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ABSTRACT
We study the problem of routing tra�c through a congested
network. We focus on the simplest case of a network consist-
ing of m parallel links. We assume a collection of n network
users, each employing a mixed strategy which is a probabil-
ity distribution over links, to control the shipping of its own
assigned tra�c. Given a capacity for each link specifying
the rate at which the link processes tra�c, the objective is
to route tra�c so that the maximum expected latency over
all links is minimized. We consider both uniform and non-
uniform link capacities.
How much decrease in global performace is necessary due

to the absence of some central authority to regulate network
tra�c and implement an optimal assignment of tra�c to
links? We investigate this fundamental question in the con-
text of Nash equilibria for such a system, where each network
user sel�shly routes its tra�c only on those links available to
it that minimize its expected latency cost, given the network
congestion caused by the other users. We use the coordina-
tion ratio, de�ned by Koutsoupias and Papadimitriou [25] as
the ratio of the maximum (over all links) expected latency
in the worst possible Nash equlibrium, over the least possi-
ble maximum latency had global regulation been available,
as a measure of the cost of lack of coordination among the
network users.
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Our point of departure is a set of combinatorial minimum
expected latency cost equations, one per network user, that
characterize the Nash equilibria of this system. These are
linear equations in the minimum expected latencies, involv-
ing the users' tra�cs, the link capacities and the routing
pattern determined by the mixed strategies. In turn, we
solve these equations in the case of fully mixed strategies,
where each user assigns its tra�c with a non-zero probabil-
ity to every link, to derive the �rst existence and uniqueness
results for Nash equilibria in this setting. Most importantly,
we use the derived characterizations of Nash equilibria to
show, under the assumption of fully mixed strategies, tight
upper bounds of no worse than O(ln n= ln ln n) on the co-
ordination ratio for (i) the case of uniform link capacities
and arbitrary tra�cs, and (ii) the case of non-uniform link
capacities and identical tra�cs.

1. INTRODUCTION

1.1 Motivation-Framework
We study a routing problem in communication networks;

in this problem, paths from a source to a destination are
to be established by a collection of non-cooperating entities,
which we call users. Thus, users correspond to di�erent
tra�c sources, each seeking to determine the shipping of
its own tra�c over a shared network. However, in doing
so, di�erent users may have to optimize completely di�erent
(and even conicting) measures of performance and demand.
Such networks are henceforth called noncooperative (cf. [12,
21, 24, 27, 32]).
Such noncooperative and antagonistic scenaria apply to

various modern networking environments, where a single
performance objective, which is regulated via some global-
control mechanism, is no longer a valid assumption. For
example, the Internet Protocol (both IPv4 and the current
IPv6 speci�cation [10]) provides the option of source rout-
ing that enables the user to determine the path its tra�c
follows from source to destination. Another example is the
exible routing service speci�ed in the Q.1211 CCITT Rec-
ommendation for the standardized capability set of Intelli-
gent Networks [8]; a goal of this service is to route calls over
particular facilities based on the subscriber's preference list.
A natural framework in which to study such multiobjec-

tive optimization problems with local payo�s in a nonco-
operative network is (noncooperative) game theory [6, 33,
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34]. An appropriate, game-theoretic concept for the solution
is Nash equilibrium [31]. Roughly speaking, the operating
points of a noncooperative network are the Nash equilibria
of the underlying game; these are points where unilateral de-
viation does not help any user to improve its performance.
Game-theoretic models, concepts and techniques have been
employed recently in the context of various networking prob-
lems such as ow control [1, 16, 20, 37], routing [2, 12, 21, 22,
23, 25, 27, 32, 36], bandwidth allocation [26],Web access [35],
multicasting [13], and congestion control [18]. Moreover, ap-
plications of game theory to the entire discipline of computer
science have attracted recently a lot of interest and atten-
tion, and have become a currently major trend.
The mission of this work is to study, within the game-

theoretic framework, the inherent costs due to the lack of a
central authority to monitor and regulate network operation
according to global objectives. More speci�cally, we adopt
coordination ratio as the measure of performance loss due to
the lack of coordination; this measure was introduced in a
very recent paper by Koutsoupias and Papadimitriou [25].
Roughly speaking, the coordination ratio is the ratio be-
tween the social cost (speci�cally, the maximum expected la-
tency in the setting we consider) in the worst possible Nash
equlibrium, and the social optimum, which is the best "o�-
line" global cost (speci�cally, the minimum latency in our
setting) had all information been available to a central net-
work authority regulating tra�c.
We follow Koutsoupias and Papadimitriou [25] to con-

tinue the study of the simplest case of a network consisting
of m parallel links. Systems of parallel links, albeit simple,
represent an appropriate model for several, diverse network-
ing problems. Consider, for example, broadband networks
where bandwidth is preallocated to di�erent virtual paths
that do not interfere; thus, these paths result e�ectively in
a system of parallel links between source/destination pairs.
As a second example, consider a multimedia network with
several servers that are shared by the network customers;
each customer distributes its applications among the servers,
while competing with the other customers on the common
available resources. Modeling each server as a link, the par-
allel links model considered in our study �ts well such a
framework.
In the model of parallel links we consider, each of n users

�xes a mixed strategy, which is a probability distribution
over links; the distribution determines the (possibly zero)
probability for the user to ship its tra�c through each link.
We model the latency over each link as the ratio of the to-
tal tra�c assigned to the link over its capacity. Thus, in
this setting, Nash equilibrium requires that for each speci�c
user, the expected latency is constant across all links that are
potential bearers of the user's tra�c, given the congestion
caused by other users.

1.2 Summary of Results
Our point of departure is a linear system of equations for

the minimum expected latency costs (Proposition 8), which
we call minimum expected latency cost equations. These
equations are speci�c to Nash equilibria of the system and
they are inspired by (and reminiscent of) classical equations
of stochastic equilibrium such as the Chapman-Kolmogorov
equation that describes the steady-state equilibrium of a
Markov chain (cf. [14, Section 6.1]). The coe�cients and
constant terms of the minimum expected latency cost equa-

tions depend on the link and user parameters and on the
routing pattern (which user uses which links); the equations
hold for any routing pattern.
For the rest of our study, we focus on a special kind of

routing pattern, that we call fully mixed strategies; here,
each user assigns non-zero probability to each and every
link. For fully mixed strategies, we are able to explicitly
solve the minimum expected latency equations and derive
the user probabilities in a Nash equilibrium, henceforth ref-
ered to as Nash probabilities. We discover that the Nash
probabilities enjoy a particularly nice form, as functions of
the link capacities and the user tra�cs (Proposition 11), in
the case of fully mixed strategies.
The requirement that the computed values for the Nash

probabilities do indeed represent probabilities yields the �rst
inexistence result for Nash equilibrium (Corollary 12) in this
setting. In addition, we prove that these probabilities are
also su�cient to give rise to a Nash equilibrium (Proposi-
tion 13), culminating in the �rst existence and uniqueness
result for Nash equilibria in the setting we consider (Theo-
rem 14). Our study reveals a rich structure for Nash equi-
libria in the case of fully mixed strategies.
How useful is this understanding of the structure of Nash

equilibria for fully mixed strategies? We credit its useful-
ness by using it to derive some new, improved bounds on
coordination ratio in a number of signi�cant cases.

� We �rst consider the case where capacities are uniform,
while user tra�cs are allowed to vary arbitrarily. For
this case, we observe that all links are equiprobable
for each user. This fact allows us to use simple re-
sults from the classical theory of random allocations,
where each of n balls is put into one of m bins, chosen
uniformly at random; properties of such random allo-
cation processes have been studied extensively in the
probability and statistics literature (see, e.g., [17, 19]).
Thus, in our study, we treat users and links as balls
and bins, respectively.

� We also consider the case where all user tra�cs are
identical, but capacities may now vary arbitrarily, sub-
ject, however, to the constraints that are necessary
for a Nash equilibrium to exist (Corollary 12). Al-
though, in this case, links are no longer equiprobable
for the same user, the constraints imposed by Nash
equilibrium still allow us to bene�t from envisioning
our problem as an occupancy problem.

To prove our bounds on coordination ratio, we develop
a modular methodology that may be applicable to other
instances of the problem we consider, and even in other set-
tings and for di�erent performance measures as well. This
methodology consists of three major components.

� The �rst one establishes a probabilistic tail lemma,
showing that if the number of users choosing any par-
ticular link enjoys (as a random variable) a sharp con-
centration around its expectation (this fact being prop-
erly formalized), then an upper bound on social cost
holds that depends also on parameters specifying the
sharpness of the concentration (see Lemmas 16 and 23
for the two cases we consider, respectively).

� The second component quantitatively determines this
sharpness of concentration; it employs the form of Nash
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probabilities, the constraints on system parameters (ca-
pacities and tra�cs) for a Nash equilibrium to exist,
and standard tail inequalities for occupancy problems
(cf. [19, 30]).

Thus, these two components together establish a concrete
upper bound on social cost for each speci�c case.

� The third component complements the �rst two by
showing a lower bound on social optimum, thus im-
plying a concrete upper bound on coordination ratio
for each speci�c case. (See Lemmas 19 and 25 for the
two cases we consider, respectively.)

The concrete upper bounds on coordination ratio obtained
by following this methodology are as follows:

� For the case of uniform capacities and arbitrary traf-
�cs:

{ Assuming that m = n, we prove an upper bound
of (e ln n)=(ln ln n) + 1 (Theorem 20).

{ Assuming that m � n=(24 ln n), we prove an up-
per bound of (3=2+") times the ratio of the maxi-
mum over the minimum tra�cs, for any arbitrary
constant " > 0 and for su�ciently large values of
m and n (Theorem 21).

� For the case of non-uniform capacities and identical
tra�cs, and assuming that m � n, we prove an upper
bound of (2e ln n)=(ln ln n) + 2(2e+ 1) (Theorem 26).

Our �rst and third bounds on coordination ratio match
a corresponding asymptotic lower bound of 
(ln n= ln ln n)
shown by Koutsoupias and Papadimitriou [25, Theorem 6]
and conjectured by them to be the precise bound. On the
other hand, our second bound identi�es the �rst conditions
on (non-constant) m and n allowing for a bound indepen-
dent of m and n. Our �rst and second bounds surpasses a
general upper bound of O(

p
m lnm shown by Koutsoupias

and Papadimitriou [25, Theorem 8] for the model of uni-
form capacities; that bound, however, holds for all possible
Nash equilibria, while our bounds hold for the fully mixed
case and under particular assumptions on n and m. In the
same vein, our third bound surpasses a corresponding upper
bound of Koutsoupias and Papadimitriou [25, Theorem 9]
for the model of non-uniform capacities.
The contribution of our work is two-fold. First, it of-

fers a substantially deep understanding of the structure of
Nash equilibria, especially for the case of fully mixed strate-
gies. Second, it integrates the bene�ts of this understand-
ing into a modular methodology for proving upper bounds
on coordination ratio, hereby yielding improved and tight
(within small constants) upper bounds for several interesting
cases. We believe that our structural �ndings and proposed
methodology will be instrumental to settling other prob-
lem instances as well, and even applicable and extendible to
other settings and performance measures.

1.3 Related Work
Our work continues and complements the recent work of

Koutsoupias and Papadimitriou [25]; that work formulated
sel�sh routing as a noncooperative game and initiated the
study of performance degradation caused by a lack of regu-
lation in a congested network. Koutsoupias and Papadim-
itriou [25] focused too on the network consisting of m paral-
lel links and obtained tight bounds on coordination ratio for

the case where m = 2 and less tight ones for the general case
(under both uniform and non-uniform capacities). Some ad-
ditional bounds for the cases m = 2 and 3 were proved by
Mavronicolas et al. [28].
The very recent paper of Roughgarden and Tardos [36]

is very similar in motivation to our paper, investigating
the degradation in network performance due to unregulated
tra�c. However, the model considered in [36] is di�erent
than the one considered here (and introduced in [25]) in
that it assumes pure strategies for the users (as opposed to
mixed ones); moreover, the global objective adopted in [36]
is to minimize the total latency (as opposed to the expected
latency on the most congested link that we adopt, follow-
ing [25]). Roughgarden and Tardos [36] show that in their
model (and assuming linear latency functions), the total la-
tency in a Nash equilibrium is no worse than 4=3 times the
optimal total latency; they also prove that this upper bound
is tight.
The questions of existence, uniqueness, e�ciency and com-

putation of Nash equilibria for sel�sh (noncooperative) rout-
ing have been investigated over various settings in the net-
working literature (see, e.g., [2, 11, 12, 20, 21, 22, 23, 27,
32]). For more general results on the computation of Nash
equilibria, see the survey [29]. The general ine�ciency of
Nash equilibria is discussed in [11].

1.4 Organization
The rest of this paper is organized as follows. Section 2

introduces the network model we consider, summarizes some
background material, and establishes some preliminary facts.
Section 3 outlines some material on random allocations. Our
results on the structure of Nash equilibria appear in Sec-
tion 4. The case of fully mixed strategies is treated in Sec-
tions 5 and 6 under the models of uniform capacities and
non-uniform capacities, respectively. We conclude, in Sec-
tion 7, with a discussion of our results and suggestions for
further research.

2. DEFINITIONS AND PRELIMINARIES

2.1 Notation and Facts
For any integer m � 2, denote [m] = f1; : : : ;mg. For a

real interval (a; b) and a real � > 0, (a; b) + � denotes the
real interval (a+ �; b+ �). For all integers m � 2 and n � 2,
denote Jm�n the matrix with all entries in its m rows and
n columns equal to 1; denote In�n the identity matrix with
n rows and n columns, all of its entries vanish except for
those on the main diagonal that are equal to 1. For a vector
w with positive entries, denote max=min(w) the ratio of the
maximum over the minimum entry. Denote e the base of the
natural logarithm. We shall use a combinatorial inequality
stating that for any su�ciently large integer n and for an
integer # � n,

�
n

#

�
� (ne=#)#. For an event E in a sample

space, denote Pr(E) the probability of event E happening.
For a random variable X, denote E(X) the expectation of
X.

2.2 Model
Our model and presentation are patterned after those

in [25, Sections 1 & 2].
We consider a network consisting of a set of m parallel

links 1; 2; : : : ;m from a source node to a destination node.
Each of n network users 1; 2; : : : ; n, or users for short, wishes
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to route a particular amount of tra�c along a (non-�xed)
link from source to destination; denote wi the tra�c of user
i, i 2 [n]. De�ne the n � 1 tra�c vector w in the natural
way.
A pure strategy for user i is some speci�c link; a mixed

strategy for user i is a probability distribution on the set
of links. Throughout, we will be using subscripts for users
and superscripts for links. A set of pure strategies, one per
user, is represented by an n-tuple h`1; `2; : : : ; `ni 2 [m]n; a
set of mixed strategies, one per user, is represented by an
m � n probability matrix P of mn probabilities p`i , i 2 [n]
and ` 2 [m], where p`i is the probability that user i selects
link `. For a probability matrix P, de�ne indicator variables
I`i 2 f0; 1g, i 2 [n] and ` 2 [m], such that I`i = 1 if and only
if p`i > 0. In the fully mixed case, I`i = 1 for all users i and
links `; here, each user assigns its tra�c on each link with
non-zero probability.
A solo link is a link ` such that

Pn

k=1
I`k = 1. By de�nition

of indicator variables, it follows that there is a single user
s(`) such that I`k = 1 if k = s(`), while I`k = 0 otherwise.
Roughly speaking, the solo link ` can be traversed only by
user s(`). Denote S the set of solo links; clearly, S � [m].
A non-solo link is a link that is not solo. For each link `,
de�ne the random variable �` to be the number of users that
choose link `.
Denote c` the capacity of link `, representing the rate at

which the link processes tra�c. So, the latency for tra�c
w through link ` equals w=c`. In the model of uniform ca-
pacities, all link capacities are equal to c, for some constant
c > 0; link capacities may vary arbitrarily in the model of
non-uniform capacities. De�ne the m�n capacity matrix C
with all entries in row ` equal to c`.
For any set of pure strategies h`1; `2; : : : ; `ni, the latency

cost for user i, denoted �i, is (
P

k:`k=`i
wk)=c`i ; that is, the

latency cost for user i is the latency of the link it chooses.
For any set of mixed strategies P, denote W ` the expected

tra�c on link `; clearly, W ` =
Pn

i=1
p`iwi. Given P, de�ne

the m� 1 expected tra�c vectorW in the natural way. For
any set of mixed strategies P, the expected latency cost for
user i on link `, denoted �`i , is the expectation, over all
random choices of the remaining users, of the latency cost
for user i when its tra�c is assigned to link `; thus,

�`i =
wi +

Pn

k=1;k 6=i p
`
kwk

c`

=
wi � p`iwi +

Pn

k=1
p`kwk

c`

=
(1� p`i )wi +W `

c`
:

For each user i, the minimum expected latency cost, denoted
�i, is the minimum, over all links `, of the expected latency
cost for user i on link `; thus, �i = min`2[m] �

`
i . For a

probability matrix P, de�ne the n � 1 minimum expected
latency cost vector � in the natural way.
We are interested in a special class of mixed strategies

called Nash equilibria [31] that we describe below. For-
mally, the probability matrix P is a Nash equilibrium if for
all users i and links `, �`i = �i if and only if I`i > 0. Thus,
each user i assigns its tra�c with non-zero probability only
on links (possibly more than one of them) on which its ex-
pected latency cost is minimized; this implies that there is
no incentive for user i to unilaterally deviate from its mixed

strategy in order to avoid links on which its expected la-
tency cost is higher than necessary. Call Nash probabilities
the probabilities in a Nash equilibrium.
Associated with a tra�c vector w and a set of mixed

strategies P is the social cost SC(w;P) [25, Section 2], which
is the expectation, over all random choices of the users,
of the maximum (over all links), of the latency of tra�c
through a link; thus,

SC(w;P) = E

�
max
`2[m]

P
k:`k=`

wk

c`

�
=

X
h`1;`2 ;:::;`ni2[m]n

 
nY

k=1

p
`k
k
� max
`2[m]

P
k:`k=`

wk

c`

!
:

On the other hand, the social optimum [25, Section 2] asso-
ciated with a tra�c vector w, denoted SO(w), is the min-
imum possible maximum (over all links) latency of tra�c
through a link; thus,

SO(w) = min
h`1;`2;:::;`ni2[m]n

max
`2[m]

P
k:`k=`

wk

c`
:

The coordination ratio [25], denoted CR, is the maximum
value, over all tra�c vectors w and Nash equilibria P, of
the ratio SC(w;P)=SO(w).

2.3 Properties of Nash Equilibria
Koutsoupias and Papadimitriou [25, Section 2] provide

necessary conditions for Nash equilibria.

Proposition 1 ([25]). In a Nash equilibrium, for any

user i 2 [n] and link ` 2 [m], p`i =
W `+wi�c`�i

wi
, subject to

(1) for all links ` 2 [m], W ` =
Pn

k=1
I`k(W

` +wk � c`�k),
and

(2) for all users i 2 [m], wi =
Pm

j=1
Iji (W

j +wi � cj�i).

We remark that the necessary conditions in Proposition 1
neither provide any apparent way of computing Nash equi-
libria nor say anything about their existence and unique-
ness. It appears that existence and uniqueness are contin-
gent upon the corresponding existence and uniqueness of
solutions for W and � to the conditions (1) and (2). How-
ever, we observe here that simple expressions for expected
tra�cs on non-solo links may be easily derived, implying
their existence and uniqueness in a Nash equilibrium. The
expressions are derived by appealing to Proposition 1 (Con-
dition (1)). We prove:

Lemma 2. In a Nash equilibrium, for any non-solo link

` 2 [m], W ` =
�
P

n

k=1
I`
k
wk+c`

P
n

k=1
I`
k
�kP

n

k=1
I`
k
�1

.

2.4 An Exact Lower Bound
We conclude this section by establishing a simple lower

bound on coordination ratio for the fully mixed case and
under the model of uniform capacities. Unlike the upper
bounds that we will show in Sections 5 and 6, which are
asymptotic, this bound is exact; it is shown from �rst prin-
ciples.
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Proposition 3. Consider the fully mixed case under the
model of uniform capacities. Then,

CR � m�
1

mm

m�1X
#=1

0@ X
�1; �2; : : : ; �m � #

� m

�1; �2; : : : ; �m

�1A :

Proof. We give an informal outline of our proof. We will
set n = m and assume unit tra�cs. We will also set c = 1.
We notice that for this particular choice of tra�cs, SO = 1.
Hence, the corresponding social cost is a lower bound on
coordination ratio. We use the fact that social cost is the
expectation of the random variable max`2[m] �` and apply
sum telescoping to derive the claim.

We emphasize that Proposition 3 yields an exact (as op-
posed to asymptotic) lower bound on the coordination ratio
for any particular value of m. For example, for m = 2 and
m = 3, it yields lower bounds of 3=2 and 51=27 � 1:889,
respectively, on the coordination ratio. (The lower bound
of 3=2 for m = 2 was shown before by Koutsoupias and
Papadimitriou [25, Theorem 1].)

3. RANDOM ALLOCATIONS
In this section, we outline some material on random allo-

cations that will be used in our later analysis.
Say that a discrete random variable X follows the bino-

mial distribution with parameters n and p if for each integer
#, 0 � # � n, Pr (X = #) =

�
n

#

�
p#(1 � p)n�#; we will use

the fact that E (X) = np. We shall use concepts and tools
from the classical theory of random allocations (see, e.g., [17,
19]), studying the size of the fullest bin when each of n balls
is independently put into one of m bins, which is chosen ac-
cording to some speci�c probability distribution. We shall
exploit arising analogies between sel�sh routing and random
allocation problems, and we shall interchangeably use the
terms balls and users, and bins and boxes, respectively. For
any bin ` 2 [m], denote �` the random variable representing
the number of balls put into it. In the special case where all
users choose link ` 2 [m], ` 2 [m], with the same probability
�`, each random variable �`, ` 2 [m] may be cast as a sum
of n independent but identical Bernoulli trials, each repre-
senting the choice made by each speci�c ball; thus, in this
case, �` follows the binomial distribution with parameters n
and �`.
For the case where m = n and each ball chooses a bin

uniformly at random, so that �` = 1=m for all bins ` 2 [m],
a classical tool from the theory of random allocations shows
that, with high probability, the size of the fullest bin does
not exceed �(ln n= ln ln n).

Lemma 4. Assume each of n balls is put uniformly at ran-
dom into one of n bins. Then, Pr

�
max`2[n] �` � e ln n

ln ln n

�
�

1� 1
n
.

For the general case, where arbitrary probabilities �`,
` 2 [m], are allowed and m 6= n, classical Cherno�-type
results [9] bound the tail probability of �`, which is the prob-
ability that �` exceeds a suitable fraction of its expectation.
We will use a particular such result derived by Angluin and
Valiant [3].

Lemma 5. For any link ` 2 [m], for any parameter � 2
(0; 1), Pr (�` > (1 + �)E(�`)) � exp

�
��2

3
� E(�`)

�
.

We conclude this section with two technical lemmas that
will be used in our later proofs. These lemmas derive bounds
on tail probability under some particular assumptions on
expectation. We start by proving:

Lemma 6. Consider any link ` 2 [m] such that E(�`) � 1.

Then, Pr
�
�` >

e ln n
ln ln n

�
< 1

n2
.

We also prove:

Lemma 7. Consider any link ` 2 [m] such that E (�`) > 1.

Then, Pr
�
�` >

e ln n
ln ln n

E (�`)
�
< 2e�`

n
.

4. STRUCTURE OF NASH EQUILIBRIA
This section is organized as follows. Section 4.1 derives

the minimum expected latency cost equations. These equa-
tions are used in Section 4.2 for establishing existence and
uniqueness results for Nash equilibria in the fully mixed case.

4.1 Minimum Expected Latency Cost Equa-
tions

We show:

Proposition 8. In a Nash equilibrium, for any user i 2
[n],

�i

 
mX
j=1

I
j
i cj �

mX
j=1;j 62S

I
j
iPn

k=1
I
j
k
� 1

cj

!

�

nX
k=1;k 6=i

�k

 
mX

j=1;j 62S

I
j
i
I
j
kPn

k=1
I
j
k
� 1

cj

!

= wi

 
mX
j=1

I
j
i � 1�

mX
j=1;j 62S

I
j
iPn

k=1
I
j
k
� 1

!

�

nX
k=1;k 6=i

wk

 
mX

j=1;j 62S

I
j
i
I
j
kPn

k=1
I
j
k
� 1

!
+

mX
j=1;j2S

I
j
iW

j :

Proof. We give an informal outline of our proof. Fix
any user i 2 [n]. We derive two alternative expressions forPm

j=1
IjiW

j . The �rst
Pm

j=1
IjiW

j = wi

�
1�Pm

j=1
Iji

�
+

�i
Pm

j=1
Iji cj follows directly from Proposition 1 (Condition

(2)). The second one will follow by using the expressions for
the expected tra�cs that were derived in Lemma 2. Equat-
ing the two derived expressions eliminates the expected traf-
�cs W j , 1 � j � m and j 62 S, on non-solo links and yields
through algebraic manipulation the minimum expected la-
tency equations.

4.2 Fully Mixed Strategies
We now focus on the fully mixed case. (Recall that there

are no solo links in the fully mixed case.) We set I`i =
1 for all users i 2 [n] and links ` 2 [m] in the minimum
expected latency cost equations (Proposition 8) and solve
the resulting linear system to obtain:
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Lemma 9. In the fully mixed case, in a Nash equilibrium,
� is a linear transformation of w:

� =
1Pm

j=1
cj

0BB@
m 1 : : : 1
1 m : : : 1
...

...
. . .

...
1 1 : : : m

1CCA � w :

We plug the expressions for the minimum expected la-
tency costs derived in Lemma 9 into the expressions for the
expected tra�cs on links provided by Lemma 2 to obtain:

Lemma 10. In the fully mixed case, in a Nash equilib-
rium, W is a linear transformation of w:

W =
1

n � 1

�
�Jm�n ++

m+ n � 1Pm

j=1
cj

C

�
�w :

We are now ready to derive expressions for the Nash prob-
abilities in the fully mixed case. We prove:

Proposition 11. Consider the fully mixed case in Nash
equilibrium. Then, for all users i 2 [n] and link ` 2 [m],

p`i =

�
1�

mc`Pm

j=1
cj

��
1�

Pn

k=1
wk

(n� 1)wi

�
+

c`Pm

j=1
cj

:

Proof. The proof amounts to plugging the expressions
for �i, i 2 [n], andW `, ` 2 [m], derived in Lemmas 9 and 10,
respectively, into the expressions for the Nash probabilities
p`i in Proposition 1.

When do the quantities p`i determined in Proposition 11
represent probabilities? For this, it must be that for each
user i 2 [n], (1)

Pm

j=1
pji = 1, and (2) for each link ` 2 [m],

0 � p`i � 1. Also, since these quantities were derived for the
fully mixed case, condition (2) should actually be stated as
(20) for each link e, 1 � e � m, 0 < pei < 1. A straight-
forward calculation veri�es that condition (1) and condition
(20) may or may not hold, depending on the particular val-
ues of the tra�cs and link capacities. Hence, we obtain an
impossibility result for Nash equilibria in the fully mixed
case.

Corollary 12. Assume that there exist a user i 2 [n]
and a link ` 2 [m] such that�

1�
mc`Pm

j=1
cj

��
1�

Pn

k=1
wk

(n� 1)wi

�
+

c`Pm

j=1
cj

62 (0;1) :

Then, in the fully mixed case, there is no Nash equilibrium.

Moreover, we show that the necessary condition for a Nash
equilibrium (in the fully mixed case) determined in Corol-
lary 12 is also su�cient.

Proposition 13. Assume that for each user i 2 [m] and
link ` 2 [m],�

1�
mc`Pm

j=1
cj

�
�

�
1�

Pn

k=1
wk

(n� 1)wi

�
+

c`Pm

j=1
cj

2 (0;1) :

Then, in the fully mixed case, the probabilities

p`i =

�
1�

mc`Pm

j=1
cj

�
�

�
1�

Pn

k=1
wk

(n� 1)wi

�
+

c`Pm

j=1
cj

;

for any user i 2 [n] and link ` 2 [m], are Nash probabilities.

Propositions 11 and 13 together establish:

Theorem 14. Consider the fully mixed case. Then, for
all users i 2 [n] and links ` 2 [m],�

1�
mc`Pm

j=1
cj

�
�

�
1�

Pn

k=1
wk

(n� 1)wi

�
+

c`Pm

j=1
cj

2 (0;1)

if and only if there is a Nash equilibrium, which must be
unique and has associated Nash probabilities

p`i =

�
1�

mc`Pm

j=1
cj

�
�

�
1�

Pn

k=1
wk

(n� 1)wi

�
+

c`Pm

j=1
cj

;

for any user i 2 [n] and link ` 2 [m].

Proposition 14 implies that for the fully mixed case, Nash
equilibrium can be checked for existence and evaluated (if
existing) in time �(mn).

5. UNIFORM CAPACITIES & ARBITRARY
TRAFFICS

In this section, we derive upper bounds on coordination
ratio for the case of fully mixed strategies and the model of
uniform capacities.

5.1 Preliminaries
Recall that in the model of uniform capacities, c` = c > 0

for all links ` 2 [m]. We start with a characterization of Nash
probabilities. (It follows immediately from Theorem 14.)

Lemma 15. Consider the fully mixed case for the model of
uniform capacities. Then, there is a unique Nash equilibrium
with Nash probabilities p`i = 1=m for any user i 2 [n] and
link ` 2 [m].

By Lemma 15, for each link `, ` 2 [m], Pr(�` = #) =�
n

#

� �
1
m

�# �
1� 1

m

�n�#
, for each integer # such that 0 � # �

n. Hence, each random variable �`, ` 2 [m], follows the
binomial distribution with parameters n and 1=m, so that
E (�1) = n=m, ` 2 [m].

5.2 Tail Lemma
We start by proving an upper bound on social cost under

a certain assumption on the tail probability of max`2[m] �`.

Proposition 16. Consider the fully mixed case under the
model of uniform capacities. Assume that, for a Nash equi-
librium P, there exists a function �(m;n) such that for every
link ` 2 [m],

Pr

�
max
`2[m]

�` � �(m;n) � E (�`)
�

� 1� 1

n
:

Then,

SC (w;P) � max1�k�nwk

c
�
�
�(m;n) � n

m
+ 1
�
:

Proof. We give an informal outline of our proof. We use
the de�nitions for social cost and expectation to obtain that

SC (w;P) � max1�k�n wk

c

nX
#=0

#Pr

�
max
`2[m]

�` = #

�
:

We then use the assumption and split the summation across
�(m;n)E (�`0), for any particular link `0 2 [m], to derive the
claimed upper bound on SC (w;P).
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Clearly, the function �(m;n) in Lemma 16 describes the
measure of the distribution of the random variable max`2[m] �`
in the tail of the distribution of any variable �`, ` 2 [m], that
lies below its expectation E (�`) = n=m. So, call the function
�(m;n) a tail function.
Proposition 16 implies that to show an upper bound on

social cost (and so, by Lemma 19, an upper bound on coordi-
nation ratio), it su�ces to determine a suitable tail function
�(m;n). In the next section, we will do so in two particular
instances.

5.3 Upper Bounds on Social Cost
In this section, we determine a suitable tail function un-

der two particular cases on how m and n compare to each
other. In doing so, we will envision our problem as a random
allocation problem.

The Case m = n

We prove:

Proposition 17. Consider the fully mixed case under the
model of uniform capacities. Assume that m = n. Then, for
a Nash equilibrium P,

SC (w;P) � max1�k�n wk

c
�
�
e ln n

ln ln n
+ 1
�
:

Proof. Since E(�`) = 1 for all links ` 2 [n], Lemma 4
that for each link ` 2 [n],

Pr

�
max
`2[n]

�` � e ln n

ln ln n
� E (�`)

�
� 1� 1

n
:

Thus, Proposition 16 applies with �(m;n) = e ln n= ln ln n
to yield that

SC (w;P) � max1�k�n wk

c
�
�
e ln n

ln ln n
+ 1
�
;

as needed.

The Case m � n=(24 ln n)

We prove:

Proposition 18. Consider the fully mixed case under the
model of uniform capacities. Assume that m � n=(24 ln n)
for su�ciently large m and n. Then, for a Nash equilibrium
P,

SC (w;P) � max1�k�n wk

c

�
3

2
� n
m

+ 1
�
:

Proof. Take any link ` 2 [m]. Since E(�`) = n=m,
Lemma 5 implies that for any parameter � 2 (0; 1),

Pr (�` > (1 + �)E (�`)) � exp

�
��2

2
� n
m

�
� exp

�
��2

2
� 24 ln n

�
;

Fix now � = 1=2, so that

Pr

�
�` >

3

2
� n
m

�
� exp (�2 ln n)

=
1

n2
:

Thus,

Pr

�
max
`2[m]

�` >
3

2
� n
m

�
� Pr

0@ ^
`2[m]

�
�` >

3

2
� n
m

�1A
� Pr

0@ _
`2[m]

�
�` >

3

2
� n
m

�1A
�

X
`2[m]

Pr

�
�` >

3

2
� n
m

�
= m � 1

n2

� n

24 ln n
� 1

n2

<
1

n
:

Thus, Proposition 16 applies with �(m;n) = 3=2 to yield
that

SC (w;P) � max1�k�nwk

c

�
3

2
� n
m

+ 1
�
;

as needed.

5.4 Lower Bound on Social Optimum
We prove:

Lemma 19. For the model of uniform capacities,

SO(w) � 1

c
�max

�P
1�k�n

wk

m
; max
1�k�n

wk

�
:

Proof. Clearly, in the optimal allocation of tra�cs to
links, some link must receive tra�c no less than the aver-
age (over all links) tra�c, and some link must receive the
maximum (over all users) tra�c. This implies the claim.

5.5 Recap
We are now ready to show our results for the fully mixed

case and under the model of uniform capacities. Assuming
m = n, we use Proposition 17 and Lemma 19 we obtain:

Theorem 20. Consider the fully mixed case for the model
of uniform capacities. Assume that m = n. Then,

CR � e ln n

ln ln n
+ 1 :

Assuming now that m � n=(24 ln n), we use Proposi-
tion 18 and Lemma 19 to obtain:

Theorem 21. Consider the fully mixed case for the model
of uniform capacities. Assume that m � n=(24 ln n) for suf-
�ciently large m and n. Then,

CR <
�
3

2
+ "
�
�max=min(w) :

for any arbitrary constant " > 0.
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6. NON-UNIFORM CAPACITIES & IDEN-
TICAL TRAFFICS

In this section, we use properties of Nash equilibria shown
in Section 4 to derive bounds on coordination ratio for the
case of fully mixed strategies and the model of non-uniform
capacities. Furthermore, we assume that all tra�cs are iden-
tical; that is, for all users i, wi = w for some constant w > 0.
For each link `, ` 2 [m], denote ec` = c`=(

Pn

j=1
cj), the

reduced capacity of link `. (Clearly,
P

`2[m]
ec` = 1.)

6.1 Preliminaries
We start with a simple fact characterizing the existence

and uniqueness of Nash equilibria in this case; this is a direct
consequence of Theorem 14.

Lemma 22. Consider the fully mixed case for the model
of non-uniform capacities. Assume that all tra�cs are iden-
tical. Then, for all links `, ` 2 [m],

ec` 2
�

1

m+ n� 1
;

n

m+ n � 1

�
;

if and only if there exists a Nash equilibrium, which must be
unique and has associated Nash probabilities

p`i 2 (n+m� 1) ec` � 1

n� 1
;

for any user i 2 [n] and link ` 2 [m].

Proof. By Theorem 14, there exists a Nash equilibrium,
which must be unique, if and only if for all users i 2 [n] and
links ` 2 [m],

(1 �mec`) � �1� 1

n� 1
� nw
w

�
+ ec` 2 (0; 1) :

Solving for ec` yields that
ec` 2

�
1

m+ n� 1
;

n

m+ n � 1

�
;

as needed. Also, by Theorem 14, the associated Nash prob-
abilities are

p`i = (1 �mec`) � �1� 1

n� 1
� nw
w

�
+ ec`

=
(n+m� 1) ec` � 1

n� 1
;

for all users i 2 [n] and links ` 2 [m], as needed.

Lemma 22 describes the Nash probabilities for the case
of identical tra�cs and under the model the model of non-
uniform capacities; Lemma 15 represents its analog for the
case of arbitrary tra�cs and under the model of uniform
capacities. However, these two lemmas stand in sharp con-
trast to each other, since Lemma 15 shows the existence of a
Nash equilibrium in all possible cases, while Lemma 22 pro-
vides conditions under which a (still unique) Nash equilib-
rium may exist. Thus, Lemmas 15 and 22 reveal an essential
di�erence with respect to Nash equilibria between the case
of uniform capacities and identical tra�cs, and the case of
non-uniform capacities and arbitrary tra�cs, respectively.
Further on, we remark that Lemma 22 shows that each

Nash probability is now independent of the particular user
and depends only on the link; to emphasize this property,

we will write �` to denote p`i for any user i 2 [n] and link
` 2 [m]. Thus, for each link `, ` 2 [m],

Pr (�` = #) =

�
n

#

�
�#` (1� �`)

n�# :

Hence, �` follows the binomial distribution with parameters
n and �`, ` 2 [m], so that E(�`) = �`n.

6.2 Tail Lemma
We prove an upper bound on social cost under a certain

assumption on the tails of the probability distributions of
the random variables �`, ` 2 [m].

Proposition 23. Consider the fully mixed case under the
model of non-uniform capacities. Assume that all tra�cs are
equal to w. Assume that for each link `, ` 2 [m], there exists
a function �`(m;n) so that

Pr

0@ ^
`2[m]

(�` � �`(m;n) �maxf1; E(�`)g)

1A > 1 � �

n
;

for some constant � > 0. Then, in a Nash equilibrium P,

SC (w;P) �
w (m+ n � 1)P

`2[m]
c`

�

�
max
`2[m]

�`(m;n) �
1

n� 1
+ �

�
:

Proof. We give an informal outline of our proof. We
start by observing that

SC (w;P) = w � E
�
max
`2[m]

�`
c`

�
:

To bound from above the expectation of the (discrete) ran-
dom variable max`2[m] �`=c`, we partition its sample space
according to the event that for all links ` 2 [m],

�` � �`(m;n) max f1; E (�`)g ;
to obtain that

SC (w;P)

� w �

�
max
`2[m]

�`(m;n) �max

�
max
`2[m]

1

c`
; max
`2[m]

E(�`)

c`

�
+

�

min`2[m] c`

�
:

We then use Lemma 22 and the expressions for the Nash
probabilities �`, ` 2 [m], to establish the claim.

6.3 Upper Bound on Social Cost
In this section, we determine a suitable tail function for

each link ` 2 [m], under the assumption thatm � n. Taking
the maximum of these tail functions will yield, via Lemma 23,
an upper bound on social cost. In our analysis, we will
still envision our problem as an occupancy problem [19]. We
show:

Proposition 24. Consider the fully mixed case under the
model of non-uniform capacities. Assume that all tra�cs are
identical and equal to w. Assume also that m � n. Then,
in a Nash equilibrium P,

SC (w;P)

�
wP

`2[m]
c`

�

�
e lnn

ln lnn
�
n(2n� 1)

n� 1
+ (2e+ 1) � (2n� 1)

�
:
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Proof. We give an informal outline of our proof. We will
determine an appropriate tail function �`(m;n) for each link
` 2 [m] so that

Pr

0@ ^
`2[m]

(�` � �`(m;n) �max f1;E (�`)g)

1A > 1� �

n
;

for some appropriate constant � > 0, whence Lemma 23
applies. To do so, we consider separately each of two possible
cases as to how E (�`) compares to 1, for each link ` 2 [m],
and we use Lemmas 6 and 7.
Set now �`(m;n) = e ln n

ln ln n
, for each link ` 2 [m]. We use

the case analysis above to show that

Pr

0@ ^
`2[m]

(�` � �`(m;n) �maxf1; E (�`)g)

1A > 1�
2e+ 1

n
:

Then, Lemma 23 establishes the claim.

6.4 Lower Bound on Social Optimum
We continue with a lower bound on social optimum.

Lemma 25. Consider the fully mixed case under the model
of uniform capacities. Assume that all tra�cs are identical
and equal to w. Then, SO(w) � nwP

e2[m]
ce
.

Proof. We give an informal outline of our proof. The
proof considers an alternative routing model where each in-
dividual tra�c may be "split" among more than one links;
clearly, the social optimum is no less than the value it at-
tains in this model. This splitting assumption is modeled by
introducing a split fraction �` 2 [0; 1] for each link ` 2 [m],
representing the fraction of the total tra�c nw received by
link `. Thus, the social optimum for this model is the mini-
mum, over all possible choices of split fractions �` for links,
of the maximum, over all links, of �`(nw)=c` = (nw)�`=c`.
The claim follows then easily from the observation that there
exists a link ` 2 [m] such that �` � ec` (using also the fact
that

P
`2[m]

ec` = 1).

6.5 Recap
We are now ready to show our result for the fully mixed

case under the model of non-uniform capacities and assum-
ing identical tra�cs. We use Proposition 24 and Lemma 25
to show:

Theorem 26. Consider the fully mixed case for the model
of non-uniform capacities. Assume that all tra�cs are iden-
tical. Assume also that m � n. Then,

CR � 2e ln n

ln ln n
+ 2(2e+ 1) :

7. DISCUSSION
In this work, we studied the problem of sel�sh routing in

a noncooperative network consisting of a set of m parallel
links, within a game-theoretic framework suggested in a re-
cent work by Koutsoupias and Papadimitriou [25]. We used
coordination ratio [25] as a measure of performance loss in
noncooperative networks due to lack of coordination.

We identi�ed a set of stochastic equilibrium equations
(one per each of n users), called the minimum expected la-
tency cost equations, that describe the Nash equilibrium
of the system. In turn, we particularized these equations
to study in depth a natural special case of Nash equilib-
ria, namely fully mixed strategies, where each user may
ship its tra�c over any link. For the case of fully mixed
strategies, we proved asymptotically tight upper bounds of
�(ln n= ln ln n) on coordination ratio over two interesting in-
stances: all links have the same capacity while users' tra�cs
may vary, and symmetrically, all users carry the same traf-
�c while links' capacities may now vary. The techniques
we developed seem to bridge the gap between computer sci-
ence and game theory for the speci�c instances of the sel�sh
routing problem we study.
Although the case of fully mixed strategies is one out of

the exponentially many possible Nash equilibria, we feel that
it does encapsulate the di�culty of the whole problem. We
believe that the techniques we developed for studying the
case of fully mixed strategies can be appropriately extended
to the general case of Nash equilibria to yield corresponding
upper bounds on coordination ratio in the general case. We
leave this extention as the most obvious open problem sug-
gested by our work. Still for the case of fully mixed strategies
and under the model of uniform capacities, it would be very
interesting to prove bounds on coordination ratio for values
of the ratio m=n in the interval (1=24 ln n; 1) or larger than
1, thus complementing Theorems 20 and 21.
A wide avenue of other signi�cant problems that remain

tantalizingly open include the consideration of more general
network topologies, latency cost functions, and performance
measures within the game-theoretic framework for sel�sh
routing adopted in this article. We hope that our work pro-
vides a solid, initial ground for settling these issues.
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