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Abstract

We consider the lattice of subspaces of an n-dimensional vector space V" over a finite field
G'F(q) and represent a family of such subspaces by elements of a set X. The g-analog of the
principle of inclusion-exclusion expresses the size of the union of elements of X representing
subspaces of V" in terms of the sizes of subsets of X whose intersection contains a given
subspace of V,*. We study the problem of approximating the size of this union when intersection

sizes are known only for some subspaces of V.

In particular, we consider the case where intersection sizes are given for subsets of X whose
intersection contains a subspace of V" of dimension at most k. We extend methods of Linial
and Nisan (Combinatorica, Vol. 10, No. 4, pp. 349-365, 1990), drawn from approximation
theory, to show that the quality of approximation changes in a significant way around /¢~ 1:
if & < O(y/q"=1), then any approximation may err by a factor of ©(\/¢"=1/k), while if k& >
Q(\/q”——l), the size of the union may be approximated to within a multiplicative factor of

14+ e @/ a7,

Our result, the first g-analog of a computational property of the lattice of subsets of a finite

set, answers in the affirmative a question posed by Linial and Nisan.



1 Introduction

The triality principle in combinatorics, commonly attributed to Rota, asserts that to any
theorem holding on the lattice of subsets of a finite set, there corresponds a g-analog, i.e., a
matching theorem holding on the lattice of subspaces of a finite-dimensional vector space and
a partition analog, i.e., a matching theorem holding on the lattice of partitions of a finite set.
(See, e.g., [7] for a discussion of the triality principle.) Although this principle has attracted
a lot of attention and has been successfully verified in a variety of combinatorial situations
(see, e.g., [3, 4, 5, 6, 8, 10, 11, 16, 19]), the exact mathematical nature of these theorem

correspondences remains as yet unexplained.

In this paper, we initiate a study of the triality principle in algorithmic combinatorics by
presenting a g-analog of a computational property of the lattice of subsets of a finite set. In
particular, we address a g-analog of a result of Linial and Nisan [14] concerning the quality
of approximating the size of the union of a family of sets in terms of the sizes of intersections
of subsets, when intersection sizes are known for only some of the subsets. (The problem of
exactly computing the size of this union is known to be at least as hard as computing the
number of satisfying assignments to a Boolean formula in disjunctive normal form, which is a
#P-complete problem [21].)

Linial and Nisan [14] have been the first to look at the approximability of “hard” counting
problems from the point of view of a corresponding Mobius inversion problem. Their starting
point was the classical inclusion-exclusion formula and their main result was that a good
approximation may be obtained if and only if sufficiently many terms from the inclusion-
exclusion formula are taken, more precisely, terms that express the size of intersections of up
to y/n subsets. The elegant methods of Linial and Nisan were drawn from approximation

theory, in particular, from the theory of Chebyshev polynomials [17].

Following Linial and Nisan [14], we present a corresponding result for a counting problem
over the lattice of subspaces of a finite-dimensional vector space. In particular, we consider an
n-dimensional vector space V" over a finite field G F(q) and a family of subspaces of it repre-
sented by the elements of a set X. We consider a g-analog of the principle of inclusion-exclusion
due to Chen and Rota [5] expressing the size of the union of elements of X representing sub-
spaces of V" in terms of the sizes of subsets of X whose intersection contains a given subspace
of V*. We address the problem of approximating the size of the union when intersection sizes

are known only for some subspaces of V.

More specifically, we consider the case where intersection sizes are given for subsets of



X whose intersection contains a subspace of V" of dimension at most k for some integer £,
1 <k < n. We extend the methods of Linial and Nisan to apply to the lattice of subspaces
of an n-dimensional vector space; we show that the quality of approximation changes in a
significant way around \/¢"=1: if k < O(\/q”—_l), then any approximation may err by a factor
of O(v/q"=1/k), while if k > Q(\/q"1), the size of the union may be approximated to within
a multiplicative factor of 1 + e‘Q(k/\/q"—_l).

Our result, the first g-analog of a computational property of the lattice of subsets of a

finite set, answers in the affirmative a question posed by Linial and Nisan [14, Section 6, Open
Problem 2]:

“The inclusion-exclusion formula is the Mobius inversion formula for the full Boolean

lattice. Are there results similar to the present ones for other lattices?”

The rest of this paper is organized as follows. Section 2 presents the lattice of subspaces
of an n-dimensional vector space over a finite field G F(q), describes M&bius inversion for this
lattice, and introduces some notation. Section 3 includes a brief introduction to Chebyshev
polynomials, highlighting several properties of them. In Section 4, we present our upper and
lower bounds on approximability. We conclude, in Section 5, with a discussion of the results

and some open problems.

2 The Lattice of Subspaces of an n-dimensional Vector Space
over a Finite Field GF(q)

Our presentation combines elements from [5] and [14]. More precisely, we adopt the g-analog
of the principle of inclusion-exclusion presented in [5], and use it to generalize definitions and
properties of the lattice of subsets of a finite set given in [14] to the lattice of subspaces of a

finite-dimensional vector space.

2.1 Basic Definitions and Facts

Let V. be an n-dimensional vector space over a finite field GF'(¢) with ¢ elements, and consider
the set L(n,q) of all subspaces of V" ordered by inclusion. It is known that L(n,q) is an
indecomposable, modular, self-dual and complemented lattice (see, e.g., [1, Chapter 2] or [15,
Chapter 24]).



For subspaces Ty and Ty of V), we write 77 £ Ty whenever T is a subspace of Ty, and
we write Ty C T, whenever Ty is a proper subspace of T3, i.e., Ty C T but Ty # T5. Clearly,
Ty C T, only if dim(7y) < dim(7%), where dim(7") denotes the dimension of a vector space T'.
Let @ denote the empty vector space; clearly, dim(¢) = 0. Henceforth, we will use the term

7-subspace as a short form of j-dimensional subspace.
For each 7, 1 < j < n, the Gaussian coefficient

l n ] _ (=D =D (g

j (¢ = D)(¢7t=1)..(¢g—1)

(1)

represents the number of j-subspaces of V*. (For a general account of properties of Gaussian
coefficients, see, e.g., [9, 10], where the foundations for the study of the combinatorial properties

of finite-dimensional vector spaces have been laid, or [15, Chapter 24] for a modern account.)

Consider a set X with N elements. Suppose A is a set of properties on X indexed by
elements of V", that is,

A= {A, CX|veV). (2)

In other words, A, is identified with the set of elements in X that satisfy the property A,. For
each element € X, define the associated space of x under A, denoted VA(QC), to be

VAR) = {ve V' |z €A} (3)

We say that the property set A is V*-consistent if for every z € X, VA(JU) is a subspace of

V' Henceforth, A will be assumed to be V*-consistent.

For each subspace T of V", we define the quantities PA(T) and SA(T), to be later associated

with appropriate, vector space-theoretic notions of atoms, unions and intersections:

o PA(T) is the number of elements z in X such that 7 = VA(z);

o SA(T)is the number of elements z in X such that T is a subspace of VA(z).
That is,
PAT) = [{z e X | T =VA(2)}], (4)

and

SHT) = e e X | TCVA(2)}. (5)



Clearly, for each subspace L of V",

sAL) = > PAT). (6)

T: LETCV

For each j, 1 < j < n, we define a j-atom of A, denoted p}“, to be PA(L) for some vector
space L, 0 C L C V', such that dim(L) = j; that is, p}“ is the cardinality of a subset of X
whose elements have each their associated spaces (under A) equal to the same j-subspace L
of V'. The union of j-atoms of A, denoted P]A, is the sum of all j-atoms of A, i.e.,

P = 3 = > PA(T). (7)

all j-atoms T: 9TV, dim(7)=;

For each j, 1 < j < n, we define a j-intersection of A, denoted 5;«4, to be SA(L) for some
vector space L, ) C L £ V", such that dim(L) = j; that is, 5}4 is the cardinality of a subset of
X whose elements have each their associated spaces (under A) containing the same j-subspace

Lot V;'. Thus,

n

sto= 54 = > PAT) = Y > PAT). (8)

T: LETCV] =i 1. LCTCVy, dim(T)=!

for any j-subspace L of V*. The union of j-intersections of A, denoted S]A, is the sum of all

j-intersections of A, i.e.,

st = > st = > SAT). (9)

all j-intersections T: prTevye, dim(7)=;

We remark that our definitions of j-atoms, j-intersections and their unions are all ¢g-analogs

of the corresponding ones in [14, Section 2.1].

2.2 Mbobius Inversion
In this Section, we review basic facts about Mobius inversion in £(n,q) and apply them to
derive expressions for various quantities of interest.

Let f and ¢ be functions on £(n,q) taking values in some ring R. Suppose f and g are

related by the summation formula

fy= > g, (10)

T: LETCVy



for each L € £(n,q). One may invert the previous equation to get that

g(L) = Z ML(n,q)(Lv T)f(T) ’ (11)
T: LETCV)
where f17(,4)(L,T) is a unique integer-valued function on L(n,q) X L(n,q), depending only

on £(n,q) (but not on f or ¢g) and assuming nonzero values only when L T 7. The function
[ii(nyg) is called the Mébius function of L(n,q) [18]. (An excellent survey of the theory of
Mébius functions appears in [2].) For L C T, the value of s, ) (L,T) is given by the Mdbius

inversion formula for £(n,q) [10]

dim(T)_dim(L))
2 .

gy (L T) = (—1)Bm(@)-dim() o (12)

Since both S and P4 are functions on L(n,q), we may apply Mobius inversion to Equa-
tion (6) to obtain that

: T dim¢m-dimz)
PA(L) — Z (_1)d1m(T) dlm(L)q( 5 )SA(T) ] (13)
T: LETCV?

For L = § so that dim(L) = 0, Equation (13) reduces to
. di
Aoy = 3 (-ptim@g (TR A
T: CTCVy
di :
1I£l(w))SA(®) n Z (_1)d1m(T)q(

T: gCTCV,)

= S Y i sA

dlIgl(T)) A

_ (_1)dim(®)q( g (T)

so that di
o) g

PA®) - sA0) = Y (—ndim@yl SA(T). (14)

T: pCTCVy
Note, however, that, by definitions of PA and S4, PA() — S4(() is precisely the negative
of the number of elements of X whose associated spaces (under A) are non-null; each of these
elements must belong to a certain A, C X for some v € V". To indicate an analogy with
set-theoretic union, we call the set of elements of X with non-null associated spaces (under
A), the V'-consistent vector-space union of A, denoted |_|U€an A, , or vector-space union of A
for short. Thus,

: dimz)
= - Y (—dim™ R s ATy (15)
T: $CTCV)

L] A

vE Vq"




Notice also that | |_|U€an A,| is uniquely determined once PA(T') is given for each subspace
T of V': simply,

] Al = > PNT). (16)

VeV T: gCTCV)

2.3 Uniform Property Sets

We say that the property set A is uniform if for every j, 1 < j < n, all j-atoms are equal; that
is, for each j, 1 < j < n, for each pair of subspaces T} and 7% such that dim(7y) = dim(7%) = 7,
PA(Ty) = PATY).

The next three results provide simplified expressions for P]A, 5}4

uniform property set. The first of these results is a direct consequence of Equation (7) and the

and S]A in case A is a

definition of Gaussian coefflicients.

Proposition 2.1 Fiz any uniform property set A. Then, for each j, 1 < j < n,

pA = ln

7 PA(L)v
J

q

where L is any j-subspace of V.
We continue to show:

Proposition 2.2 Fiz any uniform property set A. Then, for each j, 1 < j < n,

S

T PATY,
e

q

where for each 1, j <1< mn, T" is any l-subspace of Vi
Proof: We first prove a simple combinatorial fact.

Claim 2.3 For any integers j and [, 1 < j <1 < n, the number of l-subspaces of V" containing

—
a gwen j-subspace of V" is [ J ] .

l—7 .



Proof: By flipping £(n,q) upside down, this number is equal to the number of (n — [)-

subspaces of V" contained in a given (n — j)-subspace of V*, which, by definition of Gaussian
coefficients, is equal to [ " ‘l] ] , which equals [ ? B ‘] ] , by self-duality of the lattice £(n, q)
n— —J

q q

(cf. [10)). n

By Equation (8), symmetry of A and Claim 2.3,

A - A =i | pa
E P VD VIR SIS ol FaEl NETED
I=5 1. LCT,Cv,dim(T)=! I=j J q
where for each [, j <1 < n, T" is any [-subspace of V', as needed. [ |

Finally, we show:

Proposition 2.4 Fiz any uniform property set A. Then, for each j, 1 < j < n,

s ] s

J g 1=i —J

PATY)

q

where for each 1, j <1 <mn, T is any l-subspace of V.

Proof: By Equation (9), the definition of Gaussian coefficients, and Proposition 2.2,

n n "l n—j
57 = [ SAL) = [] 2[1_. pATY,
J g J g 1= J g
where T! is any [-subspace of V', as needed. [ |

2.4 Linear Forms

Fix some integer k, 1 < k < n. For each 7,1 < j <k, we introduce the linear form

E](,q)(xl,...,acn) = Zn: [ l.] Ty, (17)

= LJ 1,

The next result establishes an important property of these linear forms.



Proposition 2.5 Fiz any uniform property set A. Then, for each j, 1 < j <k,

sA = EWPA L P,

Proof: From the definition of linear forms and Proposition 2.1,

" " n
E;q)(Pf,7P$):Z[ . PIA: Z[ ] [l PA(Tl)v
=i L)y =i L)y q
where for each [, j <1 < n, T' is any l-subspace of V,*. Since
T, / q 71, =J q
it follows that
“|n n—j
PGS AR [ ] [ | A
R P
-] e
PR Y
= g4

by Proposition 2.4, as needed.

3 Chebyshev Polynomials

In this Section, we introduce Chebyshev polynomials and present several properties of them.

The reader may prefer to skip this Section for now, returning to it later when its results are

required.

The Chebyshev polynomial of order k, denoted Ty(z), is a polynomial of degree k given by

v+ Ve - D (2= Va2 - 1)k
5 .

Te(z) = (

We list below some representative properties of Chebyshev polynomials which will be used in

the sequel.

Proposition 3.1 The following properties hold on Ti(x):



(1) for every point x in the interval [—-1,1], |Tp(2)] < 1;

(2) there are exactly k 4+ 1 distinct points & in the interval [—1,1] such that |Ti(x)] = 1, and

the sign of Ty(2) alternates between any two consecutive such points;

(3) for every point x in the interval [—1,1], |T}(z)] < k?.
We continue to show a simple algebraic identity involving Chebyshev polynomials.

Lemma 3.2 For every real number @ # 1,
2T< x—l—l) (vE-1 ’“+ N-ESAN
e o1) T \Ve+a Jr—-1) °
Proof: By definition of Tj(2),
2Tk<—$+1)
z—1
2 F 2
z+1 z+1 z+1 z+1
= |- - —1 - S - —1
( x—1+¢< 96—1) ) +( z—1 \/( x—l) )

(e e p) (P e e

z—1 z—1

ﬁ ((—+D+2v0) + (—(e +1) = 2v0)")
= ﬁ ((\/5— D™+ (Vo + 1)%)

_(vE=n\T L (vEEnY
T \verr) 1)

as needed. []

k

We refer the reader to the recent monograph [17] for an extensive survey on Chebyshev

polynomials.

4 Main Result

Consider an n-dimensional vector space V" and let A and B be two V"-consistent property

sets on a set X. We address the question:



Assume that for each subspace T' of V" such that dim(7') < k, SHT) = SB(T).
How different can | Loevs A,| and | Uoevy B,| be?

Clearly, this question is scalable; that is, multiplying each size by a constant will change
every answer by the same constant. Hence, it is without loss of generality that we restrict
our attention to events in a probability space and assume that all values of interest are in the

interval [0, 1]. We proceed to define:

Definition 4.1
E(q)(k,n) = sup ( |_| Al — |_| B.,|),
UEVq" UEVq"

where the supremum ranges over all families of events, in all probability spaces, that satisfy
SAT) = SB(T) for every subspace T of V) such that dim(T) < k.

Our aim is to derive bounds on E(9(k,n). We start by showing that there is no loss of

generality in assuming uniformity.
Proposition 4.1 E(q)(k,n) remains unchanged when A and B are restricted to be uniform.

Proof: Given non-uniform A’ and B’ realizing E(q)(k, n), we construct uniform property sets
A and B with the same probabilities of their vector-space unions and, therefore, the same
difference between those probabilities. For each 7, 1 < j < n, the probability of each j-atom

in A is set to the average of the probabilities of all j-atoms in A’, and similarly for B. [ |

Henceforth, A and B will always be assumed to be uniform. We continue with a key

observation that E(q)(k, n) can be expressed as the optimum of a certain linear program.

Proposition 4.2 E(q)(k,n) s the optimum of the following linear program:

n
Maximize E X,
=1

subject to the constraints:

(1) for each j, 1 < j <k, E](q)(xl,...,xn) =0;



(2) for each S, 5 Cln], =1 <Y cqx; < 1.

Proof: Let A and B be uniform V'-consistent property sets that realize E(q)(k, n). We show

that the optimum of the linear program is at least E(q)(k, n).

We define real numbers xq, 2o, ..

iy = E@(k,n).

Foreach 7, 1 < ¢ < m,let z; = u

., &, such that constraints (1) and (2) are satisfied and

A

-

u?. By Proposition 4.1 and the assumption that

SA(T) = S5(T) for every subspace T of V;* such that dim(7) < k, we have that for each j,

1<j<k,

Elq)(xl, cey Ty)

ED () = DB, )
T'JA — 7‘?
n A B
(SHT) - 55(T))
q
0.

Thus, constraint (1) is satisfied. For constraint (2), consider any S C [n], and note that,

since for each 7,4’ € [n],i # i’, the events u* and u;‘,‘ (resp., uf and u%) are disjoint, it follows
that 0 < Siesuft < 1and 0 < Y,eguP < 1. This implies that | Y,eg @i = | Yesut —
SiesuP| < 1, and constraints of type (2) are also satisfied. Finally, note that

LA =1L 8

vE Vq" vE Vq"

as needed.

In the other direction, let x4, xo, ..

., &, be real numbers realizing the optimum of the linear

program. We show that E(q)(k, n)is at least the optimum of the linear program by constructing

11



uniform, V,*-consistent property sets .A and B such that | |_|U€an Ay =] |_|U€an B, = > @y,
and SA(T) = SB(T) for each subspace T of V,* such that dim(7T) < k.

For each ¢, 1 <7 < n, define u;“ to be z; if ; > 0 and 0 otherwise, and define uf to be

—a; if ; < 0 and 0 otherwise. Consider uniform, V,"-consistent property sets A and B such

n n

, ] (resp., uf/[ , ] ). Such a
ty e

s (resp., uP’s) are all non-negative and sum to one. Notice that

that the probability of each j-atom in A (resp., B) is uft/

collection exists because u’

A~ U& =X ¥ Pro-X ¥ P

UEan UEan =1 dlm ) =1 dlm )

q

= Yul = u
=1 =1

= Z X, — Z (—$2)
€[n]:z; >0 1€[n]:z; <0

~ S
=1

Note also that for each j, 1 < j <k, for each j-subspace 7" of V7,

E](q)(xl, cey Tp)

;]

by constraint (2), as needed. |

SHT) - S5(B) = =0,

q

To gain more insight, we pass to the dual of the linear program in Proposition 4.2. We
observe that the proof of [14, Lemma 4], expressing the optimum of the corresponding linear
program as the optimum of its dual, is independent of the particular form of the linear forms

E;, 1 <j <k; hence, this result directly applies in our case to yield:

Proposition 4.3 E(q)(k, n) is given by the optimum of the following linear program:

Minimize m:fw]i(l - fi),
1e|n

12



over all linear forms f = 371, fix; that are linear combinations of the linear forms E;, 1 <
7 <k, and satisfy f; <1 for every i, 1 <tv < mn.

As in [14], the main observation for our solution is made in the next result, where E(@(k, n)
is expressed as the infimum, over a class of polynomials, of the maximum value of a function
of these polynomials over the integer set {1,2,...,n}. Our next result links our problem with

the theory of approximation by polynomials.

Proposition 4.4

E(q)(k,n) = infp{m_n{lax n{l—p(qm)}},

=1,Z,...,

where the infimum is taken over all polynomials p of degree at most k that have zero constant

term and satisfy p(¢™) < 1 for all integers m, 1 < m < n.

Proof: It follows from Lemma 4.3 that for each ¢, 1 < i < n, the coefficient f; of z; in f

min{¢ i . . . { .
is equal to ijl{ kY Aj [ ) ] , for some real number A;. Equation (1) implies that [ ) ] is

J q J q

a polynomial of degree j in ¢* with zero constant term. Hence, f; is a polynomial with zero

constant term of degree at most min{s, k} < k in ¢°, as needed. [ |

We proceed to estimate E(q)(k, n) in terms of a related quantity, also used in [14].

Definition 4.2
DW(k,n) = infp{m%ﬁ{lp(qm) — 1[}},
me|n

where the infimum ranges over all polynomials p of degree at most k that have zero constant

term.

We continue to show:

Proposition 4.5

I

7n)

QD(q)(
1+ DW(k,n)

~~

13



Proof: Let 7 be a polynomial achieving D9 (k,n) and consider # = 7/(1 + DD (k,n)). We

have:
me|n
14 max{|r(¢™) — 1]}
me[n]
L+ [r(g™) — 1

> r(q™),

v

for any m € [n]. This implies that for any m € [n], r'(¢™) < 1. Note also that for any m € [n],
L=r(g") = [r(g") = 1] < max{[r(¢") - 1]} = D@ (k,n).

This implies that

1 - D(q)(kvn) < T(qm)
L+ DW(k,n) = 1+ DW(k,n

for any m € [n]. This inequality can be written as

7 r(q™),

2D (k, n)
9 > A m
1—D(q)(k,n) = 1 T(q )7

for any m € [n], which implies, in particular, that

2D (k, n) ,

== M _ m i — iV = gl

s = man (1= ™) 2 (1= e} = k).
Conversely, let 7’ be a polynomial achieving E(q)(k,n), and consider r = 2r'/(2 — E(q)(k,n).
It similarly follows that

(q)
_2D0(k,n) < EW(k,n),
1-— D(q)(k,n)

as needed. []

As in [14], the continuous version of the discrete optimization problem of Proposition 4.4
resembles standard questions in approximation theory, a prototype of which asks for a polyno-
mial of a given degree, with leading coeflicient one, whose maximum of the absolute value in
the interval [—1, 1] is minimal over all such polynomials. This prototypical question is answered
in terms of Chebyshev polynomials introduced in Section 3. Chebyshev polynomials will play

an important role in the present article, as well, as they did in [14].

For the purposes of our analysis, we find it convenient to restate the definition of D(q)(k, n)

as follows:

14



Definition 4.3

DWD(k,n) = inf,{ max oy Ptm) = 103}

me{q,q?%,...,

where the infimum ranges over all polynomials of degree at most k that have zero constant

term.

The next result is shown using properties of Chebyshev polynomials.

Proposition 4.6

1— k2
= I Ty vy

Proof: To show the upper bound on D(q)(k, n), consider the polynomial py, ,, resulting from

the Chebyshev polynomial of order £ through a linear transormation,

9" —q
ne T EE)

q"—q

Note that py , has the following properties:

e it is a polynomial of degree k with a zero constant term (it can be readily seen that
Pr.n(0) = 0);

e for any x € {q,qZ,---af]n}v

1
Prn(2) = 1] < ———rmr
| Th( =52

q"—q

b

since for all such z, (22— (¢"+¢q))/(¢" —q) is between —1 and +1, implying, by a property
of Chebushev polynomials, that |T%((22 — (¢" 4+ ¢))/(¢" — q))| < 1.

It follows that

D(q)(k,n) = infy{ max qn}{|P(m) -1/}

me{q,q?,...,
< max Alpg(m)— 1))
me{q,q%,....4™}
< 1
S o
| Ty( =20y

15



as needed.

To show the lower bound on D(q)(k, n), assume, by way of contradiction, that there exists

a polynomial p(z), of degree k and with zero constant term, such that

max plz)—1| < #
xE{q,q27~~7q"}| (=) | Tk(——gnfg)7

which implies that for all z € {q,¢>,...,¢"},

pa)—1] < — D=t
T(=G=g)

The properties of Chebyshev polynomials mentioned above imply the following properties

for pgn(2):

e There are exactly k£ 4 1 real points in the interval [q, ¢"] such that

pon(e) = 1] = ——
k,n Tk(—ﬂq"-l-q)) ’

q"—q
and the sign of ¢, () — 1 alternates between each pair of two such consecutive points.
(This follows since for any « € [q,¢"], |(22 — (¢" 4+ ¢))/(¢" — ¢)| < 1.)

e The derivative pzm(x) satisfies the inequality
2k?
_ _q"+q
(4" = q) ka ( o )

—-q

[Phn(2)] <

b

for all = € [q,¢"].

Consider the k 4+ 1 extrema of py, and let z1,z29,..., 2141 be the integer points nearest
to them. Each of these points is at most 1/2 far from an extremum; thus, by the bound on

gk n(2), it follows that
k2
|prn(zi) =1 > _ at-e
' 9" +q
‘Tk (_ q"—q)

b

for any 7, 1 <7 < k 4 1; moreover, py,(z) — 1 changes sign between any two consecutive
z;’s. Consider the polynomial p(z) — pr.(2)(= (p(2) — 1) — (prn(z) — 1)); it follows from the
assumed bound on |p(z)—1| that p(z) — pg»(2) also changes sign between any two consecutive
z;’s. Thus, p(x) — pg»(2) must have at least k roots in the interval [¢, ¢"]. But, p(z) — pr..(2)

is a polynomial of degree at most k£ that vanishes at 0 as well. A contradiction. [ |
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Our final bounds are derived in the next result.

Proposition 4.7 Consider an n-dimensional vector space V' over GF(q), and let A and B

be uniform, V'-consistent property sets. Assume that for each subspace T' of V' of dimension
dim T at most k, SNT) = SB(T). Then,

Lev Aol (ml)?
||—|U€VBU| N /\k_l ’

where A = (\/¢" '+ 1)/(/q" 1 = 1).

Proof: Let E@(k,n) = |lev A%/ Lev B:l; without loss of generality, set || |,c A% = 1,
so that
1 1 14+ D@ (k, n)

ILev B3] 1 - E@W(k,n) 11— DW(k,n)’
by Lemma 4.5. We have:

||—|U€V Av| < 1

IUsev Bl — |Uvev B3l
14+ D@ (k,n)
1 — DW(k,n)

) )
7 (-543) 7 (-5%3)

For z = ¢"~', Lemma 3.2 implies that

(- ;((m——l_—u)’l(m——ul)k)
gl —1 2 \\ Vg T+ 1 -1

1

)

= (AP aThy.
Hence,
Uev Al _ R s =P CLNED JUNIE B OUNE A
Uoev Bol = 1 5= P L DU
as needed. [

As an immediate consequence of Proposition 4.7, the next Theorem summarizes our results.
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Theorem 4.8 For any integers k and n, 1 < k < n, let A and B be V"-consistent, uniform
property sets on a set X such that

SAT) = sHT),

for each subspace T of V! of dimension dim(T') < k. Then,

(1) for k < O(Vgq"1),

Uev Aol _ O( qn—l);
||_|UEVBU| k

(2) for k> Q(V/q"71),

k
[Lhev A < 1—|—e_Q( qn—l).
||_|UEVBU|

Proof: Assume first that £ < \/¢?~!. By Proposition 4.7,

Luev Al _ (ml)?
||_|UEVBU| N Ak_l

Notice, however, that

(Vo + D+ (gt = 1)F <

Wt + 0F = (=0 = kG fe

AN
)
—~
—~
[
i
—
~—
B
~—

while

It follows that

Lev Al O/
Leev Bl = k(i

as needed.

Assume now that k& > \/¢"~1. The proof is completed by standard asymptotic arguments.
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Theorem 4.8 provides an estimation of the quality of an approximation of |[],cy Ay, for
a V,"-consistent property set A on a finite set X, obtainable from the sizes of subsets of X
whose intersection contains a subspace of V' of dimension at most k. In fact, it is possible to

effectively compute an approximation attaining the bounds of Theorem 4.8.

Theorem 4.9 For any integers k and n, 1 < k < n, let A be a V]'-consistent, uniform
property set on a set X. Then, we can compute constants aq(k,n),asz(k,n),...,ar(k,n) so
that the quantity

Z & dgim 7k, n) SA(T)
T: 9CTCVR, dim T<k

differs from ||,y Avev| by at most a factor of

(1) O(%) , if k <O(Vg*T);

q

(2) 14 e BV if k> (/g ).

5 Discussion and Future Research

We considered a g-analog of the principle of inclusion-exclusion for the lattice of subspaces of
an n-dimensional vector space over a finite field GF(¢) and demonstrated that the quality of
approximating the size of a certain vector space theoretic union is not good below dimension
/1. Our result provides more evidence that the g-analog of inclusion-exclusion due to Chen

and Rota [5] is the right ¢-analog of the principle.

Our result is a geometric lattice analog of the one in [14] for the full Boolean lattice,
and answers a question of Linial and Nisan. It is conceivable that similar results on good
approximations hold for other lattices as well. Good initial candidates to explore are the

lattice of partitions of a finite set [6] and the lattice of faces of the n-cube [16].

More ambitiously, can similar results be derived for the general Mobius inversion problem?
What are minimal lattice properties for such results to be possible? We conjecture that the
achievable quality of approximate M&bius inversion in an appropriate lattice depends critically

on its Whitney numbers of the second kind.

Such results might potentially explain previous approximate solutions (e.g., [12, 13]) to

counting problems that were based on ad-hoc techniques. Much work is also needed in order

19
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to understand the relation of such results to analogous complexity-theoretic ones on the ap-
proximability of hard counting problems (see, e.g., [20]), which, however, did not make any
links with the underlying combinatorial structure of the problems. We believe that there are
deep combinatorial reasons determining the quality of such approximability, which should most

appropriately be studied in the context of the rich, classical theory of M&bius inversion.
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