
Sequentially Consistent versus Linearizable

Counting Networks

�Extended Abstract�

Marios Mavronicolas
�

Michael Merritt
y

Gadi Taubenfeld
z

Abstract

We compare the impact of timing conditions on imple�
menting sequentially consistent and linearizable coun�
ters using counting networks in distributed systems� For
counting problems in application domains which do not
require linearizability but will run correctly if only se�
quential consistency is provided� the potential payo�s
of our investigation are threefold� First� we show that
sequential consistency and linearizability cannot be dis�
tinguished by the timing conditions previously consid�
ered in the context of counting networks� and thus in
contexts in which these constraints apply� it is possi�
ble to rely on the stronger semantics of linearizability�
which simpli�es proofs and enhances compositionality�
Second� we identify local timing conditions that sup�
port sequential consistency but not linearizability� and
thus suggest weaker� easily implementable timing con�
ditions that are likely to be su�cient in many applica�
tions� Third� we show that any kind of synchronization
that is too weak to support even sequential consistency�
may violate it signi�cantly for some counting networks�
hence� we identify timing conditions that are to be to�
tally ruled out for speci�c applications that rely criti�
cally on either sequential consistency or linearizability�

�Department of Computer Science and Engineering� Univer�
sity of Connecticut� Storrs� CT ����������	 Part of the work of
this author was performed at Department of Computer Science�
University of Cyprus
supported by funds for the promotion of
research at University of Cyprus�� and while at AT�T Labs
Research� as a visitor to the Special Year on Networks� DIMACS
Center for Discrete Mathematics and Theoretical Computer Sci�
ence� Piscataway� NJ	 Email� mavronic�engr�uconn�edu

yAT�T Labs Research� ��� Park Avenue� Florham Park� NJ
����������	 Email� mischu�research�att�com

zThe Open University� �� Klausner St	� Tel�Aviv ������ Is�
rael	 Part of the work was performed while visiting AT�T Labs
 Research	 Email� gadi�cs�openu�ac�il

� Introduction

��� Overview

The counting problem is to design a protocol in which
a number of concurrent processes repeatedly acquire
successive values� An additional possible requirement�
called linearizability� imposes that the order of the as�
signed values re�ects the real�time order in which they
were requested 	HW
��� Linearizable counting can be
used as a building block in basic constructions such as
concurrent time�stamps generation� implementingFIFO
bu�ers� and e�cient shared counters�

Counting networks are highly concurrent data struc�
tures which solve the non�linearizable� counting prob�
lem� in a way that reduce sequential bottlenecks and
contention 	AHS
��� They are implemented in shared
memory as networks of records balancers� and point�
ers wires�� It is known that there does not exist
a completely asynchronous counting network� with ��
nite depth� that guarantees linearizability in all possi�
ble schedules 	HSW
��� Thus� previous work has ad�
dressed the question of identifying appropriate tim�
ing conditions that outlaw non�linearizable schedules�
thus rendering a counting network linearizable 	HSW
��
LSST
�� MPT
���

Sequential consistency is a consistency condition
weaker than linearizability 	L�
�� For counting net�
works� it assures that for any two tokens i�e�� requests
for values� by the same process� the earlier token ob�
tains a smaller value than the later one� This natu�
ral monotonicity property is reasonable to expect from
a counter primitive� Moreover� distinguishing sequen�
tial consistency from linearizability requires interprocess
communication outside of the shared counter primitive�
Although the standard correctness condition for shared
memory multiprocessors� the important notion of se�
quential consistency has not been investigated previ�
ously in the context of counting networks� As we will see
later� there are counting networks which� under speci�c
timing conditions� satisfy sequential consistency but not
linearizability�

��� Summary of results

In this work� we demonstrate that previously studied
timing conditions fail to distinguish sequential consis�
tency from linearizability� We introduce a new local
timing condition and demonstrate that it su�ces to
guarantee sequential consistency� but not linearizabil�
ity� Finally� we show that previous measures of the
�fraction� of inconsistent counter operations can be ap�
plied to sequential consistency� We show that in the
worst case� weak timing assumptions previously shown
to admit proportion of incorrect non�linearizable� oper�
ations 	LSST
��� actually admit the same proportion of
non�sequentially consistent operations�a large propor�
tion of locally�observable inconsistencies�
For counting problems that originate from application

domains which do not absolutely require linearizability
but which run correctly if only sequential consistency
is provided� the potential payo�s of our investigation
are threefold� First� if it turns out that both sequen�
tial consistency and linearizability are supported by the
timing constraints that are inherent in any particular
distributed environment� one can rely instead on the
stronger semantics of linearizability� since this simpli�
�es proofs and enhances compositionality� Second� an
understanding of weak timing conditions that support
sequential consistency but not linearizability allows the
designer to make available the timing condition that is
�cheapest�� yet su�cient for each speci�c application�
Third� an understanding of the negative e�ect of tim�
ing conditions that are too �weak� to support sequen�
tial consistency and hence� also violate linearizability��
can help the designer of a distributed system to choose
the most �cost�e�ective� timing condition for those ap�
plications that are even willing to occasionally sacri�ce
sequential consistency in order to achieve improved per�
formance�
The results presented in this work are�

� We discuss several timing conditions regulating
the rate at which processes move through a count�
ing network� and global inter�operation delays�
and show that considering only these conditions
cannot distinguish linearizability from sequential
consistency Theorem ����� Previous work on
timing conditions for assuring linearizability in
counting networks involve only these timing condi�
tions 	HSW
�� LSST
�� MPT
��� Thus� it follows
that previously known results especially necessary
conditions� hold also for sequential consistency�

� We identify timing conditions involving an addi�
tional bound on local inter�operation delay� that
can distinguish linearizability from sequential con�
sistency� That is� we present timing conditions that
are su�cient for sequential consistency but not for
linearizability Theorem ����� Thus� for example�

for any given uniform counting network� we present
timing conditions under which the network is se�
quentially consistent but is not linearizable� More�
over� these local timing conditions are straightfor�
ward to implement�

� The fraction of non�sequentially�consistent resp��
non�linearizable� operations in a �nite execution
is de�ned to be the minimum number of opera�
tions whose removal yields a sequentially consistent
resp�� linearizable� execution� divided by the num�
ber of completed operations in the execution� We
present results� both upper and lower bounds� on
these fractions Section ���

��� Related work

Counting networks� with balancers with fan�in and
fan�out two� were �rst introduced and investigated
in 	AHS
��� A generalization was introduced in 	AA
��
where topological constraints on the design using larger
balancers were investigated� Similar design issues were
investigated in 	FLL
�� and 	HKM
��� The notion
of linearizability is presented in 	HW
��� Linearizable
counting networks assure that the order of values re�
turned by the same process or by di�erent processes re�
�ects the real�time order in which they were requested�
The fact that there does not exist a completely asyn�
chronous counting network� with �nite depth� that guar�
antees linearizability in all possible schedules is pointed
out in 	HSW
��� Various results on concurrent count�
ing without using counting networks� are reported in
	BMT
�� MT
�� MTY
���
The �rst work to investigate timing constraints on the

behavior of counting networks and to identify an appro�
priate timing condition which guarantees linearizability
is 	LSST
��� Moreover� this work shows that this su��
cient condition is also a necessary condition for bitonic
networks and counting trees� Additional results in this
direction are presented in 	MPT
��� We discuss speci�c
results from these papers in Section ����
The notion of sequential consistency is introduced

in 	L�
�� Sequentially consistent counting networks as�
sure that the order of values returned by the same pro�
cess re�ects the real�time order in which they were re�
quested� We know of no previous work on sequentially
consistent counting networks� The impact of timing
conditions on the relative costs of implementing lineariz�
ability and sequential consistency in message�passing
has been investigated in 	AW
�� MR
���

� Preliminaries

We �rst give the de�nitions of balancing and counting
networks� then we de�ne several timing parameters� We

conclude with de�nitions of consistency conditions and
review previous results�

��� Balancing and counting networks

Many of the de�nitions in this section are adapted
from 	AA
�� AHS
�� LSST
�� MPT
��� Balancing net�
works are constructed from elements� called balancers�
that direct tokens from inputs to outputs� and wires�
which acyclically interconnect the balancers 	AHS
���
An fin� fout��balancer� or balancer for short� is a routing
element receiving tokens on fin input wires� and send�
ing out tokens to fout output wires� the integers fin and
fout are called the balancer�s fan�in and fan�out� respec�
tively� Processes introduce tokens on the balancer�s in�
put wires at arbitrary times� after some delay shepherd
them instantaneously through the balancer� arriving on
an output wire� Roughly speaking� a balancer acts as
a round�robin scheduler� taking a stream of input to�
kens and forwarding them to its output wires� from top
to bottom� thus� a balancer e�ectively �balances� input
tokens on its output wires� The wires are interconnec�
tion and delay elements� but provide no queueing or
ordering of pending tokens�
For each index i� � � i � fin� we denote by xi the

history variable that stands for the number of tokens
that have entered on input wire i� for each index j�
� � j � fout� we similarly denote by yj the history
variable that stands for the number of tokens that have
exited on output wire j� In the initial state� all wires are
empty� A balancer is quiescent if

Pfin
i�� xi �

Pfout
j�� yj �

that is� in a quiescent state� the number of tokens that
exited the balancer is equal to the number of tokens
that entered it� The following are important properties
of an fin� fout��balancer�

�� Safety property�
Pfin

i�� xi �
Pfout

j�� yj � that is� a bal�
ancer never creates tokens spontaneously�

�� Liveness property� If only a any �nite number of
tokens are input to the balancer� then eventually
the balancer reaches a quiescent state�

Pfin
i�� xi �Pfout

i�� xi� that is� a balancer never �swallows� to�
kens�

�� Step property� For any pair of indices j and k such
that � � j � k � fout� � � yj � yk � ��

A win� wout��balancing network is a directed� acyclic
graph G with three kinds of nodes� �� win source nodes
X�� X�� � � � � Xwin

� �� wout sink nodes Y�� Y�� � � � � Ywout
�

and �� a �nite number of inner nodes� The source and
sink nodes represent the input and output wires of the
network� respectively� while the inner nodes represent
the balancers of the network� The edges of G connect
the balancers by identifying the input and output wires
of successive balancers� thus� a node that corresponds

to an fin� fout��balancer has fin incoming edges and
fout outgoing edges� that coincide with the input and
output wires of the balancer� Moreover� the outgoing
and incoming degrees of all source and sink nodes� re�
spectively� are equal to one� while the incoming and out�
going degrees of all source and sink nodes� respectively�
are equal to zero�
The size of a balancing network is the total number

of its inner nodes� For any wire z in a balancing net�
work� the depth of z� denoted dz�� is de�ned to be zero
if z is an input wire connected to a source node� and
max��l�fin dzl���� for an output wire of an fin� fout��
balancer with input wires z�� z�� � � � � zfin � For any bal�
ancer b in a balancing network� the depth of b� denoted
db�� is the maximal wire depth� over all of its output
wires� A layer in a balancing network is a maximal set
of balancers that have the same depth� The depth of a
balancing network G� denoted dG� or d for short� is the
maximum balancer depth� over all of its balancers� For
any integer l� � � l � dG� � �� the l�th layer of G is
the collection of nodes balancers or sinks� whose depth
is l� A path in a balancing network G is de�ned in the
natural way� A balancing network is uniform 	LSST
��
De�nition ���� if each node of the network lies on some
path from source nodes and sink nodes� and all paths
from source nodes to sink nodes have the same length�
The safety and liveness properties for a balancing net�

work follow naturally from those for its balancers� Thus�
if only �nitely many tokens enter a balancing network�
it eventually reaches a quiescent state in which all to�
kens that entered the network have exited reached a
sink�� Since processes shepherd tokens through di�er�
ent parts of the network at di�erent times� the step
property is only required of such quiescent states� How�
ever� not all balancing networks satisfy the step prop�
erty� A win� wout��counting network is a win� wout��
balancing network for which� in any quiescent state� for
any pair of indices j and k such that � � j � k � wout�
� � yj�yk � �� that is� in quiescent states the output of
a counting network has the step property� Each one of
the wout sink nodes of a counting network is identi�ed
with an atomic counter� The tokens exiting on out�
put wire yj � � � j � wout� are consecutively assigned
by the counter residing there the integers j� j � wout�
j � �wout� and so on� We remark that known con�
structions of counting networks 	AA
�� AVY
�� AHS
��
BHM
�� BM
�� FLL
�� HKM
�� KP
�� are uniform�
On a multiprocessor shared memory machine� a bal�

ancing network is implemented as a shared memory data
structure� where balancers are records and wires are
pointers from one record to another� Each process runs
a program that repeatedly performs an increment oper�
ation on the network by traversing the data structure
from some input pointer to some output pointer� each
time shepherding a new token through the network� We

assume an unbounded set of processes assigned to each
input wires� all tokens generated by a speci�c process
enter on the assigned input wire� A process shepherds a
token through the network by atomically updating each
balancer� and using the returned value to choose which
pointer to follow� For simplicity� we assume that bal�
ancer updates are instantaneous� and all delays occur
on the wires�

��� Timing conditions

An execution of a balancing network G can be de�
noted as a possibly in�nite� sequence E � e�� e�� � � �
of instantaneous transition events ei of the form
BALpTj � bk� fm� fn� corresponding to a token Tj of
process p traversing a balancer bk� entering on in�
put wire fm and exiting on output wire fn� or
COUNTpTj � Ck� i� corresponding to a token Tj of pro�
cess p traversing a counter Ck� obtaining the value i��
A timed execution RE for an execution E of a balanc�
ing network G associates a time with each event in
the execution� in a non�decreasing sequence� denoted
RE � he�� t�i� he�� t�i� � � �Moreover� if the execution E is
in�nite� then the sequence t�� t�� � � � is unbounded�
Let T E� be the set of tokens appearing in execution

E � A timed execution RE determines a schedule SE �
T E�� 	dG� � ��� � that speci�es for any token T �
T E� and layer l� � � l � dG� � �� the time SE T� l� at
which token T passes through a node in layer l�
Associated with a schedule SE of a network G are the
following timing parameters�

cPmin � lower bound on wire delay for process P � The
minimum over all tokens T inserted by process P
and all layers l� of the di�erence between the time
at which T passes through layer l� and the time at
which T passes through layer l � �� where � � l �
dG���� Intuitively� cPmin represents the minimum
delay a token by process P �experiences� over any
individual wire�

cmin � lower bound on wire delay� The minimum over
all processes P of cPmin� Intuitively� cmin represents
the minimumdelay a token �experiences� over any
individual wire�

cmax � upper bound on wire delay� The maximumover all
tokens T and all layers l� of the di�erence between
the time at which T passes through layer l� and
the time at which T passes through layer l � ��
where � � l � dG���� Intuitively� cmax represents
the maximumdelay a token �experiences� over any
individual wire�

CPL � lower bound on local inter�operation delay for pro�
cess P � The minimum over all pairs of consecutive

tokens T and T � by process P � of the di�erence be�
tween the time at which token T � passes through
layer � of the network� and the time at which to�
ken T passes through layer dG� � �� Intuitively�
CP
L measure the �local delay� incurred between the

time a token by P exits the network and the time
a new token by P can enter it�

CL � lower bound on local inter�operation delay� The
minimum� over all processes P � of CP

L � Intuitively�
CL measure the �local delay� incurred between the
time some token exits the network and the time a
new token by the same process can enter it�

Cg � lower bound on global delay� The minimum over
all pairs of tokens T and T � that do not overlap
are not inside the network at the same time� of
the di�erence between the time at which token T �

passes through layer � of the network� and the time
at which token T passes through layer dG���� In�
tuitively� Cg measures the �global delay� incurred
between the time some token exits the network and
the time a new token possibly by another process�
can enter it�

The timing parameters cmin� cmax� and Cg were intro�
duced and their relationship to linearizability was stud�
ied by Lynch et al� 	LSST
��� The timing parameters
cPmin� C

P
L � and CL were previously considered in work

by Shavit et al� studying the impact of local delay on
global performance� but not in the context of assuring
consistency conditions 	SUZ
���

��� Consistency conditions

A serialization of execution E is a total order of the
tokens in T E� that respects the order of tokens at each
individual process� A timed execution RE speci�es a

partial order
RE�� on tokens in T E� as follows� For any

tokens T and T � in T E�� T
RE�� T � if and only if T

completely precedes T � in the execution RE �
Herlihy et al� 	HSW
�� adapted the de�nition of lin�

earizability from 	HW
�� to balancing networks� A lin�
earization of timed execution RE is a serialization of E

that extends
RE��� That is� for any tokens T and T � in

E � if T
R�E�
�� T �� then T precedes T � in the linearization�

A timed execution RE is linearizable if it admits a lin�
earization in which every token receives a value greater
than that of all tokens earlier in the linearization� A
balancing network is linearizable 	HSW
�� under a tim�
ing condition if every timed execution satisfying that
condition is linearizable�
Lynch et al� showed in 	LSST
��� among other re�

sults� that a uniform counting network is linearizable
if for any two tokens traversing the network� their
traversals either overlap or they are separated by time

t � dG�cmax � �cmin�� Thus� if dG�cmax � �cmin�
� Cg and hence also if cmax�cmin � �� then such a
network is linearizable� As the authors point out� the
bound dG�cmax��cmin� � Cg is not a local condition�
it would require coordination among individual pro�
cesses to ensure the Cg bound is preserved� Hence� the
stronger bound cmax�cmin � � is stressed as a local
linearizability criteria�
In Section � we show that weaker� local timing bounds

su�ce to guarantee the weaker correctness condition of
sequential consistency� which we adapt from 	L�
� to
balancing networks� Say that a timed execution RE of a
balancing network G is sequentially consistent if the suc�
cessive token traversals by each process return increas�
ing values� A balancing network is sequentially consis�
tent under a timing condition if every timed execution
satisfying that condition is sequentially consistent�
For any execution E � consider the restriction of E to

events of process P � denoted E j P � Clearly� this restric�
tion inherits the order of tokens at process P already
determined by execution E�� Say that an execution E is
sequentially consistent with respect to process P if the
values obtained by tokens in the restriction E j P are in
increasing order� A balancing network G is sequentially
consistent with respect to process P if every execution
of it is is sequentially consistent with respect to process
P �

Proposition ��� Assume that for each process P � the
balancing network G is sequentially consistent with re�
spect to process P � Then� G is sequentially consistent�

� Timing conditions which do

not distinguish linearizability

and sequential consistency

In this section� we demonstrate that limiting cmin� cmax

and Cg cannot distinguish linearizability from sequential
consistency�
The proof of this result depends on the modular

counting carried out by individual fan�out�f balancers�
that is� f tokens can be simultaneously carried through
a balancer without a�ecting the other tokens� The
lemma below formalizes this property�

Lemma ��� Let RE � he�� t�i� ���� hei� tii� ���� be a timed
execution of a balancer B with fan�out f � Suppose�

� p�� ���� pf are processes shepherding tokens
T�� ���� Tw� respectively�

� y � j �mod f� tokens have passed through B after
step hei� tii of RE �

� k�� ���� kf are indices of input wires of B� and

� ti � t and either hei� tii is the last step of RE or
t � ti��� and �in either case� let � be the su�x of
RE starting after step hei� tii�

Then he�� t�i� ���� hei� tii hBALp� T�� B� k�� j � ��� ti� ����
hBALpf�j Tf�j � B� kf�j� f�� ti
hBALpf�j�� Tf�j��� B� kf�j��� ��� ti� ����
hBALpf Tj � B� kf � j�� ti� � is a timed execution of B�

Proof� A balancer with fan�out f acts as a counter
modulo f � Since exactly w new tokens pass through B
simultaneously� later tokens are una�ected�

Theorem ��� A uniform counting network under tim�
ing conditions cmin� cmax and Cg is linearizable if and
only if it is sequentially consistent�

Proof� Since linearizability implies sequential consis�
tency� it su�ces to show that for any uniform counting
network G� if there is a timed execution RE of G that
is not linearizable and satis�es a timing condition cmin�
cmax and Cg� then there is a timed execution R�

E that
is not sequentially consistent and yet satis�es the same
timing condition�
Let RE be such a non�linearizable timed execution�

For simplicity� assume for now that each balancer has
the same number of input and output wires� The
proof below constructs the timed execution R�

E from
RE � Since RE is not linearizable� it must contain two se�
rial operations for tokens T� and T�� such that the �rst
token� T�� receives some value ybig while the token T�
following it receives a smaller value� ysmall � If these two
tokens belong to the same processor� then RE is already
not sequentially consistent��

So assume otherwise� The proof demonstrates that
by carefully introducing and scheduling additional to�
kens� using the modular properties of balancers noted
in Lemma ���� a timed execution R�

E can be constructed
in which two tokens associated with the same process
mimic the behavior of T� and T�� emerging with the
values ybig and ysmall � respectively�
Let W be the width of G� let p�� ���� pW be processors

that take no steps in RE� each pi assigned to the input
wire wi� and suppose that the processor p associated
with token T� is assigned the j�th input wire of G� Let
RE� be the sequence obtained by relabelling the steps
of token T� with processor index pj� It should be clear
that RE� is a timed execution of G with the same timing
properties as RE � we have simply replaced a token of
processor p with one by pj�
Let D be the depth of D� let q be the proces�

sor that moves token T� through the network� and

�The original de�nition of counting networks �AHS��� allows
each process to introduce tokens to an input wire that is either
preassigned or chosen arbitrarily	 In the second case� the claim
follows trivially by relabelling tokens T� and T� with a process
that otherwise takes no steps in RE 	

let RE� � he�� t�i� ���� hBALqT�� B�� in�� out��� tq�i�
���� hBALqT�� BD��� inD��inD��� outD���� tqD��i� ����
hCOUNTqT�� CD� ysmall�� tqD i� ����� where the identi�
�ed events are the D steps q takes to move the token T�
through the network�
Let RE� be the pre�x of RE� that ends just before

event hCOUNTqT�� CD� ysmall�� tqD i�
Observe that in any counting network there must be

a path from every input wire to every output wire� To
see this� note that the counting properties must hold
even if every token comes in over a single input wire��
In particular� there is a path from input wire j to the
counter CD� We can use Lemma ��� to route a token by
pj along this path� emerging just before T�� and return�
ing the value y� To prevent this token from a�ecting
others� we move W tokens synchronously through the
network� moving through each layer of the uniform net�
work at the same speed as T�� Speci�cally� just before
hBALq T�� B�� in�� out��� tq�i in the execution� and with
the same time tq��� we add W events� one for each pi�
routing pj through the �rst balancer on the path to CD�
The result is a timed execution RE� that is an execution
of each component balancer and counter� and so of G�
Since a token was moved on every input wire through its
�rst balancer� there is now a token on every output wire
of the �rst layer of the network� and hence a token on
every input wire of the next layer� So again before event
hBALq T�� B�� in�� out��� tq�i we can addW events� one
for each pi� routing pj through the second balancer on
the path to CD� resulting in a sequence RE� that is an
execution of each component balancer and counter� and
so of G� Continuing� for D � � steps� we end with a
sequence RED��

that is a timed execution of each com�
ponent balancer and counter� and so of G� in which
pj �s token Tpj is on the input wire to counter CD� Fi�
nally� timed execution RED��

is produced by appending
hCOUNTpj TpjCD� ysmall�� tqDi to RED��

� Moreover�
since each of the new tokens move through the network
at exactly the same rate as T�� RED��

satis�es the same
timing constraints as RE � But processor pj performed
two serial operations that returned ybig and then ysmall �
so RED��

is not sequentially consistent�
Up to this point� the argument has assumed that

each balancer has the same number of input and output
wires� If this is not the case� then a similar construc�
tion will work� but many more than W tokens may be
needed�
Let LCMi be the least common multiple of the fan�

out of the balancers in layer i of G� Focusing on the
�rst layer of the network� if we put LCM� tokens on
each input wire and route them as before simultane�
ously through the �rst layer� then at least one token
will emerge on each output wire� As important� the
number of tokens moving through each balancer will be
a multiple of the fan�out of that balancer� as Lemma ���

requires�
To get at least one token on each output of the sec�

ond layer� it su�ces to put LCM�LCM� tokens on each
input wire to G� and once again the number of tokens
moving through each balancer is a multiple of the fan�
out of that balancer� Finally�

QD��
i�� LCMi tokens on

each input wire of G will su�ce to route the speci�c
token for pj to CD�
Although there are far� more tokens on each wire

than in the argument above� they all move at the same
rate as T�� Hence the resulting execution satis�es the
same constraints cmin� cmax and Cg�

The results reported in 	HSW
�� LSST
�� identi�ed
timing conditions dependent only on the parameters
cmin� cmax� and Cg� that are either necessary or su��
cient or both� for linearizability� Theorem ��� allows for
the extension of such results to sequential consistency�
For example� the following corollaries follow from The�
orem ��� and similar results proved for linearizability
in 	LSST
�� MPT
���

Corollary ��� A bitonic counting network is sequen�
tially consistent under timing conditions cmax and cmin

if and only if cmax � �cmin�

If G is a uniform counting network� then we denote by
iradG� the maximum� over every pair of output wires j
and k of G� of the distance from j to the least common
ancestor of j and k in G�

Corollary ��� A uniform counting network G is se�
quentially consistent under timing conditions cmax and
cmin only if cmax�cmin � dG��iradG� � ��

Notice that the local delay CL� is not explicitly men�
tioned in any statement of this section� However� for
an arbitrary uniform counting network G� Corollary ���
implies that for some small enough local delay say ���
G is not sequentially consistent� in the next section� we
prove a theorem Theorem ���� which implies that for
some big enough local delay� G is sequentially consis�
tent�

� Timing conditions which dis�

tinguish linearizability and se�

quential consistency

In this section� we demonstrate that any uniform count�
ing network G is sequentially consistent under the tim�
ing condition dG� � cmax � �cmin� � CL� but that this
condition is insu�cient to imply linearizability� Unlike
the global delay bound dG� � cmax � �cmin� � Cg�
which implies linearizability 	LSST
��� this condition
can be implemented easily using local clocks�

Theorem ��� Let G be a uniform counting network
and let cmin� cmax and CL be timing conditions such
that dG� � cmax��cmin� � CL� Then G is sequentially
consistent under these conditions�

To prove the theorem� we use the following result due
to Lynch et al� 	LSST
���

Proposition ��� ��LSST��	
 Assume that tokens T
and T � traverse a uniform counting network G during
the intervals 	tin� tout� and 	t�in� t

�
out�� respectively� If

dG� � cmax � �cmin� � t�in � tout� then T � returns a
higher value than T �

Proposition ��� can be immediately extended as follows�

Corollary ��� Assume that tokens T and T �� both of
process P � traverse a uniform counting network G dur�
ing the intervals 	tin� tout� and 	t�in� t

�
out�� respectively� If

dG� � cmax � �cPmin� � t�in � tout� then T � returns a
higher value than T �

Lemma ��� Consider any uniform counting network
G� and any process P �
If dG� � cmax � �cPmin� � CP

L � then G is sequentially
consistent for process P �

Proof� Consider any tokens T and T �� both of pro�
cess P � traversing G during the intervals 	tin� tout� and
	t�in� t

�
out�� with T preceding T �� By assumption�

dG� � cmax � �cPmin� � CP
L � ��

By de�nition of CP
L �

CP
L � t�in � tout� ��

From �� and �� it follows that�

dG� � cmax � �cPmin� � t�in � tout� ��

It follows from �� and Corollary ��� that T � returns
a higher value than T � Since T and T � were chosen
arbitrarily� this implies that G is sequentially consistent
for process P �

The proof of Theorem ��� follows from Lemma ���
and Proposition ���� It follows from Theorem ��� and
Corollary ���� that there are timing conditions for any
uniform counting network that imply sequential consis�
tency but not linearizability�

Corollary ��� For any uniform counting network� G�
there are timing conditions cmin� cmax and CL such
that under these constraints G satis�es sequential con�
sistency but does not satisfy linearizability�

Proof� Let G be any uniform counting network and
cmin and cmax timing conditions such that cmax�cmin

� dG��iradG� � �� By Corollary ���� there exists a
timed execution RE of G satisfying these timing condi�
tions that is not sequentially consistent� Now rename
the processes that shepherd more than one token in E
in such a way that each token is shepherded by a dif�
ferent process� resulting in a timed execution R�

E � Since
RE is not sequentially consistent� the construction im�
plies that R�

E is not linearizable� Now let CL be any
value such that CL � dG�cmax � �cmin�� By con�
struction� R�

E vacuously satis�es dG�cmax � �cmin� �
CL� as needed to complete the proof�

� Inconsistency fractions

��� De�nitions

Say that a token T is non�linearizable in an execution
E 	LSST
��� if there exists some other token T �� which
completely precedes T and returns a value higher than
that of T � Say that a token T is non�sequentially consis�
tent in an execution E if there exists some other token
T �� shepherded by the same process� which precedes T
and returns a value higher than that of T �
For any �nite execution E of a balancing network G�

the non�linearizability fraction of E 	LSST
�� is de�ned
to be the number of non�linearizable tokens in E di�
vided by the total number of tokens in T E�� The non�
linearizability fraction of G under a given set of timing
conditions� denoted FnlG� is the maximum� over all
executions E of G satisfying the timing conditions� of
the non�linearizability fraction of E �
Similarly� the non�sequentially consistency fraction of

E is the number of non�sequentially consistent tokens in
E divided by the total number of tokens in T E�� The
non�sequential consistency fraction of G� under a given
set of timing conditions� denoted FnscG�� is the max�
imum� over all executions E of G satisfying the timing
conditions� of the non�sequential consistency fraction of
E � Clearly� FnlG� � FnscG��
The absolute non�linearizability fraction of E is de�

�ned to be the number of non�linearizable tokens in E
whose removal yields a linearizable execution� divided
by the total number of tokens in E � The absolute non�
linearizability fraction of G� under a given set of timing
conditions� denoted AFnlG�� is the maximum� over all
executions E of G satisfying the timing conditions� of
the absolute non�linearizability fraction of E � Clearly�
FnlG� � AFnlG��
Similarly� the absolute non�sequential consistency

fraction of E is the number of non�sequentially consis�
tent tokens in E whose removal yields a sequentially
consistent execution divided by the total number of to�
kens in E � The absolute non�sequential consistency frac�

tion of G� denoted AFnscG�� is the maximum� over
all executions E of G� under a given set of timing
conditions� of the absolute non�sequential consistency
fraction of E satisfying the timing conditions� Clearly�
FnscG� � AFnscG�� and AFnlG� � AFnscG��
There is only a single known lower bound on FnlG� for
the particular case where G is the bitonic counting net�
work 	AHS
��� and under a particular timing assump�
tion that involves the size of the network� The following
results is due to Lynch et al� 	LSST
���

Proposition ��� ��LSST��	
 Let G�w� be the bitonic
network with width w� and let cmin and cmax be timing
conditions such that cmax�cmin � � � lgw���� Then
under these conditions FnlG

�w�� � ����

We can extend Proposition ���� using a similar construc�
tion� as follows�

Proposition ��� Let G�w� be the bitonic network with
width w� and let cmin and cmax be timing conditions
such that cmax�cmin � � � lgw���� Then under these
conditions FnscG�w�� � ����

��� An upper bound

The next theorem is an upper bound on the absolute
non�sequential consistency fraction� under a timing as�
sumption expressing �bounded asynchrony��

Theorem ��� Let G be a uniform counting network�
� an integer greater than �� and cmin and cmax timing
conditions such that cmax�cmin � �� Then� under these
conditions�

AFnscG� �
� � �

� � �
�

We �rst show a technical claim�

Lemma ��� Let G be a uniform counting network� �
an integer greater than �� and cmin and cmax timing
conditions such that cmax�c

P
min � �� Let T�� ���� T� be a

sequence of tokens of P such that Ti starts before Ti��
for all � � i � �� Then� T� obtains a smaller value than
T��

Proof� For each token� it takes at least dG� �cPmin time
units to go through the network� Thus� since there are
�� � tokens between T� and T�� there is a local delay of
C � � � �� � dG� � cPmin between the time at which T�
exits the network and the time at which T� enters it� By
Corollary ���� T� returns a higher value than T�� if dG��
cmax � �cPmin� � C� Thus� T� returns a higher value
than T�� if dG� � cmax � �cPmin� � �� �� � dG� � cPmin�
Since� by assumption� cmax�c

P
min � �� this inequality

always holds�

We continue with the proof of the Theorem ����

Proof� For any execution E of G and process P � let EP

denote the sequence of tokens shepherded by P in E � By
Lemma ���� for any two tokens Ti and Tj such that Ti
appears � positions before Tj in EP � Ti obtains a smaller
value than Tj� Thus� if for any process P � we remove
from E each token its position modulo �� �� in EP � is
di�erent from �� we get a sequentially consistent timed
execution�

��� A lower bound

Next we presnt a lower bound on the non�sequential
consistency fraction of any counting network that has
a certain topological property� For lack of space� all
the proofs are omitted� We �rst give some appropriate
de�nitions�
For any balancer output wire j in a network G� de�ne

the valency of j in G� denoted Valencyj�� to be the set
of sink nodes reachable from j� For any balancer b in a
network G� the valency of b in G� denoted Valencyb�� is
the union of the valencies of its output wires� Clearly�
for any counting network� for any particular layer of it�
every sink node must be reachable from some node in
the layer� Hence� we have�

Proposition ��� Fix any layer � in a counting net�
work G with fan�out wout� where � � � � dG�� Then�S
b�� Valencyb� � f�� �� � � � � woutg�

Consider any balancer b in a network G� with out�
put wires �� �� � � �� fout� Say that b is univalent in G
if for each pair of indices j and k� � � j� k � fout�
Valencyj�

T
Valencyk� � 	� Intuitively� b is univalent

if each of its output wires unambiguously determines a
set of possible output wires of the network� those that
can be reached by a token starting from that particular
output wire of b� Say that a layer � is univalent in G if
each of the balancers in � is univalent in G�
For any pair of sets of integers V� and V�� say

that V� precedes V�� denoted V�
 V�� if every in�
teger in V� is less than any integer in V�� Say that
b induces a total precedence in G if the set of sets
Valency���Valency��� � � � �Valencyfout� is totally or�
dered with respect to
� that is� for each pair of indices j
and k� � � j� k � fout� either Valencyyj�
 Valencyyk�
or Valencyyk�
 Valencyyj�� Clearly� any balancer
that induces a total precedence is also univalent� but
not vice versa� Intuitively� b induces a total precedence
if it leads to eventual �decisions� that do not �cross�
each other� Say that a layer � induces a total prece�
dence in G if each of the balancers in � induces a total
precedence in G�
For any network G� de�ne the splitting depth of G�

denoted sdG�� to be either the minimum integer ��
� � � � dG�� such that layer � of G induces a total

precedence in G� or in�nite if no such integer exists� in�
tuitively� the split of G measures �how far� into G a to�
ken needs to get before the set of possible output wires it
will exit from is unambiguously determined� A splittable
network is a network with �nite splitting depth� Con�
sider any splittable network G� Say that G is uniformly
splittable if for each balancer b in layer sdG�� for any
output wires j and k of b� jValencyj�j � jValencyk�j�
Clearly� for any uniformly splittable counting network
G�wout� made up of balancers of fan�in and fan�out
two� for any balancer b in layer sdG� with output
wires � and �� jValency��j � f�� �� � � � � wout��g and
jValency��j � fwout�� � �� wout�� � �� � � � � woutg� We
continue to demonstrate that the original counting net�
works introduced in 	AHS
��� namely the bitonic and
periodic counting networks� are uniformly splittable�
moreover� we shall calculate their splitting depths� We
start by showing�

Proposition ��� Let B�w� be the bitonic counting net�
work of width w� Then� B�w� is uniformly splittable and
sdB�w�� � lg�w � lgw � �����

We also show corresponding results for the periodic
counting network�

Proposition ��� Let P �w� be the periodic counting net�
work of width w� Then� P �w� is uniformly splittable and
sdP �w�� � lg�w � lgw � ��

For any network G such that sdG� � dG�� de�ne
the split su�x of G� denoted Ssu�xG�� to be the su�x
of G consisting of layers sdG� � �� sdG� � �� � � � � dG�
of G�
half
For any uniformly splittable network G made up

of balancers of fan�in and fan�out two� we provide
an inductive construction of a �nite sequence of net�
works Split���G�� Split���G�� � � �� which we call the
splitting sequence for G� as follows� For the basis
case� Split���G� � G� Assume inductively that we

have de�ned the network Split�����G� for some inte�
ger � � �� We proceed to the induction step� If
sdSplit�����G�� � dSplit�����G��� then the construc�

tion terminates� else� de�ne Split���G� to be the net�

work Ssu�xSplit�����G��b� Intuitively� the construc�
tion starts with the network G� and each network sub�
sequently in the sequence results by �chopping o�� the
preceding network at its splitting depth� if that is pos�
sible� and taking the bottom part of the �chopped�
split su�x� Since G is uniformly splittable� sdG� �
dG�� thus� it follows that the length of the sequence

Split
���G�� Split���G�� � � �� is no less than two and at

most dG�� Say that G is uniformly splittable all the
way through if each network but the last in the splitting
sequence for G is uniformly splittable�

Assume that the splitting sequence for G has length
greater than one� De�ne the splitting number of G�
denoted splitG�� to be the length of the splitting se�
quence for G� We proceed to calculate the splitting
numbers of the original bitonic and periodic counting
networks 	AHS
��� We start by showing�

Proposition �� Let B�w� be the bitonic counting net�
work of width w� Then� B�w� is uniformly splittable all
the way through� and splitB�w�� � lgw � ��

We continue to show�

Proposition ��� Let P �w� be the periodic counting net�
work of width w� Then� P �w� is uniformly splittable all
the way through� and splitP �w�� � lgw � ��

We proceed to show our main lower bound based on
the splitting number�

Theorem ���� Consider any uniform counting net�
work G�w� that is uniformly splittable all the way
through� Then� for any integer �� � � � � splitG�w���
and timing conditions cmin and cmax� if

cmax

cmin

� � �
dG�w��

dSplit���G�w���
�

then�

FnlG
�w�� �

�� � �

� � �� � �
�

and

FnscG
�w�� �

�

� � �� � �
�

We remark that Theorem ���� establishes a collec�
tion of lower bounds on the non�linearizability and
non�sequential consistency fractions� one for each pos�
sible value of � and under a di�erent timing assump�
tion� in the form of a lower bound� on cmin and
cmax� this assumption depends on � since it involves
dSplit���G�w���� As � increases� dSplit���G�w��� de�
creases� and the assumed lower bound on cmax�cmin

therefore increases�
By Propositions ���� ���� ���� and ��
� Theorem ����

immediately implies the following for the case where � is
taken to be equal to the splitting number of the network�

Corollary ���� Consider the bitonic counting network
B�w�� Assume that

cmax

cmin

� � �
lgwlgw � ��

�
�

Then�

FnlB
�w�� �

w � �

�w � ��
�

and

FnscB
�w�� �

�

w � �
�

Corollary ���� Consider the periodic counting net�
work P �w�� Assume that

cmax

cmin

� � � lg�w �

Then�

FnlP
�w�� �

w � �

�w � ��
�

and

FnscP
�w�� �

�

w � �
�

We remark that the lower bounds on the non�
linearizability fractions established in Corollaries ����
and ���� tend to ��� from below� as w tends to in�n�
ity� while the corresponding lower bounds for sequen�
tial consistency tend to �� This suggests to use large
counting networks for applications that are willing to
occasionally sacri�ce sequential consistency� in case it
is expensive to provide a timing constraint that would
guarantee sequential consistency in all schedules�

References

�AA��� E� Aharonson and H� Attiya� �Counting networks
with arbitrary fan�out�� Distributed Computing�
Vol� 	� pp�
��
���
����

�AVY��� W� Aiello� R� Venkatesan and M� Yung� �Coins�
weights and contention in balancing networks��
Proceedings of the ��th Annual ACM Symposium
on Principles of Distributed Computing� pp�
��
���� August
����

�AHS��� J� Aspnes� M� Herlihy and N� Shavit� �Counting
networks�� Journal of the ACM� Vol� �
� No� ��
pp�
���
��	� September
����

�AW��� H� Attiya and J� L� Welch� �Sequential consis�
tency versus linearizability�� ACM Transactions
on Computer Systems� Vol�
�� No� �� pp� �

���
May
����

�BMT��� H� Brit� S� Moran and G� Taubenfeld� �Public
data structures� counters as a special case�� Pro�
ceedings of the Third Israel Symposium on The�
ory of Computing and Systems� Tel Aviv� January

����

�BHM��� C� Busch� N� Hardavellas and M� Mavronicolas�
�Contention in counting networks�� Proceedings
of the ��th Annual ACM Symposium on Prin�
ciples of Distributed Computing� p� ���� August

����

�BM�	� C� Busch and M� Mavronicolas� �An E�cient
Counting Network�� Proceedings of the �st Merged
International Parallel processing Symposium and
IEEE Symposium on Parallel and Distributed
Processing� pp� �	��	�� May
��	�

�FLL��� E� W� Felten� A� LaMarca and R� Ladner� �Build�
ing counting networks from larger balancers��
Technical Report TR���������� Department of
Computer Science and Engineering� University of
Washington� April
����

�HKM��� N� Hardavellas� D� Karakos and M� Mavronico�
las� �Notes on sorting and counting networks��
Proceedings of the �th International Workshop
on Distributed Algorithms �WDAG����� LNCS
Vol� ���� Springer�Verlag� pp� �����	� Septem�
ber
����

�HSW��� M� Herlihy� N� Shavit and O� Waarts� �Lineariz�
able counting networks�� Distributed Computing�
Vol� �� pp�
������
����

�HW��� M� Herlihy and J� Wing� �Linearizability� A
correctness condition for concurrent objects��
ACM Transactions on Programming Languages
and Systems� Vol�
�� No� �� pp� ������� July

����

�KP��� M� Klugerman and C� G� Plaxton� �Small�Depth
Counting Networks�� Proceedings of the �	th An�
nual ACM Symposium on Theory of Computing�
pp� �
���	� May
����

�L��� L� Lamport� �How to make a multiprocessor
computer that correctly executes multiprocess
programs�� IEEE Transactions on Computers�
Vol� C��	� No� �� pp� �����
� September
����

�LSST��� N� Lynch� N� Shavit� A� Shvartsman and
D� Touitou� �Counting networks are practically
linearizable�� Proceedings of the �
th Annual
ACM Symposium on Principles of Distributed
Computing� pp� �	��	�� May
����

�MPT��� M� Mavronicolas� M� Papatrianta�lou and
Ph� Tsigas� �The impact of timing on linearizabil�
ity in counting networks�� Proceedings of the ��th
International Parallel Processing Symposium� pp�
�	��		� April
����

�MR��� M� Mavronico�
las and D� Roth� �E�cient� Strongly Consistent
Implementations of Shared Memory�� Proceedings
of the �th International Workshop on Distributed
Algorithms �WDAG����� pp� �����
� LNCS Vol�
�	�� Springer�Verlag� November
����

�MT��� S� Moran and G� Taubenfeld� �A lower bound on
wait�free counting�� Journal of Algorithms� Vol�
��� pp�

��
����

�MTY��� S� Moran� G� Taubenfeld and I� Yadin� �Concur�
rent counting�� Journal of Computer and System
Sciences� Vol� ��� No�
� pp� �
�	� August
����

�SUZ�	� N� Shavit� E� Upfal and A� Zemach� �A steady
state analysis of di�racting trees�� Theory of
Computing Systems� Vol� �
� No� �� pp� �������
July�August
��	�

