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Balancing networks represent a new class of distributed, low-

contention data structures suitable for solving many funda-

mental multi-processor coordination problems that can be
expressed as balancing problems. In this work, we present

a mathematical study of the combinatorial structure of bal-
ancing networks, and its applications in deriving impossibil-
ity results and verification algorithms for such networks.

Our study identifies important combhatorial transfer pa-
rameters of balancing networks. Necessary and sufficient
conditions are derived, expressed in terms of these param~
ters, which precisely characterize many important and well
studied classes of these networks, such as counting, smooth-

ing and sorting networks. Immediate implications of these

conditions include analogs for these network classes of the

Zero- One principle holding for sorting networks. In particu-
lar, these conditions precisely delimit the boundary between
sorting and counting networks.

We use the necessity of the shown combhatorial condi-
tions in deriving impossibility results of two kinds. Impossi-
bility results of the former kind establish sharp restrictions
on achievable network widths for several ckwses of balancing
networks; these results significantly improve upon previous

ones shown in [2, 20] in terms of strength, generality and
proof simplicity. ImpossibUity results of the latter kind pro-

vide the first known lower bounds on network size for several

classes of balancing networks.
We use the sufficiency of the shown combinatorial con-

ditions in designing the first formal algorithms for mathe-
matically verifying that a given network belongs to each of
a variety of classes. These algorithms are simple, modu-
lar and easy to implement, consisting merely of multiplying
matrices and evaluating matricial functions.
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1 Introduction

Most intereating coordhation problems in multi-processor
computing require processors to balance their actions in
some way. Typical examples of such balancing problems

include assigning successive memory addresses to proces-
sors [11], balancing the computational load on a computer
system while minimizing the maximum load on a server [5,

21, 23], and implementing barrier data structures in order
to synchronize processes operating at different speeds [1, 14,
19].

In a seminal paper, Aspnes et al. [4] proposed balancing
networks as a new approach to solving such problems. Bal-
ancing networks, like sorting networks [18], are constructed
from simple multi-input, multi-output computing elements
called balancers, connected to each other through wires.

Roughly speaking, a balancer is a toggle mechanism, alter-
nately forwarding inputs to each of its output wires. It thus
balances its inputs on its output wires. Aspnes et al. stud-
ied, in particular, counting networks, a subclass of balanc-
ing networks suitable for solving counting probJems, prob-
lems where processors assign successive values from a given
range. They presented constructions of counting networks
built on 2-input, 2-output balancers, with layout isomorphic

to Batcher’s bitonic sorting network [6, 18], and the periodic

sorting network of Dowd et al. [9]. Subsequently, balanc-

ing networka, in general, and counting networks, in partic-
ular, received a lot of interest and attention. This study

focused on presenting both constructions and impossibdity
results for such networks [2, 12, 13, 16, 17, 20] and anrdyz-

ing their performance by both theoretical and experimental
means [10, 15].

In this paper, we embark on a mathematical study of
the combhatorial structure of balancing networks. We are
interested in understanding how “external” network proper-
ties come out as a result of combinatorial structure. Prime
examples of such properties are the counting property in-
troduced before, and the smoothing property requiring that
outputs come as close to each other aa possible. Smoothin5
networks are appropriate as hardware solutions to load bal-
ancing problems [4, 15, 22]. We consider weaker versions of
these properties, requiring that the output either possesses

a property weaker than counting or smoothhg, or possesses
the counting or smoothing property on a restricted set of
inputs. Block counting and smoothing networks are required
to “count” and ‘smooth”, respectively, blocks of outputs
rather than individual outputs. Smooth counting networks
are required to “count” smooth inputs only. Such weaker
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properties might be acceptable for cases where, e.g., succes-
sive memory blocks are to be allocated, or a certain regu-
larity pattern is observed on computational load.

We introduce a novel matrix representation of balanc-

ing networks based on their relative interconnections. More
specifically, we use the connection matrix and order vector

to describe the relation between inrmts and outrmts for each. .
of the balancers. We represent a balancing network as a col-
lection of connection matrices and order vectors. Our first
combinatorial result provides simple algebraic expressions
for the outputs of a balancing network as a function of the
inputs, depending on the type of balancers used, the net-
work’s depth and the topology of the network, as specified
by its connection matrices and order vectors.

We use this comblnatorird result to derive (almost al-

ways) tight combinatorial characterizations for classes of

balancing networks possessing each of the properties. These
characterizations are stated as necessary and sufficient con-
ditions on the connection matrices and order vectors; roughly
speaking, these conditions say that the network equidis-
tributes on output wires the most significant part of the
inputs, while the property is inherited down to the network’s
response to the least significant part.

Immediate implications of these combhatorial conditions
include balancing analogs of the Zero-One principle holding

for sorting networks. These analogs precisely delimit the
boundary between sorting and counting networks, answering
an implicit question from [4]. In particular, we demonstrate

that sorting and counting ‘networks are but the bottom and

top classes of a hierarchy of smooth counting networks.
We use the necessity of the conditions provided by these

combinatorial characterizations for deriving a number of im-
possibility results for networks possessing several of these
properties. These impossibility results are twofold: they es-
tablish either rest rictions on network width. or lower bounds
on network size for each of a variety of network classes.

Impossibility results of the former kind provide negative
answers to the problem of constructing balancing networks
with prescribed properties and arbitrary width, addressed

before in [2, 12, 13, 20] for the special cases of counting
and smoothing networks. More specifically, the addressed

question is: what is the width of networks possessing the

property that can be constructed using a finite (but un-

bounded) number of balancers whose width is in the set

{Po , PI , . . . . P~–I } ? We show sharp restrictions on the width
of a balancing network possessing the property, depending
on the types of balancers used and the depth of the net-
work. More specifically, we show, for networks of depth d
for each of the classes, that the only achievable widths are
the divisors of Pd, where P = popl . ..pm–l. Our impossi-

bility results strictly strengthen and significantly generalize

previous ones in [2, 20] to arbitrary sets of balancer types
and weaker network classes.

Impossibility results of the latter kind establish lower
bounds on network size for each of the classes. Although

lower bounds for counting networks follow from correspon~-
ing ones for sorting, no such lower bounds have been known
before for any weaker class of networks.

Properties considered so far, e.g., counting and smooth-
ing, appear to be ‘infinite”: they are defined in terms of a

condition on network output to hold for any (unbounded)
input. Such “infinite” definitions do not apparently give rise
to a procedure for verifying that a given network possesses
the property. In practice, it would be very important to be
able to algorithmically verify that a given balancing network

meets its specification as a module of a multi-processor ar-

chitecture. Our final major result uses the sufficiency of the
provided conditions to derive the first formal algorithms for
such verifications. These algorithms are natural, modular

and easy to implement. They consist of verifying algebraic

properties of the transfer parameters, and thk verification
involves matrix multiplications and evaluating vector func-

tions of matrices. Interestingly, our theory identifies the
smoothing property as the first known balancing property
which allows for efficient verification.

The rest of th~ paper is organized as follows. In Sec-
tion 2, we present definitions for and preliminary facts about
balancing netorks and various classes of them. In Section 3,
we introduce combhatorial parameters of balancing net-
works, while necessary and sufficient conditions involving

them are formulated, in Section 4, for various classes of bal-

ancing networks. Abdications of these conditions in de-. .
riving- impossibdity results and verification algorithms are
presented in Sections 5 and 6, respectively. We conclude, in
Section 7, with a discussion of our results and some open
problems.

Due to lack of space, complete and formal expositions of
some of our definitions and proofs have been omitted; they
may be found in [7].

2 Definitions and Preliminaries

In this section, we present definitions for and preliminary

properties of balancing networks, and define some interest-
ing classes of these networks. We note that our presen-

t ation differs from the corresponding one in [4], and those
in [2, 10, 12, 13, 15, 16, 17] following it, in that it treats
balancers as computing elements rather than toggle mecha-
nisms which asynchronously relay tokens from input to out-
put wires. Consequently, our definitions are stated as con-
ditions on computed outputs, rather than safety and live-
ness properties to hold in a quiescent state of an execution
(cf. [17, Lemma 3.1]).

2.1 Notation

For any w ~ 2, X(w) denotes the vector (zo,.. ., ZW-l)T,

and [Xfw)l and lX(W)] denote vectors ((zO1, ..., (zW-ll)T

and (lzoJ, ..., [ZW-IJ)T, respectively. Define the mazimum

norm 11.11~ : Rw - R as IIX(”)IIW = max:e[wl z,. Fix

integers k > 1 and p > 2. For any integer z ~ O, denote

zJpk=z -
H [J

~ Pk and z tp k = ~ pk. Notice that

z 1P k is the integer represented by the k least significant p-
ary digits in the representation of z in the p-ary arithmetic

system, while z Tp k is the integer obtained by setting each
of these digits to zero. Clearly, z 1P k + z Tp k = z. Set

zlpk= z 1P (k+ 1) - z 1P k, the integer represented by the
kth least significant pary digit of z. Extend the notations

z 1P k, z Tp k and z $P k from integers to vectors in the
natural way. Fix a set ‘P = {W, P1, ..., pm-l } of positive
integers no less than two, where PO = maxp=p p, and set

P=popl... pm_l.

2.2 Balancing Networks

Balancing networks are constructed from wires and com-
puting elements called balancers. For each integer p > 2,
a p-balancer is a computing element receiving integer in-
puts CO, . . . . zP_l on input wires O, . . . . p – 1, respectively,

and computing integer outputs yO, ..., VP-l on output wires

o,. ..,1,1, respectively, such that for each j, O <j ~p–1,
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w = [(HI: ~i– d/Pi. For each ~, o < J’ S P – 1, the
order of output wire j is defined to be j/p. For any in-

teger w > 2, a balancing network B : x(w) + y(w) of

width w over P is a collection of balancers over P, where
output wires are connected to input wires, having w desig-
nated input wires 0,1, ..., w — 1 (not connected to output
wires), w designated output wires 0,1, . . .,w — 1 (not con-

nected to input wires), and containing no cycles. Integer
inputs zo, . . . ,zw-l are received on input wires 0, ...,1,1,

respectively, and integer outputs YO, . . .. YI-I are computed
on output wires O, ..., w–l, respectively, inthe natural way.

Figure 1 depicts a balancing network, with wires drawn as
horizontal lines and balancers stretched vertically, and the
outputs computed on all output wires of each of its balancers
on a specific input.

The size of B, size(f3), is defined to be the total num-
ber of its balancers and the depth of f? is defined to be the
maximal wire depth.

In case depth(B) = 1, B will be called a layer and repre-
sented by a w x w matrix, the connection matrix, C~, deter-

mining the connections between input and output wires, and
a w x 1 vector, the order vector, 0~, determining the order of
each output wire. Formally, for any i and j, O ~ i, j < w – 1,

C~[ji] = l/p if input wire t and output wire j are connected
via a p-balancer, for some p c ‘P, else C~~i] = 1 if output
wire j coincides with input wire i, and O otherwise. For any
j, O ~ j ~ w – 1, 0~~] = o if output wire j is the out-
put wire of a p-balancer for some p E P and has order o,
0 ~ 0< p – 1, else (output wire j is not the output wire of a
balancer) 0~~] = O. It is trivial to see that the matrix C~

is doubly stochastic, i.e., all of its entries are non-negative
reals and all row and column sums are equal to 1.

For example, for the layer B depicted in Figure 2 using
the same conventions as for Figure 1, we have:

(
1/2000 1/2

o 1/3 1/3 1/3 o

CB=O

)

1/3 1/3 1/3 o ,
0 1/3 1/3 1/3 o
1/2000 1/2

and:

0~=(0 O 1/3 2/3 l/2)~.

For a layer L?, define the distance between input wire i and

output wire j in B, denoted du[ij], to be 1 if wires i and j are
connected via a balancer over B, O if wires i and j coincide,

and m otherwise. By definitions of balancers, the connection
mat rix CD and the order vector 0~, it immediately follows
that for a layer 1?:

y(w) = [cB . x(’”) – OB1,

If depth(B) = d >1, then B can be uniquely partitioned
into layers &, B2, . . . . f?d from left to right in the obvious
way, with associated connection matrices CB, and order vec-
tors Oq, 1 ~ i ~ d. We extend inductively the definition of
the distance between input and output wires from layers to
arbitrary balancing networks in the natural way to capture
the minimal length of a path from an input to an output

wire. A transpose of a balancing network B, denoted T(B),
is a balancing network obtained from B by converting all
input wires to output wires and vice versa.

2.3 Classes of Balancing Networks

Counting and Smoothing Networks

A counting network over P [4] is a balancing network 1? :
X(w) ~ y(w) over P such that for any j and k, O s j <

k<w–l,O~~j – y~ ~ 1 (step property). Counting
net works have been shown suitable for implementing slwvd

counters and producerlconsumer buffers for multiprocesmr
architectures [4, 15].

For any integer K ~ 1, a K-smoothing network ouer

P [4] is a balancing network t? : X(’) + Y(’) over P such
that foranyj andk, O~j, k<w–l, lyj-y~l<K (K-

smoothing property). Clearly, a counting network is also a
K-smoothing network for every integer K ~ 1.

The smoothing porometer of a balancing network B is the
least integer K such that B is a K-smoothing network, or in-
finite if no such integer exists. The smaller K is, the stronger
a K-smoothing network becomeq as any output sequence is

co-smooth, any balancing network is co-smoothing.
A smoothing network ouer P is a K-smoothing network

for any integer K z 1. Let SmW denote the class of smooth-
ing networks of width w over P.

Block Networks

Block networks are obtained by relaxing the requirement for
the step and K-smoothing properties to hold for sequences
of sets of outputs, rather than individual outputs. Assume,
for any integers w ~ 2 and g ~ 1, a partition If of [wg] into
blocks XO, ml,..., TV-l, each of size g.

A w . g counting network over P is a balancing network
~ : X(W9) + y(w9) fo width Wa over P such that for anv i
andk, O~j<k~w — 1, 0< ~rcnj Yr - ~rc=k Y. i i.

A w. g K-smoothing network over P is a balancing network

B : X(wg) ~ Y(wg) of width wg over P such that for any j

and k, O ~ j,k ~ w– 1, [&=j V, -~r~r~ yrl < K. (This

generalizes [17, Definition 7.1]);
Let StW.g and K-SmW.9 denote the classes of w. g count-

ing and w . g K-smoothing networks, respectively, over P.

Input-Restricted Networks

An alternative way of relaxing definitions for counting and
smoothing is to require the step property for the output

sequence only if the inputs have some kind of a smoothing

property.
For any integers w, g and K1 ~ 1, a w . g K1 -smooth

counting network over P is a balancing network B : X(wg) ~

Y(wg) over P such that if for every r, O ~ r < w – 1, for

any j and k, j,k E T., IxJ – ~kl ~ Kl, then for any j and
k, O<. j<k<wg–l, O~yJ - yk<l. That is, the
set of inputs is partitioned into w blocks, each of size g,
and the output sequence has the step property whenever all
input sequences, one for each of these blocks, have the Kl-
smoothing property. Let St(K1-SmW.g) denote the class of
w - g I(1 -smooth counting networks over P.

For any integers g, K1 z 1, a K1-smooth counting net-
work over P is a 1 . g K1 -smoot h counting network over
P. (In [17], a K1-smooth counting network is called a K1 -

counter and used as a building block for constructing larger
counting networks.)

The smooth counting pammeter of a balancing network B
is the least integer KI such that t? is a K1-smooth counting
network, or infinite if no such integer exists. The larger K1
is, the “stronger” a K1 -smooth counting network is; as any
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Figure 1: A balancing network

Figure 2: The layer B

input sequence is m-smooth, it follows that an co-smooth

counting network is a counting network.

Threshold Networks

A different way of relaxing the counting network definition
is to require a kind of a counting property for some ar-
bitrary but fixed output wire. A threshold network over

‘P [4] is a balancing network B : X(’) ~ Y(’) over P such

that, vW-1 = 1: ~~=~1 Zi]. Roughly speaking, a threshold
network can detect “chunks” of inputs of size w. Thresh-

old networks have been used for implementing barrier data
structures [4]. Let ThW denote the class of such threshold

networks.

Sorting Networks

The isomorphic comparison network of a balancing network
B is obtained from &3by substituting each p-balancer in an
inner node of E? by a p-comparator (see [18]). Say that B
is a sorting network if its isomorphic comparison network
is a sorting network. Let SrtW denote the class of sorting
networks of width w over P. The next Theorem shows a
coincidence of the classes of sorting networks and l-smooth
counting networks.

Theorem 2.1 The class of sorting networks is precisely the

class of l-smooth counting networks.

7

7

6

7

6

6

Sketch of proofi It is shown in [4, Theorem 2.6] that any
balancing network isomorphic to a sorting network is a 1-

smooth counting network.

To show the inverse inclusion, consider a l-smooth count-

ing network B : X(w) ~ Y(w). To show that C(B) : U(”) +

V(’) is a sorting network, it suffices, by the Zero-One Prin-

ciple [18], to show that for any U(”) c {O, 1 }W, the output

vector V(’) has the sorting property. Set X(w) = U(’) ~

{O, l}(w). It is easy to show that Y(w) = V(w). Since X(w)

has the l-smoothing property and B is a l-smooth counting

network, Y(’) has the step property. It follows that V(w)
has the sorting property, as needed. ■

Theorem 2.1 provides an interesting complement to the
“Smoothing + Sorting = Counting” principle shown by Asp-

nes et al. [4, Theorem 2.6]. It implies that sorting networks
are unique in having the property that their cascading with
a l-smoothing network results in a counting network.

We next present a natural generalization of the Zero-
One Principle, stated for l-smooth counting networks, to
KI -smooth counting networks.

Theorem 2.2 (Generalized Zero-One Principle) A bal-

ancing network B : X(w) 4 Y(w) is a K1-smooth counting

network if (and only if) Y(w) has the step property for every

X(w) such that llx(w)ll~ s KI.
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Sketch of proofi Assume X(’) is K1-smooth. We show

that Y(w) has the step property. Write X(w) = W(W)+U(W),
where for each j c [w], Wj = w for some integer w, and

IIU(9) 11~ < KI. Let V(w) be the output of B on input

U(w) We first prove that Y(w) = W(w) + V(w). Since

IIU(W) 11~ < KI, V(w) has the step property, by assumption.

Since W(w) is a constant vector, it follows that Y(w) haa
the step property, as needed. 9

3 The Algebraic Structure of Balancing Networks

We present a theorem showing that for any balancing net-

work, the outputs take a particular algebraic form as a func-
tion of the inputs, depeuding on the type of balancers used,
the network’s depth, and the topology of the network.

Theorem 3.1 Let B : X(w) ~ Y(w) be a balancing network
of depth d over P with associated connection matrices and
order vectors C~,, Cu,, . . . . C~a and O~,,0~2,...,0r,., ~-
spectivel~. Then:

‘w) 1P d),Y(w) = CB . X(w) Ip d + F~(X

for some w x w matrix CH and vector junction FB : [Pd]w +
NW) such that:

1.

2,

C~ = C~a . C~~_, . . . . . CD,, and:

F~ = FE., where the vector functions F~, : [P1]W -

Nw, 1< i < d, are defined recursively as foll~ws!

FB, (X(w) 1P 1) =

{1Cfll ....ct?l .x(w) 1P I+Cq .FB1_l - OBI 1, 1>1

CE1 x(w) ~~l-o~l 1, 1=1

The proof of Theorem 3.1 is by induction on the depth d
of the network. Call the matrix C~ the steady transfer ma-
trix of l?. Call the vector function F~ the transient transfer
/unction of f?. Theorem 3.1 shows that the output vector of

a balancing network is the sum of two terms.

The first term, CD . XW Tp d, called the steady out-

put term, involves a linear transformation of the most sig-

nificant part X(w) Tp d of the input vector. The second

term, F~(X(w) 1P d), called the transient output term,
involves a non-linear transformation of the least significant

part X(w) 1P d of the input vector.
Thus, the steady transfer matrix C~ is determined by the

relative connections of the network and shapes the steady
output term, while the transient transfer function F~ is de-
termined by both the connections and the relative order of
outputs and shapes the transient output term. Call the
steady transfer matrix CB and the transient transfer func-
tion F~ the transfer parameters of L?.

We continue by mentioning several interesting proper-
ties of transfer parameters. Since the product of doubly
st ochaat ic matrices is doubly stochastic (see, e.g., [3, Corol-
lary 8.40]), it immediately follows that the matrix C~ is
doubly stochastic. We can establish a lower bound on each
entry of the steady transfer matrix: for any i, j E [w],

dE[;J] For the transient transfer function F~,cB[ja] > I/p. .

we can show that it is an afine function and that each of

its components is no more than Pd — 1. All these properties
are key components of the proofs of results in subsequent
sections.

4 Combinatorial Characterizations

Necessary and sufficient conditions are presented for a bal-

ancing network B : X(W9) ~ Y(W9) of depth d over P to

belong to each of the classes of balancing networks intro-
duced in Section 2. These conditions are expressed in terms

of the steady transfer matrix CB and the transient transfer
function F~.

Block Networks

The partition If of [wg] induces a block transient transfer
function, which is a vector function FBln : Nwg ~ Nw

defined as follows FBln(Xfwg))~] = ~,e=j F~(X(wg))[r],

for each j c [w]. Say that a vector function F : NW9 ~ Nw
is step on D G Nwg (resp., K-smooth on D G Nwg) if the

vector F (X( ‘9)) has the step (resp., K-smoothing) property

for every X(wg) c D.

Our first characterization theorem for block counting and
smoothing networks is shown using Theorem 3.1 and the

definitions of counting and smoothing properties.

Theorem 4.1 The network B is a w . g counting network
(resp., w . g K-smoothing network) if and only if:

(1): zrGmj c~[ri] = l/w, for all i c [rug] and j c [w],

and (.2): the vector function FBln is step (l-SSp.j K-smooth)

on [Pd]wg.

Theorem 4.1 specializes in the case g = 1 to yield:

Corollary 4.2 The network B is a counting network (resp.,

K-smoothing network) if and only if: CB~i] = l/w for all

i, j 6 [w], and the vector function FS is step (resp., K-

smooth) on [Pd]w.

That is, for a counting (resp., K-smoothing) network,
the steady output term is a scalar multiple of the sum of
the most significant parts of inputs, where the scaling factor
is the reciprocal of the network width; this implies that the
contribution due to the most significant parts of inputs is
equally shared among the w output wires. Moreover, the

counting (resp., K-smoothing) property is inherited down

to the transient output term.

We continue by presenting several interesting combinato-
rial properties of (block) counting and smoothing networks.

These properties are immediate consequences of the combi-
natorial characterizations for these networks shown above.
We first use the upper bound of Pd – 1 on F~ to show that
the latter in the pair of necessary and sufficient conditions
for a block K-smoothing network shown in Theorem 4.1 may
be relaxed for bounded K. More specifically, we show:

Theorem 4.3 Assume K ~ g(Pd – 1). Then, the network

B is w.g K-smoothing network if and only if ‘&n, CB[ri] =

l/w for all i c [wg] and j G [w].

Theorem 4.3 implies that for K s g(Pd - 1), the block

K-smoothing property is intrinsic to the steady behavior of
a balancing network. Theorem 4.3 specializes for g = 1 to
say:

Corollary 4.4 Assume K ~ Pd – 1. Then, the network 1?
is a K-smoothing network if and only if C~~i] = I/w, for
all i, j E [w].
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Our next major result shows that we can, without loss

of generahty, restrict our stydy of K-smoothing networks to

the case where K < Pd – 1.

Theorem 4.5 Assume 8 is a K-smoothing network. Then,

f? is a (Pd – I)-smoothing network.

Sketch of proofi We first establish a smoothing property

for the transpose of a smoothing network, namely that if B is

a K-smoothing network, then, T(B) is a (Pd — 1)-smoothing

net work. Since T(T(B) ) = B, the proposition follows. ■

Theorem 4.5 represents an interesting Zero-One Law for

the smoothing property and implies that Pd – 1 is a “thresh-

old” value for the smoothing parameter of a balancing net-

work: a balancing network either is not smoothing at all, i.e.,

its smoothing parameter is infinite, or provides a smoothing

parameter no more than Pd – 1. Thus, Corollary 4.4 and

Theorem 4.5 together imply:

Theorem 4.6 The network B is a smoothing network if and
only if CB[ji] = I/w }or all i, j G [w].

Input-Restricted Networks

For a vector Xfwg), for each j 6 [w], let X$g) be the re-

striction of Xtwg) to entries in Uj. For any D ~ N“g, Kl -

smoothn (D) is the set of all vectors X(”g) E D such that

X(’) hss the K1-smoothing property for each j 6 [w].

J It is easy to use Theorem 3.1 and show a conditional

combinatorial characterization for w. g K1-smooth counting

net works:

Theorem 4.7 Assume CB~i] = l/wg for all i, j 6 [wg].

Then, B is a w . g K1-smooth counting network if and only
if the vector function FD is step on KI -smootlm([Pd]Wg).

More import ant, we can still apply Theorem 3.1 on in-

puts as large as Pd to obtain a necessary condition for w . g

KI -smooth counting networks.

Theorem 4.8 Assume B is a w.g K1-smooth counting net-

work. Then, ~,c=, CB~r] = l/uJ, for a22 i c [w] and

j c [W9] .

For the more restricted class of K1-smooth counting net-

works, we reveal a remarkable dependence of the compu-

tational strength of a K1-smooth counting network on its

smoothing parameter KI.

Theorem 4.9 If K1 > Pd – 1, then the network 1? of depth
d is a K1-smooth counting network (if and) only if it is a

counting network. If K1 < Pd – 1, then the network B

is a KI -smooth counting network if and only if the vector
function F~ is step on [KI + 1]9.

Sketch of proof: The case where K > Pd -1 is handled

by direct verification of the sufficient conditions for a count-

ing network in Theorem 4.1 (setting g = 1). The case where

K < Pd – 1 is shown using Theorems 2.2 and 3.1. ■

We remark that Theorem 4.9 provides a second instance

of a Zero-One Law for the smoothing property with the value

Pd – 1 in a “threshold” role: the smooth counting parameter
of a balancing network is either equal to infinity (i. e., the

network “counts” all inputs), or at most Pd – 1. Moreover,

since, trivially, any counting network is also a h’1 -smooth

connting network for any KI, Theorem 4.9 provides an alter-

native characterization of the class of counting networks as

the class of K1-smooth counting networks with K1 > Pd -1.

Observe that the necessary and sufficient combinatorial con-

ditions for K1-smooth counting networks involve the steady

transfer matrix CB only in the case where K > Pd -1. Since

P~2andd~l, Pd -1 ~ 1, and a combhatorial char-

acterization of sorting networks follows immediately from

Theorem 4.9 by setting K1 to one.

Corollary 4.10 The network B is a sorting network if and

only if the vector function FB is step on {O, 1}9.

Theorems 2.1 and 4.9 reveal precise classes of K1-smooth

counting networks coinciding with the classes of sorting and

counting networks, respectively. As Aspnes et al. remark [4],

“there is a sense in which constructing counting networks is

harder than constructing sorting networks”. Theorems 2.1

and 4.9 provide a quantitative explanation of this sense in

terms of the smoothness of inputs which each of these two

classes is required to “count”. Corollary 4.10 implies that

the sorting property is solely determined by the transient

output term, more specifically, by the behavior of this term

on the Boolean part of its domain. Thus, Corollary 4.10

and Theorem 4.1 precisely quantify this sense of hardness by

providing the combhatorial conditions on both the transient

and steady output term which a counting network must, in

addition, satisfy.

Our final combinatorial Theorem provides an unexpected

link between smooth counting and block smoothing net-

works.

Theorem 4.11 Assume 8 is a w . g K1-smooth counting

network. Then, T(B) is a w og g(Pd - 1)-smoothing network.

Sketch of proof: By Theorem 4.8, ~rEn, Ctr~r] = l/w

for all i 6 [w] and j 6 [wg]. Since CB = C;(B), it follows

that ~,enj Qqq[rfl = l/w for all i G [wg] and j G [w]. It

follows that T(B) is a w og g(Pd - 1)-smoothing network. ■

Threshold Networks

In the full version of the paper we show, using arguments

similar to those used in showing Theorem 4.1:

Theorem 4.12 A network B of width w is a threshold net-
work if and only if (l): CB[W -1, i] = l/w for all i G [w],

and (.2): FB(X(W))[W – 1] = [~ ~~=jl ~ij for each X(w) E

[Pq’”.

We summarize in Figure 3 the combinatorial character-

ization results shown in this Section for the more general

classes of balancing networks.

5 Impossibility Results

Sections 5.1 and 5.2 cent sin our impossibdity results on con-

structible network widths and lower bounds on network size,

respectively.

5.1 Constructible Network Widths

For a wide class of balancing networks of depth d over P,
we show that the only constructible widths are the divisors

of Pd.
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Combinatorial conditions

Network class Necessary I Suffiaent

Stw.g DrE=. cB[d = l/w, i E [wg] and j G [w] & FB,II step on [P”]w’

K-Smw.g z ,Gn CE[ri] = l/w, i E [wg] and j ~ [w] & FB1n K-smooth on [Pd]wg

~ ~ ,Efi, CB[ri] = l/w, i G [wg] and j G [w

with K1 ~ Pd — 1

Sm. C~fii- = l/w, i,j G [w]

St(K1-SmW.~) Z.=., cBtiTl = VW! i ~ [wI F~ step on K~-smoothn([Pd]wg),

if Ct3~i] = l/wg, i G [wg]

St (A’l-Sml.g) F~ step on [Kl + 1]9

with K1 ~ Pd – 1

SrtW F~ step on {O, l}W

Thw C~[w–l, i]= l/w, i~ [w] &

F~[w – l](X(W)) = [(l/w) ~~~1 z,], for X(W) ~ [Pd]w

Figure 3: Summary of combinatorial characterization results

Block Networks

For block K-smoothing networks, we show:

Theorem 5.1 Assume B : Xtwg) ~ Y(wg) is a w . g K-
smoothing network of depth d over P. Then, w divides Pd.

Sketch of proofi By Theorem 3.1, for each j G [w],

Wg—1

D. = ~ ~ c.[~i] z, t. d

rla, .Cmj ,cO

+ ~ F.(X(W9) Jr d)[r]

rer,

Wg-1

= ~ ~ G[ri] z, t. d
*=O rGm,.

~ F~(X(wg) 1P d)[~]

re~j

where F~ is the transient transfer function of B. Set zo = Pd

and z, = O, i # O, so that X(wg) Jp d = O(wg), zo tp d = Pd
and z, TP d = O, i # O. By Theorem 4.1 and the affinity

of F~, this implies that ~ ,6=, y, = pal/W for each j E [w].

Since ~,cn~ y, is an integer, it follows that w divides Pd.

■

We remark that the proof of Theorem 5.1 relied on a

property of the steady transfer matrix that is necessary for

block smoothing networks, namely that ~,en, CB[ri] =

l/w for all i G [wg],, j 6 [w], but not on any property of the

transient transfer function, other than its affinity property

which, however, holds for all balancing networks. This sug-

gests that width limitations are, in general, consequences of

the steady behavior of a balancing network. Notice also that

the necessary condition in Theorem 5.1 does not involve g

or K. Theorem 5.1 specializes in the case g = 1 to yield:

Corollary 5.2 Assume f? : X(w) A Y(w) is a K-smoothing
network of depth d over P. Then, w divides Pd.

Corollary 5.2 strictly strengthens [2, Theorem 3.5] show-

ing a corresponding necessary condition, namely that each

prime factor of w divides pi for some i G [m]. Also, Corol-

lary 5.2 is the generalization to an arbitrary set of balancer

types of a corresponding necessary condition shown in [20,

Section 5] for K-smoothing networks over {2}, namely that

w divides 2d. Since, for every integer K ~ 1, a w. g counting

network is also a w. g K-smoothing network, it immediately

follows:

Theorem 5.3 Assume B : X(wg) * Y(wg) is a w. g count-
ing network of depth d over P. Then, w divides Pd.

Theorem 5.3 specializes in the case g = 1 to yield:

Corollary 5.4 Assume B : X(w) - Y(w) is a counting net-
work of depth d over P. Then, w divides Pd.

Input-Restricted Networks

We now turn to an impossibility result for w. g K1-smooth

counting networks:

Theorem 5.5 Assume B : X(wg) ~ Y(wg) is a w . g KI -
smooth counting network of depth d over P. Then, w divides
Pd.

Sketch of proofi By Theorem 3.1, for each j ~ [wg],

Wg-1

Yj = ~ Cd.ii] .i t~ d+ +J?.(X(W9) 1P d)~]

, =0

w-1

= ~ ~ CBhr] x. t~ d+ F@wg) b W.d,
,=0 .Cm,

where FB is the transient transfer function of B. Set X. = P’

for r 6 TO and z, = O for r $? TO, so that X(wg) Jp d = O(wg),
xr.lpd= Pdforr Eroandzr TPd=Oforr ~To. By

Theorem 4.8 and the affinity of FD, this can be shown to

imply that YJ = Pal/w for each j c [w]. Since yj is an

integer, it follows that w divides Pd. ■
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Threshold Networks

By similar arguments, we show in the full version of the

paper:

Theorem 5.6 Assume f? : X(w) ~ Y(w) is a threshold net-
work of depth d over P. Then, w divides Pd.

5.2 Lower Bounds on Network Size

A key property we use is a lower bound of logpO w on the

distance between input wire i and output wire j m a balanc-

ing network B of width w over P, assuming C~[ji] = I/w.

Since, by Theorem 4.1, for any counting or K-smoothing

network, CB~i] = l/w for all i, j G [w], this implies:

Theorem 5.+ Assume f? : X(w) - Y(w) is a counting

or K-smoothing network over P. Then, for all i, j E [w],

d~[ij] z logPO w.

Theorem 5.7 implies that, for counting or K-smoothing

networks, every path from an input to an output wire must

have length at least logPO w. In [4, Corollary 2.5], it is shown

that the depth of any counting network of width w over {2}

is at leaat logz w; i.e., there exists some path from an input

to au output wire of length at least logz w. Clearly, Theo-

rem 5.7 strictly strengthens and generalizes this to an arbi-

trary set of balancer types. Moreover, Theorem 5.7 repre-

sents a corresponding improvement to an observation in [20,

Section 5] that the depth of a K-smoothing network over {2}

is at least logz w.

We proceed to show a lower bound on size for counting

and K-smoothing networks of width w over P. For any such

network, since there are w output wires, there are at least

w paths from an input to an output wire. By Theorem 5,7,

each such path haa length at least logPO w and incurs at least

bgpo w output wires of balancers. Since any balancer has at
most pO output wires, this implies:

Theorem 5.8 Assume B : X(w) ~ Y(w) is a counting or
K-smoothing network over P. Then, size(f3) z ~ logp, w.

In the full version of the paper, we similarly show cor-

responding lower bounds on network size for block smooth-

ing and counting, threshold and smooth counting networks.

These lower bounds imply that weakening a network prop-

erty may not always imply a saving in size efficiency.

6 Verification Algorithms

Let P be a property on balancing networks over P, identified

wit h the class of networks satisfying it.

Say that P is a jinite property if for any balancing

network B : X(w) ~ Y(w), there exists a condi-

tion C = C(B, X(w)) such that the network B

satisfies the property P if and only if it satisfies

C(t3, X(w)) for ail X(w) with ]IX(W)IIW < Ac, for

some integer AC = Ac(B).

That is, P is a finite property if for any given balancing

network there is a condition formulated in terms of network

parameters and the network input such that the network

satisfies the property if and only if the condition holds when

each of the inputs is no more than a threshold input size,

possibly dependent on parameters of the network. Call such

a condition C a finiteness condition for P, and call AC the

threshold size provided by C. For a finite property P, define

the threshold size of P to be the Iesst possible integer .lC,

over all finiteness conditions C for P.

Finite properties allow for effective verification through

verifying, on a given network, that a finiteness condition

C holds for all X(w) with llX(W) Ilm < Ac. Clearly, the

corresponding computational cost is (Ac + I)w times the

number of steps required for verifying C on a single input.

For the sorting property, an upper bound of 1 on thresh-

old size follows immediately from the Zero-One Princi le.
J’Theorem 4.1 immediately provides an upper bound of P on

the threshold sizes of the block counting and K-smooth:ng

properties. Since counting and K-smoothing networks are

special cases of block counting and K-smooth~ng networks,

respectively, identical upper bounds of Pd hold for the thresh-

old sizes of these networks. We proceed to show an upper

bound on the threshold size of the K1-smooth counting prop-

ert y.

Theorem 6.1 ~st(~,.sm) s min{Kl, Pd}

Sketch of proof: If h“, < Pd -1, this bound follows im-

mediately from Theorem 2.2. So assume K1 > Pd so that

min{Kl, Pd} = Pd. In this case, by Theorem 4.9, B is a

h’1 -smooth counting network if and only if it is a count~g
network, so that ~st(~l-sm) = ~St < Pd = min{Kl, P },

ss needed. ■

By way of example, we describe a verification algorithm

for the counting property.

For a balancing network B : X(WJ -+ Y(w) of

depth d over P, compute CB and FB from C~,,

cr32,. . .. CBd and OB,, 0B3,. ... ODa, using their

recursive definition in Theorem 3.1. Verify that

C~ and FD satisfy conditions (1) and (2) in The-

orem 4.1 (with g = 1).

For (1), d – 1 matrix multiplications suffice. For (2), there

are Pdw inputs on which FB is evaluated, each evaluation

incurring a cost proportional to the size of FB, which is pro-

portional to size(J3). In the full version of the paper, we

present in detail algorithms for verifying the block counting

and smoothing, threshold, and K1 -smoot h counting proper-

ties.

All of these algorithms are of exponential complexity. So,

it is natural to ask whether there are properties on balancing

networks that allow for efficient (polynomial) verification.

Say that a finite property P is a constant property
if the condition C in the finiteness definition of P

is a function of the network but not of its input.

Consequently, verifying a constant property reduces to a

single verification of the condition C. (The threshold size

of a finite property is zero, ) Theorem 4.6 implies that the

smoothing property is a constant property. The correspond-

ing computational cost of verifying the smoothing property

is the cost of a matrix chain multiplication, which is polyno-

mial. To the best of our knowledge, the smoothing property

is the first property on balancing networks found to allow for

efficient verification. This provides an interesting trade-off

bettween the strength of a property and the computational

complexity for its verification.

In [4, Section 7], the problem of verifying that a net-

work counts is also studied and it is shown that a balancing

network over {2} with m balancers is a counting network if
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it satisfies the step property in all sequential executions in

which at most 2m tokens traverse the network. We compare

our result that counting is a finite property to this result.

Our result is more general in dealing with networks over ar-

bitrary sets of balancer types. For this special case ‘P = {2},

our result may be interpreted to say that, beyond all steady

transfer coefficients being equal to l/ru, it suffices to con-

sider executions in which at most 2d tokens enter on each

input wire; these are executions in which at most 2dw to-

kens traverse the network. Since, in general, m G @(dw),

the two Theorems provide finite conditions for counting of

essentially equal threshold sizes (it is argued in [4] that such

threshold size is the best achievable). However, our result

gave immediate rise to an effective procedure for verifying

that a network counts, sketched above. To the best of our

understanding, it is not clear how the result in [4] can be

translated into a corresponding procedure of the same algo-

rithmic complexity. (This is so because 2m tokens need to be

assigned to input wires and traverse the network in all possi-

ble combinations, and there are ~“’~#’-’) c @((2m)2rn+w)

ways of even distributing 2m tokens into w input wires.)

7 Concluding Remarks and Open Problems

We presented a theoretical framework for the study of the

combinatorial properties of balancing networks. We pre-

sented an algebraic theorem expessing the outputs of a bal-

ancing network as a function of the inputs, depending on the

type of balancers used, the network’s depth and the topology

of the network, and used this theorem for characterizing var-

ious classes of balancing networks that have been intensively

studied recently, like counting and smoothing networks. In

turn, these combhatorial characterizations implied corre-

sponding impossibility results and verification rdgorithms

for these networks. Our proofs were nontrivial, yet elemen-

tary in nature. Our results further the understanding of the

mathematical features of balancing networks.

Our work raises many new interesting questions. Most

obviously, we are still lacking a general combinatorial char-

acterization of w . g K1 -smooth counting networks. What

are the necessary and sufficient conditions for a balancing

network to be a linearizable counting network [16]?

There are comparison networks, e.g., Odd-Even or in-

sertion [18], that are sorting net works, but whose isomor-

phic balancing networks are known not to be counting net-

works [4]. This implies that the combinatorial transfer pa-

rameters of these isomorphic balancing networks satisfy the

conditions in Corollary 4.10, but not those in Theorem 4.1.

What are the tightest conditions satisfied by these parame-

ters? Since both sorting and counting networks have been

found to be special cases of K1-smooth counting networks

with an appropriate K1, the question of precisely determin-

ing the computational power of these networks may also be

stated as follows: What is the largest h’1, 1 ~ K1 < Pd – 1,

for each of Odd-Even and Insertion networks to be a K1 -
smooth counting net work? Results in this direction, related

to the Odd-Even network, have already been obtained in [8].

What is the fine structure of the smooth counting hierarchy?

Our proofs of the combinatorial characterization and im-

possibility results relied heavily on using inputs as large as

Pd for networks of depth d. If the conditions on network out-

puts were only required to hold for inputs bounded above by

Pd, these proofs would be invahdated. (A similar observa-

tion has been made in [2, Section 7] about the proofs of the

weaker impossibdit y results presented there. ) In practice,

one may anticipate uses of balancing networks on multi-

processor architectures with a bounded number of proces-

sors, or handling a bounded number of jobs to be balanced.

Thus, it would be interesting to investigate whether the lim-

itations on network width we showed conld be overcome for

networks only required to handle bounded inputs.
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