Trade-off Results for Connection Management

MARIOS MAVRONICOLAS
University of Cyprus, Nicosia, Cyprus

N1KOs PAPADAKIS

University of Crete, Heraklion, Greece

(DECEMBER 15, 2000)

A preliminary version of this work appears in the Proceedings of the 11th International Sympo-
sium on Fundamentals of Computation Theory, B. S. Chlebus and L. Czaja, eds., pp. 340-351,
Lecture Notes in Computer Science, Vol. 1279, Springer-Verlag, Krakow, Poland, September
1997.

This work has been supported in part by funds for the promotion of research at University of

Cyprus, and by AT&T/NCR research funds.

Authors” addresses: M. Mavronicolas, Department of Computer Science, University of Cyprus,
Nicosia, CY-1678, Cyprus; N. Papadakis, Department of Computer Science, University of
Crete, Heraklion 711 10, Greece.

Abstract. A connection management protocol establishes and handles a connection between
two hosts across a wide-area network to allow reliable message delivery. We continue previous
work of Kleinberg et al. (Proceedings of the 3rd Israel Symposium on the Theory of Computing
and Systems, pp. 258267, January 1995) to study the precise impact of the level of synchrony
provided by the processors’ clocks on the performance of connection management protocols,

under common assumptions on the pattern of failures of the network and the host nodes.

Two basic timing models are assumed: clocks that exhibit certain kind of a drift from
the rate of real time, and clocks that display a pattern of synchronization to real time. We
consider networks that can duplicate and reorder messages, and nodes that can crash. We are
interested in simultaneously optimizing the following performance parameters: the message
delivery time, which is the time required to deliver a message, and the quiescence time, which
is the time that elapses between successive periods of quiescence, at which the receiving host

deletes all earlier connection records and returns to an initial state.

We establish natural trade-offs between message delivery time and quiescence time, in the
form of tight lower and upper bounds, for each combination of the timing models and failure
types. Several of our trade-off results significantly improve upon or extend previous ones shown

by Kleinberg et al.

Key words: distributed computation, communication networks, connection management,

protocols, lower bounds, trade-offs, message delivery time, quiescence time, synchrony.

Contents

1 Introduction
1.1 Motivation-Overview i e e e e e
1.2 Failure Types, Timing Models and Timing Parameters

1.3 Detailed Description and Relation to Previous Work

1.3.1 Network Failures
1.3.2 Network and Node Failures

1.4 Organization L e

Definitions and Preliminaries

2.1 Clock Types and Timing Models
2.2 System Model L

2.3 Connection Management Protocols

Generic Protocols

3.1 A Protocol Based on Time Stamps
3.1.1 Description and Preliminaries
3.1.2 Correctness Proof 0.

3.2 A Timer-Based Protocol,

Drifting Clocks

Approximately Synchronized Clocks

5.1 Lower Bound
5.2 Upper Bounds

Drifting Clocks

Approximately Synchronized Clocks

Discussion and Directions for Further Research

w0 S

12
13

13
15
16
19

20
20
20
24
26

27

35
35
40

47

54

65

1 Introduction

1.1 Motivation-Overview

Transport layer protocols [19, Chapter 6], such as the TCP/IP Internet Suite (see, e.g. [21]
or [17, Chapter 3]), provide a reliable connection between two remote hosts, a sender and
a receiver, across a wide-area network. The sender wishes to establish a connection to the
receiver, transmit information, and later release the connection. A connection management
protocol coordinates the establishment and release of the connection. In turn, protocols built
over the transport layer provide the ground for ftp, telnet, remote procedure calls, and a

number of other useful communication primitives that rely on reliable connections.

In a large network, each sender typically maintains a number of parallel sessions. Moreover,
there can be a sufficient number of different incarnations of any session with a single receiver;
in each incarnation, the connection is opened, closed and opened again. In the presence of
network failures, even as benign as message reordering and duplication, it is necessary to
maintain records at each receiver keeping track of which packets have been received, acted on,
and so forth. Based on its own local records, the receiver must deliver each individual message
from the sender once and never twice, even if it receives multiple packets that are duplicates
of the message; the message delivery time is the time required to deliver a message. As the
number of parallel sessions increases, however, memory limitations do not allow processing
nodes to keep history records for very long. So, the receiver must periodically quiesce by
deleting past connection records and returning to an initial state; the quiescence time is the

time that elapses between periods of quiescence.

Message delivery time determines the latency of data transmission; thus, for applications
with short incarnations, such as remote procedure calls, it is particularly desirable to keep
message delivery time as small as possible. On the other hand, the amount of information
that needs to be stored at each node is proportional to quiescence time; so, for applications
involving steady stream-like traffic with stringent requirements on transmission rate, it is
even necessary to keep quiescence time as small as possible, so that available buffer space at
each processing node does not run over. Naturally, a large number of protocols have been
proposed in the practical literature to minimize either message delivery time or quiescence
time [5, 10, 18, 20, 24, 25]. In short, all of these protocols rely on using some combination
of timers, synchronized clocks, packet delay bounds, and unique incarantion identifiers; these

protocols have attracted much attention in the literature on the verification of communication

protocols.! On the one extreme, timer-based protocols (see, e.g., [10]) achieve small message
delivery time; on the other extreme, the three-packet handshake protocol (see, e.g., [2, 4, 5, 20])

guarantees small quiescence time.

Timer-based protocols require knowledge of the mazimum packet lifetime p; roughly speak-
ing, p is the largest amount of time a duplicate of any message may survive in the network
before reaching the receiver.? The receiver can deliver immediately if it is prepared to maintain
a record for an amount of time equal to the maximum packet lifetime; in this way, the receiver
is certain that a duplicate will not arrive after the record is deleted. The catch, however, is that
i can, in general, be quite large, while duplicates may, in fact, survive for significantly shorter
than g in “normal” executions. On the opposite extreme, the three-packet handshake protocol
imposes no overhead in terms of clocks or connection records. Instead, each processing host
uses a source of unique identifiers: upon request from the host, the source yields an identifier
that has not been generated before. FEach message is handled in a “three-way handshake”
fashion, which, roughly speaking, has as follows. First, the sender sends a unique identifier z
to the receiver; in response, the receiver generates a unique identifier y and replies with (z,y).
Finally, the sender sends the message together with y, and the receiver delivers the message,

3 Unfortunately, however, the three-packet hand-

being sure it is not delivering a duplicate.
shake protocol incurs a rather large message delivery time, since it requires three round-trips of
communication between the sender and the receiver. Indeed, it has been a natural belief among
practitioners that there are some sort of inherent trade-offs between message delivery time and
quiescence time in connection management protocols, rendering these protocols inefficient in

either one or the other of the two performance measures.

Kleinberg et al. [9] have been the first to establish mathematically precise trade-offs between
message delivery time and quiescence time in a number of natural settings. More specifically,
Kleinberg et al. have studied the connection management problem from the perspective of the
amount of synchrony provided by the clocks of the sender and the receiver; their results indicate
that the trade-offs between message delivery time and quiescence time depend in a critical and
subtle way on this amount of synchrony. The trade-off results of Kleinberg et al. [9] have been
expressed as non-trivial, simultaneous lower bounds on message delivery time and quiescence

time under particular synchrony assumptions; these lower bounds have been accompanied by

'Such works attempt to verify known protocols for correctness; however, work on investigating the necessity
of the model assumptions on which such protocols rely has been much less voluminous.

2We assume that all such duplicates eventually reach the receiver, so that p is a finite quantity.
*For a concise and more accurate description of the three-packet handshake protocol, we refer the reader

to [9, Section 3].

corresponding protocols whose performance guarantees nearly match the lower bounds.

In this paper, we continue the work of Kleinberg et al. [9] by further studying the effect of
the behavior of the sender and receiver’s clocks with respect to real time on the performance
of connection management protocols; we still adopt all assumptions from [9] on the timing
properties of the clocks, and on the pattern of failures of the network and the host nodes. We
establish new, natural trade-offs between message delivery time and quiescence time, in the
form of tight lower and upper bounds, for each combination of timing assumptions and failure
types. Several of our trade-off results significantly improve upon or extend the ones shown by
Kleinberg et al. [9].

Our lower bounds use the technique of “shifting” executions, originally introduced by Lun-
delius and Lynch for showing lower bounds on the precision achievable by clock synchronization
algorithms [11]. Roughly speaking, this technique amounts to simultaneously “retime” events
occurring at processes and “shift” their clocks by corresponding amounts, so that individual
processes behave mistakenly in the resulting execution due to their inability to tell the two
executions apart. We note that the “shifting” technique has been the one used for showing
lower bounds by Kleinberg et al. [9]. Furthermore, one of our upper bounds is based on a
substantial improvement of a specific “time-stamping” technique introduced by Kleinberg et
al. [9, Section 5].

1.2 Failure Types, Timing Models and Timing Parameters

Throughout, we focus on network failures, which allow duplication and reordering of messages.
We also consider node failures, where the receiver, but not the sender, may fail by crashing.?

Both network and node failures have been considered by Kleinberg et al. [9].

We consider two basic timing models. In the drifting clocks model, each of the sender and
receiver’s clocks runs at a rate that may vary with time but always remains within a factor of
1/p and p to the rate of real time, for some fixed (and known) constant p > 1, called drift.
In the approzimately synchronized clocks model, each of the clocks is always within ¢ of real
time, for some fixed (and known) constant ¢ > 0, called precision. Both the drifting clocks
and the approximately synchronized clocks models have been studied in the preceding work of
Kleinberg et al. [9].

*We assume, however, that the receiver may not maintain in stable storage the time of its last crash, since,
otherwise, if it is not required to deliver any message whose initial packet was sent before this time, there is a

general reduction to the case of message duplications (cf. [9, Section 6.2]).

We follow [9] to express our bounds on message delivery time and quiescence time in terms
of two main timing parameters describing packet delays. The first of these parameters refers
to a specific execution e of the system and is called the mazimum packet delay in execution
e, denoted d.; that is, d. is the supremum of the times that elapse between the sending of
a message and the receipt of (a duplicate of) it in execution e. The second parameter of
interest is the mazimum packet lifetime 1, already introduced in Section 1.1; notice that pu is
the maximum, over all executions e, among all d.. While we may sometimes assume that u
is known, in contrast, neither the sender nor the receiver may know d. a priori in execution
e. Kleinberg et al. [9, Section 1] provide excellent motivation for the use of d. in expressing

bounds on message delivery time and quiescence time:®

“We wish to be able to prove time bounds that hold for every execution of a
protocol, not just in a worst-case sense. Thus, for instance, while it is correct to
say that the time required before delivery by the three-packet handshake is at most
3., one can make the stronger statement that the time required is at most 3d,
in execution e. In this way, one can consider whether a given protocol has the
following desirable property: in “good executions” (those with d. < p), the time

required is small relative to d..”

Moreover, we introduce two additional timing parameters describing the behavior of the
clocks in any specific execution of the timing models we consider. much in the same way d.
describes packet delays. For the drifting clocks model, we define the worst drift in execution
e, denoted p., to be the maximum rate observed on any of the sender and receiver’s clocks in
execution e; for the approximately synchronized clocks model, the worst precision in execution
e, denoted ¢., is defined to be the maximum absolute deviation from real time observed on any
of the sender and receiver’s clocks in execution e. Clearly, 1/p < p. < pand 0 < e, < e. It turns
out that the parameters p. and ¢., together with the parameter d., determine the dependency
of time bounds on message delivery time and quiescence time achievable in execution e on
timing properties that are inherent to execution e in a more accurate way than p, ¢ and p,

respectively, do.

°It appears that similar motivations have recently led several researchers to study a notion of optimality per
each particular execution for clock synchronization algorithms; this notion is stronger than the more common

notion of worst-case optimality [3, 16].

1.3 Detailed Description and Relation to Previous Work

Sections 1.3.1 and 1.3.2 describe our results for the cases of network failures, and combined

network and node failures, respectively.

1.3.1 Network Failures

We start with the case where there are network failures but not node failures. Qur point
of departure is an ingenious connection management protocol designed by Kleinberg et al [9,
Section 5] for the approximately synchronized clocks model in the presence of network failures.
Roughly speaking, this protocol relies on a conservative estimation, made by the receiver, of the
maximum delay in any specific execution; the estimates are obtained through a “time-slicing”
technique requiring both the sender and the receiver to use their (approximately synchronized)
clocks in order to send to each other one time-stamped packet per each “time-slice”. In turn,

these estimates enable the receiver to determine when to deliver or quiesce.

We observe that the safety condition satisfied by this protocol, namely that it does not
deliver a message twice, holds independently of the particular timing assumptions made for
the approximately synchronized clocks model.® This observation makes this protocol a natural
candidate of a generic connection management protocol which guarantees at-most-once mes-
sage delivery in the presence of network failures for any model in which clocks are available to
the sender and the receiver. Such a generic protocol would enjoy nice portability properties
across models for which the available clocks satisfy different timing assumptions, while it would
still run correctly for models in which the timing properties of the clocks are non-amenable to

a precise formalization, or even completely unknown.

There is, however, an additional, natural performance requirement on a generic connection
management protocol. Indeed, different applications may present different needs regarding
which one between message delivery time and quiescence time to minimize while still retaining
the other bounded; so, a connection management protocol is truly competitive in performance
only if it allows such appropriate trade-offs between its message delivery time and quiescence
time. Unfortunately, as we explain below, the connection management protocol of Kleinberg

et al. [9, Section 5] fails to do so.

®An inspection of the proof of [9, Theorem 5] reveals that the timing assumptions in the approximately
synchronized clocks model are explicitly used in the analysis of the performance of this protocol, namely in
deriving upper bounds on the message delivery time and quiescence time it achieves; however, these timing

assumptions are not used in its correctness proof.

For the approximately synchronized clocks model, the connection management protocol
of Kleinberg at al. [9, Section 5] achieves upper bounds of (1 + 2/6)d. + (4 4+ 4/8)e + ¢ and
(6 +2)d. + (26 + 6)c + ¢ on message delivery time and quiescence time, respectively, for any
constant ¢ > 0, where § > 1 is a “trade-oft” parameter (cf. [9, Theorem 5]). Increasing ¢ lowers
the upper bound on message delivery time but raises the upper bound on quiescence time; on
the other hand, decreasing é raises the upper bound on message delivery time but lowers
the upper bound on quiescence time. Moreover, the upper bound on message delivery time
increases as ¢ decreases down to 1, while still remaining bounded above by a finite quantity,
namely 3d. + 8¢ + ¢; unfortunately, the same does not hold on the way the upper bound
on quiescence time increases with 6: the limit of the upper bound on quiescence time, as ¢
becomes large, is infinite. Thus, the connection management protocol of Kleinberg et al. [9,
Section 5] may become non-competitive in performance for the approximately synchronized
clocks model, due to unbounded increase in the amount of connection records per node, for

applications requiring the latency of packet transmission to become arbitrarily small.

Call a connection management protocol bounded if the upper bounds it achieves on message
delivery time and quiescence time are both bounded functions of any involved trade-off param-
eters. The work of Kleinberg et al. [9] leaves open the question of whether there exists or not a
connection management protocol that is both generic and bounded. We resolve this question
by a judicious adjustment of the timing conditions which the receiver uses to determine when
to deliver or quiesce in the generic protocol of Kleinberg et al [9]; the result is another generic
connection management protocol which is also bounded for the approximately synchronized

clocks model.

We also present another generic connection management protocol that is both simple and
natural. This protocol employs a timer and relies on knowledge of the maximum packet lifetime
1. The receiver delivers immediately each time it receives a new packet; it then counts off some
time on its local clock before quiescing in order to make sure that the elapsed real time is no

less than p.

Drifting Clocks

We first consider the case of drifting clocks, for which we establish a trade-off lower bound

result between message delivery time and quiescence time.

The three-packet handshake protocol [5, 20] still works for the drifting clocks model to

achieve upper bounds of 3d, on both message delivery time and quiescence time.” Kleinberg
et al. [9, Section 4.2] describe a natural timer-based protocol achieving upper bounds of d. and
p?1 + d. on message delivery time and quiescence time, respectively. This protocol requires
knowledge by the receiver of the maximum packet lifetime p; moreover, the upper bound on
quiescence time achieved by the protocol of Kleinberg et al. [9] is particularly large for systems
whose maximum packet lifetime is large. However, Kleinberg et al. establish almost optimality
of this protocol by presenting a nearly matching trade-off between message delivery time and
quiescence rime that must hold for some execution of any connection management protocol.
More specifically, Kleinberg et al. [9, Theorem 4] show that for any connection management
protocol there exists an execution e with d. < u/3 for which either a lower bound of 3d. on

message delivery time holds or a lower bound of p?(u — 3d.) on quiescence time holds.

We establish a more precise trade-off between message delivery time and quiescence time
that must still hold for some execution of any connection management protocol. More specif-
ically, we show that for any fixed constant 6, 0 < ¢ < 2, either a lower bound of (3 — 6p)d. on
message delivery time holds, or a lower bound of p?(y — (3 — §)d.) on quiescence time holds
for some execution e of any arbitrary connection management protocol. Our result extends
and improves upon [9, Theorem 4] in a significant way: it is a substantial refinement of [9,
Theorem 4] that achieves to incorporate the trade-off parameter 6; note that [9, Theorem 4] is

but the special case of our result with 6 = 0.

Approximately Synchronized Clocks

We next turn to the case of approximately synchronized clocks, for which we present both

lower and upper bounds.

We start with lower bounds. Kleinberg et al. [9, Section 5] consider the special case of
perfect clocks (i.e., approximately synchronized clocks with ¢ = 0); in particular, Kleinberg
et al. show that a certain trade-off between message delivery time and quiescence time must
hold for some execution of any connection management protocol in the perfect clocks model.
In more detail, Kleinberg et al. [9, Theorem 6] show, assuming ¢ = 0, that for any connection
management protocol, for any constant ¢’ where 0 < ¢’ < 2, there exists some execution e for

which either a lower bound of (1 + 6’)d. on message delivery time holds, or a lower bound of

"Processors may read off unigue time stamps from their clocks; these time-stamps may be used to implement
unique identifiers, required by the three-packet handshake protocol, in cases where unique identifiers are not

separately available.

10

min{y,2d./8'} on quiescence time holds; notice, however, that the latter lower bound never

exceeds p. Kleinberg et al. remark [9, Section 5]:

“For general ¢ > 0, we do not know how to obtain a correspondingly tight lower

bound, and leave this as an open question.”

We resolve this open question of Kleinberg et al. by presenting a corresponding trade-off
result for the case of general ¢ > 0. More specifically, we show that for any fixed constant
6 > 1, either a lower bound of (3 —2/6)d. +¢ on message delivery time holds, or a lower bound
of (6/(6 —1))d. + ¢ on quiescence time holds for some execution e of any arbitrary connection

management protocol.

For purpose of direct comparison to the trade-off result of Kleinberg et al. [9, Theorem 6],
which holds just for the special case where ¢ = 0, set ¢’ = 2(1 — 1/68) where 6 > 1. Under this
substitution, the lower bounds on message delivery time and quiescence time in their result can
be expressed as (3—2/6)d. and min{p, (6/(6—1))d.}, respectively; these expressions are almost
identical to those obtained by setting € = 0 in the corresponding lower bounds we have shown.
Our trade-off result implies that the timing uncertainty ¢ in the approximately synchronized
clocks model incurs an additive overhead proportional to € on each of the message delivery

time and the quiescence time.

Our trade-off result improves upon the corresponding result of Kleinberg et al. [9, Theorem
6] in two significant ways. First, it extends [9, Theorem 6] to the case of general £ > 0. Second,
when specialized for the case where ¢ = 0, the lower bound of (6/(6 —1))d. on quiescence time
improves in some cases upon the corresponding lower bound of min{y, (6/(6 — 1))d.}, shown
in [9, Theorem 6]; this is so because min{y, (6/(6 — 1))d.} < p, while it can be verified that
(6/(6 —1))d. exceeds p in the case where d. < p if 6 is chosen so that é < p/(p — de).

We continue with upper bounds. We use the timing assumptions made for the approxi-
mately synchronized clocks model to carry out a careful timing analysis of our generic connec-
tion management protocol. This analysis reveals upper bounds on message delivery time and
quiescence time which not only still incorporate the trade-off parameter 6, but also improve
substantially upon the corresponding upper bounds achieved by the corresponding protocol
in [9, Theorem 5]. More specifically, we show upper bounds of (3—1/6)d.+(4—1/6)2¢ 4 c and
(3+1/6)d.+(4+1/6)2¢+ c on message delivery time and quiescence time, respectively, for any
constant ¢ > 0; 6 > 1 is a “trade-off” parameter. We remark that each of these upper bounds
converges to the finite quantity 3d.+8¢+c¢ as § approaches infinity; this implies that our generic

connection management protocol is bounded for the case of the approximately synchronized

11

clocks model. In contrast, the generic connection management protocol of Kleinberg et al. [9,
Section 5] achieves upper bounds of (14+2/6)dc+(4+4/6)e+ ¢ and (6 +2)d. 4 (26 +6)c 4 ¢ on
message delivery time and quiescence time, respectively; these bounds imply that the (generic)

protocol of Kleinberg et al. is not bounded for the approximately synchronized clocks model.

We finally argue that the timer-based protocol described before achieves upper bounds of
d. and p + 4¢ on message delivery time and quiescence time, respectively, when specialized to

the approximately synchronized clocks model.

1.3.2 Network and Node Failures

We next turn to the case where there are both network and node failures.

Drifting Clocks

We first consider the case of drifting clocks, for which we show a lower bound on message

delivery time.

We establish a lower bound on message delivery time that must hold for some execution
of any connection management protocol. More specifically, we show that for any arbitrary
connection management protocol, there exists an execution e of it with d. < p/(3p + 1) for
which a lower bound of 3pd,. holds on message delivery time. No corresponding lower bound

had been shown in the preceding work of Kleinberg et al. [9].

Approximately Synchronized Clocks

We next turn to the case of approximately synchronized clocks, for which we show two lower

bounds on message delivery time that trade-off strength and generality.

First, we show that for any connection management protocol, there exists an execution e
of it such that ¢ < d. < p/3 for which a lower bound of d. 4+ 2¢ holds on message delivery
time. Second, we show that a stronger assumption on the execution e suffices to allow a larger
lower bound on message delivery time. More specifically, we show that, under the assumption

e <d. < (pu—6¢)/5,alower bound of 3d. + 2¢ on message delivery time holds.

Our second result improves upon the corresponding result of Kleinberg et al. [9, Theorem
8] in two singificant ways. First, it extends [9, Theorem 8] to the case of general £ > 0. Second,

when specialized for the case where ¢ = 0, the lower bound of 3d. on message delivery time

12

holds for more executions. More specifically, we show that a lower bound 3d. on message
delivery time holds for some execution e with d. < u/5, while Kleinberg et al. show that a

lower bound 3d. on message delivery time holds for some execution e with d. < u/9.

Figures 1 (a) and (b) provide a summary of the lower and upper bounds on message delivery
time and quiescence time known so far for each of the timing models we have considered, for

the cases of network failures, and combined network and node failures, respectively.

1.4 Organization

The rest of the paper is organized as follows. Section 2 contains formal definitions and some
preliminary facts. Part 77 deals with network failures; it consists of Sections 3, 4, and 5.
In Section 3, two generic protocols are presented that solve connection management. for
a general model with clocks. The drifting clocks model and the approximately synchronized
clocks model are treated in Sections 4 and 5, respectively. Part 77 considers combined network
and node failures; it consists of Sections 6 and 7, which treat the drifting clocks model and
the approximately synchronized clocks model, respectively. We conclude, in Section 8, with a

discussion of our results and some open problems.

2 Definitions and Preliminaries

Our definitions closely match corresponding ones in [9, Section 2].

The system we model consists of two nodes S (sender) and R (receiver), corresponding
users Ug and Up at the nodes, and a network connecting the two nodes. Thus, Ug and Up are
the two users at the opposite ends of a connection, while S and R are the network interfaces
for Ug and Up, respectively. The sender 5 wishes to transmit a single message to the receiver
R; the receiver is required to eventually deliver the message, but never to deliver it for a second
time. S and R communicate through packets sent along the network. Throughout, denote R

the domain of real time.

This section is organized as follows. Section 2.1 introduces clock types and corresponding
timing models. Definitions for the formal system model appear in Section 2.2, while Section 2.3

defines the connection management problem.

13

H Bounds ‘ Drifting clocks

Approximately synchronized clocks

D(e) > (3 —bp)d. or
Q(e) = p*(n = (3 = 8)de),

D(e) > (3—-2/6)d. + ¢ or
Q(e) = (8/(8 = 1))de + ¢,

Q(e) < p*u +d. [9, Section 4.2]

Lower forany 6,0 <6 <2 forany 6 > 1,ife <d. <(1—-1/6)(u—c¢
D(e) > 3d, or D(e) > (3 —2/6)d.
Q(e) > p*(p — 3d.) Q(e) > min{p, (6/(6 — 1))de},
if d. < p/3 19, Theorem 4] for any 6 > 1 and ¢ = 0 [9, Theorem 6]
D(e) < (3—1/8)d.+ (4 —1/6)2¢e + ¢ and
Qle)<(3+1/6)de+(4+1/6)2e+ ¢,
for any 6 > 1 and ¢ > 0
Upper | D(e) < d. and D(e) < d. and

Q(e) < p+ de

D(e) < (1+2/6)d.+ (4+4/6)e + ¢ and
Qle) < (24 6)de + (64 20)e + ¢,
for any 6 > 1 and ¢ > 0 [9, Theorem 5]

(a) Network failures

H Bounds ‘ Drifting clocks ‘ Approximately synchronized clocks H
D(e) > 3pd., D(e) > d. + 2¢,
ifde < p/(3p+1) ife <d.<p/3
Lower D(e) > 3d. + 2¢,
ife <d.<(p—06¢)/5
D(e) > 3d.,

if d. < p/9 and ¢ = 0 [9, Theorem 8]

Upper | — —

(b) Network and node failures

Figure 1: Summary of bounds on message delivery time and quiescence time

14

2.1 Clock Types and Timing Models

A clock is a strictly increasing (and unbounded), piece-wise continuous function of real time
7 : R — R; denote v~ the inverse of v. In the generic clocks model, clocks vs and v are

associated with S and R, respectively.

We consider two main clock types: clocks that may “drift” away from the rate of real time,

and clocks that are approximately synchronized with respect to real time.

Drifting Clocks

Fix any constant p > 1, called drift. A p-drifting clock, or drifting clock for short, is a clock
~ : R — F such that for all real times #,%5 € £ with t; < 1o,

1 < V(t2) — y(t1)

< .
P la—1 =P

Roughly speaking, a p-drifting clock runs at a rate between 1/p and p times the rate of real

time; note that the rate of a p-drifting clock may itself vary with real time.

A non-drifting clock is a p-drifting clock v : ® — R with p = 1. Thus, for all real times
t1,t3 € R, y(t2) — v(t1) = t2 — t1; in other words, a non-drifting clock runs at the rate of real

time.

In the drifting clocks model [9], each of ys and g is a drifting clock.

Approximately Synchronized Clocks

Fix any constant ¢ > 0, called precision. An e-synchronized clock, or approzimately syn-
chronized clock, is a clock v : ® — R such that for each real time t € R, [y(¢) — ¢] < e.
Roughly speaking, an e-synchronized clock remains always within ¢ of real time. An immedi-

ate implication of the definition of a e-synchronized clock is that for any real times #{,%, € R,
[(v(t2) = 7(t1)) = (t2 — t1)] < 2e.

A perfect clock is an e-synchronized clock v : ® — R with ¢ = 0. Thus, for each real time
t € R, v(t) =t. Note that a perfect clock is also a non-drifting clock, but not vice versa.

The approzimately synchronized clocks model [9] is defined by assuming that each of vg and
YR is an approximately synchronized clock; in the perfect clocks model [9], each of vs and vr

is a perfect clock.

15

An immediate implication of the definition of the approximately synchronized clocks model
is that |ys(t)—7R(t)| < 2¢. The weakly synchronized clocks model is defined as a weaker variant
of the approximately synchronized clocks model in which we assume that this implication
holds, and also that for any real times t1,%; € R, both |(ys(t2) — vs(t1)) — (t2 — t1)| < 2¢, and
|(Yr(t2) — YRr(t1)) — (t2 — t1)] < 2e, while we relax the assumption that each of the individual
clocks of 5 and R be e-synchronized. The following is an immediate implication of the three
timing conditions defining the weakly synchronized clocks model, which will be useful in our

later proofs.

Lemma 2.1 In the weakly synchronized clocks model, for any real times t1,t, € R,

lys(tz) —yr(t1) — (t2 —t1)] < 2.

Intuitively, Lemma 2.1 establishes how much the clocks of § and R at different real times
may at most differ from each other in the weakly synchronized clocks model (in particular, in
the approximately synchronized clocks model), as a function of the difference between these

times.

2.2 System Model

Fach of Ug, Ug, S and R is modeled as an automaton with a (possibly infinite) set of states,
and a transition function. In general, we shall not be concerned with the structure of Ug and
Upr; Us simply provides a message m to .S, which must be delivered to Ur by R; thus, it suffices
to take each of Ug and Ug to be an I/O automaton [12]. In contrast, more state structure
is needed for 5 and R; each state of S and R consists of an internal component, and a clock
component; thus, we take each of S and R to be a timed automaton [8, 13, 14]. A protocol is

a pair of timed automata, one for each of 5 and R.

Initially, the internal components of the states of S and R are equal to initial values gg g
and qo R, respectively; no local action is enabled in an initial state. The clock components of
S and R, also called their local times, are their clocks v¢ and g, repsectively; neither 5 nor
R can modify its clock. No access to real time is provided to S and R; instead, each of S and
R obtains its only information about time from its clock and from messages it exchanges. The
local times of §" and R will be sometimes called S-time and R-time, respectively. An S-interval

(resp., R-interval) is an interval of S-times (resp., R-times).

We list the events that can occur at each of S and R, together with an informal explanation.

16

—— Packet-send events—send(w, 5) and send(w, R), for all packets 7: S (resp., R) sends packet
T to R (resp., 5).

—— Packet-receive events— receive(r, S) and receive(w, R), for all packets w: S (resp., R) re-

ceives packet 7 from R (resp., 5).

—— Timer-set events—timerset(7,5) and timerset(7, R), for all clock times 7: S (resp., R) sets

a timer to go off when its clock reads 7.

—— Timer-expire events— timerexpire(7,) and timerexpire(7, R), for all clock times 7: a timer

that was set for time 7 on 57s clock (resp., R’s clock) goes off.
—— Message-input event— input(m, R): Ug provides m to S as input;
—— Message-deliver event— deliver(m, R): R delivers m to Ug;
—— Quiesce event— quiesce(R): R quiesces;

—— Crash event- crash(R): R crashes.

The packet-receive, timer-expire, message-input and crash events are interrupt events; the

packet-send, timer-set, message-deliver, and quiesce events are react events.

Each interrupt event at 5 or R causes an application of its transition function, which runs
from states and interrupt events to states, and sets of react events. Roughly speaking, the
transition function of S (resp., R) takes as input its current state, clock time, and interrupt
event, and produces a new state, a (possibly empty) set of messages to be sent to R (resp., to
S), a (possibly empty) set of timers to be set for the future, and nothing else (resp., possibly
a message-deliver event, or a quiesce event, or both). Formally, a step of S or R is a tuple
(¢,1,¢',R), where ¢ and ¢’ are states, 7 is an interrupt event, and R is a set of react events.
Thus, a step is taken on occurrence of an interrupt event. For any step (g, quiesce(R),¢’,R)
or (¢, crash(R),q,R) of R, we assume that ¢’ = ¢o pr; thus, a quiesce or crash event causes a
transition to a state whose internal component gets its initial value, while the clock component

is not affected.

A history h of S or R is a mapping associating to each real time ¢ € R, a (possibly empty)
finite sequence of steps so that the following hold:

1. There is only a finite number of times ¢’ < ¢ such that the corresponding sequence of
steps is nonempty (thus, the concatenation of all such sequences in real time order is also

a sequence).

17

2. The interrupt event in the first step of a history of .5' is the message-input event; further-

more, there are no other message-input events in a history.
3. The old state of each subsequent step is the new state of the previous step.

4. There is at most one timer-set event in each sequence, and it is ordered after all other

events in the same sequence.

5. A timer expires at S (resp., R) at clock time 7 if and only if S (resp., R) has previously

set a timer for clock time 7.

An execution is a pair of histories (hg, hg) for S and R, such that there exists a function
¢, which maps each packet-receive event receive(m,) to a packet-send event send(m, R), and
each packet-receive event receive(m, R) to a packet-send event send(m, R). We model packet
duplication by assuming that ¢ need not be one-to-one; that is, there may be different packet-
receive events receive(m,) (resp., receive(m, R)) that are mapped by ¢ to the same message-
send event send(m, R) (resp., send(m,5)). However, we require that each single packet may
be duplicated only a finite number of times; this is modeled by assuming that for each packet-
send event send(, 5) (resp., send(w, R)), there may exist only a finite number of packet-receive

events receive(w, R) (resp., receive(m, S)) that are mapped by ¢ to send(w,) (resp., send(w, R)).

We use the function ¢ to define the delay incurred by packet 7 in execution e as the
difference of the real times of occurrences of the events receive(w, S) (resp., receive(r, R)) and
¢(receive(m, 5)) (resp., ¢(receive(w,.5)))in the corresponding histories. Define d., the mazimum
packet delay in execution e, to be the maximum delay over all packets. The mazimum packet
lifetime p is the maximum d. over all executions e. For an execution e, denote ’yge) and 71(;)
the clocks of 5 and R, respectively, in execution e; the superscript will be omitted when the

execution is clear from context.

A cornerstone of our lower bound proofs is the notion of equivalent executions with respect
to either S or R (or both). Roughly speaking, two executions are equivalent with respect to
S (resp., R) if they are indistinguishable to S (resp., R); however, an outside observer who
has access to the real time can tell them apart. To formalize this notion, define the view of
S (resp., R) in history hg (resp., hr) to be the concatenation of the sequence of steps in hg
(resp., hr) in real-time order. (Note that the view includes the clock times.) The real times
of occurrence of events are not represented in the view. The view of S in execution e (resp.,
view of R in execution e), denoted e | S (resp., e | R) is the view of S (resp., R) in hg (resp.,

hr). Two executions e and €’ are equivalent with respect to S (resp., equivalent with respect to

18

R)ife| S =¢€|5 (resp.,, e | R =¢ | R). Two executions e and ¢’ are equivalent if they are

both equivalent with respect to S and equivalent with respect to K.

Define the view of S (resp., R) in history hg (resp., hr) for some S-interval (resp., R-
interval) to be the concatenation of the sequence of steps in hg (resp., hr) in real-time order
for which the S-time (resp., R-time) is in the S-interval (resp., R-interval); note that the view
of S (resp., R) in history hg (resp., hr) for some S-interval (resp., R-interval) is a (possibly
empty) subsequence of the view of S (resp., R) in history hg (resp., hr). The view of S in
execution e for some S-interval Is (resp., view of R in execution e for some R-interval IR),
denoted e(lg) | S (resp., e({g) | R) is the view of S (resp., R) in hg (resp., hr) for the S-
interval Ig (resp., R-interval Ir). Two executions e and €’ are equivalent with respect to S for

the S-interval Is (resp., equivalent with respect to R for the R-interval Ir), denoted e IES e
I
(resp., e = ¢') if e(Is) | S = ¢/(Is) | S (resp., e(Ip) | R = ¢/(Ir) | R).

2.3 Connection Management Protocols

A protocol P solves connection management if it satisfies the following condition. For every
execution e of P, there is exactly one deliver(m, R) event followed by exactly one quiesce(R)
event. Assume that these events occur at real times D(e) and Q(e), respectively. A connection

management protocol is a protocol that solves connection management.

A trade-off connection management protocol P is a connection management protocol for
which there exists a parameter ¢ > 0 such that for any timed execution e of P both D(e) and
Q(e) are bounded above by (non-constant) functions of §, one of which is an ascending function
of 6 and the other is a descending function of 6. A bounded connection management protocol is
a trade-off connection management protocol for which the one of the functions bounding D(e)
and Q(e) that is an ascending function of § converges to a finite upper bound as é approaches

infinity.

In all of our lower bound proofs, we will construct sequences of executions in the last
of which a message is delivered twice. We will illustrate these executions using appropriate
execution diagrams; in these diagrams, events will be depicted using conventions summarized

in Figure 2.

19

D message deliver event Q quiesce event

message deliver event
Bl oxheven immediately followed

by acrash event

Figure 2: Conventions for events
3 Generic Protocols

In this section, we present two (generic) protocols that solve connection management in the

generic clocks model.

3.1 A Protocol Based on Time Stamps

We present a generic protocol Py that employs time stamps. Section 3.1.1 describes Py and

shows certain preliminary properties of it; the correctness of Py is established in Section 3.1.2.

3.1.1 Description and Preliminaries

Throughout, fix any constant ¢ > 0, and let é be any real parameter such that § > 1. Define

¢ to be a function of ¢ and 4,

, oc
T6+2°

Notice that ¢’ converges to the finite quantity ¢/7 as the parameter § becomes arbitrarily large.

For any real time ¢ € R, say that vg(t) (resp., yr(t)) is a discrete S-time (resp., discrete
R-time), if it is a positive integral multiple of ¢’. For each integer [> 1, the [th discrete S-time

is the discrete S-time [c’; the [th discrete R-time is defined in a corresponding way.

The protocol Py is the “parallel composition” of a “sub-protocol” P* that generates and
handles timestamps, and a “sub-protocol” 771dq that uses timestamps in order to infer when to
deliver and quiesce. The “sub-protocol” P}* is identical to the corresponding “sub-protocol” of
the generic protocol proposed by Kleinberg et al. [9, Section 5]; however, for the sake of com-
pleteness, we repeat in this paper its description and proof of correctness at a somewhat higher
level of formalism. The “sub-protocol” 771dq builds upon the corresponding “sub-protocol” of

the generic protocol proposed by Kleinberg et al. [9, Section 5].

20

The Protocol P}*

For each integer [> 0, 5 sends a packet to R at the [th discrete S-time. Assume that rq is
the smallest integer such that R has received a packet from S by the roth discrete R-time; for
each integer [> rg, R sends a packet to 5 at the [th discrete R-time.

Define threshold functions Thg : N — N U {L} and Thg : NN — N U {L} as follows. For
each integer [> 0, Thg(/) # L if and only if there exists some integer s > 0 such that:

o for each integer s’ < s, S has received by discrete S-time /¢’ a packet sent by R at the

s'th discrete R-time;

e 10 packet sent by R at the (s + 1)th discrete R-time has been received by S by discrete

S-time Ic.

In this case, Thg(l) = s.

We proceed to define the function Thg. For [= ro — 1, Thr(rg — 1) = 0. For each integer
[> 0 such that [# ro — 1, Thr(l) # L if and only if there exists some integer » > 0 such that:

e for each integer ' < r, R has received by discrete R-time l¢’ a packet sent by S at the

r'th discrete S-time;

e 10 packet sent by S at the (r + 1)th discrete S-time has been received by R by discrete

R-time Ic'.

In this case, Thr(l) = r.

The content of each packet sent by .5 to R at the [th discrete S-time is a function of [. For
[l =0, 5 sends (0,m) where the first component indicates that the packet is sent at the Oth
discrete S-time. For [> 0, S sends ([, Thg(!)). Similarly, R sends (/) to S at the [th discrete

R-time, where [> rg.

R maintains three finite sets &y, S and S5, which are updated at each discrete R-time;
denote S{l), Sgl) and S:())l) the values attained by &1, S, and S3 at the [th discrete R-time.
Formally,

s
= {I'=Thr(l') | ' <land Thpr(l') # L},

21

s
= {l—Thg(l) | R has received (I’,Thg(l’) by the [-th discrete R-time and Thg(!') # L},

and
s

= {l'= 1o | R has received (I',Ths({")) by the [-th discrete R-time and Thg(l') = L}.

R uses the sets S{l), Sgl), and S:())l) to define the mazimum functionMxp : N' — N as follows.
For each integer [> 0,

Mxp(l) = max S{l) U Sgl) U S:())l) + .
For any execution e, denote
Mx = M [).
xp(€) A xg(l)
We have:

Lemma 3.1 (Kleinberg, Attiya and Lynch [9]) Mxg(ro) > |ro]

Proof: By the first rule,

o
M=) > g s
= To—Cl

(since by Claim ??7 s =0).
It follows that:

[ro) = pglro) 4 o

> M)
> Mro=<)

(since M® is an ascending function)
> To,

so that
Claim 3.2 [(70) > 7o

22

The first packet from 5 sent at S-time 0, so each S-packet has time-stamp > 0. By the
third rule,

M (o)

v

s’ — 1
2> —To;
hence

[tro) = pglro) o ot
M (o)

(AVARAYS

—To,

which implies that [("0) > —rq. By Claim 3.2, this implies that (") >|ro |, as needed. m

The Protocol 771dq

We are now ready to present the algorithm. R delivers at the first discrete R-time ¢’ when
' > (3—1/8)11) and quiesces at the first discrete R-time #” when #) > (34 1/6)I() Tt then
sends a done message to 5; 5 quiesces immediately upon receiving this done message. If at
any time S report a non trivial threshold that is less than ro (i.e. one can conclude that R is

hearing replays), R aborts the connection without delivering and sends an error message to 5.

For any time ¢, define () to be the discrete R-time at which the maximum value for /()
was attained; that is, 7(¢) is the largest < ¢ for which {(") = 1), We show:

Lemma 3.3
de > 7151(7‘) — 751(7‘ — @4 2c")

Proof: Assume, without loss of generality, that [V was updated using the first rule (the
other cases are similar). Consider the discrete R-time r at which the maximum value for [
was attained -i.e. the first » < ¢ for which {() = {("). Let s to be the threshold of R at time r.
Since the lag was updated at time 7 using the first rule, we have that M (") = 7 — s. Also since
1) = M@ 4o/ 10 = O 4 ¢ and 1D = [(7) we have that M) = M@, Thus, M® = r — s.
It implies that

s = r—M®
= r—(l(t)—c’)
= r—10 4.

23

It immediately follows that the threshold of R at discrete time r is equal with » — [} 4+ ¢/. By
definition of threshold, R has received all S-packet with time stamp < r — [®) 4+ ¢/; thus, any
S-packet sent at discrete S-time r — I + 2¢/ has not yet arrived. It follows:

de > 7]51(7‘) — ’ygl(r (O 2c'),

as needed. []

3.1.2 Correctness Proof

We continue to show that P is a connection management protocol. We need to prove that R
does not deliver any message for a second time. First we argue that R will not quiesce until it
has received an S-packet with non-trivial threshold. Let 1) denote the S-packet with minimal
time-stamp that reports a non-trivial threshold, and consider discrete R-time r at which R
has not yet received 1. Let r — u; be the time-stamp of the most recent S-packets, and set

v =1 —u; — rg. It follows that » — uy > ro. By the first rule,

(0 — g4

> r—(r—uy)

Il
g
=

which implies (") > uy. Also

1)

MO 4+

MU 4 ¢

(since M® is an asceding function M) > pf(r0))
1(r0)

v

> To

(by Lemma 3.1),
which implies 1) > ro. Also

1) M) L
M(T—ul) _I_C/

v

(M® is an ascending function)

M(T—ul)

vV

r—u —To,

24

by the third rule, M=) > ¢ — 4y — g (since at time (r — u1), R has not yet receive a non
trivial threshold). It implies that 1) > . Thus, r =19 +us +u < 3101 < (3+ 1/6)I(T), so R

will not yet quiesce.

Now let [* (resp. M?*) denote the maximum value of I (resp. M) over all discrete
R-times ¢ up to quiescence, and s; denote the time-stamp of S-packet . Indeed, the time-
stamped s; — ¢’ reports a trivial threshold, so by the third rule for estimating the lag, M* >
s1—¢ —rg. It follows I* > s —rg. Since I®) is an ascending function, {* > [(ro), By Lemma 3.1,

this implies that [* > rg; adding, we obtain:
Claim 3.4 s; < 2[*.

Finally, suppose T > t” and a replay of the original message arives at time T. We will
show that if T/ > T is some time at which R has not received a replay of S-packet #, it is not
required to deliver. Since % has not been received at T’, by the first rule for estimating the

lag we have
l(T/) Z T/ — 51
> T -2
(by Claim 3.4).

Since R quiesces at R-time T and [* denote the maximum value {() over all discrete R-times

t up to quiescence, by protocol we have

1
(3-|-5)l* < T,
so that
P
- 36+1
Thus,
(T > a2
, 26
> T - —
- 364+1
7 26 7
> T"— —T
364+1
26
= (1-—)1
(36—|—1)
_ 6—|—1T,
36417

25

which implies that

§+1
30 +1) ~2 (1
5+ 1
2

— SR ¢ N
(3 6—|—1)l

1 /
_ Ly
(3 - 5™

T <

IN

Thus, R does not deliver at time T’. Recall that T is the R-time which R receives a replay
of original message and T/ > T is a R-times at which R has not receives a replay of . It
implies that R before delivery it receives a replay of ¢». But % reports a threshold (= 7o)
smaller than T,which is the discrete R-time at which R first started sending packets to §
following quiescence. By the protocol, R will abort the connection in this case. Thus, R never

delivers the message a second time. It immediately follows:

Proposition 3.5 Py is a connection management protocol.

3.2 A Timer-Based Protocol

In this section, we present a generic protocol P, that employs a timer and relies on knowledge

of the maximum packet lifetime p.

R delivers immediately each time it receives a new packet. It then counts off on its clock

so that local time a elapses, in a way that real time at least p elapses; it then quiesces.

We show that P, is a connection management protocol. Consider any packet © send by 5
to R at real time ¢. Thus, 7 arrives at R at real time D > t. Then, R delivers immediately.
After R counts off its clock to pass local time a so that the real time which elapses is at least
w; then, R quiesces at time Q > p+ D > p 4+ t. Assume that a replay of © arrives at R at
time T. Since the maximum packet lifetime is equal to g, T < p 4 ¢. It follows that Q > T.

Thus, R never delivers twice. It immediatelly follows:

Proposition 3.6 Py is a connection management protocol.

26

4 Drifting Clocks

In this section, we present our lower bounds for the drifting clocks model in the presence of

network failures. We show:

Theorem 4.1 Consider the drifting clocks model in the presence of network failures. Then,
for any connection management protocol P, for any constant 6 such that 0 < 6 < 2, there

exists an execulion e of P such that either

D(e) = (3-6p)d.,

Qe) = p(p—(3-8)de).

Proof: Assume, by way of contradiction, that there exists a connection management protocol
P for the drifting clocks model in the presence of network failures, and a constant 6,0 < é§ < 2,
such that for every execution e of P, both D(e) < (3 — 6p)d. and Q(e) < p*(u — (3 — 8)d,).

We construct an execution of P containing two message-deliver events.

We start with an informal outline of our proof. We construct a sequence of executions
e, ¢, fand f', so that R delivers the message twice in f’. e is a slow execution. f’ is the
“concatenation” of ¢ and f. In e and f, the clocks of R and S are “slow”, while in ¢, the
clocks of R and § are “fast”. We start with e, which terminates immediately after R quiesces.
By modifying R’s clock, we “perturb” e to obtain f, which § cannot distinguish from e;in f,
only delivery. We continue to construct €', which S cannot distinguish from e to S, while R
still delivers in €’ and quiesces. Finally, we construct f’ as the “concatenation” of ¢’ and f;
in f/, R first delivers and quiescences, before it receives replays of all packets in a way that R
“sees” them arriving as in f. This leads R to deliver again, which contradicts the correctness

of P. We now present the details of the formal proof.

Consider an execution e of P for which yge)(t) = ’y](%e)(t) = t/p; thus, both clocks run “slow”
in e and initially hold the value 0. Furthermore, assume that each packet incurs a delay of d,
in the execution e. Finally, assume that the last step in e is taken on occurrence of a quiesce

event at R.

By our assumption on P, the message-deliver and quiesce events occur in e at real times
D(e) < (3—ép)d., and Q(e) < p*(pu — (3 — 6)d.), respectively; thus, these events occur at R’s

27

local times

and

NG = p)d.)
(since D(e) < (3 — ép)d. and 71(;) is strictly increasing)
(3—édp)de
p
(by definition of 71(;))
3

= (;_6)d67

-2
S
—
o
~
™
~—
~—
A

Q) < (= (3= 8)do))
(since Q(e) < p*(p— (3 = 8)p)de and 71(;) is strictly increasing)
/02(:u — (3 — 6)de)

p
(by definition of 71(;))

= p(:u_(3_6)d6)7

respectively.

Since all packet delays are equal to d. in the execution e, R receives a packet from 5 no

earlier than time d.. Since no local actions are enabled in the initial state of R, it follows that

R sends a packet to 5 no earlier than time d.. Since all packet delays are equal to d. in the

execution e, it follows that 5 receives a packet from R no earlier than time 2d.. By definition

of v

(¢)

g, this immediately implies:

Lemma 4.2 In the execution e, S receives a packet from R no earlier than S-time 2d./p.

We continue to construct an execution e’ of P as follows.

e Fach step occurring at real time ¢ in e is scheduled to occur at real time ¢/p? in the

sequence ¢’; in addition, €’ preserves the ordering of steps in e;

o define ¢ = ¢.; thus, €’ preserves the correspondence between packet-receive and packet-

send events in e;

e finally, set ’yge/)(t) = 7](%6/)(15) = pt; thus, both clocks run “fast” in €’ and initially hold the

value 0.

28

Note that, by definition of e, our construction implies that the last step in ¢’ is taken on

occurrence of a quiesce event at R. Moreover, we show:
Lemma 4.3 ¢’ is an execution of P.

Proof: Since e is an execution of P, both e | S and e | R are histories of 5 and R, respectively.
Consider any step occurring at real times ¢ and ¢/p? in e and €', respectively. The corresponding
local times at either S or R are t/p and pt/p* = t/p, respectively. Since these local times are
equal and e is an execution of P, it follows that both ¢’ | S and ¢’ | R are histories of S and

R, respectively.

It remains to show that d. < p. Take any packet-send and packet-receive events m; and 7o
occurring at real times ¢; and t;, respectively, in e. By definition of e, the delay of the packet
in e is ty — t; = d.. By construction of ¢/, these events occur at real times t5/p* and ty/p?,

respectively, and their correspondence is preserved. Thus, the delay of the packet in ¢’ is

PR T
TR R
< tg—1 (since p > 1)
= d. (by definition of €)
< p (since e is an execution of P),
as needed. []

By construction of ¢ and Lemma 4.3, it immediately follows:
Lemma 4.4 €' is an evecution of P that is equivalent to e.

Lemma 4.4 implies that the message-deliver and quiesce events in e’ occur at R’s local
times less than (3/p — 6)d. and p(u — (3 — 6)d.), respectively. By definition of 7](;')7 it follows
that the message-deliver and quiesce events in ¢’ occur at real times less than (3/p — 6)d./p

and p — (3 — §)d., respectively.

Consider now an execution f of P for which ’ygf)(t) =1/p,and ’y](%f)(t) =t/p+p(p—(3-06)d.);
thus, both clocks are “slow”, but the clock of 5 is initially 0, while the clock of R is initially
p(p— (3 —6)d.). Furthermore, assume that each packet incurs a delay of ds in the execution
f. Assume that dy = d.. Finally, assume that the last step in f is taken on occurrence of a

message-deliver event at R.

29

Since all packet delays are equal to dy in the execution f, R receives a packet from 5 no
earlier than time dy = d.. Since no local actions are enabled in the initial state of R, it follows
that R sends a packet to § no earlier than time d.. Since all packet delays are equal to d.
in the execution f, it follows that 5 receives a packet from R no earlier than time 2d.. By

(f)

definition of 7¢’, this immediately implies:
Lemma 4.5 In the execution f, S receives a packet from R no earlier than S-time 2d./p.

We continue to show that e and f are equivalent with respect to S in an initial interval of

its local time.

04 (D(f)) -

—(3-6)de)—de
Lemma 4.6 f |9 (o)) =de /o]

=

els

Proof: By Lemmas 4.2 and 4.5, it suffices to show that

de 2d,
D) = o= B0y =2 < =E.
Clearly,
de
D) = plye = (3= 8)d) = =
< B =89~ plp = (3= 8)do) -
(since D(f) < (3 — ép)d. and ’y](%f) is strictly increasing)
(3 — 6p) de de
= f+p(u—(3—5)de)—p(u—(3—5)de)— "
(by definition of ’y](%f))
_ (3 B 6p) de _ %
p p
3 de
- 2oL
G0k~
S §de - %
p p
(since 6 > 0)
2,
p ?
as needed. []

30

By Lemma 4.4, Lemma 4.6 immediately implies:

0D = p(u—(3—6)de)—de
Corollary 4.7 f|S[i (D) p(é() /p]e’|S

We continue to show a timing property of packet-send and packet-receive events in f.

Lemma 4.8 Consider any packet © sent from S to R at S-time
de
€ 10 (DU -l = (3= 8)d) - 7).
Then, © arrives at R at R-time d./p+ T+ p(pp — (3 — 6)de).

(f)

Proof: By definition of 7¢'/, 7 is sent at real time p7. By construction of f, = arrives at R

at real time p7 4+ dy = p7 + d.. By definition of ’y](%f), it follows that 7 arrives at R at R-time

(de+pm)/p+plp—3B3—=08)d.)=de/p+ 74 p(pt — (3 —6)de), as needed. |

Finally, we construct the execution f’. Set ygf/)(t) = ’y](%f/)(t) = pt: thus, both clocks run
“fast” in €’ and initially hold the value 0. Take f’ = ¢€'f;, where the sequence of steps f is

defined as follows.

e Each step at R occurring at real time ¢ in f is scheduled to occur at real time ¢/p? 4 pu —

(3—06)d. in fi; in addition, the ordering of steps in f is preserved.

e Consider any packet-send event at S occurring in € at real time ¢ > Q(e’) — d./p?; a step

on a corresponding packet-receive event is scheduled to occur at real time ¢ + p in fy.
In Figure 3, we present the sequence f’. We show:
Lemma 4.9 [’ is an execution of P.

Proof: We start by defining the function ¢ .

o The restriction of ¢ on packet-receive events in ¢’ is equal to ¢.r.

o Consider any packet-receive event m in f, mapped by ¢; to some packet-send event in f.
Use the equivalence of ¢’ and f established in Lemma 4.7 to determine the corresponding

packet-send event in ¢’ to which ¢ maps 7.

31

e Any packet-send event at S occurring in ¢’ at real time t > Q(e’) — d./p? is the image

under ¢4 of the corresponding packet-receive event (scheduled to occur at real time ¢+ p

in f1).

We show:
Claim 4.10 dy < p
Proof: We proceed by case analysis.

1. Since the restriction of ¢4 on packet-receive events in €’ is equal to ¢., the delay of each

packet in €’ is at most d. < p, by Lemma 4.3.

2. Consider any packet-receive event 7 at R occurring at real time ¢/p* + p — (3 — 8)d, in
f1. By construction of fy, there is a corresponding packet-receive event at R occurring
at real time ¢ in f. By construction of f, the corresponding packet-send event at 5
occurs at real time ¢t — dy = ¢t — d. in f. By definition of ygf), this packet-send event
occurs at S-time (¢ — d.)/p in f. By Lemma 4.7, an identical packet-send event at .9
occurs at S-time (¢ — d.)/p in €’; by definition of ¢y, this is the packet-send event to
which 7 is mapped. By definition of ’ygl, this packet-send event at S occurs at real time
(t —d.)/p* in €. By construction of f’, this packet-send event event at S occurs at real

time (¢ — d.)/p? in f’. Hence, the delay of 7 in f’ is

t t—d. d,
ﬁ—l—,u—(3—6)de—p—2 = M—(3—6)d6—|—p—2
de
< p—det — (since ¢ < 2)
p
< p—do+d. (since p > 1)

oy
as needed.

3. By construction and definition of ¢, the delay of any packet-receive event at R in f; in
correspondence to a packet-send event at S occurring in €’ at real time ¢ > Q(e’) — d./p?

is exactly p.

This completes our proof. [|

32

Since the last step in f is taken on occurrence of a message-deliver event at R, this step
is taken at real time D(f) in f. By construction of fi, this step is scheduled to occur at real
time D(f)/p? 4+ u — (3 — 8)d. in f1. Also, by construction of fi, any step on a packet-receive
event correspondent to a packet-sent event at S in €’ is scheduled to occur at real time greater

than Q(e') — d./p* + p. Clearly,

de D(/)

Q) = 4= (= (3= 8)de)
N de D(f
= Q(e)—p—z_ p(2)+(3_6)d5
> ‘Dp(ff) 4 (3 - 6)d, (since Q(e') = dor = de/p?)
> _(3_,0#% +(3—6)d, (since D(f) < (3 —dp)d.)
1 1
- — =)d. — 6(1 — ~)d.
3(1 p2) (1 p)
2 (1= g =21~ pl_z)de (since § < 2and p 2 1)
1
= (1- p_z)de
> 0 (since p > 1).

It follows that the last step in f scheduled to occur in f; precedes any step occurring on a
packet-receive event correspondent to a packet-sent event at S in €’ that is also scheduled to
occur in fi. Consider now any of the latter steps, occurring at real time ¢t in f. By definition

of ’y](%f), this step occurs at R-time t/p+ p(p — (3 = 6)d.) in f. By construction of fi, this step

is scheduled to occur at real time t/p? + u — (3 — 8)d. in f;. By definition of ’y](%f/), this step
occurs at R-time ¢/p 4+ p(p — (3 — 6)d.) in fy. Since the local times at which this step occurs
in f and f’ are equal, and f is an execution of P, it follows that fi is equivalent to f in the

R-interval [p(p — (3 — 6)d6),’y](%f)(D(f))]. It follows that f” is an execution of P, as needed. m

By Lemma 4.9, f" is an execution of P containing two message-deliver events. A contra-

diction. []

The lower bounds on message delivery time and quiescence time shown in Theorem 4.1
are simultaneously non-negative, and, hence, non-trivial, if (and only if) both 3 — ép > 0 and

p—(3—=20)d. > 0. Eliminating 6 and assuming p > 1 yields

d, < L_F

- p—lg

33

execution €

(3/p-5) de

z

p(u—(3-9) de)

(3/p—9) de+ p(u—(3-06) de)

local time

2de @

real time

Figure 3: The execution f

34

as a necessary condition for any timed execution e for which the trade-off lower bounds shown
in Theorem 4.1 are non-trivial; Kleinberg et al. [9, Theorem 4] argue that d. < u/3 is a

corresponding necessary condition. Since

p_H R

p—13 — 3
for p > 1, this implies that the trade-off lower bound shown in Theorem 4.1 is non-trivial for

a wider range of executions than the trade-off lower bound shown in [9, Theorem 4].

5 Approximately Synchronized Clocks

In this section, we present our lower and upper bounds for the approximately synchronized

clocks model, in the presence of network failures.

5.1 Lower Bound

We show:

Theorem 5.1 Consider the approzimately synchronized clocks model, in the presence of net-
work failures. Then, for any connection management protocol P, for any constant 6 > 1, there

exists an execution e of P with
1
¢ < de < (I=%)(p—e),
such that either
2
D(e) > (3- g)de +e,
or

]
Q(@) Z mde-l—g.

Proof: Assume, by way of contradiction, that there exists a connection management protocol
P for the approximately synchronized clocks model in the presence of network failures, and a
constant 6 > 1, such that for every execution e of P with ¢ <d. < (1 —1/6)(x— ¢€), both

D(e) < (B-7)dete,

35

and
Qle) < —6 d. +
e 5 1% €.

We construct an execution of P containing two message-deliver events.

We start with an informal outline of our proof. We construct a sequence of executions
e, €, f, f' such that R delivers a message twice in f’. We start with execution e which
terminates with R quiesces following its delivery. We "pertub” e to obtain €', which § and
R cannot distinguish from e, while some message incur delay larger than corresponding in e.
We continue to construct f which is indistinquishable from e to .5, while R only delivers. The
message incur larger corresponding one in e. Finally we construct f' as the ”concatenation”
of ¢ and f;In f’, R first delivers and follows quiesces and next receives replay of all packets in
such a way that R ”sees” all packets arriving as in f. By construction of f, R delivers again,

which constradicts the correctness of . We now present the details of the formal proof.

We start with a simple property of any execution e of P with

c << (-9

Lemma 5.2 Fiz any execution e of P with
1
e < de < (1—5)(;1—5)
Then, D(e) < 3d..

Proof: We proceed by case analysis on §. Assume first that 6 > 2, so that §/(6 — 1) < 2.
Then,

D(e) < Q(e)
< (Si;l de +¢ (by assumption on P and)
< 2. +c¢
< 3d, (since ¢ < d.),

as needed. Assume now that 1 < é < 2, so that 3 —2/6 < 2. Then,

D(e) < (3- %) de +¢ (by assumption on P and é)
< 2d.+¢
< 3d, (since ¢ < d.),
as needed. []

36

Consider an execution e of P for which yge)(t) =t—¢cand ’y](%e)(t) = t; thus, the clock of

S initially holds the value —e, while the clock of R initially holds the value 0. Furthermore,
assume that each packet incurs a delay of d., where ¢ < d. < (1—-1/6)(p—¢),in the execution
e. Finally, assume that the last step in e is taken on occurrence of a quiesce event at R. By

our assumption on P and ¢,
2
D(@) < (3 — g)de + &,
and

6
e) < ——d.+e.
Q(e) et
Since all packet delays are equal to d. in the execution e, R receives a packet from 5 no
earlier than time d,.. Since no local action are enabled in the initial state of R, it follows that
R sends a packet to 5 no earlier than time d.. Since all packet delays are equal to d. in the
execution e, it follows that 5 receives a packet from R no earlier than time 2d.. By definition

(¢)

of 75, this immediately implies:

Lemma 5.3 In the execution e, S receives a packet from R no earlier than S-time 2d. — €.
Consider now an execution f of P for which ’ygf)(t) =t—¢ and ’y](%f)(t) =t + ¢; thus, the

clock of § is initially —e, while the clock of R is initially ¢. Furthermore, assume that each

packet incurs a delay of d¢ in the execution f. Assume that dy = (6/(6—1))d.. Finally, assume

that the last step in f is taken on occurrence of a message-deliver event at R.

Since all packet delays are equal to dy in the execution f, R may receive a packet from 5 no
earlier than time dy. Since no local actions are enabled in the initial state of R, it follows that
R may send a packet to S no earlier than time d;. Hence, since all packet delays are equal to
dsin f, S may receive a packet from R no earlier than time 2ds. Also df = (6/(6—1))de > d.,
since & > 6 — 1. It implies that in f, S may receive a packet from R no earlier than time
D(e) — d. < 2d.. By definition of ’ygf), this immediately implies that:

Lemma 5.4 In the execution f, S receives a packet from S no earlier than S-time 2D(e) —

d, — c.

By our assumption on P and é, the message-deliver event occurs in f at real time

D(f) < (- 3)ds+e

37

2, 6

— -y —d.
(3 6) g et
36—2
= de ;
g1 te
thus, this event occurs at R’s local time
11 (D(F)
(f),36 — 2 d
7R ((S 1 € ‘I’ 5)
(since D(f) < 2=2d. + ¢ and ’y](%f) is strictly increasing)
36 —2
= ——d.+2¢.
g1 et

We continue to show a timing property of packet-send and packet-receive events in f.

Lemma 5.5 Consider any packet © sent from S to R at S-time 7 in f. Then, © arrives at R

at R-time 7+ 2¢ 4+ (6/(6 — 1))d..

Proof: By definition of ygf), 7 is sent at real time 7+ ¢ in f. By construction of f, 7 arrives
at R at real time 7 + ¢ 4+ dy. By definition of ’y](%f), it follows that = arrives at R at R-time

THe+dr+e=17+24(6/(6—1))d., as needed.]
By Lemma 5.3, Lemma 5.4 immediately implies:
Corollary 5.6 ¢ | S = f |5 in the S-interval [—¢,D(e) — d. — ¢).

Finally, we construct an execution f’in which R delivers the message twice. A prefix of f’
will be equal to €. The €’ finish with quiensce of R at time Q(e). The remainder of f’ is an
execution fragment fi which begins at time Q(e). In f, ’ygf{)(t) =t—c¢and ’y](%{)(t) =t In
the Figure 4 we present the execution f’ in which R delivers twice. We replay all packets sent
by S in the S-interval [—¢,D(e) — d. — ¢) so that they incurs a delay of

0
mde+€>Q(€).

We show:

Lemma 5.7

5
LY .
gopletesH

38

Proof: We have d. < (1 —1/6)(pt — ¢). It implies that

6
—d, .
51 +e<

p> (6/(6—1))de + €, as needed. |

We continue to show certain timing properties of send-packet and receive-packet events in

fi-

Lemma 5.8 Consider any replay packet = from S to R at S-time t € [—¢,D(e) —d. —¢), it

arrive at R at R-time

6
——d, + 2 +1t.
1 + 2¢ +
Proof: By definition of ’y((;)), 7 sent by 5 at real time t + ¢. It follows that = arrives at R at
real time
Ld 4+ 24t
goqleT T
Since ’y](%{)(t) =t, m arrives at R at R-time
6
——d, + 2 +1t.
1 + 2¢ +

By constraction of €', each packet sent by 5 in the interval [0,Q(e) — d.) it arrive at R
before R-time Q(e). We show:

Lemma 5.9 Consider any packet © sent from S to R at time t > Q(e) — d.. Then, © arrive

at R after R-time
36 —2

20T 4o
g1 et

Proof: By constraction of ¢/, 7 incur a delay u to arrive at R. It follows that = arrive at R
at R-time
Lt > Lde +e+t
0—1
(de < 55 (1 —¢))

]
——d.+e+2d. +¢

>

S
36— 2

= 20Tt o
g1 et

39

By Lemma 5.6, we have f{ | R = f | R in the interval

) 36 —2
LI P
[6—1 +¢ . + 2¢)

Also

() 2.6
WD) < (3= 2)de+ 2.

Thus, R delivery in f{ at local time ’y](%f)(D(f)). Hence, R delivers the message twice in

execution f' = €'f{. A contradiction. [

Since the weakly synchronized clocks model is no stronger than the approximately synchro-

nized clocks model, Theorem 5.1 immediately implies.

Corollary 5.10 Consider the weakly synchronized clocks model, in the presence of network
failures. Fix any parameter 6 > 1. Then, for any connection management protocol P, there

exists an execution e of P with ¢ < d. < (1 —1/8)(p —) such that either

2
D(e) > (3-7)dete,
or

]
> ——d, .
Q) > dte

5.2 Upper Bounds

We show:

Theorem 5.11 Consider the approzimately synchronized clocks model in the presence of net-
work failures. Then, for any constants 6 > 1 and ¢ > 0, there exists a connection management

protocol P such that for every execution e of P,

D(e) < (3—%)de+(4—%)25—|—c,

and

Qe) < (3—|—%)d6—|—(4—|—%)25—|—c.

Proof: Let Py be the generic connection management protocol introduced in Section 3. Fix

any execution e of P;. We start by showing a lower bound on d..

40

==

e @ \“

‘kt““ (].D3 Ve cor
S P

(6/(86-1)) dete

ap.
((35-2)/(5-1)) de+2¢

redl time local time

Figure 4: The execution f’

41

Lemma 5.12 For any real time t < Q(e), 1D -2 —2¢ < d..

Proof: Since the clocks of R and S are approximately synchronized, it follows that | r —
val(r) [<eand | (r =10 4 2¢') =3 (r — 1 4 2¢') | < &; this implies that y5'(r) > r — ¢ and
v3t(r =10 £ 2¢) < — 10 4 2¢/ 4 ¢, respectively. By Lemma 3.3, this implies that
de > (r—e)—(r—1942¢ +¢)
= 12— 2,

as needed. []

We continue to show an upper bound on D(e). By Lemma 5.12, 1D < d, + 2 4+ 2¢. At

the maximum discrete R-time not delivery,

- < (3—2)1

L
6
1
< (3- 5)(de+25+2c’),
which implies that:

F o< Bk 2) H (T)

0
= (3—%)(de+25)+(7_§)(7+§)—1c
< (3—%)(de+25)+(7+§)(7+§)—1c

_ @—éwﬁﬂd+a

Since the clocks are approximately synchronized, it follows that |’y§1(0) — 0] < ¢ and
|vg1(t') — t'| < e. This implies that v5'(0) > —¢ and y5' (') < ¢’ + ¢, respectively. The initial
send event was at real time 75'(0) and the time required for R to delivery is y5*(#'). Thus,

D(e) = 75'(t) - 75%(0)
< tde—(—¢)
= '+ 2
(3— %)(de +2e) + e+ 2

A

1 2
= (3—5)d6—|—(8—5)8—|—0

1 1
= (3—5)d6—|—(4—5)25—|—c,

42

as needed.

We continue to show an upper bound on Q(e). By Lemma 5.12, 1) < d. 4 2¢ 4+ 2¢'. So at

the maximum discrete R-time not quiescence,

" < (3_|_ l)l(t”)

0
1
< (3—|—5)(d6—|—25—|—20’)
1 2
= B+ 5)(d+2)+(6+7)C,

which implies that

1 2
" < (3+5)(d6+25)+(7+5)c’

= (B4) (et 2) de.

Since the clocks are approximately synchronized, it follows that |0 — v5'(0)] < ¢ and
[t —’yﬁl(t”)| < ¢; these imply that 751(0) > —¢ and ’yﬁl(t”) < t" + ¢, respectively. The initial

send event was at real time 75'(0) and the time required for R to quiensce is 5" (). Thus,

Q(e) = 7x'(1") —715'(0)
< t"+e—(—¢)

= "+ 2
< (3—|—%)(d6—|—25)—|—c—|—25
= (3-|-%)d6—|—(8—|—§)5—|—c
= (B4 de+ (4452t e,
as needed. [|

We next consider the weakly synchronized clocks model.

Theorem 5.13 Consider the weakly synchronized clocks model, in the presence of network
failures. Then, for any constants 6 > 1 and ¢ > 0, there exists a connection management

protocol P such that for every execution e of P,

D(e) < (3—%)de+(4—%)25—|—c,

and

Qe) < (3—|—%)d6—|—(4—|—%)25—|—c.

43

Proof: Let Py be the generic connection management protocol introduced in Section 3. Fix

any execution e of P;. We start by showing a lower bound on d..
Lemma 5.14 For any real time t < Q(e), d. > 1) —2¢ — 2¢.

Proof: Since the clocks of R and 5 are weakly appoximately synchronized, it follows that
| Yr(t2) —vs(t1) — (t2—t1) | < 2e. Tt implies that | (r—(r — 1 +2¢)) — (v (r) —v5 (r— 1)+
2¢')) | < 2e, which implies that v5'(r) — v5'(r = (M 4 2¢ > 1M — 2¢' — 22, By Lemma 3.3,
this implies that d. > 1) — 2¢/ — 2¢, as needed. [|

We continue to show an upper bound on D(e). By Lemma 5.14, [() < d, + 2¢ + 2¢. At the

maximum discrete R-time not delivery,

which implies that

o< (3—%)(d6+25)+(7—2) ¢

8
= B2+ (T DT+ D) e
< (3—%)(de+25)+(7+§)(7+§)—1c

= (8-) (de+20) 4.

Since the clocks are weakly approximately synchronized, it follows that | (¥ —0)— (’yﬁl(t’) -
v51(0)) | < 2e. Tt implies that y5(#') — v5'(0) < # 4 2¢. The initial send event was at real
time v5'(0) and the time required for R to delivery is v5'(#').

Hence,
D(e) = 7' (t)—75'(0)
< 42
1
< (3- 5)(d6+25)+c+25

1 1
(3—5)d6—|—(4—5)25—|—c,

44

as needed. We continue to show an upper bound on Q(e). By Lemma 5.14, 1 < d,+2e+2¢.

So at the maximum discrete R-time not quiescence,

- < (3+1)l(t”)

- 0
1
< (3—|—5)(d6—|—25—|—20’)
1 2
= B+ 5)(d+2)+ (645,

which implies that
" 1 2 /
" < (3—|—5)(d6—|—25)—|—(7—|—5)c

_ (3—|—%)(d6—|-25)—|-c.

Since the clocks are weakly approximately synchronized, it follows that | (¢ —0) — (’yﬁl(t”) -
v5'(0) | < 2e. It imples that v5'(¢") — v5'(0) < #” 4 2¢. The initial send event was at real
time v5'(0) and the time required for R to quiesce is v5'(#'). Thus,

Qe) = 7z'(1")—75'(0)
< V42
1
< (3—|—5)(d6—|—25)—|—c—|—25
1 1
= (3—|—5)d6—|—(4—|—5)2€—|—c
as needed. [

We continue to show a second upper bound for the approximately and weakly approximately

syncronized clocks.

We slightly modify the algorithm which we present in Section 3.2. in order to take the
advatage of property | vr(t2) — vs(t1) — (t2 — t1) |< 2¢, which approximately synchronized and
weakly approximately synchronized clock satisfy. Fach packet which 5 sent to R contains both
the message and the current local time. When R receive a packet estimate the v = r — s, where
r is the local R-time at which arrive the packet at R, while s is the local time in the packet.

Then R delivers immediately. After counts off ¢ — w 4+ 2¢ in its clock and then quiensce.

We continue to show that P, for approximately synchronized and weakly approximately
synchronized clocks model is a connection management protocol. We needed to prove that R

will not delivery any message for a second time. Assume that a packet © send at real time t.

45

It follows that 7 arrive at R at real time d+1¢ , where d is the delay incur the packet to arrive.
Then R estimate the u = yr(d + t) — vs(t). Then R delivery immediatelly. Assume that a
replay of 7 arrives at R at time T > d+¢. Since the maximum packet lifetime is equal to g, it
follows that T < p+t. We prove that R does not quiensce before time p+¢. Let Q to be the
time at which R quiensce. By the protocol, we have that yp(Q)—vr(d+t) = p—u+2e. Since

the clocks are approximately synchronized or weakly approximately syncronized, it follows that
| Yr(Q) — 7s(t) —(Q —1) [< 2e. It implies that

Q > r(Q)—7vs(t) +t—2¢
= Yr(Q) —yr(d+1t) +yr(d+1) —ys(t) +1—2¢
> p—u+2e—-2e+u+t

(since u = yp(d + t) — vs(t) and
YR(Q) = VR(d+ x) = p—u+ 2)
= p+t.

Since T < p+ t, this implies that Q > T. It follows that R never delivers a message a second

time. Thus,

Theorem 5.15 For the approximately and weakly approzimately synchronized clocks models,

Py is connection management protocol.

We show:

Theorem 5.16 Consider the weakly approxzimately synchronized clocks model in the presence
of network failures. Then , there exists a connection management protocol P such that for
every execution e of P,

D(e) <d.,

and

Q(e) < ptde.

Proof: Let P, be the connection management protocol introduced in the beging of this

Section. Fix any execution e of Ps.

Assume that 5 send the initial packet at local time 0. The packet incur a delay of d <
d. to arrive at R. Thus, the packet arrive at R at time d + 751(0). By the protocol P,
when R receive the initial packet estimate the u = yg(d + 75(0)) — 0. After R delivery

46

immmediately at time d + v5'(0). It follows that R delivery at local time ygr(d + 75'(0)).
Since the packet sent at time v5'(0) and R delivery at time d+~5'(0), it immediatelly follows
that D(e) = d +7v5'(0) — 75'(0) < d.. By the protocol Py, after R wait to elapses local time
i — u+ 2¢ and then quiensce at local time T = yp(d + 751(0)) +p—u+2e = p+4de, since
u=yr(d+ 751(0)). Since the clocks are weakly approximate syncronized by the Lemma 2.1,
we have that |T — 0 — (vz'(T) — v5'(0))| < 2e. It implies that y5'(T) —v5'(0) < p+ 4e.

Since R quiensce at local R-time T, and the initial packet send at S-time 0, we have that:

Y (T) = 75'(0)
< ptde,

Q(e)

as needed. []

Since the weakly approximately synchronized clocks model is no stronger than approxi-

mately synchronized clocks model, Theorem 5.16 implies,

Corollary 5.17 Consider the approximately synchronized clocks model in the presence of net-
work failures. Then , there exists a connection management protocol P such that for every

execution e of Py,

and

6 Drifting Clocks

In this section, we present our lower bound for the drifting clocks model, under network and

node failures.

Theorem 6.1 Consider the drifting clocks model in the presence of network and node failures.
Then, for any connection management protocol P, there exists an execution e of P with d. <
p/(3p + 1) such that

D(e) > 3pd..

47

Proof: Assume, by way of contradiction, that there exists a connection management protocol
P for the drifting clocks model in the presence of network and node failures such that for every
execution e of P with d. < 11/(3p+1), D(e) < 3pd.. We construct an execution of P containing

two message-deliver events.

We start with an informal outline of our proof. We construct a sequence of executions e,
e, fand f’, so that R delivers a message twice in f’. In e and f, the clocks of R and $
are “slow”, while in ¢, the clocks of R and S are “fast”. We start with e, which terminates
immediately after R delivery(when R delivery crash immediately). We continue to construct
e’, which S cannot distinguish from e to 5, while R still delivers in €’ and after crash. By
modifying R’s clock, we “perturb” e to obtain f, which S cannot distinguish from e; still, f
terminates immediately after R crash. Finally, we construct f’ as the “concatenation” of ¢
and f; in f', R first delivers and then crashes, before it receives replays of all packets in a
way that R “sees” them arriving as in f. This leads R to deliver again, which contradicts the

correctness of . We now present the details of the formal proof.

We construct an execution e of P in which

(e) t 1

t) = —-=3(1--)d.
75 (1) 5 (p)
and
Gy = L.
VR() P

Thus, the clock of S is initially —3(1 — 1/p)d., while the clock of R is initially 0. Fach packet
incurs a delay of d.. We construct e so that S sends its intial packet at local time —3(1—1/p)d,
and the second packet send at local time 0. It implies that 5 send the initial packet at real
time 0 and the second packet at time 3(p — 1)d.. We construct e so that R crash immediately
when receive the initial packet from S5, so that R cannot respond to 5. Assume that up to
(3p — 2)d., when R receive a replay of initial packet crash immediately so it cannot respond
to 5. Also assume that one replay of the initial packet arrive at R at the moment (3p — 2)d..
Note that the second packet sent from S to R arrive at R at time (3p — 2)d.. It implies that
the replay of the initial packet and the second packet arrive at R at local time (3 — 2/p)d..
Thus, since no local actions are enabled in the intial state of R, R may sent a packet to S no
earlier than time (3p — 2)d.. Hence, since all packet delays are equal to d. in e, S may receive

a packet from R no earlier than time (3p — 1)d.. It follows that:

Claim 6.2 In the execution e, the inputs that S receives in the interval [0,(3p — 1)d.) is the
wnitial input from Usg.

48

By our assumption on P, in e, R delivers at real time D(e) < 3pd.; thus, R delivers at

local time

WD) < n(3pd.)
(since D(e) < 3pd. and 71(;) is strictly increasing)
= 3d..

We have then R crash immediately.

We continue to construct an execution e’ for which
e’ 1
1§70 = pt = 3(1 = 2)d.

and
i (1) = pt.

Thus, both clocks are "fast”. Also the clock of § is initially —3(1 — 1/p)d., while the clock
of R is initially 0. Futhermore, assume that each packet incurs a delay of d. = d./p?. We
construct €’ so that 5 sends its intial packet at local time —3(1—1/p)d, and the second packet
send at local time 0. We construct ¢’ so that R crashes immediately on receipt of the initial
packet from §, so that R cannot respond to 5. Assume that up to R-time (3 — 2/p)d., when
R receive a replay of initial packet crash immediately so it cannot respond to 5. Also assume
that one replay of the initial packet arrive at R at local time (3 —2/p)d.. Note that the second
packet sent from S to R arrive at R at local time (3—2/p)d.. Also notice that, by construction
the ammount of local time that elapses between the send and the receipt of every packet is
the same in e and €’. By construction, ¢’ | S =e| S and ¢ | R=¢| R. Soin €, R delivers
before local time 3d.. It follows that R delivers before real time 3d./p. We have then R crash

immediately.

We continue to construct an execution f for which

and

t
O 3.

Thus, both clock are "slow” and the clock of § is initially —3(1 — 1/p)d., while the clock
of R is initially 3d.. Futhermore, each packet incurs a delay of d;y = d.. We construct f so
that S sends its intial packet at time 0 and the second packet at time 3(p — 1)d.. Assume

49

that up to (3p —2)d., when R receive a replay of initial packet crash immediately so it cannot
respond to 5. Assume that R crashes immediately when receive the initial packet so from S,
that R cannot respond to 5. Also assume that one replay of the initial packet arrive in R at
time (3p — 2)d.. Note that the second packet sent from S to R arrive at R at time (3p — 2)d..
It implies that the replay of initial packet and the second replay arrive at R at local time
(3 —2/p)de + 3d.. Since no local actions are enabled in the intial state of R, R may sent a
packet to S no earlier than time (3p — 2)d.. Hence, since all packet delays are equal to d.
in the timed execution f, S may receive a packet from R no earlier than time (3p — 1)d.. It

follows that:

Claim 6.3 In f, the inputs that S receives in the interval [0,(3p — 1)d.) is the initial input
from Ug.

By our assumption on protocol P, in f, R delivers at time
D(f) < 3pd; = 3pd. ;

thus, R delivers at local time

WO < Al Ged)
(since D(f) < 3pd. and ’y](%f) is strictly increasing)
= 6d..

Since all packet delays are equal to d. in the execution f, the only input that R receives
before delivery are the packets sent by S in the interval [0, D(f) — d.). It follows that:

Claim 6.4 The inputs that R receives before delivery are the packets sent by S in the S-interval

1 de
(=31 = ey (D)) = 7 = 3de).
p p
We continue to show certain timing properties of send-packet and receive-packet events in
f.
Lemma 6.5 Consider any packet © sent from S to R at S-time
1 de
1€ [=3(1 - =)de, 7 (D(f)) - 3d. = =5).
p p
Then arrives at R at R-time p
3d.+ = +t.
p

50

(f)

Proof: By definition of y5’, 7 is sent at real time pt. By construction of f, 7 arrive at R at

real time pt + d.. It follows that = arrives at R at R-time

d. + pt
(. + pt) = = P4 3d,
de
= 3de + —+ t7
p
as needed. []

We continue to show that ¢ and f are indistinguishable to S in an initial interval of its

local time.

Lemma 6.6 f |5 =¢ |5 in the S-interval

=301~ e D) - %~ 3.
p p
Proof: By our assumption on protocol P, we have that D(f) < 3pd,, it follows that D(f) —
d. < (3p — 1)d.. By Claim 6.3, this impies that: in f, the only input that S receives in the
interval [0,D(f) — d.) is the initial input from Us. Also by Claim 6.2, in e, the inputs that §
receives in the interval [0,D(f) — d.) is the initial input from Ug. Thus, e | S = f |5 in the
interval [0,D(f)— d.). Also by construction e | S = ¢’ | S. Thus, f |5 =¢' |5 in the interval
[0,D(f)— d.). By definition of ’y](%f) and ’ygf), f1S5=¢€15 in the S-interval
d

[—3(1— %)dem}{)(w)) -).

Finally, we construct an execution f’ in which R delivers the message twice. A prefix of
f'is equal to €¢’. The remainder of f’ is an execution fragment f{, which begins at time D(¢’)
with R in its initial state. In f], ygf{)(t) = ’y](%fll)(t) = pt. The execution f’ is shown in
Figure 5. We replay the initial packet so that incurs a delay of (3/p — 2/p?)d. + 3d./p to
arrive. It follows that the replay of initial packet arrive at R at local time (3 — 2/p)d. + 3d..
We replay all packets sent by 5 in the interval [0, ’y](%f)(D(f)) —d./p—3d.), so that each incurs
a delay of 3d./p + d./p* to arrive.

We continue to show certain timing properties of send-packet and receive-packet events in

51

Lemma 6.7 Consider any replay of packet = sent by S to R at S-time

1 d.
1 [-3(1— =)de, v (D)) = = = 3d.).
4 4
Then © arrive at B at R-time J
3d. + < +t.
p

(f1)

Proof: By definition of 5/, 7 is sent at real time ¢/p. By construction of f{, 7 arrives at
R at real time t/p + 3d./p + d./p*. Tt follows that 7 arrive at R at R-time

nt 3d. d d
(f)(_ 1

+) = 3de+ —+1,
popop p

as needed. []

By Lemmas 6.5 and 6.7, the replays arriving at R as they did in execution f. Any other
packets sent by .5 incur a delay of u to arrive at R;hence any other packets sent by 5 take pu
units of local time to arrive at R. Thus, any each packet sent by 5 after S-time ’y](%f)(D(f)) -

de/p — 3d., it will receive from R after R-time

7)) - d; 3do4pu > DU - % —3d, + 4pd.
(d. < 1/Gp+ 1))
= WD) +(a=3-),

> (D),

since p > 1. So we can ensure that any packet sent by 5 after S-time ’y](%f)(D(f)) —
d./p — 3d. will not interfre with this part of the construction. By our construction, the only
inputs that R receives following delivery and up to time ’y](%f)(D(f)) are replays of packets
sent by 9 in the S-interval [-3(1 — %)de,’y](%f)(D(f)) —3d, — %). Also, by Claim 6.4, in f,
the inputs that R receives up to time ’y](%f)(D(f)) are replay of packets sent by S in the 5-
interval [—3(1 — %)de,’y](%f)(D(f)) - 3d. — %). By Lemma 6.6, f | S = ¢’ | 5 in the S-interval
[—3(1 — 1/p)de,’y](%f)(D(f)) —3d. — d¢/p). Thus, we can construct the fragment f] so that
f| R=f{|Rin the R-interval [3d6,’y](%f)(D(f))]. Thus, R delivers the message in f{. Hence,

R delivers the message twice in the execution f' = €'f]. A contradiction. [

52

execution €

D

@ 6de

:,
N
:

local time

Gp-1)de @

real time

Figure 5: The execution f

53

7 Approximately Synchronized Clocks

In this section, we present two lower bounds for the approximately synchronized clocks model,

under both network and node failures. The first is more general but less strong.

Theorem 7.1 Consider the approzimately synchronized clocks model, under both network and
node failures. Then, for any connection management protocol P, there exists an execution e
of P with ¢ < d. < u/3, such that

D(e) > d.+2e¢.

Proof: Assume, by way of contradiction, that there exists a connection management protocol
P such that for every execution e of P with ¢ < d. < u/3, D(e) < d. + 2¢. We construct an

execution of P containing two message-deliver events.

We start with an informal outline of our proof. We construct a sequence of executions e, €,
and f, so that R delivers a message twice in f. In all of these executions, the clock of R “lags”
by ¢ that of 5. We start with any execution e which terminate with R delivering a message
and immediately crashing. We ”perturb” e to abtain € which is indistinguishable from e to
either 5, while all messages incur a delay larger than the corresponding one in e. Finnally we
continue to construct f as "concatenation” of e and €’;in f, R first delivers and crashes and
next receives replays of all packets in such way that R ”sees” all packets arriving as in f. By
construction of f, R delivers again , which cotradicts the correctness of P. We now present

the details of the formal proof.

Consider an execution e of P for which yge)(t) =t, and ’y](%e)(t) =t + ¢; thus, the clocks of
S and R hold the initial values 0 and e, respectively. Futhermore, assume that each packet
incurs a delay of d. in the execution e, where ¢ < d. < p/9. Finally, assume that the last step
in e is taken on occurrence of a crash event at R, which immediately follows a message-deliver

event at R.

By assumption on P, in e, R delivers at real time D(e) < d. + 2¢. Since all packet delays
are equal to d. in the execution e, R may receive a packet no earlier than time d.. Since no
local actions are enabled in the initial state of R , it immediately follows that R may send a
packet to .5 no earlier than time d.. It follows in e, .5 does not receive a packet from R before
real time 2d.. Also 2¢ < 2d., since d. > ¢. It follows that:

Claim 7.2 In e, the only input S receives in the interval [0,2¢) is the initial input from Us.

54

We construct an execution €’ of P in ’yge/)(t) = t, and ’y](%e/)(t) =t + . Thus, the clock
of 5 is initially 0 while the clock of R is initially ¢ . Futhermore, each packet incurs a delay
of do = d. + 2¢ in the execution €. By assumption on P, in €', R delivers at real time
D(e') < do 4 2¢ = d. + 4¢. Thus, R delivers at R-time

(D) < e+ 40)
(since D(e’) < d. + 4¢ and 71(;’) is strictly increasing)
= d.+ be

(by definition of 71(;’)) .

Since all packet delays are equal to d. + 2¢ in the execution €', R may receive a packet no
earlier than real time d. 4+ 2¢. Since, no local actions are enabled in the initial state of R, it
immediately follows that R may send a packet to § no earlier than real time d. 4 2¢. It follows
that:

Claim 7.3 In €', S does not receive a packet from R before real time 2d. + 4¢ .
We continue to show certain timing properties of send-packet and receive-packet in €.

Lemma 7.4 Consider any replay packet © sent from S to R at S-time t € [0,2¢). Then 7
arrives at R at R-time t + d. + 3¢.

(¢)

Proof: By definition of v5 ’, 7 sent at real time ¢t. By construction of ¢/, = arrives at R at

real time ¢ + d. + 2¢. By definition of ’y](;/), it follows that 7 arrives at R at R-time t + d. + 3¢,

as needed. [|
We continue to show:

Lemma 7.5 ¢/ | S =€ |5 in the S-interval [0, 2¢).

Proof: Since d. > ¢, 2¢ < 2d. < 2d. + 4¢. By Claim 7.2 and Claim 7.3, this implies that

€ |5 =elSin the interval [0,2¢). By definitions of ’yéel) and yge), it follows that €/ | S = ¢ | 5
in the S-interval [0, 2¢), as needed. [

55

Finally, we construct an execution f in which R delivers the message twice. A prefix of f
is equal to e. The remainder of f is an execution fragment f; which begins at time D(e) with
R in its initial state. In fi, ygfl)(t) =1 and 7](%1)(15) =1+ ¢. In the Figure 6 we present the
execution f in which R delivers twice. We replay all packets sent by 5 so that each incurs a
delay of d. 4+ 2¢ to arrive. We continue to show certain timing properties of send-packet and

receive-packet in €'

Lemma 7.6 Consider any replay packet © sent from S to R at S-time t € [0,2¢). Then 7
arrives at R at R-time t + d. + 3¢.

(¢)

Proof: By definition of y¢’, 7 sent at real time ¢. By construction of f, = arrives at R at
real time ¢+ d. + 2¢. By definition of ’y](%l), it follows that = arrives at R at R-time ¢+ d. + 3¢,

as needed. []
We show:

Lemma 7.7 Consider any replay packet © sent from S to R at S-time t > 2¢. Then 7 arrives
at R after R-time d. + be.

Proof: By construction of f, 7 incur a delay d. 4 2¢ to arrives at R. It follows that m arrives
at R at real time t + d. + 2¢ > d. + 4¢. By definition of ’y](%l), it follows that 7 arrives at R at
R-time

W 4d +20) > 7P, +4e)
(since t + d. + 2¢ > d. + 4¢ and ’y](%fl) is strictly increasing)

d. + be

(by definitions of ’y](%l)))

as needed. []

By Lemma 7.4, 7.5, 7.7 and 7.6, we have that f; | R = ¢ | R, in the R interval
[de + 2¢,d. 4 be). Since ’y](;/)(D(e’)) < dc + be, it follows that: in fi, R delivers at R-time 71(;’)

Thus, R delivers twice in the execution f = ef;. A contradiction. [|

56

execution e

rea time

rea time

Figure 6: The execution f

57

Since the weakly synchronized clocks model is no stronger than the approximately synchro-

nized clocks model, Theorem 7.1 immediately implies:

Corollary 7.8 Consider the weakly synchronized clocks model, under both network and node
failures. Then, for any connection management protocol P, there exists an execution e of P
with ¢ < d. < /3. for which

D(e) > d.+ 2.

We continue to show a stronger but less general lower bound.

Theorem 7.9 Consider the approximately synchronized clocks model, under both network and
node failures. Then, for any connection management protocol P, there exists an execution e
of P with e <d. < (p—6¢)/5, such that

D(e) > 3d.+2e.

Proof: Assume, by way of contradiction, that there exists a connection management protocol
P for the approximately synchronized clocks model in the presence of both network and node
failures such that for every execution e of P with ¢ < d. < (u — 6¢)/5, D(e) < 3d. + 2. We

construct an execution of P containing two message-deliver events.

We start with an informal outline of our proof. Our proof constructs a sequence of exe-
cutions e, €', f, f' so that R delivers a message twice in f’. We start with execution e which
terminates with R delivering a message and immediately crashing. We “perturb” e to obtain
¢’ which is indistinguishable from e to either S or R, while all messages from R to S take
time u in €’; so, R still delivers and immediately crashes by the end of ¢/. We continue to
construct f which is indistinguishable from e’ to 5, while R only delivers in f but does not
crash; the construction uses the fact that communication from R to S is slow in €¢’. Finally,
we construct f' as the “concatenation” of ¢ and f;in f’, R first delivers and crashes and next
receives replays of all packets in such a way that R “sees” all packets arriving as in f. By the
construction of f, R delivers again, which contradicts the correctness of P. We now present

the details of the formal proof.

Consider an execution e of P for which yge)(t) =t—¢,and ’y](%e)(t) = t. Thus, the clocks
of 5 and R initially hold the values —e and 0, respectively. Furthermore, assume that each
packet incurs a delay of d. in the execution e. We construct e so that 5" sends its initial packet

at time 0. It implies that 5 sends its initial packet at S-time —e. By the Theorem 7.1, we

58

have that R delivers at time D(e) > d. + 2. We construct e so that R crash immediately
when receive a packet so that R cannot respond to 5. The last crash happen just before the
moment d. + 2¢. Notice that the moment just before d. 4+ 2¢ R is in initial state. Also assume
that one replay of each packet has received by R before the moment d. + 2¢ arrive at R at
time d. + 2¢. Thus, since no local actions are enabled in the initial state of B, R may sent a
packet to .5 no earlier than time d. 4+ 2¢. Hence, since all packet delays are equal to d. in €, 5

may receive a packet from R no earlier than time 2d, + 2¢. It implies that:

Claim 7.10 In e , the only input that S receives in the interval [0, 2d. +2¢) is the initial input
from Ug.

By our assumption on P, in e, R delivers at real time D(e) < 3d. + 2¢. By definition of

71(;) R delivery at R-time ’y](%e)(D(e)) = D(e). We have then R crash immediately.

We continue to show certain timing properties of send-packet and receive-packet events in

Lemma 7.11 Consider any packet © sent from S to R at S-time t € [—¢,¢). Then © arrives
at R at R-time d.+2¢. Consider any packet my sent from S to R at S-time t € [¢,D(e)—d.—¢).
Then 71 arrives at R at R-time t + d. + ¢.

Proof: By construction of e, one replay of © arrives at R at R-time d. + 2¢. By definition

of yge), mp is sent at real time ¢ + ¢. By definition of yge), 7 is sent at real time ¢ + . By

construction of e, my arrives at R at real time ¢ + d. + ¢. By definition of ’y](;), 7 arrives at R
at R-time ¢t +d. + ¢. []

We construct an execution €’ in which ’yge/)(t) =t—¢and ’y](%e/)(t) = t. Thus, the clock of
S is initially —e while the clock of R is initially 0. Assume that each packet sent from 5 to
R in the interval [0,2¢) arrives at R at real time d. + 2¢. Also assume that any other packet
sent from 5 to R incurs a delay of d.. Fach packet from R to S incurs a delay of p. Since all
packets which sent from S to R in the interval [0,2¢) arrives at R at real time d. + 2¢ and all
other packet delays from S to R are equal to d. in the execution ¢/, R may receive a packet
from S no earlier than time d. + 2¢. Since no local actions are enabled initial state of R, it
follows that R may send a packet to § no earlier than time d. 4+ 2¢. Hence, since all packet

delays from R to S are equal to u in €', S may receive a packet from R no earlier than time

p+de > bd.+d.+ 8¢

59

(since d. < (0 — 6¢)/5)
= 6d.+ 8¢.

It follows that:

Claim 7.12 In €', the input that S receives in the interval [0,6d. + 8¢) is the initial input
from Ug.

We continue to show certain timing properties of send-packet and receive-packet events in

Lemma 7.13 Consider any packet © sent from S to R at S-time t € [—¢,¢). Then © arrives
at R at R-time d.+2¢. Consider any packet my sent from S to R at S-time t € [¢,D(e)—d.—¢).
Then 71 arrives at R at R-time t + d. + ¢.

Proof: By construction of €/, one replay of m arrives at R at R-time d. + 2¢. By definition

of ’yée), 71 is sent at real time ¢ 4+ ¢. By definition of ’yée), 7 is sent at real time ¢ 4+ ¢. By

(¢)

construction of €/, m; arrives at R at real time ¢ 4 d. + ¢. By definition of 75 ’, 1 arrives at

R at R-time t +d. + . [
We show:

Lemma 7.14 e | S = €' | S in the interval [0,D(e) —d.) and e | R = €' | R in the interval

[0, D(e)).

Proof: We have that

6d, + 8 > 2d,+ 2¢
> D(e)—d.
(since D(e) < 3d. + 2¢).
By Claim 7.10 and Claim 7.12, this implies that e | § = €’ | S in the interval [0,D(e)—d.). By
definitions of ’yéel) and yge), it implies that e | S = ¢’ | S in the S-interval [—¢,D(e) — d. — ¢).
By Lemma 7.11, 7.13 it implies that e | R = ¢’ | R in the R-interval [O,VS)(D(e))). By
definitions of ’y](;/), it implies that e | R = ¢’ | R in interval [0, D(e)). |

60

By Lemma 7.14 follows that in ¢’ R delivery at time D(e). We have then R crash imme-
diately.

We now construct an execution f for which ’ygf)(t) =t—cand ’y](%f)(t) = t. Thus, the clock
of § is initially —¢, while the clock of R is initially 0. Each packet incurs a delay of dy = D(e).
We construct f so that 5 sends its initial packet at time 0. By the Theorem 7.1, we have
that R delivers at time D(f) > D(e) + 2e. We construct f so that R crash immediately when
receive a packet so that R cannot respond to 5. The last crash happen just before the moment
D(e) 4 2¢. Also assume that one replay of each packets has received by R before the moment
D(e)+ 2¢ arrive at R at time D(e)+ 2¢. Thus, since no local actions are enabled in the initial
state of R, R may sent a packet to S no earlier than time D(e) + 2¢. Hence, since all packet
delays are equal to D(e) in f, S may receive a packet from R no earlier than time 2D(e) + 2¢.
It follows that:

Claim 7.15 In f, the input that S receives in the interval [0,2D(e) + 2¢) is the initial input
from Ug.

By our assumption, in f, R delivers at time

D(f) < 3dj+2
= 3D(e)+ 2¢.

We then have R crash immediately. Also

D(f)—D(e) < 2D(e)+ 2¢
(since D(f) < 3D(e) + 2¢)
< 6d, + 6¢
(since D(e) < 3d. + 2¢).

By Claim 7.12 and Claim 7.15, this implies that ¢’ | S = f| S in the interval [0,D(f)— D(e)).

By definition of ’ygf), it implies that:

Lemma 7.16 ¢ | S = f |5 in the S-interval [—¢,D(f) — D(e) —¢).

Since all packet delays are equal to D(e) in the execution f, we have that in f the input
that R receives before delivery are the packets sent by S in the interval [0,D(f) — D(e)). By

definition of ’yéf), it implies that:

61

Lemma 7.17 In f the input that R receives before delivery are the packets sent by S in the
S-interval [—e,D(f) — D(e) —¢).

We continue to show certain timing properties of send-packet and receive-packet events in

Lemma 7.18 Consider any packet © sent from S to R at S-time t € [—¢,¢). Then © arrives
at R at R-time D(e) + 2¢. Consider any packet m sent from S to R at S-time t € [e,D(f) —
D(e) —¢). Then my arrives at R at R-time t + D(e) + ¢.

Proof: By construction of f, one replay of 7 arrives at R at R-time D(e)+ 2¢. By definition
(f)

of 5, w1 is sent at real time ¢t4¢. By construction of f, m; arrives at R at real time t+D(e)+-¢.
By definition of ’y](%f), 71 arrives at R at R-time ¢ + D(e) + <. []

Finally, we construct an execution f’ in which R delivers the message twice. A prefix of
/' is equal to ¢’. By construction, in ¢/ R do delivery at D(e) and immediately crash. The
remainder of f’is an execution fragment f; which begins at D(e) with R in its initial state
(R do crash at time D(e)). In fy, ygf{)(t) =t—c¢ and ’y](%{)(t) =t. In the Figure 7 we present
the execution f’ in which R delivers twice. We replay all packets sent by 5 in the S-interval
[—¢,¢) so that each replay arrive at R at time D(e) 4+ 2¢. Also we replay all packets sent by §
in the S-interval [¢,D(f) — D(e) — ¢) so that each incurs a delay of D(e) to arrive. We have
all other packets incurs a delay of . We show:

Lemma 7.19 Consider any replay packet © sent by S at S-time t € [—¢,D(f) —D(e) —¢), it
arrive at R before R-time ’y](%f)(D(f)).

(¢)

Proof: By definition of 75 ’, 7 sent at real time ¢ + ¢. By construction of f’, = arrives at R

at rela time

1+ D(e) < D(f)—D(e)+D(e)

By definitions of 71(31/), ’y](%f) and ygel), it follows that in f{, each replay packet sent by S at

S-time t € [—¢,D(f) — D(e) — ¢), arrives at R before R-time ’y](%f)(D(f)). |

62

We show:

Lemma 7.20 Consider any replay packet © sent by S after S-time D(f)—D(e)—¢. Then 7
at R sfter R-time ’y](%f)(D(f)).

Proof: By definition of ygel), 7 is sent after real time D(f) — D(e). By construction of f’, 7

arrives at R after real time

D(f)~D(e)+p > D(f) - Dle) + 5, +2
(since d. < (0 — 6¢)/5)

> D(f)—3d. — e+ 5d, + 2¢
(since D(e) < 3d. + ¢)
= D(f)+2d.+¢
> D(f).
By definition of ’y](%fll), 7 arrives at R after R-time ’y](%f)(D(f)). |

We continue to show certain timing properties of send-packet and receive-packet events in

fi-

Lemma 7.21 Consider any replay packet = sent from S to R at S-time t € [—¢,¢). Then 7
arrives at R at R-time D(e) + 2¢. Consider any replay packet m sent from S to R at S-time
t€le,D(f)—D(e)—¢). Then my arrives at R at R-time t + D(e) + ¢.

Proof: By construction of f, one replay of & arrives at R at R-time D(e)4 2¢. By definition
(¢')

of v5/, m is sent at real time ¢ 4+ ¢. By construction of f{, 7y arrives at R at real time
t + D(e) + ¢. By definition of ’y](%fl), 71 arrives at R at R-time ¢ + D(e) + «. []

By Lemma 7.16, 7.17, 7.18, 7.19, 7.20 and 7.21, we have that f{ | R = f | R in the
interval [D(e) + 2¢,D(f)). It implies that R delivery in f;. Thus, R delivers twice in the

execution f" =¢€'f{. A contradiction. []

Since the weakly synchronized clocks model is no stronger than the approximately synchro-

nized clocks model, Theorem 7.9 immediately implies:

63

\\

execution €

3de + 2¢

@® de+ 2¢

9de+ 6¢

real time

rea time

Figure 7: The execution f’

64

Corollary 7.22 Consider the weakly synchronized clocks model, where messages can be du-
plicated and reordered, and R can crash but does not remember the time of its last crash.
Then, for any connection management protocol P, there exists an execution e of P with
e <d. <(pu—6¢)/5 for which

D(e) > 3d.+ 2.

8 Discussion and Directions for Further Research

We have presented a collection of trade-offs between message delivery time and quiescence
time, in the form of tight lower and upper bounds, for connection management protocols, over

a number of natural settings

Acknowledgments:

We wish to thank Hagit Attiya, Jon Kleinberg and Nancy Lynch whose work [9] has inspired

our work.

65

References

[1]

[2]

[3]

Y. Afek, H. Attiya, A. Fekete, M. Fischer, N. Lynch, Y. Mansour, D.-W. Wang, and L. Zuck,
“Reliable Communication over Unreliable Channels,” Journal of the ACM, Vol. 41, No. 6,
pp. 1267-1297, November 1994.

H. Attiya, S. Dolev and J. L. Welch, “Connection Management Without Retaining Infor-
mation,” Information and Computation, Vol. 123, No. 2, pp. 175-191, December 1995.

H. Attiya, A. Herzberg, and S. Rajsbaum, “Optimal Clock Synchronization under Different
Delay Assumptions,” STAM Journal on Computing, Vol. 25, No. 2, pp. 369-389, April 1996.

H. Attiva and R. Rappoport, “The Level of Handshake Required for Establishing a Connec-
tion,” Proceedings of the 8th International Workshop on Distributed Algorithms, Lecture
Notes in Computer Science, Vol. 857 (G. Tel and P. Vitanyi, eds.), Springer-Verlag, pp.
179-193, September/October 1994.

D. Belsnes, “Single-Message Communication,” IEFFE Transactions on Communications,
Vol. 24, No. 2, February 1976.

D. Comer, Internetworking with TCP/IP, Volume 1: Principles, Protocols and Architec-

ture, second edition, Prentice-Hall, 1991.

A. Fekete, N. Lynch, Y. Mansour, and J. Spinelli, “The Impossibility of Implementing
Reliable Communication in the Presence of Crashes,” Journal of the ACM, Vol. 40, No. 5,
pp. 1087-1107, November 1993.

R. Gawlick, R. Segala, J. Sogaard-Andersen and N. Lynch, “Liveness in Timed and Untimed
Systems”, Proceedings of the 21st International Collogium on Automata, Languages and
Programming, Lecture Notes in Computer Science, Vol. 820 (S. Abiteboul and E. Shamir,
eds.), Springer-Verlag, pp. 166-177, July 1994.

J. Kleinberg, H. Attiva and N. Lynch, “Trade-offs Between Message Delivery and Quiesce
Times in Connection Management Protocols,” Proceedings of the 3rd Israel Symposium on

the Theory of Computing and Systems, pp. 258-267, January 1995.

[10] B. Liskov, L. Shrira and J. Wroclawski, “Efficient At-Most-Once Messages Based on Syn-

chronized Clocks,” ACM Transactions on Computer Systems, Vol. 9, No. 2, pp. 125-142,
1991.

66

[11] J. Lundelius and N. Lynch, “An Upper and Lower Bound for Clock Synchronization,”
Information and Control, Vol. 62, No. 2/3, pp. 190—204, August/September 1984.

[12] N. Lynch and M. Tuttle, “An Introduction to Input/Output Automata,” CWI Quarterly,
Vol. 2, No. 3, pp. 219-246, September 1989.

[13] N. Lynch and F. Vaandrager, “Forward and Backward Simulations for Timing-Based
Systems,” in J. W. de Bakker, C. Huizing, W. P. de Roever and G. Rozenberg (editors),
Real-Time: Theory in Practice, Lecture Notes in Computer Science, Vol. 600, pp. 397-446,
Springer-Verlag, June 1991.

[14] N. Lynch and F. Vaandrager, “Forward and Backward Simulations — Part II: Timing-
Based Systems,” Technical Memo MIT/LCS/TM-487.b, Laboratory for Computer Science,
Massachusetts Institute of Technology, September 1993.

[15] L. Murphy and A. Shankar, “Connection Management for the Transport Layer: Service
Specification and Protocol Verification,” IEFE Transactions on Communications, Vol. 39,
pp. 1762-1775, 1991.

[16] B. Patt-Shamir and S. Rajsbaum, “A Theory of Clock Synchronization,” Proceedings of
the 26th Annual ACM Symposium on Theory of Computing, pp. 810-819, June 1994.

[17] R. W. Stevens, TCP/IP lllustrated, Volume 1: The Protocols, Addison-Wesley Profes-
sional Computing Series, 1994.

[18] C. Sunshine and Y. Dalal, “Connection Management in Transport Protocols,” Computer
Networks, Vol. 2, pp. 454-473, 1978.

[19] A. Tanenbaum, Computer Networks, Prentice Hall, 1988.

[20] R. Tomlinson, “Selecting Sequence Numbers,” ACM Operating Systems Review, Vol. 3,
1975.

[21] Transmission Control Protocol, DARPA Network Working Group Report RFC-793, Uni-
versity of Southern California, September 1981.

[22] D.-W. Wang and L. Zuck, “Tight Bounds for the Sequence Transmission Problem,” Pro-
ceedings of the Sth Annual ACM Symposium on Principles of Distributed Computing, pp.
73-83, August 1989.

67

[23] D.-W. Wang and L. Zuck, “Real-Time Sequence Transmission Problem,” Proceedings of
the 10th Annual ACM Symposium on Principles of Distributed Computing, pp. 111-123,
August 1991.

[24] R. W. Watson, “Timer-Based Mechanisms in Reliable Transport Protocol Connection
Management,” Computer Networks, Vol. 5, pp. 47-56, 1981.

[25] R. W. Watson, “The Delta-t Transport Protocol: Features and Experience,” Proceedings
of the IEFE International Conference on Local Computer Networks, pp. 399-407, 1989.

68

