ∈
AQl0

| e such that PQl
(Si0) > PSQl0

(e), while for each i ∈ AQl0
| e, i
= i0, PQl

(Si) ≥ PSQl0
(e).

Clearly,
∑

i∈AQl
|e

rQl
(Si)

=
∑

i∈AQl0
|e rQl

(Si) −
∑

i∈(AQl0
\AQl

)|e rQl
(Si) (since AQl

| e ⊆ AQl0
| e)

=
∑

i∈AQl0
|e Fi(PQl

(Si)) −
∑

i∈(AQl0
\AQl

)|e rQl
(Si)

=
∑

i∈AQl0
|e Fi(PQl

(Si)) − (alQl
(e) − alQl0

(e)) (by Claim 3.2)

= Fi0(PQl
(Si0)) +

∑
i∈AQl0

|e,i�=i0
Fi(PQl

(Si)) − alQl
(e) + alQl0

(e)

> Fi0 (PSQl0
(e)) +

∑
i∈AQl0

|e,i�=i0
Fi(PQl

(Si)) − alQl
(e) + alQl0

(e) (since PQl
(Si0) > PSQl0

(e))

≥ Fi0(PSQl0
(e)) +

∑
i∈AQl0

|e,i�=i0
Fi(PSQl0

(e)) − alQl
(e) + alQl0

(e) (since PQl
(Si) ≥ PSQl0

(e))

=
∑

i∈AQl0
|e Fi(PSQl0

(e)) − alQl
(e) + alQl0

(e))

= cap(e) − alQl0
(e) − alQl

(e) + alQl0
(e) (by definition of priority share)

= cap(e) − alQl
(e) ,

which establishes that e violates the capacity constraint in state Ql. A contradiction.

4.4 Minimum Priority Share and Minimum Priority Share Edges

For each session Si ∈ S, the minimum priority share of session Si in state Q, denoted MPSQ(Si),
is the least among all priority shares attained in state Q by edges traversed by Si; thus,
MPSQ(Si) = mine∈Si PSQ(e). The minimum priority share is a generalization of the mini-
mum fair share [1, Definition 3.6] to the setting with priorities. For each state Q, a minimum
priority share edge for Q is an edge e active in Q that attains the least priority share among
all edges active in Q; thus, PSQ(e) = mine′∈AEQ

PSQ(e′). A minimum priority share edge is
a generalization of a minimum fair share edge [9, Section 3.4] to the setting with priorities.
Define MPSEQ, to be the set of minimum priority share edges for Q.

15

5 Priority Bottleneck Algorithms

In this section, we use priority share to define and study priority bottleneck edges and priority
bottleneck algorithms. We discover that priority bottleneck algorithms allow priority shares,
priority bottleneck edges and minimum priority share edges to enjoy some additional properties.

5.1 Priority Bottleneck Edges and Priority Bottleneck Algorithms

For any state Q, a priority bottleneck edge for Q is an edge e ∈ E such that for each session
S ∈ AQ | e, MPSQ(S) = PSQ(e); that is, for each active session traversing e, e is the one,
among all edges traversed by the session, that attains the minimum priority share of the session
in state Q. We remark that a priority bottleneck edge generalizes a bottleneck edge [14] to the
setting with priorities.

Example 5.1 Consider the network in Figure 1. Assume that r(S1) = F1(P(S1)) = P(S1),
r(S2) = F2(P(S2)) = P(S2)/2, r(S3) = F3(P(S3)) = 3P(S3), and r(S4) = F4(P(S4)) =
P(S4)/3. Consider a state Q such that alQ(e1) = alQ(e2) = 0, while all sessions are active in
state Q. The priority max-min fairness equation for edge e1 in state Q is

∑
i∈AQ|e1

Fi(p) =
cap(e1) − alQ(e1), or p + p/2 + 3p = 126 − 0, which implies that p = 28. By definition of
priority share, it follows that PSQ(e1) = 28. Similarly, the priority max-min fairness equation
for edge e2 in state Q implies that p = 30, so that PSQ(e2) = 30. Since session S3 traverses
both edges e1 and e2, the minimum priority share of session S2 in state Q is MPSQ(S3) =
min{PSQ(e1),PSQ(e2)} = min{28, 30} = 28. Since both sessions S1 and S2 traverse only edge
e1, their minimum priority shares in state Q are MPSQ(S1) = MPSQ(S2) = PSQ(e1) = 28. It
follows that edge e1 is a priority bottleneck edge for state Q. On the contrary, edge e2 is not a
priority bottleneck edge for state Q because PSQ(e2) = 30, while e2 is traversed by session S3

for which MPSQ(S3) = 28. �

An immediate consequence of priority share and priority bottleneck edge is that the priority
shares of any two priority bottleneck edges shared by a session are equal.

Lemma 5.1 Let e and e′ be priority bottleneck edges for state Q such that (AQ | e) ∩ (AQ |
e′)
= ∅. Then, PSQ(e) = PSQ(e′).

The next simple claim is a direct consequence of the definition of a priority bottleneck edge
and a minimum priority share edge.

16

Lemma 5.2 For any state Q, consider any minimum priority share edge e for Q. Then, e is
a bottleneck edge for Q.

Proof: Take any session S ∈ AQ | e. Since e ∈ MPSEQ, for any edge e′ ∈ AEQ, PSQ(e) ≤
PSQ(e′). Thus, in particular, for any edge e′ traversed by S, PSQ(e) ≤ PSQ(e′), so that
PSQ(e) ≤ mine′∈S PSQ(e′). Since S traverses e, PSQ(e) ≥ mine′∈S PSQ(e′). It follows that
PSQ(e) = mine′∈S PSQ(e′). Since S was chosen arbitrarily, the claim follows.

Say that terminator Term is priority bottleneck if for any state Q and session S, S ∈ Term(Q)
if (and only if) there exists some edge e ∈ E, where S traverses e, such that (1) e is a priority
bottleneck edge for Q, and (2) PQ(S) = PSQ(e). Say that an algorithm Alg = 〈Sched,Term〉
is priority bottleneck if Term is. A priority bottleneck algorithm generalizes a bottleneck algo-
rithm [13, 14, 15] to the setting with priorities.

5.2 Increasing Monotonicity of Priority Share

We show that the priority share of an edge may not decrease, as long as there are still active
sessions traversing the edge, while a priority bottleneck algorithm is running.

Proposition 5.3 Assume that Alg is a priority bottleneck algorithm. Then, for any integer
l ≥ 1 and for any edge e ∈ AEQl

, PSQl
(e) ≥ PSQl−1

(e).

Proof: Assume, by way of contradiction, that PSQl
(e) < PSQl−1

(e). Since for each session
i, Fi is a strictly increasing function, this implies that Fi(PSQl

(e)) < Fi(PSQl−1
(e)), so that∑

i∈AQl
|e Fi(PSQl

(e)) <
∑

i∈AQl
|e Fi(PSQl−1

(e)). Now, by Lemma 4.2,
∑

i∈AQl
|e Fi(PSQl

(e)) =∑
i∈AQl−1

|e Fi(PSQl−1
(e)) − ∑

i∈(AQl−1
\AQl

)|e rQl−1
(Si).

Since Alg is priority bottleneck, there exists, for each index i ∈ (AQl−1
\ AQl

) | e, a
priority bottleneck edge e′ ∈ Si such that PQl−1

(Si) = PSQl−1
(e′). Since e′ is a prior-

ity bottleneck edge, and e ∈ Si, it follows by definition of priority bottleneck edge that
PSQl−1

(e′) ≤ PSQl−1
(e). Hence, PQl−1

(Si) ≤ PSQl−1
(e). Since Fi is a strictly increasing func-

tion, this implies that Fi(PQl−1
(Si)) ≤ Fi(PSQl−1

(e)), or, by definition of priority functions
rQl−1

(Si) ≤ Fi(PSQl−1
(e)). It follows that

∑
i∈AQl

|e
Fi(PSQl

(e)) ≥
∑

i∈AQl−1
|e
Fi(PSQl−1

(e)) −
∑

i∈(AQl−1
\AQl

)|e
Fi(PSQl−1

(e))

=
∑

i∈AQl
|e
Fi(PSQl−1

(e)) ,

a contradiction.

17

Proposition 5.3 generalizes [1, Lemma 3.4], which established increasing monotonicity of
fair shares [1, Section 2.1], to the setting with priorities.

5.3 Stability Properties of Priority Bottleneck Edges

We prove natural stability properties for any edge that becomes priority bottleneck in the course
of an execution of a priority bottleneck algorithm. Formally, we show:

Proposition 5.4 Assume that Alg is a priority bottleneck algorithm. For any integer l0 ≥ 0,
fix any edge e ∈ E that is a priority bottleneck edge for Ql0 . Then, for any integer l ≥ l0 such
that AQl

| e
= ∅, the following hold:

(1) PSQl
(e) = PSQl0

(e);

(2) e is a priority bottleneck edge for Ql;

(3) for any session i ∈ (AQl0
\ AQl+1

) | e, PQl
(Si) = PSQl0

(e).

Roughly speaking, Proposition 5.4 establishes that no change in the priority share of a
priority bottleneck edge may occur as long as it remains active, so that the edge remains
priority bottleneck; moreover, the final priority of any active session traversing the edge is
equal to this constant priority share. The proof follows.

Proof: By induction on l. For the basis case where l = l0, (1) holds trivially, (2) holds by
assumption, and (3) holds by definition of a priority bottleneck algorithm. Assume inductively
that for some integer l > l0, the claims hold for any integer l′ such that l0 ≤ l′ < l. For the
induction step, we will show that the claims hold for integer l.

We start by proving (1). This will follow immediately from a technical claim we first show.

Lemma 5.5 For each session i ∈ AQl
| e, Fi(PSQl

(e)) = Fi(PSQl0
(e)).

Proof: Assume, by way of contradiction, that there exists some session i0 ∈ AQl
| e such

that Fi0(PSQl
(e))
= Fi0(PSQl0

(e)). Since e ∈ AEQl
, Proposition 5.3 implies that PSQl

(e) ≥
PSQl0

(e). Since Fi0 is strictly increasing, this implies that Fi0(PSQl
(e)) ≥ Fi0(PSQl0

(e)).
Since Fi0(PSQl

(e))
= Fi0(PSQl0
(e)), it follows that Fi0(PSQl

(e)) > Fi0(PSQl0
(e)). Clearly,

∑
i∈AQl

|e
Fi(PSQl

(e))

18

= Fi0(PSQl
(e)) +

∑
i∈AQl

|e

i�=i0

Fi(PSQl
(e))

≥ Fi0(PSQl
(e)) +

∑
i∈AQl

|e

i�=i0

Fi(PSQl0
(e)) (by Proposition 5.3)

> Fi0(PSQl0
(e)) +

∑
i∈AQl

|e

i�=i0

Fi(PSQl0
(e)) (since Fi0(PSQl

(e)) > Fi0(PSQl0
(e)))

=
∑

i∈AQl
|e Fi(PSQl0

(e)) .

Now, by Proposition 4.2,

∑
i∈AQl

|e
Fi(PSQl

(e)) =
∑

i∈AQl−1
|e
Fi(PSQl−1

(e)) −
∑

i∈(AQl−1
\AQl

)|e
rQl−1

(Si) .

Consider any session i ∈ (AQl−1
\ AQl

) | e. Since AQl−1
⊆ AQl0

, this implies that i ∈
(AQl0

\ AQl
) | e. Thus, by induction hypothesis (condition (3)), PQl−1

(Si) = PSQl0
(e), so

that Fi(PQl−1
(Si)) = Fi(PSQl0

(e)). Hence, by definition of priority function, rQl−1
(Si) =

Fi(PSQl0
(e)). It follows that

∑
i∈AQl

|e
Fi(PSQl

(e))

=
∑

i∈AQl−1 |e
Fi(PSQl−1(e)) −

∑
i∈(AQl−1\AQl

)|e Fi(PSQl0
(e))

=
∑

i∈AQl−1 |e
Fi(PSQl0

(e)) −
∑

i∈(AQl−1\AQl
)|e Fi(PSQl0

(e)) (by induction hypothesis (1))

=
∑

i∈AQl
|e Fi(PSQl0

(e)) ,

a contradiction.

Take any session i ∈ AQl
| e. Since F−1

i is strictly increasing, it is a bijection, so that
Lemma 5.5 implies that PSQl

(e) = PSQl0
(e), as needed for (1).

We continue to show (2). Take any session index i ∈ AQl
| e. Clearly, i ∈ AQl0

| e.
Since e is a priority bottleneck edge for Ql0 , it follows that PSQl0

(e) = mine′∈Si
PSQl0

(e′).
Consider now any edge e′ ∈ Si. Since Si ∈ AQl

| e, it follows that e′ is active in state Ql.
Thus, by Proposition 5.3, PSQl

(e′) ≥ PSQl0
(e′). Since e′ was chosen arbitrarily, this implies

that mine′∈Si
PSQl

(e′) ≥ mine′∈Si
PSQl0

(e′). It follows that mine′∈Si
PSQl

(e′) ≥ PSQl0
(e). By

(1), this implies that mine′∈Si
PSQl

(e′) ≥ PSQl
(e). Clearly, since e ∈ Si, mine′∈Si

PSQl
(e′) ≤

PSQl
(e). It follows that PSQl

(e) = mine′∈Si
PSQl

(e′). Since i was chosen arbitrarily, this
implies that e is a priority bottleneck edge for Ql, as needed for (2).

We finally show (3). Take any session index i ∈ (AQl0
\ AQl+1

) | e. Since i
∈ AQl+1
, there

exists some integer l′, l0 < l′ ≤ l, such that i becomes done in state Ql′ . Since Term is priority

19

bottleneck, there exists some edge e′ ∈ Si such that (1) e′ is a priority bottleneck edge for Ql′ ,
and (2) PQl′ (Si) = PSQl′ (e

′).

Either l0 < l′ < l or l′ = l. If l0 < l′ < l, then, induction hypothesis (condition (2)) implies
that e is a priority bottleneck edge for Ql′ ; if, on the other hand, l′ = l, then, the already
shown condition (2) implies that e is a priority bottleneck edge for Ql′ . Thus, in either case,
e is a priority bottleneck edge for Ql′ . Since both e and e′ are priority bottleneck edges for
state Ql′ and Si ∈ (AQl′ | e) ∩ (AQl′ | e′), Lemma 5.1 implies that PSQl′ (e) = PSQl′ (e

′). Since
PQl′ (Si) = PSQl′ (e

′), this implies that PQl′ (Si) = PSQl′ (e). Since i ∈ Term(Ql′) and l ≥ l′,
PQl′ (Si) = PQl

(Si).

Recall that either l0 < l′ < l or l′ = l. If l0 < l′ < l, then induction hypothesis (condition
(1)) implies that PSQl′ (e) = PSQl0

(e); if l′ = l, then the already shown condition (1) implies
that PSQl′ (e) = PSQl0

(e). Thus, in either case, PSQl′ (e) = PSQl0
(e). Hence, it follows that

PQl
(Si) = PSQl0

(e), as needed for (3).

5.4 Stability Property of Minimum Priority Share Edges

In this section, we show a simple stability property for any edge that becomes a minimum
priority share edge in the course of an execution of a priority bottleneck algorithm. Roughly
speaking, we establish that the edge remains a minimum priority share edge.

Proposition 5.6 Assume that Alg is a priority bottleneck algorithm. For any integer l0 ≥ 0,
fix any edge e ∈ MPSEQl0

. Then, for any integer l ≥ l0 such that e ∈ AEQl
, e ∈ MPSEQl

.

Proof: Consider any edge e′ ∈ AEQl
; clearly, e′ ∈ AEQl0

. Since e ∈ MPSEQl0
, this implies

that PSQl0
(e) ≤ PSQl0

(e′). By Lemma 5.2, e is a priority bottleneck edge for Ql0 ; thus, by
Proposition 5.4 (condition (1)), PSQl

(e) = PSQl0
(e). By Proposition 5.3, PSQl0

(e′) ≤ PSQl
(e′).

It follows that PSQl
(e) ≤ PSQl

(e′). Since e′ was chosen arbitrarily, the claim follows.

6 Termination Properties of Priority Bottleneck Algorithms

In this section, we prove termination properties of priority bottleneck algorithms.

6.1 Maximum Priority Saturated Edges

Define a maximum priority saturated edge for session S in state Q to be an edge e ∈ S such
that (1) for each session i ∈ sessions(e), PQ(S) ≥ PQ(Si), and (2) e is saturated in Q.

20

Example 6.1 Consider again the simple network in Figure 1; we retain all assumptions on pri-
ority functions made in Example 5.1. Consider any state Q with rate vector rQ = 〈28, 14, 84, 10〉.
We will demonstrate the existence of a maximum priority saturated edge for session S3 in
state Q. Clearly, e1 and e2 are the only candidates. We first consider edge e2. Clearly,∑

i∈sessions(e2) rQ(Si) = rQ(S3) + rQ(S4) = 84 + 10 = 94, while cap(e2) = 100. It follows that
edge e2 is not saturated in state Q. So, e2 is not a maximum priority saturated edge for S3 in Q.
We now turn to consider edge e1. Clearly,

∑
i∈sessions(e1) rQ(Si) = rQ(S1) + rQ(S2) + rQ(S3) =

28 + 14 + 84 = 126, while cap(e1) = 126. It follows that e1 is saturated in Q. Furthermore,
PQ(S3) = F−1

3 (rQ(S3)) = rQ(S3)/3 = 84/3 = 28, while PQ(S1) = F−1
1 (rQ(S1)) = rQ(S1) = 28,

and PQ(S2) = F−1
2 (rQ(S2)) = 2 rQ(S2) = 2 · 14 = 28; thus, both PQ(S3) ≥ PQ(S1), and

PQ(S3) ≥ PQ(S2). So, e1 is a maximum priority saturated edge for S3 in Q. We encourage the
reader to verify that e1 is also a maximum priority saturated edge for both S1 and S2 in Q,
and that there is no maximum priority saturated edge for S4 in Q. �

Our definition of maximum priority saturated edge for a session generalizes Hayden’s defi-
nition [13] of a bottleneck edge for a session to the setting with priorities. We prove:

Theorem 6.1 (Hayden’s Analog) Assume that Alg is a priority bottleneck algorithm. Then,
for any reachable final state Q of Alg, there exists, for each session S, a maximum priority
saturated edge for S in state Q.

Proof: Consider a final state Q in execution α of Alg, and take any sesion S. Since Q is
final, S ∈ DQ. Thus, there exists some state Ql0 in execution α, Q0

α−→ Ql0
α−→ Q such that

S ∈ Term(Ql0); that is, session S becomes done in Ql0 , so that S ∈ AQl0
\ AQl0+1

.

Since Alg is a priority bottleneck algorithm, there exists an edge e ∈ E traversed by S such
that (1) e is a priority bottleneck edge for Ql0, and (2) PQl0

(S) = PSQl0
(e). We will show that

e satisfies conditions (1) and (2) in the definition of a maximum priority saturated edge for
session S in state Q.

We start by showing (1). Fix any session i ∈ sessions(e). There are two cases to consider.

1. Assume first that i ∈ AQl0
. Denote Ql the latest state in α such that AQl

| e
= ∅;
that is, Ql is the latest state in α such that e remains active in Ql. Clearly, since Q

is a final state with AQ = ∅, Ql
α−→ Q. Clearly, both S ∈ (AQl0

\ AQl+1
) | e and i ∈

(AQl0
\AQl+1

) | e. Hence, Proposition 5.4 (condition (3)) implies that PQl
(S) = PSQl0

(e)
and PQl

(Si) = PSQl0
(e), so that PQl

(S) = PQl
(Si). By definition of Ql, no further change

to the priorities of sessions traversing e occurs in any state following Ql. Since Ql
α−→ Q,

it follows that PQ(S) = PQ(Si), as needed for (1) in this case.

21

2. Assume now that i
∈ AQl0
. Denote Ql′ the state in α such that i ∈ Term(〈G,S〉, Ql′).

Clearly, Ql′
α−→ Ql0 . Since Alg is a priority bottleneck algorithm, there exists an edge

e′ ∈ E, where Si traverses e′, such that (1) e′ is a priority bottleneck edge for Ql′ , and (2)

PQl′ (Si) = PSQl′ (e
′). By definition of a priority bottleneck edge, PSQl′ (e

′) = MPSQl′ (Si).
Since i traverses e, this implies that PSQl′ (e

′) ≤ PSQl′ (e). Since S ∈ AQl0
| e, e is active

in state Ql0. Thus, by Proposition 5.3, PSQl′ (e) ≤ PSQl0
(e). Since i ∈ Term(Ql′) and

Ql′
α−→ Q, PQ(Si) = PQl′ (Si). It follows that PQ(Si) ≤ PSQl0

(e). Since S ∈ Term(Ql0)
and Ql0

α−→ Q, PQ(S) = PQl0
(S). Since PQl0

(S) = PSQl0
(e), it follows that PQ(Si) ≤

PQ(S), as neededo for (1) in this case.

We continue to show (2). Consider the latest state Ql in execution α such that e remains
active in Ql. By Proposition 5.4 (condition (3)), for any session i ∈ (AQl0

\ AQl+1
) | e = AQl0

,
PQl

(Si) = PSQl0
(e). Hence, by Lemma 4.3 (condition (1)), edge e is saturated in Ql. However,

by definition of Ql, no change to the rates of sessions traversing e occurs in any state following
Ql. Since Ql

α−→ Q, it follows that e remains saturated in Q, as needed for (2).

Thoerem 6.1 generalizes a classical result of Hayden [13] for max-min fairness to the setting
with priorities.

6.2 Output of Priority Bottleneck Algorithms

We finally show that the output rate vector of any priority bottleneck algorithm is a priority
max-min fair rate vector.

Theorem 6.2 (Output of priority bottleneck algorithms) Assume that Alg is a priority
bottleneck algorithm. Then, for any reachable final state Q of Alg, rQ is a priority max-min
fair rate vector.

Proof: Assume, by way of contradiction, that rQ is not a priority max-min fair rate vector.
By definition of the priority max-min fair rate vector, there exists some session Si such that
increasing rQ(Si), while still maintaining feasibility, is possible without decreasing rQ(Sj) for
any session Sj such that PQ(Sj) ≤ PQ(Si). Hence, consider an increase to rQ(Si). We will
derive a contradiction by showing that a decrease to rQ(Sj), for some session Sj such that
PQ(Sj) ≤ PQ(Si) is necessary.

By Theorem 6.1, there exists a maximum priority saturated edge e for Si in Q. Since e is
saturated in Q, while an increase to rQ(Si) is possible, there must be at least one session Sj other

22

than Si traversing e, whose rate must decrease in order to maintain the capacity constraint for
e. Since e is a maximum priority share edge for Si in Q and Sj traverses e, PQ(Sj) ≤ PQ(Si).
A contradiction.

Theorem 6.2 provides a generalization to the setting with priorities of a classical result of
Hayden [13] that bottleneck algorithms converge to max-min fair rate vectors (see [3, Section
6.4.5] for a textbook discussion).

7 The Optimistic Case

In this section, we focus on the optimistic case. In Section 7.1, we introduce the priority update
operation upon which optimistic algorithms are built. Additional combinatorial properties of
minimum priority share edges are shown in Section 7.2 for the case of optimistic, priority
bottleneck algorithms. In turn, these properties are used to show termination properties of
optimistic, priority bottleneck algorithms in Section 7.3. Specific algorithms are designed in
Section 7.4 to exploit these termination properties.

7.1 The Priority Update Operation

Our presentation is influenced by the one in [9, Sections 2.2 & 3.5]. We will introduce the
priority update operation, which is a generalization of the update operation (see [1, Section 2.1]
or [9, Section 3.5]). Roughly speaking, the priority update operation determines an increase to
the priority of a scheduled session; the increase is such that the scheduled session becomes the
session with the maximum priority on some particular link of the network. We start with an
abstract mathematical function, called pupdate, presented in Figure 3.

We remark that the update function update from [9, Section 2.2] is the special case of
pupdate where all priority functions are equal to the identity function.

For any session Si, the priority increase for Si in state Q imposed by edge e ∈ Si (cf. [1,
Section 2.1]), denoted ∆Q(i, e), is either 0 if Si is not active in state Q, or equal to the priority
reform increase for 〈rAQ

| e, i, cap(e) − alQ(e)〉; that is, ∆Q(i, e) is the real number ∆ > 0 such
that 〈r′,∆〉 = pupdate(rAQ

| e, i, cap(e) − alQ(e)), for some rate vector r′. In more detail,
∆Q(i, e) is the unique possible increase to the priority of session Si in state Q that saturates
edge e, while it possibly decreases down to the increased rate of Si the rates of other active
sessions passing through e whose priorities exceed that of the increased rate; at the same time,
this increase affects neither the active sessions traversing e whose priorities are smaller than the

23

Fix any integer m, 2 ≤ m ≤ n. The priority update function is a function pupdate that takes
as input a triple of a vector r ∈ �m, an integer i ∈ [m], and a real number c ∈ � such that
‖r‖1 ≤ c, and returns as output a pair 〈r′,∆〉 = pupdate(〈r, i, c〉) of a vector r′ and a real
number ∆ ≥ 0, so that the following conditions are satisfied:

(1) ‖r′‖1 = c;

(2) r′i = Fi(F−1
i (ri) + ∆);

(3) for each l ∈ [m], l
= i, if F−1
l (rl) ≤ F−1

i (ri) + ∆, then r′l = rl;

(4) for each l ∈ [m], l
= i, if F−1
l (rl) > F−1

i (ri) + ∆, then r′l = Fl(F−1
i (ri) + ∆).

Whenever 〈r′,∆〉 = pupdate(〈r, i, c〉), call r′ a priority reform for 〈r, i, c〉 that corresponds to
priority reform increase ∆ (cf. [9, Section 3.5] or [1, Appendix A, Definition A.1]).

Figure 3: The pupdate function. Intuitively, a priority reform saturates c (condition (1)) by
increasing entry ri to its image, under the priority function Fi, of an increase by ∆ to its
corresponding priority (condition (2)); moreover, entries whose priorities do not exceed the
priority of the increased entry are not affected (condition (3)), while the reform preserves
fairness in a sense since, in addition, there can be left no entries with priorities larger than the
priority of the increased entry (condition (4)).

increased priority of Si, nor, of course, the done sessions traversing e, or any other session in
the network that does not cross edge e. Intuitively, ∆Q(i, e) is the maximum amount by which
rQ(Si) can be increased in a fair manner if edge e were the only edge constraining Si.

The priority increase for Si in state Q (cf. [1, Section 2.1]), denoted ∆Q(i), is either 0 if Si

is not active in state Q, or the minimum, over all edges e ∈ Si, of the priority increase for Si

in state Q imposed by edge e; that is, ∆Q(i) = mine∈Si ∆Q(i, e). So, assuming Si is active in
state Q, ∆Q(i) is the minimum among all possible priority increases to the rate of Si that are
imposed by the edges it traverses. Since the rate of Si can be increased by a certain amount
only if it can be increased by this amount, while still maintaining feasibility, on every edge it
traverses, it follows that ∆Q(i) is the maximum possible increase to the rate of Si in state Q

that maintains feasibility††.

A priority update operation is a set of specific instantiations of the priority update function,

††We remark that ∆Q(i) can be computed from information that is local to session Si (cf. [15, Section IV]).

24

which refer to some particular session index i and state Q, followed by a procedure for the
computation of new rates for some sessions. In such priority update operation, each edge e

traversed by Si is associated with a particular instantiation of the priority update function
where ∆Q(i, e) is computed. Finally, new rates for session Si and interfering active sessions are
computed, using ∆Q(i):

(1) r(Si) := Fi(F−1
i (r(Si)) + ∆Q(i));

(2) for each l ∈ AQ, l
= i, and Sl ∩ Si
= ∅, r(Sl) := min{r(Sl),Fi(F−1
i (r(Si)) + ∆Q(i))}.

Notice that each instantiation of the priority update function computes an increase ∆Q(i, e)
that saturates edge e. However, an increase of ∆Q(i) for any edge e traversed by Si is no more
than the increase ∆Q(i, e) that would saturate it. It follows that the final rates computed by
the priority update operation saturate only the edge(s) realizing ∆Q(i), and no other edges.

Example 7.1 Consider our example network in Figure 1. We still retain all assumptions on
priority functions for this network made in Example 5.1.

Consider the initial state Q0 and assume that S1 is scheduled first. Since priorities of
all sessions are initially 0, the rate of S1, and thus its priority, may be increased to a value
that saturates e1 (the only edge traversed by it). The reader can easily verify that ∆Q0(1) =
∆Q0(1, e1) = 126. Thus, PQ0(S1) = PQ0(S1) + ∆Q0(1) = 0 + 126 = 126, which implies that
rQ1(S1) = F1(PQ1(S1)) = PQ1(S1) = 126. Since rates of all other sessions are initially 0, (2)

implies that they will remain 0 in Q1. Note also that e1 is saturated in Q1.

Assume now that S2 is scheduled next. Since S2 traverses e1 which is saturated in Q1,
any increase to the priority of S2 imposed by e1 necessarily causes the priority of S1 to fall
off to a value equal to that of S2, while e1 remains saturated. We ask the reader to verify
that the priority increase ∆Q1(2, e1) = 84 satisfies both of these constraints. Since S2 does not
traverse any edge other than e1, it follows that ∆Q1(1) = 84, so that PQ2(S1) = 84. Moreover,
rQ2(S2) = F2(PQ2(S2)) = PQ2(S2)/2 = 84/2 = 42, while rQ2(S1) = F1(PQ1(S1)) = PQ1(S1) =
84. Clearly, rQ2(S1) + rQ2(S2) + rQ2(S3) = 84 + 42 + 0 = 126. Since cap(e1) = 126, it follows
that e1 remains saturated in Q2.

Assume finally that S3 is scheduled next. We ask the reader to verify that the prior-
ity increase for S3 in Q2 imposed by e1 is ∆Q2(3, e1) = 28, and that the priority increase
for S3 in Q2 imposed by e2 is ∆Q2(3, e2) = 100/3 > 28. Thus, ∆Q2(3) = 28, which im-
plies that PQ3(S3) = 28, while priorities of S1 and S2 are also decreased to 28 in Q3. So,
rQ3(S1) = F1(PQ3(S1)) = PQ3(S1) = 28, rQ3(S2) = F2(PQ3(S2)) = PQ3(S2)/2 = 28/2 = 14,

25

and rQ3(S3) = F3(PQ3(S3)) = PQ3(S3) = 84. Thus, rQ3(S1)+rQ3(S2)+rQ3(S3) = 28+14+84 =
126. Since cap(e1) = 126, it follows that e1 remains saturated in Q3. �

In the sequel, we will abuse notation by using pupdate, the notation for priority update
function, to denote a priority update operation as well. For an optimistic algorithm, assume
that operation = pupdate; that is, an optimistic algorithm uses the (optimistic) priority
update operation to adjust session rates. Since the priority update operation preserves the
capacity constraint, Proposition 4.1 immediately implies that priority shares exist uniquely in
an execution of an optimistic algorithm.

7.2 Properties of Minimum Priority Share Edges

We show that optimistic, priority bottleneck algorithms allow minimum priority share edges to
enjoy additional combinatorial properties. We start with some kind of a safety property for any
edge that becomes a minimum priority share edge in the course of an execution of an optimistic,
priority bottleneck algorithm.

Proposition 7.1 Assume that Alg is an optimistic, priority bottleneck algorithm. For any
integer l0 ≥ 0, fix any edge e ∈ MPSEQl0

. Consider any session Si ∈ AQl0
| e such that

PQl0
(Si) ≥ PSQl0

(e). Then, for any integer l ≥ l0, PQl
(Si) ≥ PSQl0

(e).

Proposition 7.1 considers any (active) session traversing a minimum priority share edge and
establishes that no decrease to its priority below this minimum priority share is possible if, in
the first place, its priority is no less than the minimum priority share.

Proof: By induction on l. For the basis case where l = l0, the claim holds by assumption.
Assume inductively that for some integer l > l0, PQl−1

(Si) ≥ PSQl0
(e). For the induction step,

we show that PQl
(Si) ≥ PSQl0

(e).

If PQl
(Si) ≥ PQl−1

(Si), then induction hypothesis implies that PQl
(Si) ≥ PSQl0

(e), as
needed. So, assume that PQl

(Si) < PQl−1
(Si). By definition of priority update operation,

session Si must intersect session Sil , the one scheduled in front of state Ql. Let e′ be an
edge such that ∆Ql−1

(il) = ∆Ql−1
(il, e′). We argue that PQl

(il) ≥ PSQl
(e′). Assume, by

way of contradiction, that PQl
(il) < PSQl

(e′). By definition of priority update operation,
e′ is saturated in Ql; moreover, for any session index k ∈ AQl

| e′, PQl
(il) ≥ PQl

(k); thus,
PSQl

(e′) > PQl
(k). Hence, Lemma 4.3 (condition (2)) implies that e′ is not saturated in Ql. A

contradiction. So indeed PQl
(il) ≥ PSQl

(e′).

26

By definition of priority update operation PQl
(Si) = PQl

(il); since PQl
(il) ≥ PSQl

(e′), it
follows that PQl

(Si) ≥ PSQl
(e′). By Proposition 5.3, PSQl

(e′) ≥ PSQl0
(e′), which implies that

PQl
(Si) ≥ PSQl0

(e′). Since e ∈ MPSEQl0
, PSQl0

(e′) ≥ PSQl0
(e). It follows that PQl

(Si) ≥
PSQl0

(e), as needed.

Proposition 7.1 provides a generalization of [9, Proposition 4.3] to the setting with priorities.
We continue with a liveness property for any edge that becomes a minimum priority share edge
in the course of an execution of a priority bottleneck algorithm.

For any state Ql in an execution α of an (optimistic) algorithm, denote by l̂ the least integer
such that all sessions Si ∈ AQl

have been scheduled (at least) once in front of some state
following Ql but not preceded by Q

l̂
in the execution α, or infinite if no such integer exists.

Similarly, denote by l̂ | e the least integer such that all sessions Si ∈ AQl
| e have been scheduled

(at least) once in front of some state following Ql but not preceded by Q
l̂|e in the execution α,

or infinite if no such integer exists. We prove:

Proposition 7.2 Assume that Alg is an optimistic, priority bottleneck algorithm. For any
integer l0 ≥ 0, fix any edge e ∈ MPSEQl0

such that l̂0 | e < ∞. Consider any session
Si ∈ AQl0

| e. Then, for any integer l ≥ l̂0 | e, PQl
(Si) ≥ PSQl0

(e).

We consider any session traversing a minimum priority share edge; we establish that it
will eventually obtain a priority no less than this minimum priority share, once all sessions
traversing this minimum priority share edge have been scheduled for an increase at least once.

Proof: We start with an informal outline. We consider the point of the execution following
state Ql0 where Si is scheduled; clearly, that comes no later than when all sessions have been
scheduled at least once. We establish that at this point, the priority of Si is no less than the
priority share of edge e in state Ql0 . We also argue that e remains a minimum priority share
edge beyond state Ql0; this allows us to exploit the safety property of minimum priority share
edges (Proposition 7.1) in order to argue that the priority of Si will subsequently remain no
less than the priority share of e in Ql0. We now present the details of the formal proof.

Since e ∈ MPSEQl0
, Lemma 5.2 implies that e is a priority bottleneck edge for Ql0. Since

Si ∈ AQl0
| e, it follows by definition of l̂0 | e that there exists a least index l′, l0 < l′ ≤ l̂0 | e,

such that Si is scheduled in front of Ql′ . Since Si is active in Ql0 , it follows that Si is active in
Ql′ as well. Since Si traverses e, it follows that e is active in Ql′ . By Proposition 5.4 (condition
(1)), PSQl′ (e) = PSQl0

(e), while by Proposition 5.4 (condition (2)), e is a priority bottleneck
edge for Ql′ . We continue to prove:

27

Lemma 7.3 PQl′ (Si) ≥ PSQl0
(e).

Proof: Assume, by way of contradiction, that PQl′ (Si) < PSQl0
(e). Let e′ be an edge such

that ∆Ql′ (Si) = ∆Ql′ (Si, e
′). By definition of priority update operation, e′ is saturated in state

Ql′ . Since e is a priority bottleneck edge for Ql′ , and S traverses both e and e′, PSQl′ (e) ≤
PSQl′ (e

′). Since PSQl′ (e) = PSQl0
(e), this implies that PSQl0

(e) ≤ PSQl′ (e
′). Since PQl′ (Si) <

PSQl0
(e), it follows that PQl′ (Si) < PSQl′ (e

′). By definition of priority update operation, for
any session k ∈ AQl′ | e, PQl′ (Sk) ≤ PQl′ (Si), so that PQl′ (Sk) < FSQl′ (e

′). It follows by
Lemma 4.3 (condition (2)) that e′ is not saturated in Ql′ . A contradiction.

Take now any integer l ≥ l̂0 | e. Clearly, l ≥ l′. Since e is a minimum priority share
edge for Ql0, Proposition 5.6 implies that e is a minimum priority share edge for Ql′ as well.
Moreover, by Lemma 7.3, PQl′ (Si) ≥ PSQl0

(e). Since PSQl′ (e) = PSQl0
(e), this implies that

PQl′ (Si) ≥ PSQl′ (e). By Proposition 7.1 (taking l′ for l0), it follows that PQl
(Si) ≥ PSQl0

(e),
as needed.

Proposition 7.2 provides a generalization of [9, Proposition 4.5] to the setting with priorities.

7.3 Termination Properties of Optimistic, Priority Bottleneck Algorithms

The first property considers active sessions traversing a minimum priority share edge; we show
that after each has been scheduled at least once, all must have become done.

Theorem 7.4 Assume that Alg is an optimistic, priority bottleneck algorithm. For any integer
l0 ≥ 0, fix an edge e ∈ MPSEQl0

with l̂0 | e < ∞. Then, for any Si ∈ AQl0
| e, Si ∈ D −→

Q
l̂0|e

.

Proof: We start with an informal outline. We consider any session active in Ql0 ; we argue that
once all sessions have been scheduled, the session will receive such a rate that its priority equals
to the priority share of e in Ql0. We will appeal to the fact that e is a priority bottleneck edge
for Ql0 in order to argue that e remains priority bottleneck subsequently, and that its priority
share does not change. Since Alg is priority bottleneck, these will be sufficient to deduce that
the session has reached its final rate. We now present the details of the formal proof.

Fix any session Si ∈ AQl0
| e. We start by proving:

Lemma 7.5 PQ
l̂0|e

(Si) = PSQl0
(e)

28

Proof: Assume, by way of contradiction, that PQ
l̂0|e

(Si)
= PSQl0
(e). By Proposition 7.2,

PQ
l̂0|e

(Si) ≥ PSQl0
(e). It follows that PQ

l̂0|e
(Si) > PSQl0

(e).

If there existed a session Sj ∈ AQl0
| e with j
= i, Proposition 7.2 would imply that

PQ
l̂0|e

(Sj) ≥ PSQl0
(e); together with PQ

l̂0|e
(Si) > PSQl0

(e), this contradicts Lemma 4.3 (con-

dition (3)). So, there exists no session Sj ∈ AQl0
| e, j
= i, and AQl0

| e = {i}. De-

note Ql the latest state in execution α, with
←−
Ql0

α−→ Ql
α−→

−→
Q

l̂0|e
such that AQl

= ∅. Thus,
AQl

| e = AQl0
| e = {i} and alQl

(e) = alQl0
(e). Clearly,

∑
j∈AQl

|e
rQl

(Sj)

= rQl
(Si)

= rQ
l̂0|e

(Si) (by definition of state Ql)

= Fi(PQ
l̂0|e

(Si))

> Fi(PSQl0
(e)) (since PQ

l̂0|e
(Si) > PSQl0

(e))

= cap(e) − alQl0
(e) (by definition of priority share)

= cap(e) − alQl
(e) ,

which establishes that e violates the capacity constraint in state Ql. A contradiction.

We continue with the proof of Theorem 7.4. If Si ∈ DQl
for some state Ql in execution α

with Ql0
α−→ Ql

α−→
−→

Q
l̂0|e

, the definition of execution implies that Si ∈ D −→
Q

l̂0|e

, as needed. So,

assume that for each state Ql in execution α with Ql0
α−→ Ql

α−→
−→

Q
l̂0|e, Si ∈ AQl

.

Denote Ql the latest state in execution α such that both Ql0
α−→ Ql

α−→
−→

Q
l̂0|e

and PQl
(Si) =

PQ
l̂0|e

. Since e ∈ MPSEQl0
, Lemma 5.2 implies that e is a priority bottleneck edge for Ql0 .

Since Si ∈ AQl
and Si traverses edge e, it follows that AQl

| e
= ∅. Hence, Proposition 5.4
(condition (1)) implies that PSQl

(e) = PSQl0
(e), while Proposition 5.4 (condition (2)) implies

that e is a priority bottleneck edge for Ql. By Lemma 7.5, PQ
l̂0|e

(Si) = PSQl0
(e). It follows

that PQl
(Si) = PSQl

(e). In total, e is a priority bottleneck edge for Ql, traversed by Si for
which PQl

(Si) = PSQl
(e). Since Alg is a priority bottleneck algorithm, it follows that Si ∈ D−→

Ql

.

Since Ql →
−→

Q
l̂0|e

, it follows that Si ∈ D −→
Q

l̂0|e

, as needed.

Theorem 7.4 provides a generalization of [9, Theorem 4.7] to the setting with priorities. Our
final termination property is a direct consequence of Theorem 7.4. We establish that scheduling
any sequence of sessions that includes all that are currently active results in finalizing the rate
of at least one active session.

29

Theorem 7.6 Assume that Alg is an optimistic, priority bottleneck algorithm. Then, for any
integer l0 ≥ 0 such that AQl0

= ∅ and l̂0 | e < ∞, there exists some session S ∈ AQl0
such that

S ∈ D−→
Q

l̂0

.

Proof: Since AQl0

= ∅, MPSEQl0

= ∅ as well. Fix any edge e ∈ MPSEQl0
and consider a

session S ∈ AQl0
| e. Clearly, S ∈ AQl0

. By Theorem 7.4, S ∈ D−→
Q

l̂0

, as needed.

Theorem 7.6 provides a generalization of [9, Theorem 4.9] to the setting with priorities.

7.4 Specific Optimistic, Priority Bottleneck Algorithms

Say that Sched is oblivious [9, Section 3.6.1] if for all pairs 〈G,S〉 and Q, and 〈G̃, S̃〉 and Q̃, and
for any integer l ≥ 1, Sched(〈G,S〉, Q, l) = Sched(〈G̃, S̃〉, Q̃, l); loosely speaking, an oblivious
scheduler uses no knowledge of either the topology of the network, or the rates and statuses
(active or done) of sessions in choosing the session to schedule next for an increase. Thus, an
oblivious scheduler may be identified with a (finite or infinite) sequence Sched = i1, i2, . . .,
where for each l ≥ 1, il ∈ [n]. As a particular example of an oblivious scheduler, con-
sider the ElevSched = 1, 2, . . . , n, n, . . . , 2, 1, 1, 2, . . . , n, n, . . . , 2, 1, . . . , 1, 2, . . . , n, n, . . . , 2, 1, . . .
scheduler. Say that Alg is oblivious [9, Section 3.6.1] if Sched is; else, say that Alg is non-
oblivious.

Theorem 7.6 motivates an oblivious algorithm, called Permutation, to compute the pri-
ority max-min fair rate vector. The scheduler of Permutation, denoted PermSched, contacts n

scheduling rounds. In each round, all n sessions are scheduled in any arbitrary order. Moreover,
Permutation is priority bottleneck.

By definition of PermSched, each session is scheduled once in each round. Thus, Theorem 7.6
implies that at least one session becomes done in each of the n rounds. It follows that all n

sessions are done after n rounds are conducted, whence the network enters a final state. Hence,
Theorem 6.2 implies that Permutation computes the priority max-min fair rate vector. Clearly,
Permutation performs no more than n2 priority update operations in the worst case. Thus, we
have:

Theorem 7.7 Permutation computes the priority max-min fair rate vector within n2 priority
update operations.

Permutation generalizes the algorithm RoundRobin [9, Section 7.1] to the setting with prior-
ities.

30

Theorem 7.4 motivates a non-oblivious algorithm, called PLinear, to compute the priority
max-min rate vector. The scheduler of PLinear maintains an edge of minimum priority share
that is currently active, and schedules all active sessions traversing it in any arbitrary order.
Once it finishes, it chooses some other (currently active) edge of minimum priority share, and
so on. Moreover, PLinear is priority bottleneck.

Consider any state Ql0 such that e ∈ MPSEQl0
. By definition of the scheduler of PLinear,

each session traversing e is scheduled exactly once, so that the state Q
l̂0|e

is reached; by The-
orem 7.4, each such session is done in state Q

l̂0|e. By definition of the scheduler of PLinear, it
follows that all sessions eventually become done, and the network enters a final state. Hence,
Theorem 6.2 implies that PLinear computes the priority max-min fair rate vector. Clearly, the
total number of priority update operations incurred by PLinear is exactly n in every execution,
which is optimal. Thus, we have:

Theorem 7.8 PLinear computes the priority max-min fair rate vector within exactly n priority
update operations.

PLinear is an adaptation of the algorithm Linear [9, Section 7.3] to the setting with priorities;
while Linear works with minimum fair share edges, PLinear works with minimum priority share
edges.

8 Discussion

We have laid out a theory of max-min fair, rate-based flow control sensitive to priorities of
distributed applications, as a significant extension of the classical theory of max-min fair, rate-
based flow control [3, 12, 13, 14, 15] to networks with differentiated levels of service. Our
theory yields an elegant scheme for general prioritized allocation of bandwidth to conflicting
distributed applications; this scheme encompasses issues of modeling priorities via priority
functions, defining fairness with respect to these priorities, and efficiently computing rates that
conform to the defined fairness. As a by-product, our scheme provides a novel method for
pricing distributed applications by assigning monetary prices to priority functions and allowing
applications to control their rates by purchasing the priority function of their like.

We feel that our work takes a step towards developing an algorithmic framework for cur-
rently major trends in network algorithmics, such as flow control and routing, that explicitly
takes priority issues into account. For related subsequent work, see, e.g., [4, 19, 21]. As the need
for providing prioritized services becomes more widely recognized, algorithmic frameworks that

31

capture and formalize priority requirements, and corresponding algorithms that reach these
requirements both fairly and efficiently, become more indispensable. Such frameworks and al-
gorithms (and their evaluation) may relate issues concerning data network architectures, spec-
ification and engineering of requirements, and combinatorial optimization. We hope that our
work contributes toward a more solid ground for this interaction.

References

[1] Y. Afek, Y. Mansour and Z. Ostfeld, “Convergence Complexity of Optimistic Rate Based
Flow Control Algorithms,” Journal of Algorithms, Vol. 30, No. 1, pp. 106–143, January
1999.

[2] S. Bajaj, L. Breslau and S. Shenker, “Is Service Priority Useful in Networks?,” Proceedings
of ACM SIGMETRICS, pp. 66–77, June 1998.

[3] D. P. Bertsekas and R. G. Gallager, Data Networks, second edition, Prentice Hall, 1992.

[4] Z. Cao and E. Zegura, “Utility Max-Min: An Application-Oriented Bandwidth Allocation
Scheme,” Proceedings of the 18th Annual Joint Conference of the IEEE Computer and
Communications Societies, pp. 793–801, March 1999.

[5] A. Charny, D. D. Clark, and R. Jain, “Congestion Control with Explicit Rate Indication,”
Proceedings of the 30th IEEE International Conference on Communications, pp. 1954–1963,
June 1995.

[6] A. Charny, K. K. Ramakrishnan, and A. Lauck, “Time Scale Analysis and Scalability Issues
for Explicit Rate Allocation in ATM Networks,” IEEE/ACM Transactions on Networking,
Vol. 4, No. 4, pp. 569–581, August 1996.

[7] D. D. Clark, S. Shenker and L. Zhang, “Supporting Real-Time Applications in an In-
tergrated Services Packet Network: Architecture and Mechanism,” Proceedings of ACM
SIGCOMM, pp. 14–26, August 1992.

[8] A. Dailianas and A. Bovopoulos, “Design of Real-Time Admission Control Algorithms with
Priority Support,” Proceedings of the 14th Annual Joint Conference of the IEEE Computer
and Communications Societies, pp. 819–826, June 1995.

[9] P. Fatourou, M. Mavronicolas and P. Spirakis, “Efficiency of Oblivious versus Non-Oblivious
Schedulers for Optimistic, Rate-Based Flow Control,” Proceedings of the 16th Annual ACM

32

Symposium on Principles of Distributed Computing, pp. 139–148, August 1997. Full version
submitted for journal publication.

[10] P. Fatourou, M. Mavronicolas and P. Spirakis, “The Global Efficiency of Distributed,
Rate-Based, Flow Control Algorithms,” Proceedings of the 5th International Colloquium on
Structural Information and Communication Complexity, pp. 244–258, Carleton University
Press, June 1998.

[11] E. Gafni and D. Bertsekas, “Dynamic Control of Session Input Rates in Communication
Networks,” IEEE Transactions on Automatic Control, Vol. 29, pp. 1009–1016, November
1984.

[12] E. Hahne, “Round-Robin Scheduling for MaxMin Fairness in Data Networks,” IEEE Jour-
nal on Selected Areas in Communications,” Vol. 9, No. 7, pp. 1024–1039, September 1991.

[13] H. Hayden, “Voice Flow Control in Integrated Packet Networks,” Report LIDS/TH/1152,
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,
1981.

[14] J. M. Jaffe, “Bottleneck Flow Control,” IEEE Transactions on Communications,
Vol. COM-29, No. 7, pp. 954–962, July 1981.

[15] J. M. Jaffe, “Flow Control Power is Nondecentralizable,” IEEE Transactions on Commu-
nications, Vol. COM-29, No. 9, pp. 1301–1306, September 1981.

[16] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan, “An Efficient Rate Allocation
Algorithm for ATM Networks Providing Max-Min Fairness”, Proceedings of 6th IFIP Inter-
national Conference on High Performance Networking, pp. 143–154, September 1995.

[17] F. P. Kelly, “On Tariffs, Policing and Admission Control for Multiservice Networks,” Op-
erations Research Letters, Vol. 15, pp. 1-9, 1994.

[18] H. Luss and D. R. Smith, “Resource Allocation among Competing Entities: A Lexi-
cographic Minimax Approach,” Operations Research Letters, Vol. 5, No. 5, pp. 227–231,
November 1986.

[19] P. Marbach, “Priority Service and Max-Min Fairness,” CD-ROM Proceedings of the 21st
Annual Joint Conference of the IEEE Computer and Communications Societies, June 2002.

[20] J. Mosely, Asynchronous Distributed Flow Control Algorithms, Ph.D. Dissertation, De-
partment of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, MA, June 1984.

33

[21] B. Radunović and J. Le Boudec, “A Unified Framework for Max-Min and Min-Max Faier-
ness with Applications,” EPFL TR02 048, Switzerland, July 2002.
(Available at http://lcawww.epfl.ch/Publications/Radunovic/TR02_048.ps)

[22] S. Shenker, “Fundamental Design Issues for the Future Internet,” IEEE Journal on Selected
Areas in Communication, Vol. 13, No. 7, pp. 1176–1188, September 1995.

[23] S. Suri, D. Tipper and G. Meempat, “A Comparative Evaluation of Space Priority Strate-
gies in ATM Networks,” Proceedings of the 13th Annual Joint Conference of the IEEE
Computer and Communications Societies, pp. 516–523, June 1994.

[24] Y. Takagi, S. Hino and T. Takahashi, “Priority Assignment Control of ATM Line Buffers
with Multiple QoS Classes,” IEEE Journal on Selected Areas in Communications, Vol. 9,
No. 7, pp. 1078–1092, 1991.

[25] C. Topolcic, “Experimental Internet Stream Protocol: Version 2 (ST-II),” Technical Report
TR-455, Laboratory for Computer Science, Massachusetts Institute of Technology, 1989.

[26] L. Zhang, S. Deering, D. Estrin, S. Shenker and D. Zappala, “RSVP: A New Resource
ReSerVation Protocol,” IEEE Network, Vol. 7, No. 5, pp. 8–18, September 1993.

34

