Sequentially Consistent versus Linearizable

Counting Networks

(EXTENDED ABSTRACT)

Marios Mavronicolas*

Abstract

We compare the impact of timing conditions on imple-
menting sequentially consistent and linearizable coun-
ters using counting networksin distributed systems. For
counting problems in application domains which do not
require linearizability but will run correctly if only se-
quential consistency is provided, the potential payoffs
of our investigation are threefold: First, we show that
sequential consistency and linearizability cannot be dis-
tinguished by the timing conditions previously consid-
ered in the context of counting networks, and thus in
contexts in which these constraints apply, it 1s possi-
ble to rely on the stronger semantics of linearizability,
which simplifies proofs and enhances compositionality.
Second, we identify local timing conditions that sup-
port sequential consistency but not linearizability, and
thus suggest weaker, easily implementable timing con-
ditions that are likely to be sufficient in many applica-
tions. Third, we show that any kind of synchronization
that is too weak to support even sequential consistency,
may violate it significantly for some counting networks;
hence, we identify timing conditions that are to be to-
tally ruled out for specific applications that rely criti-
cally on either sequential consistency or linearizability.

*Department of Computer Science and Engineering, Univer-
sity of Connecticut, Storrs, CT 06269-3155. Part of the work of
this author was performed at Department of Computer Science,
University of Cyprus (supported by funds for the promotion of
research at University of Cyprus), and while at AT&T Labs —
Research, as a visitor to the Special Year on Networks, DIMACS
Center for Discrete Mathematics and Theoretical Computer Sci-
ence, Piscataway, NJ. Email: mavronic@engr.uconn.edu

tAT&T Labs — Research, 180 Park Avenue, Florham Park, NJ
07932-0971. Email: mischu@research.att.com

{The Open University, 16 Klausner St., Tel-Aviv 61392, Is-
rael. Part of the work was performed while visiting AT&T Labs
— Research. Email: gadi@cs.openu.ac.il

Michael Merrittt

Gadi Taubenfeldt

1 Introduction

1.1 Overview

The counting problem is to design a protocol in which
a number of concurrent processes repeatedly acquire
successive values. An additional possible requirement,
called linearizability, imposes that the order of the as-
signed values reflects the real-time order in which they
were requested [HW90]. Linearizable counting can be
used as a building block in basic constructions such as
concurrent time-stamps generation, implementing FIFO
buffers, and efficient shared counters.

Counting networks are highly concurrent data struc-
tures which solve the (non-linearizable) counting prob-
lem, in a way that reduce sequential bottlenecks and
contention [AHS94]. They are implemented in shared
memory as networks of records (balancers) and point-
ers (wires). Tt is known that there does mnot exist
a completely asynchronous counting network, with fi-
nite depth, that guarantees linearizability in all possi-
ble schedules [HSW96]. Thus, previous work has ad-
dressed the question of identifying appropriate tim-
ing conditions that outlaw non-linearizable schedules,
thus rendering a counting network linearizable [HSW96,
LSST96, MPTI7].

Sequential consistency is a consistency condition
weaker than linearizability [L79]. For counting net-
works, it assures that for any two tokens (i.e., requests
for values) by the same process, the earlier token ob-
tains a smaller value than the later one. This natu-
ral monotonicity property is reasonable to expect from
a counter primitive. Moreover, distinguishing sequen-
tial consistency from linearizability requires interprocess
communication outside of the shared counter primitive.
Although the standard correctness condition for shared
memory multiprocessors, the important notion of se-
quential consistency has not been investigated previ-
ously in the context of counting networks. As we will see
later, there are counting networks which, under specific
timing conditions, satisfy sequential consistency but not
linearizability.

1.2 Summary of results

In this work, we demonstrate that previously studied
timing conditions fail to distinguish sequential consis-
tency from linearizability. We introduce a new local
timing condition and demonstrate that it suffices to
guarantee sequential consistency, but not linearizabil-
ity. Finally, we show that previous measures of the
“fraction” of inconsistent counter operations can be ap-
plied to sequential consistency. We show that in the
worst case, weak timing assumptions previously shown
to admit proportion of incorrect (non-linearizable) oper-
ations [LSST96], actually admit the same proportion of
non-sequentially consistent operations—a large propor-
tion of locally-observable inconsistencies.

For counting problems that originate from application
domains which do not absolutely require linearizability
but which run correctly if only sequential consistency
is provided, the potential payoffs of our investigation
are threefold: First, if it turns out that both sequen-
tial consistency and linearizability are supported by the
timing constraints that are inherent in any particular
distributed environment, one can rely instead on the
stronger semantics of linearizability, since this simpli-
fies proofs and enhances compositionality. Second, an
understanding of weak timing conditions that support
sequential consistency but not linearizability allows the
designer to make available the timing condition that is
“cheapest,” yet sufficient for each specific application.
Third, an understanding of the negative effect of tim-
ing conditions that are too “weak” to support sequen-
tial consistency (and hence, also violate linearizability),
can help the designer of a distributed system to choose
the most “cost-effective” timing condition for those ap-
plications that are even willing to occasionally sacrifice
sequential consistency in order to achieve improved per-
formance.

The results presented in this work are:

e We discuss several timing conditions (regulating
the rate at which processes move through a count-
ing network, and global inter-operation delays)
and show that considering only these conditions
cannot distinguish linearizability from sequential
consistency (Theorem 3.2). Previous work on
timing conditions for assuring linearizability in
counting networks involve only these timing condi-
tions [HSW96, LSST96, MPT97]. Thus, it follows
that previously known results (especially necessary
conditions) hold also for sequential consistency.

e We identify timing conditions (involving an addi-
tional bound on local inter-operation delay) that
can distinguish linearizability from sequential con-
sistency. That is, we present timing conditions that
are sufficient for sequential consistency but not for
linearizability (Theorem 4.1). Thus, for example,

for any given uniform counting network, we present
timing conditions under which the network is se-
quentially consistent but is not linearizable. More-
over, these local timing conditions are straightfor-
ward to implement.

e The fraction of non-sequentially-consistent (resp.,
non-linearizable) operations in a finite execution
is defined to be the minimum number of opera-
tions whose removal yields a sequentially consistent
(resp., linearizable) execution, divided by the num-
ber of completed operations in the execution. We
present results, both upper and lower bounds, on
these fractions (Section 5).

1.3 Related work

Counting networks, with balancers with fan-in and
fan-out two, were first introduced and investigated
in [AHS94]. A generalization was introduced in [AA95]
where topological constraints on the design using larger
balancers were investigated. Similar design issues were
investigated in [FLL93] and [HKM93]. The notion
of linearizability is presented in [HW90]. Linearizable
counting networks assure that the order of values re-
turned by the same process or by different processes re-
flects the real-time order in which they were requested.
The fact that there does not exist a completely asyn-
chronous counting network, with finite depth, that guar-
antees linearizability in all possible schedules is pointed
out in [HSW96]. Various results on concurrent count-
ing (without using counting networks) are reported in
[BMT95, MT97, MTY96].

The first work to investigate timing constraints on the
behavior of counting networks and to identify an appro-
priate timing condition which guarantees linearizability
is [LSST96]. Moreover, this work shows that this suffi-
cient condition is also a necessary condition for bitonic
networks and counting trees. Additional results in this
direction are presented in [MPT97]. We discuss specific
results from these papers in Section 2.3.

The notion of sequential consistency 1s introduced
in [L79]. Sequentially consistent counting networks as-
sure that the order of values returned by the same pro-
cess reflects the real-time order in which they were re-
quested. We know of no previous work on sequentially
consistent counting networks. The impact of timing
conditions on the relative costs of implementing lineariz-
ability and sequential consistency in message-passing

has been investigated in [AW94, MR92].

2 Preliminaries

We first give the definitions of balancing and counting
networks, then we define several timing parameters. We

conclude with definitions of consistency conditions and
review previous results.

2.1 Balancing and counting networks

Many of the definitions in this section are adapted
from [AA95, AHS94, LSST96, MPT97]. Balancing net-
works are constructed from elements, called balancers,
that direct tokens from inputs to outputs, and wires,
which acyclically interconnect the balancers [AHS94].
An (fin, four)-balancer, or balancerfor short, is a routing
element receiving tokens on f;, input wires, and send-
ing out tokens to f,,; output wires; the integers f;,, and
four are called the balancer’s fan-in and fan-out, respec-
tively. Processes introduce tokens on the balancer’s in-
put wires at arbitrary times, after some delay shepherd
them instantaneously through the balancer, arriving on
an output wire. Roughly speaking, a balancer acts as
a round-robin scheduler, taking a stream of input to-
kens and forwarding them to its output wires, from top
to bottom; thus, a balancer effectively “balances” input
tokens on its output wires. The wires are interconnec-
tion and delay elements, but provide no queueing or
ordering of pending tokens.

For each index i, 0 < ¢ < f;,, we denote by z; the
history variable that stands for the number of tokens
that have entered on input wire i; for each index j,
0 < j < four, we similarly denote by y; the history
variable that stands for the number of tokens that have
exited on output wire j. In the initial state, all wires are
empty. A balancer is quiescent if Zf’:"l ;= Z;;"f i
that is, in a quiescent state, the number of tokens that
exited the balancer is equal to the number of tokens
that entered 1t. The following are important properties
of an (fin, four)-balancer:

1. Safety property: Zf’:"l T > Z;;"f y;; that is, a bal-
ancer never creates tokens spontaneously.

2. Liveness property: If only a any finite number of
tokens are input to the balancer, then eventually
the balancer reaches a quiescent state, Zf’:"l x; =

Zf;"l’ x;; that is, a balancer never “swallows” to-

kens.

3. Step property: For any pair of indices j and & such
that 1 <j <k < four, 0< g — o < L.

A (Wi, Wour)-balancing network is a directed, acyclic
graph G with three kinds of nodes: (1) w;,, source nodes
X1, Xa, .., Xy (2) woyr sink nodes Y1,Ya, ... Y.,
and (3) a finite number of inner nodes. The source and
sink nodes represent the input and output wires of the
network, respectively, while the inner nodes represent
the balancers of the network. The edges of G connect
the balancers by identifying the input and output wires

of successive balancers; thus, a node that corresponds

to an (fin, fout)-balancer has f;, incoming edges and
fout outgoing edges, that coincide with the input and
output wires of the balancer. Moreover, the outgoing
and incoming degrees of all source and sink nodes; re-
spectively, are equal to one, while the incoming and out-
going degrees of all source and sink nodes, respectively,
are equal to zero.

The size of a balancing network is the total number
of its inner nodes. For any wire z in a balancing net-
work, the depth of z, denoted d(z), is defined to be zero
if z is an input wire connected to a source node, and
maxi<i<y,, d(z)+1, for an output wire of an (fin, fout)-
balancer with input wires 21, z2,..., z;,,. For any bal-
ancer b in a balancing network, the depth of b, denoted
d(b), is the maximal wire depth, over all of its output
wires. A layer in a balancing network is a maximal set
of balancers that have the same depth. The depth of a
balancing network G, denoted d(G) or d for short, is the
maximum balancer depth, over all of its balancers. For
any integer [, 1 <1 < d(G)+ 1, the [-th layer of ¢ is
the collection of nodes (balancers or sinks) whose depth
is {. A path in a balancing network G is defined in the
natural way. A balancing network is uniform [LSST96,
Definition 2.1] if each node of the network lies on some
path from source nodes and sink nodes, and all paths
from source nodes to sink nodes have the same length.

The safety and liveness properties for a balancing net-
work follow naturally from those for its balancers. Thus,
if only finitely many tokens enter a balancing network,
it eventually reaches a gquiescent state in which all to-
kens that entered the network have exited (reached a
sink). Since processes shepherd tokens through differ-
ent parts of the network at different times, the step
property is only required of such quiescent states. How-
ever, not all balancing networks satisfy the step prop-
erty. A (Win, Woyt)-counting network is a (Win, Woyt)-
balancing network for which, in any quiescent state, for
any pair of indices j and k such that 1 < j < k < weyt,
0 < y; —yr < 1; that is, in quiescent states the output of
a counting network has the step property. Fach one of
the w,y; sink nodes of a counting network is identified
with an atomic counter. The tokens exiting on out-
put wire y;, 1 < j < wyyy, are consecutively assigned
by the counter residing there the integers j, j 4+ wous,
Jj + 2wy, and so on. We remark that known con-
structions of counting networks [AA95, AVY94, AHS94,
BHM94, BM98, FLL93, HKM93, KP92] are uniform.

On a multiprocessor shared memory machine, a bal-
ancing network is implemented as a shared memory data
structure, where balancers are records and wires are
pointers from one record to another. Each process runs
a program that repeatedly performs an increment oper-
ation on the network by traversing the data structure
from some input pointer to some output pointer, each
time shepherding a new {oken through the network. We

C

Cmax

assume an unbounded set of processes assigned to each
input wires: all tokens generated by a specific process
enter on the assigned input wire. A process shepherds a
token through the network by atomically updating each
balancer, and using the returned value to choose which
pointer to follow. For simplicity, we assume that bal-
ancer updates are instantaneous, and all delays occur
on the wires.

2.2 Timing conditions

An ezecution of a balancing network G can be de-
noted as a (possibly infinite) sequence & = e, ea,...
of Instantaneous transition events e; of the form
BAL,(T;, by, fm, fn) (corresponding to a token T of
process p traversing a balancer bg, entering on in-
put wire f;, and exiting on output wire f,) or
COUNT,(T;,Cy, 1) (corresponding to a token T of pro-
cess p traversing a counter C}, obtaining the value).
A timed ezecution Rg for an execution £ of a balanc-
g network G associates a time with each event in
the execution, in a non-decreasing sequence, denoted
Re = {e1,11), {ea,t2), ... Moreover, if the execution & is
infinite, then the sequence t1,%5, ... 1s unbounded.

Let T'(€) be the set of tokens appearing in execution
€. A timed execution Re determines a schedule Sg :
T(E) x [d(G) + 1] — R that specifies for any token T' €
T(&) and layer [, 1 <1 < d(G)+1, the time Sg(T,1) at
which token 7' passes through a node in layer {.
Associated with a schedule Sg of a network G are the
following timing parameters:

rfr)lin — lower bound on wire delay for process P. The
minimum over all tokens T inserted by process P
and all layers [, of the difference between the time
at which 7" passes through layer [, and the time at
which T' passes through layer [— 1, where 1 <1 <
d(G)+ 1. Intuitively, ¢£ . represents the minimum
delay a token by process P “experiences” over any
individual wire.

— lower bound on wire delay. The minimum over
all processes P of ¢f . . Intuitively, ¢ represents
the minimum delay a token “experiences” over any
individual wire.

min

—upper bound on wire delay. The maximum over all
tokens 7" and all layers I, of the difference between
the time at which 7' passes through layer [, and
the time at which 7' passes through layer { — 1,
where 1 < ! < d(G)+1. Intuitively, ¢y qp represents
the maximum delay a token “experiences” over any
individual wire.

CE — lower bound on local inter-operation delay for pro-
cess P. The minimum over all pairs of consecutive

tokens T and 7" by process P, of the difference be-
tween the time at which token 7" passes through
layer 1 of the network, and the time at which to-
ken T passes through layer d(G) 4+ 1. Intuitively,
C¥F measure the “local delay” incurred between the
time a token by P exits the network and the time
a new token by P can enter it.

Cy, — lower bound on local inter-operation delay. The
minimum, over all processes P, of C’f. Intuitively,
C'1, measure the “local delay” incurred between the
time some token exits the network and the time a
new token by the same process can enter it.

Cg — lower bound on global delay. The minimum over
all pairs of tokens T and 7" that do not overlap
(are not inside the network at the same time) of
the difference between the time at which token 7’
passes through layer 1 of the network, and the time
at which token 7" passes through layer d(G)+1. In-
tuitively, C; measures the “global delay” incurred
between the time some token exits the network and
the time a new token (possibly by another process)
can enter it.

The timing parameters ¢min, Cmar, and C; were intro-
duced and their relationship to linearizability was stud-
ied by Lynch et al. [LSST96]. The timing parameters
el C’f, and (' were previously considered in work
by Shavit et al. studying the impact of local delay on
global performance, but not in the context of assuring

consistency conditions [SUZ98].

2.3 Consistency conditions

A serialization of execution £ is a total order of the
tokens in T(E) that respects the order of tokens at each
individual process. A timed execution Rg specifies a

partial order e on tokens in T(E) as follows: For any

tokens T and 77 in T(E), T Be i if and only if T
completely precedes T” in the execution Rpg.

Herlihy et al. [HSW96] adapted the definition of lin-
earizability from [HW90] to balancing networks: A lin-
eartzation of timed execution Rg is a serialization of &£
that extends 2%, That is, for any tokens 7" and 7" in

E T BE) T’, then T precedes T” in the linearization.

A timed execution Rg is hineartzable if it admits a lin-
earization in which every token receives a value greater
than that of all tokens earlier in the linearization. A
balancing network is linearizable [HSW96] under a tim-
ing condition if every timed execution satisfying that
condition is linearizable.

Lynch et al. showed in [LSST96], among other re-
sults, that a uniform counting network is linearizable
if for any two tokens traversing the network, their
traversals either overlap or they are separated by time

t > d(G)(emar — 2¢min). Thus, if d(G)(¢mar — 2¢min)
< Cy (and hence also if ¢nae/Cmin < 2) then such a
network is linearizable. As the authors point out, the
bound d(G)(¢mazr —2¢min) < Cy is not alocal condition—
it would require coordination among individual pro-
cesses to ensure the C; bound is preserved. Hence, the
stronger bound ¢pae/Cmin < 2 is stressed as a local
linearizability criteria.

In Section 4 we show that weaker, local timing bounds
suffice to guarantee the weaker correctness condition of
sequential consistency, which we adapt from [L79] to
balancing networks. Say that a timed execution Rg of a
balancing network G is sequentially consistent if the suc-
cessive token traversals by each process return increas-
ing values. A balancing network is sequentially consis-
tent under a timing condition if every timed execution
satisfying that condition is sequentially consistent.

For any execution &, consider the restriction of & to
events of process P, denoted & | P. Clearly, this restric-
tion inherits the order of tokens at process P (already
determined by execution £). Say that an execution & is
sequentially consistent with respect to process P if the
values obtained by tokens in the restriction £ | P are in
increasing order. A balancing network G is sequentially
consistent with respect to process P if every execution
of it is 1s sequentially consistent with respect to process

P.

Proposition 2.1 Assume that for each process P, the
balancing network G 1s sequentially consistent with re-
spect to process P. Then, G 1s sequentially consistent.

3 Timing conditions which do
not distinguish linearizability
and sequential consistency

In this section, we demonstrate that limiting ¢,ip, C¢max
and Cy cannot distinguish linearizability from sequential
consistency.

The proof of this result depends on the modular
counting carried out by individual fan-out-f balancers;
that is, f tokens can be simultaneously carried through
a balancer without affecting the other tokens. The
lemma below formalizes this property.

Lemma 3.1 Let Rg = {eq,t1), ..., {ei, t;), ... be a timed
ezecution of a balancer B with fan-out f. Suppose:

® pi,...,p; are processes shepherding tokens

11, ..., Ty, respectively,

o y=j (mod f) tokens have passed through B after
step (e, 1;) of Re,

o ki,....ks are indices of input wires of B, and

o t; <t and either {e;,t;) is the last step of Rg or
t < tiy1, and (in either case) let 5 be the suffix of
Re starting after step {e;, ;).

Then <61,t1>, ceny <6i,ti> <BALp1 (Tl,B,kl,j + 1),t>, ceny
(BALp, ;(Ty-j, B k—j, f),1)

<BALPf—j+1 (Tf—j+1aBakf—j+1a1)at>a"'a

(BALp, (T, B, ks, j),t), 3 is a timed execution of B.

Proof: A balancer with fan-out f acts as a counter
modulo f. Since exactly w new tokens pass through B
simultaneously, later tokens are unaffected. [|

Theorem 3.2 A uniform counting network under tem-
ing conditions Cmin, Cmax and Cy ts linearizable if and
only if it 1s sequentially consistent.

Proof: Since linearizability implies sequential consis-
tency, it suffices to show that for any uniform counting
network G, if there is a timed execution Rg of G that
is not linearizable and satisfies a timing condition ¢4y,
Cmar and Cy, then there is a timed execution R that
1s not sequentially consistent and yet satisfies the same
timing condition.

Let Rg be such a non-linearizable timed execution.
For simplicity, assume for now that each balancer has
the same number of input and output wires. The
proof below constructs the timed execution R} from
Re. Since Rg is not linearizable, it must contain two se-
rial operations for tokens 7 and 75, such that the first
token, 11, receives some value y3;;, while the token 75
following it receives a smaller value, ysmqn. If these two
tokens belong to the same processor, then R¢ is already
not sequentially consistent.?

So assume otherwise. The proof demonstrates that
by carefully introducing and scheduling additional to-
kens, using the modular properties of balancers noted
in Lemma 3.1, a timed execution R can be constructed
in which two tokens associated with the same process
mimic the behavior of 7} and 75, emerging with the
values yp;4 and Ysmain, respectively.

Let W be the width of GG, let pq, ..., pw be processors
that take no steps in Rg, each p; assigned to the input
wire w;, and suppose that the processor p associated
with token T} is assigned the j’th input wire of . Let
Rg, be the sequence obtained by relabelling the steps
of token T} with processor index p;. It should be clear
that Rg, is a timed execution of GG with the same timing
properties as Rg: we have simply replaced a token of
processor p with one by p;.

Let D be the depth of D, let ¢ be the proces-
sor that moves token 75 through the network, and

1The original definition of counting networks [AHS94] allows
each process to introduce tokens to an input wire that is either
preassigned or chosen arbitrarily. In the second case, the claim
follows trivially by relabelling tokens 77 and 7% with a process
that otherwise takes no steps in Re.

let Rgl = <61,t1>, ceey <BALq(T2,Bl,inl,OUtl),t(h),
ceny <BALq(T2, BD—l, inD_linD_l, outD_l), t(ID—1>’ ceny
(COUNTY(T5,Cp, Ysmait), tgn), ..., where the identi-
fied events are the D steps ¢ takes to move the token 75
through the network.

Let Rg, be the prefix of Re, that ends just before
event (COUNT (T, Cp, Ysmali), tgp)-

Observe that in any counting network there must be
a path from every input wire to every output wire. (To
see this, note that the counting properties must hold
even if every token comes in over a single input wire.)
In particular, there is a path from input wire j to the
counter C'p. We can use Lemma 3.1 to route a token by
p; along this path, emerging just before 15, and return-
ing the value y. To prevent this token from affecting
others, we move W tokens synchronously through the
network, moving through each layer of the uniform net-
work at the same speed as 7. Specifically, just before
(BAL,(T5, By,iny,0ut1),ty,) in the execution, and with
the same time t,_1, we add W events, one for each p;,
routing p; through the first balancer on the path to Cp.
The result is a timed execution Rg, that is an execution
of each component balancer and counter, and so of G.
Since a token was moved on every input wire through its
first balancer, there is now a token on every output wire
of the first layer of the network, and hence a token on
every input wire of the next layer. So again before event
(BAL,(T5, By, ing, outs), t,,) we can add W events, one
for each p;, routing p; through the second balancer on
the path to Cp, resulting in a sequence Rg, that is an
execution of each component balancer and counter, and
so of (. Continuing, for D — 1 steps, we end with a
sequence fg, , that is a timed execution of each com-
ponent balancer and counter, and so of ¢, in which
p;’s token Ty is on the input wire to counter Cp. Fi-
nally, timed execution Reg,, ., is produced by appending
(COUNT, (1,,Cp,Ysman1), tqp) to Rep,,,. Moreover,
since each of the new tokens move through the network
at exactly the same rate as 15, R, satisfies the same
timing constraints as fe. But processor p; performed
two serial operations that returned y;;, and then yoman,
so Re, ., is not sequentially consistent.

Up to this point, the argument has assumed that
each balancer has the same number of input and output
wires. If this is not the case, then a similar construc-
tion will work, but many more than W tokens may be
needed.

Let LC'M; be the least common multiple of the fan-
out of the balancers in layer ¢ of G. Focusing on the
first layer of the network, if we put LC'M; tokens on
each input wire and route them as before simultane-
ously through the first layer, then at least one token
will emerge on each output wire. As important, the
number of tokens moving through each balancer will be
a multiple of the fan-out of that balancer, as Lemma 3.1

requires.

To get at least one token on each output of the sec-
ond layer, it suffices to put LO My LC M, tokens on each
input wire to (G, and once again the number of tokens
moving through each balancer is a multiple of the fan-
out of that balancer. Finally, HZ»D:_ll LCM; tokens on
each mput wire of G will suffice to route the specific
token for p; to Cp.

Although there are (far) more tokens on each wire
than in the argument above, they all move at the same
rate as 77. Hence the resulting execution satisfies the
same constraints ¢min, Cmar and Cy. [|

The results reported in [HSW96, LSST96] identified
timing conditions dependent only on the parameters
Cmin, Cmaz, and Cy, that are either necessary or suffi-
cient (or both) for linearizability. Theorem 3.2 allows for
the extension of such results to sequential consistency.
For example, the following corollaries follow from The-
orem 3.2 and similar results proved for linearizability

in [LSST96, MPT97].

Corollary 3.3 A bitonic counting network is sequen-
teally consistent under timing conditions ¢pae and Cmin
of and only if car < 2¢min-

If GG is a uniform counting network, then we denote by
irad((G) the maximum, over every pair of output wires j
and k of (G, of the distance from j to the least common
ancestor of j and k in G.

Corollary 3.4 A uniform counting network G is se-
quentially consistent under timing conditions cpqe and

Cmin MY if ¢maz/emin < d(G)/irad(G) + 1.

Notice that the local delay Cp, is not explicitly men-
tioned in any statement of this section. However, for
an arbitrary uniform counting network ¢, Corollary 3.4
implies that for some small enough local delay (say 0),
G 1s not sequentially consistent; in the next section, we
prove a theorem (Theorem 4.1) which implies that for
some big enough local delay, G is sequentially consis-
tent.

4 Timing conditions which dis-
tinguish linearizability and se-
quential consistency

In this section, we demonstrate that any uniform count-
ing network (' is sequentially consistent under the tim-
ing condition d(G) - (¢maz — 2¢min) < Cr, but that this
condition is insufficient to imply linearizability. Unlike
the global delay bound d(G) - (¢mar — 2¢min) < Cy,
(which implies linearizability [LSST96]) this condition
can be implemented easily using local clocks.

Theorem 4.1 Let G be a uniform counting network
and let ¢min, Cmaz and Cp be timing conditions such
that d(G) - (¢maw — 2¢min) < Cr. Then G is sequentially
consistent under these conditions.

To prove the theorem, we use the following result due

to Lynch et al. [LSSTI6].

Proposition 4.2 ([LSST96]) Assume that tokens T
and T’ traverse a uniform counting network G during
the intervals [tin,tous] and [, 1)), respectively. If
d(G) - (emar — 2¢min) < th, — tout, then T’ returns a
higher value than T'.

Proposition 4.2 can be immediately extended as follows:

Corollary 4.3 Assume that tokens T and T', both of
process P, traverse a uniform counting network G dur-
ing the intervals [tin, toys] and [t t),.], respectively. If
d(G) - (cmae — 2¢5,) <, — tour, then T' returns a
higher value than T'.

Lemma 4.4 Consider any uniform counting network
G, and any process P.

If d(G) - (cmaw — 2¢h,,) < CF, then G is sequentially
consistent for process P.

Proof: Consider any tokens T' and T’, both of pro-
cess P, traversing GG during the intervals [t;,, {ou:] and

[, t0.:], with T preceding T'. By assumption,
d(G) - (emar = 2¢5) < O - (1)
By definition of Cf,
CF < thn = tout. (2)

From (1) and (2) it follows that,
d(G) - (emaw — 2¢h50) < thy — tour. (3)

It follows from (3) and Corollary 4.3 that 7" returns
a higher value than 7. Since 7" and T’ were chosen
arbitrarily, this implies that G is sequentially consistent
for process P. [|

The proof of Theorem 4.1 follows from Lemma 4.4
and Proposition 2.1. It follows from Theorem 4.1 and
Corollary 3.4, that there are timing conditions for any
uniform counting network that imply sequential consis-
tency but not linearizability:

Corollary 4.5 For any uniform counting network, G,
there are timing conditions Cmin, Cmae and Cp such
that under these constraints G satisfies sequential con-
sistency but does not satisfy linearizability.

Proof: Let G be any uniform counting network and
Cmin and Cpae timing conditions such that ¢pae/Cmin
> d(G)/irad(G) + 1. By Corollary 3.4, there exists a
timed execution Rg of GG satisfying these timing condi-
tions that is not sequentially consistent. Now rename
the processes that shepherd more than one token in £
in such a way that each token is shepherded by a dif-
ferent process, resulting in a timed execution Rf. Since
Rg 1s not sequentially consistent, the construction im-
plies that Ry is not linearizable. Now let Cr be any
value such that Cr > d(G)(emar — 2¢min). By con-
struction, R} vacuously satisfies d(G)(cmazr — 2¢min) <
C, as needed to complete the proof. [|

5 Inconsistency fractions

5.1 Definitions

Say that a token T is non-linearizable in an execution
& [LSSTY6], if there exists some other token 7", which
completely precedes T" and returns a value higher than
that of T'. Say that a token 7" 1s non-sequentially consis-
tent in an execution & if there exists some other token
T’, shepherded by the same process, which precedes T
and returns a value higher than that of T'.

For any finite execution £ of a balancing network G,
the non-linearizability fraction of £ [LSST96] is defined
to be the number of non-linearizable tokens in £ di-
vided by the total number of tokens in T(€). The non-
linearizability fraction of G (under a given set of timing
conditions) denoted Fp;(G) is the maximum, over all
executions &£ of G satisfying the timing conditions, of
the non-linearizability fraction of £.

Similarly, the non-sequentially consistency fraction of
& 1s the number of non-sequentially consistent tokens in
& divided by the total number of tokens in T'(£). The
non-sequential consistency fraction of G, (under a given
set of timing conditions) denoted Fp;.(G), is the max-
imum, over all executions £ of G satisfying the timing
conditions, of the non-sequential consistency fraction of
E. Clearly, Fpi(G) > Fpso(G).

The absolute non-linearizability fraction of £ 1s de-
fined to be the number of non-linearizable tokens in &
whose removal yields a linearizable execution, divided
by the total number of tokens in £. The absolute non-
linearizability fraction of G, (under a given set of timing
conditions) denoted AF,;((), is the maximum, over all
executions &£ of G satisfying the timing conditions, of
the absolute non-linearizability fraction of £. Clearly,
F.i(G) > AF,(G).

Similarly, the absolute non-sequential consistency
fraction of £ is the number of non-sequentially consis-
tent tokens in £ whose removal yields a sequentially
consistent execution divided by the total number of to-
kens in €. The absolute non-sequential consistency frac-

tion of GG, denoted AF,;.(G), is the maximum, over
all executions £ of G, (under a given set of timing
conditions) of the absolute non-sequential consistency
fraction of & satisfying the timing conditions. Clearly,
Fose(G) > AF,;5.(G), and AF,(G) > AF,;:.(G).
There is only a single known lower bound on F,;(G) for
the particular case where GG is the bitonic counting net-
work [AHS94], and under a particular timing assump-
tion that involves the size of the network. The following
results is due to Lynch et al. [LSST96]:

Proposition 5.1 ([LSST96]) Let G) be the bitonic
network with width w, and let cpip and cpae be timing
conditions such that ¢pmap/cmin > (3 +1gw)/2. Then
under these conditions Fnl(G(w)) > 1/3.

We can extend Proposition 5.1, using a similar construc-
tion, as follows:

Proposition 5.2 Let G) be the bitonic network with
width w, and let ¢pip and cpmqe be timing conditions
such that c¢maz/emin > (3 +1gw)/2. Then under these
conditions Fnsc(G(w)) > 1/3.

5.2 An upper bound

The next theorem is an upper bound on the absolute
non-sequential consistency fraction, under a timing as-
sumption expressing “bounded asynchrony”.

Theorem 5.3 Let G be a uniform counting network,
£ an integer greater than 1, and cmin and cpmae timing
conditions such that cpaz/Cmin < £. Then, under these
conditions,

(&
[\]

AF,.(G) <

(&
—_

We first show a technical claim.

Lemma 5.4 Let G be a uniform counting network, £
an integer greater than 1, and cmin and Cpmae timing
conditions such that cm(w/cP <t Letdy,.. Ty bea

sequence of tokens of P such that T; starts before Ti1q
forall1 <i< f. Then, T} obtains a smaller value than
Ty.

Proof: For each token, it takes at least d(G)-ch,,, time

units to go through the network. Thus, since there are
£ — 2 tokens between T} and Ty, there is a local delay of
C > ({—2)-d(G)-ck,, between the time at which T}

min
exits the network and the time at which 7} enters it. By

Corollary 4.3, T; returns a higher value than 77, if d(G)-

(¢mar — QCHP“»H) < C'. Thus, T; returns a higher value

than 71, if d(G) - (emaw — 2¢5,) < (—2)-d(G)-cb ..
Since, by assumption, ¢mae/ch . < £, this inequality

always holds. [|

We continue with the proof of the Theorem 5.3.

Proof: For any execution &€ of G and process P, let £F
denote the sequence of tokens shepherded by P in £. By
Lemma 5.4, for any two tokens 7; and 7; such that 7;
appears £ positions before T} in EP T; obtains a smaller
value than 7. Thus, if for any process P, we remove
from & each token its position modulo (£ — 1) (in £F) is
different from 1, we get a sequentially consistent timed
execution.]

5.3 A lower bound

Next we presnt a lower bound on the non-sequential
consistency fraction of any counting network that has
a certain topological property. For lack of space, all
the proofs are omitted. We first give some appropriate
definitions.

For any balancer output wire j in a network (G, define
the valency of j in G, denoted Valency(j), to be the set
of sink nodes reachable from j. For any balancer b in a
network G, the valency of b in G, denoted Valency(b), is
the union of the valencies of its output wires. Clearly,
for any counting network, for any particular layer of it,
every sink node must be reachable from some node in
the layer. Hence, we have:

Proposition 5.5 Fiz any layer £ in a counting nel-
work G with fan-out wey, where 1 < € < d(G). Then,

Upe, Valency(b) = {1,2, ..., wour}-

Consider any balancer b in a network G, with out-
put wires 1,2,..., four. Say that b is univalent in G
if for each pair of indices j and k, 1 < 5,k < four,
Valency(5) (] Valency(k) = 0. Intuitively, b is univalent
if each of its output wires unambiguously determines a
set of possible output wires of the network, those that
can be reached by a token starting from that particular
output wire of b. Say that a layer £ is unwalent in G if
each of the balancers in £ is univalent in G.

For any pair of sets of integers V; and Vi, say
that Vi precedes Vs, denoted Vi < Vs, if every in-
teger in Vy is less than any integer in Va. Say that
b induces a total precedence in G if the set of sets
Valency(1), Valency(2), ..., Valency(fou:) is totally or-
dered with respect to <; that is, for each pair of indices j
and k, 1 < j, k < four, either Valency(y;) < Valency(yx)
or Valency(yy) < Valency(y;). Clearly, any balancer
that induces a total precedence 1s also univalent, but
not vice versa. Intuitively, b induces a total precedence
if 1t leads to eventual “decisions” that do not “cross”
each other. Say that a layer ¢ induces a total prece-
dence in G if each of the balancers in £ induces a total
precedence in G.

For any network G, define the splitting depth of G,
denoted sd((), to be either the minimum integer ¢,
1 < ¢ < d(G), such that layer £ of GG induces a total

precedence in G, or infinite if no such integer exists; in-
tuitively, the split of G measures “how far” into GG a to-
ken needs to get before the set of possible output wires it
will exit from is unambiguously determined. A splittable
network is a network with finite splitting depth. Con-
sider any splittable network (. Say that G is uniformly
splittable if for each balancer b in layer sd(G), for any
output wires j and k of b, |Valency(j)| = |Valency(k)|.
Clearly, for any uniformly splittable counting network
GWout) made up of balancers of fan-in and fan-out
two, for any balancer b in layer sd(G) with output
wires 1 and 2, |Valency(1)] = {1,2,..., weus/2} and
[Valeney(2)| = {wout/2 4+ 1, Wour/2 + 2, ..., Wour }. We
continue to demonstrate that the original counting net-
works introduced in [AHS94], namely the bitonic and
periodic counting networks, are uniformly splittable;
moreover, we shall calculate their splitting depths. We
start by showing:

Proposition 5.6 Let BM") be the bitonic counting net-
work of width w. Then, B™Y) is uniformly splittable and
sd(B")) = (Ig? w — lgw + 2)/2.

We also show corresponding results for the periodic
counting network.

Proposition 5.7 Let P) be the periodic counting net-
work of width w. Then, P™) is uniformly splitiable and
sd(P)) =lg? w—lgw+ 1.

For any network G such that sd(G) < d(G), define
the split suffiz of G, denoted Ssuffix(G), to be the suffix
of G consisting of layers sd(G) + 1,sd(G)+2,...,d(G)
of GG.

half

For any uniformly splittable network ' made up
of balancers of fan-in and fan-out two, we provide
an inductive construction of a finite sequence of net-
works Split(o)(G),SpIit(l)(G),..., which we call the
splitting sequence for G, as follows. For the basis
case, Split(o)(G) = (. Assume inductively that we
have defined the network Split(z_l)(G) for some inte-
ger £ > 1. We proceed to the induction step. If
sd(SpIit(Z_l)(G)) > d(SpIit(Z_l)(G)), then the construc-
tion terminates; else, define Split(z)(G) to be the net-
work Ssuffix(SpIit(Z_l)(G))b. Intuitively, the construc-
tion starts with the network ¢, and each network sub-
sequently in the sequence results by “chopping off” the
preceding network at its splitting depth, if that is pos-
sible, and taking the bottom part of the “chopped”
split suffix. Since G is uniformly splittable, sd(G) <
d(G); thus, it follows that the length of the sequence
Split(o)(G),SpIit(l)(G), ..., is no less than two and at
most d(G). Say that G is uniformly splittable all the
way through if each network but the last in the splitting
sequence for (G is uniformly splittable.

Assume that the splitting sequence for G has length
greater than one. Define the splitting number of G,
denoted split(G), to be the length of the splitting se-
quence for G. We proceed to calculate the splitting
numbers of the original bitonic and periodic counting
networks [AHS94]. We start by showing:

Proposition 5.8 Let B("Y) be the bitonic counting net-
work of width w. Then, B™) is uniformly splittable all
the way through, and split(B™)) = lgw — 1.

We continue to show:

Proposition 5.9 Let PM) be the periodic counting net-
work of width w. Then, P™) is uniformly splitiable all
the way through, and split(P™)) = lgw — 1.

We proceed to show our main lower bound based on
the splitting number.

Theorem 5.10 Consider any uniform counting net-
work G that is uniformly splittable all the way
through. Then, for any integer £, 1 < £ < split(G(™)),
and timing conditions ¢pin and Cpaz, if

Craz N d(G(w))
Cmin d(Split(Gw)y)
then,
26— 1
@) 2 5y
and
(w) !
e @) 2 5y

We remark that Theorem 5.10 establishes a collec-
tion of lower bounds on the non-linearizability and
non-sequential consistency fractions, one for each pos-
sible value of £ and under a different timing assump-
tion, in the form of a lower bound, on ¢y, and
Cmag; this assumption depends on £ since it involves
d(SpIit(Z)(G(w))). As £ increases, d(SpIit(Z)(G(w))) de-
creases, and the assumed lower bound on ¢pae/Cmin
therefore increases.

By Propositions 5.6, 5.7, 5.8, and 5.9, Theorem 5.10
immediately implies the following for the case where £ is
taken to be equal to the splitting number of the network.

Corollary 5.11 Consider the bitonic counting network
BW) . Assume that

max 1 1 1

ma), leulgut)

Cmin 2
Then,

w—2

(w) s
Fnl(B) Z 2(w— 1) 3

and

1

F,..(B")Y) > .
() =z w—1

Corollary 5.12 Consider the periodic counting net-
work P, Assume that

Cmaz > 1+1g%w.
Cmin

Then,
-2
F, (P®)) > w—ea
(P 2 2w—1)’

and
Fo..(P") > L
- w-1

We remark that the lower bounds on the non-
linearizability fractions established in Corollaries 5.11
and 5.12 tend to 1/2 (from below) as w tends to infin-
ity, while the corresponding lower bounds for sequen-
tial consistency tend to 0. This suggests to use large
counting networks for applications that are willing to
occasionally sacrifice sequential consistency, in case it
is expensive to provide a timing constraint that would
guarantee sequential consistency in all schedules.

References

[AA95] E. Aharonson and H. Attiya, “Counting networks
with arbitrary fan-out,” Distributed Computing,

Vol. 8, pp. 163-169, 1995.
W. Aiello, R. Venkatesan and M. Yung, “Coins,

weights and contention in balancing networks,”
Proceedings of the 13th Annual ACM Symposium
on Principles of Distributed Computing, pp. 193—
205, August 1994.

J. Aspnes, M. Herlihy and N. Shavit, “Counting
networks,” Journal of the ACM, Vol. 41, No. 5,
pp. 1020-1048, September 1994.

[AVY94]

[AHS94]

[AW94] H. Attiya and J. L. Welch, “Sequential consis-
tency versus linearizability,” ACM Transactions
on Computer Systems, Vol. 12, No. 2, pp. 91-122,
May 1994.

[BMT95] H. Brit, S. Moran and G. Taubenfeld, “Public

data structures: counters as a special case,” Pro-
ceedings of the Third Israel Symposium on The-
ory of Computing and Systems, Tel Aviv, January
1995.

[BHM94] C. Busch, N. Hardavellas and M. Mavronicolas,
“Contention in counting networks,” Proceedings
of the 13th Annual ACM Symposium on Prin-
ciples of Distributed Computing, p. 404, August
1994.

[BM9S]

[FLL93]

[HKMO93]

[HSW96]

[FW90]

[KP92]

[L79]

[LSST96]

[MPT97]

[MR92]

[MT97]

[MTY96]

[SUZ98]

C. Busch and M. Mavronicolas, “An Efficient
Counting Network,” Proceedings of the 1st Merged
International Parallel processing Symposium and
IEEE Symposium on Parallel and Distributed
Processing, pp. 380-385, May 1998.

E. W. Felten, A. LaMarca and R. Ladner, “Build-
ing counting networks from larger balancers,”
Technical Report TR-93-04-09, Department of
Computer Science and Engineering, University of
Washington, April 1993.

N. Hardavellas, D. Karakos and M. Mavronico-
las, “Notes on sorting and counting networks,”
Proceedings of the 7th International Workshop
on Distributed Algorithms (WDAG-93), LNCS
Vol. 725, Springer-Verlag, pp. 234-248, Septem-
ber 1993.

M. Herlihy, N. Shavit and O. Waarts, “Lineariz-
able counting networks,” Distributed Computing,
Vol. 9, pp. 193-203, 1996.

M. Herlihy and J. Wing, “Linearizability: A
correctness condition for concurrent objects,”
ACM Transactions on Programming Languages
and Systems, Vol. 12, No. 3, pp. 463-492, July
1990.

M. Klugerman and C. G. Plaxton, “Small-Depth
Counting Networks,” Proceedings of the 24th An-
nual ACM Symposium on Theory of Computing,
pp. 417-428, May 1992.

L. Lamport, “How to make a multiprocessor
computer that correctly executes multiprocess
programs,” [IEFEE Transactions on Computers,

Vol. C-28, No. 9, pp. 690-691, September 1979.
N. Lynch, N. Shavit,

D. Touitou, “Counting networks are practically
Proceedings of the 15th Annual
ACM Symposium on Principles of Distributed
Computing, pp. 280-289, May 1996.

M. Mavronicolas,

A. Shvartsman and

linearizable,”

M. Papatriantafilou and
Ph. Tsigas, “The impact of timing on linearizabil-
ity in counting networks,” Proceedings of the 11th
International Parallel Processing Symposium, pp.
684-688, April 1997.

M. Mavronico-
las and D. Roth, “Efficient, Strongly Consistent
Implementations of Shared Memory,” Proceedings
of the 6th International Workshop on Distributed
Algorithms (WDAG’92), pp. 346-361, LNCS Vol.
486, Springer-Verlag, November 1992.

S. Moran and G. Taubenfeld, “A lower bound on
wait-free counting,” Journal of Algorithms, Vol.
24, pp. 1-19, 1997.

S. Moran, G. Taubenfeld and I. Yadin, “Concur-
rent counting,” Journal of Computer and System
Sciences, Vol. 53, No. 1, pp. 61-78, August 1996.
N. Shavit, E. Upfal and A. Zemach, ”A steady
state analysis of diffracting trees,” Theory of
Computing Systems, Vol. 31, No. 4, pp. 403-423,
July/August 1998.

