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Abstract

The s�session problem is studied in asynchronous and semi�synchronous shared�memory sys�

tems� under a particular shared�memory communication primitive � b�atomic registers� � where

b � � is an integer re�ecting the communication bound in the model� A session is a part of an

execution in which each of n processes takes at least one step� an algorithm for the s�session

problem guarantees the existence of at least s disjoint sessions� The existence of many sessions

guarantees a degree of interleaving which is necessary for certain computations� In the asyn�

chronous model� it is assumed that the time between any two consecutive steps of any process

is in the interval ��� �	� in the semi�synchronous model� the time between any two consecutive

steps of any process is in the interval �c� �	 for some c such that � � c � �� the synchronous

model being the special case where c 
 �� All processes are initially synchronized and take a

step at time ��

Our main result is a tight �within a constant factor� lower bound of �
minfb �
�cc� blogb�n�

�� � �cg�s � �� for the time complexity of any semi�synchronous algorithm for the s�session

problem� This result shows the inherent limitations on using timing information in shared�

memory systems subject to communication bounds� and implies a time separation between

semi�synchronous and asynchronous such systems�



� Introduction

In shared�memory distributed systems� some number n of independent processes communicate

by reading and writing to shared memory� Central to the programming of such systems are

synchronization problems� where a process is required to guarantee that all processes have

performed a particular set of steps� Naturally� the timing information available to processes

has critical impact on the time complexity of synchronization�

Arjomandi� Fischer and Lynch ���	� introduced the session problem to study the impact of

timing information on the time complexity of synchronization� Roughly speaking� a session

is a sequence of events that contains at least one step by each process� An algorithm for the

s�session problem guarantees that each execution of the algorithm includes at least s disjoint

sessions�

The session problem is an abstraction of the synchronization needed for the execution of

some tasks that arise in a distributed system� where separate components are each responsible

for performing a small part of a computation� Consider� for example� a system which solves a

set of equations by successive relaxation� where every process holds part of the data �cf� ��	��

Interleaving of steps by di�erent processes is necessary in order to ensure that a correct value

was computed� since it implies su�cient interaction among the intermediate values computed

by the processes� Any algorithm which ensures that su�cient interleaving has occurred also

solves the s�session problem� The session problem is also an abstraction of some problems in

real�time computing which involve synchronization of several computer system components� in

order that they cooperate in performing a task involving real�world components� For example�

multiple robots might cooperate in moving machinery pieces around di�erent sites of a large

manufacturing system� This cooperation requires to synthesize a motion� through physical

space� avoiding obstacles present therein while respecting certain dynamic constraints� such

as given bounds on the velocity and acceleration� Interleaving of motion by di�erent robots

is necessary to ensure that pieces are delivered in the right order� a robot should deliver a

particular machinery item early enough at a site before another robot arrives at the site to

collect all machinery pieces delivered there� Clearly� any algorithm which ensures that su�cient

motion interleaving has occurred also solves the s�session problem� Thus� the di�culty of

solving the s�session problem re�ects those of implementing the successive relaxation method

and moving machinery pieces around in the manufacturing system�

Arjomandi� Fischer and Lynch ���	� assumed that processes communicate via shared vari�

ables and studied the time complexity of the session problem in synchronous and asynchronous

shared�memory systems� Informally� in a synchronous system� processes operate in lock�step�
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taking steps simultaneously� while in an asynchronous system� processes work at completely

independent rates and have no way to estimate time� The results of Arjomandi� Fischer and

Lynch ���	� show that there is a signi�cant gap between the time complexities of solving the

session problem in the synchronous and the asynchronous models�

In reality� however� there is an important middle ground between the synchronous and the

asynchronous models of computation� in most distributed systems� processes operate neither

at lock�step nor at a completely independent rate� For example� processes may have access to

inaccurate clocks that operate at approximately� but not exactly� the same rate� Following ��	�

Attiya and Mavronicolas ���	� modeled these semi�synchronous systems by assuming that there

exist a lower and an upper bound on processes� step time that enable processes to estimate time�

they addressed the cost of synchronization in semi�synchronous and asynchronous networks by

presenting upper and lower bounds for the time complexity of solving the s�session problem�

The results of Attiya and Mavronicolas imply a time separation between semi�synchronous

and asynchronous networks� In this paper� we revisit the shared�memory model introduced

by Arjomandi� Fischer and Lynch and address the e�ect of the timing assumptions in the

semi�synchronous model on the time complexity of solving the s�session problem�

Informally� the time complexity of an algorithm is the maximal time� over all executions�

until every process stops executing the algorithm� The following timing assumptions are made

on the system� In the asynchronous model� processes� step time is in the range ��� �	� in the

semi�synchronous model� processes� step time is in the range �c� �	� for some parameter c such

that � � c � ��� Processes are initially synchronized and take a step at time �� Following ��	�

we consider a particular shared�memory primitive� b�atomic registers� where the integer b � �

is an upper bound on the number of processes that may instantaneously and indivisibly access

�read and� possibly� modify� each of the registers� Thus� b re�ects the communication bound

in the model and captures communication limitations of existing distributed systems such as

those of a message�passing system which accesses bu�ers of �nite fan�in�

An algorithm sketched in ��	 relies on explicit communication through shared memory to

ensure that the needed steps have occurred and does not use any timing information� This

algorithm achieves time complexity of O�s logb n� in both the asynchronous and the semi�

synchronous models� On the other hand� an algorithm presented in ��	 �Theorem ���� does

not use any communication� but relies on timing information and works only in the semi�

synchronous model to achieve time complexity ofO�s�
c
�� These two algorithms can be combined

to yield a semi�synchronous algorithm for the s�session problem whose time complexity is

�The synchronous model is the special case of the semi�synchronous model where c � ��
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O�sminf�
c
� logb ng�� On the other hand� a lower bound of ��s logb n� shown in ��	 holds for our

asynchronous model as well and implies� for appropriate values of the various parameters� a

time separation between semi�synchronous and asynchronous systems that use communication

through atomic shared memory�

At this point� it is natural to ask whether communication and timing information can be

combined to yield an upper bound that is signi�cantly better than O�sminf�
c
� logb ng�� Our

main result� a lower bound of � 
 minfb �
�cc� blogb�n� ��� �cg�s� �� for the time complexity

of any semi�synchronous algorithm for the s�session problem�� shows the inherent limitations

on using timing information and implies that such a combination is impossible�

As in ��	� our main lower bound result can also be used to derive a lower bound of � 


blogb�n�����c�s��� for a shared�memory model in which processes� step time is in the range

��� �	 �rather than in ��� �	� as in the asynchronous model�� This is equivalent to requiring that

two steps by the same process do not occur at the same time�� Fix some c� � � such that

b �
�c� c � blogb�n� ��� �c� and use the proof of the lower bound for the model where the rate of

processes steps is in �c�� �	� since �c�� �	 � ��� �	� the claim follows� This implies a time separation

between this model and the synchronous shared�memory model� �Note that the proof in ��	

relies heavily on the ability to schedule many steps by the same process at the same time��

Our lower bound uses the same general approach as in ��	 and ��	� Speci�cally� our proof

combines fan�in and causality arguments as in ��	� along with information propagation and

careful timing arguments as in ��	 �

The rest of this paper is organized as follows� Section � presents the system model and

de�nes the session problem� Section � discusses some simple bounds for both the semi�

synchronous and asynchronous models� Section � includes our main lower bound for the

semi�synchronous model� We conclude� in Section �� with a discussion and some open prob�

lems�

� De�nitions

In this section� we present the de�nitions for the underlying formal model�� and de�ne what

it means for an algorithm to solve the s�session problem�

�An essentially identical lower bound has been obtained independently by Rhee and Welch �������
�We remark that this is the most common way of measuring time in an asynchronous system �see	 e�g�	 ��
���
�These de�nitions could be expressed in terms of the general timed automaton model described in ���	 �	 
��
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��� The System Model

In this subsection� we describe the system model and the time measure we will consider� Our

de�nitions are standard and are similar to the ones in� e�g�� ��� �� �� �� ��� �� �	�

A system consists of n processes p�� � � � � pn� Each process pi is modeled as a �possibly

in�nite� state machine with state set Qi� The state set Qi contains a distinguished initial state

q��i� The state set Qi also includes a subset Ii of idle states� we assume q��i �� Ii�

Processes communicate through b�atomic registers �also called shared variables��R�� R�� � � ��

Each shared variable may attain values from a domain� a set V of values� which includes a

special unde�ned value �� Each process pi has a single read�modify�write atomic operation

available to it that may read a shared variable R� return its value v� and modify R� Associated

with each shared variable R is a set Access�R� that includes the processes which may perform

atomic operations on R� we assume that for each R� jAccess�R�j � b�

A system con�guration consists of the states of the processes and the values of the shared

variables� Formally� a con�guration is a vector C 
 hq�� � � � � qn� v�� v�� � � �i where qi is the

local state of pi and vk is the value of the shared variable Rk� denote statei�C� 
 qi and

valuek�C� 
 vk � Each shared variable may attain values from some domain V of values which

includes a special �unde�ned� value� �� The initial con�guration is the con�guration in which

every local state is an initial state and all shared variables are set to ��

We consider an interleaving model of concurrency� in the style of Lynch and Tuttle �cf�

��	�� where computations of the system are modeled as sequences of atomic events� or simply

events� Each event is a computation event representing a computation step of a single process�

it is speci�ed by comp�i� R� for some i � �n	 and some shared variable R� In this computation

step� the process pi� based on its local state� performs an operation on the shared variable R�

performs some local computation� and changes to its next state�

Each process pi follows a deterministic local algorithm Ai that determines pi�s local com�

putation� i�e�� the register to be accessed and the state transition to be performed� More

speci�cally� Ai determines�

� A shared variable R as a function of pi�s local state�

� Whether pi is to modify R and� if so� the value v� to be written and pi�s next state� as a

function of pi�s local state and the value v read from R�

We assume that when a proces enters an idle state� it will remain in an idle state� An

algorithm �or a protocol� is a sequence A 
 �A�� � � � �An� of local algorithms�
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An execution is an in�nite sequence of alternating con�gurations and steps

� 
 C�� ��� C�� � � � � �j� Cj� � � � �

satisfying the following conditions�

�� C� is the initial con�guration�

�� If �j 
 comp�i� Rk�� then Rk is obtained by applying Ai to statei�Cj���� and statei�Cj�

and valuek�Cj� are obtained by applying Ai to statei�Cj��� and valuek�Cj����

�� If �j involves process pi and shared variable Rk� then statel�Cj��� 
 statel�Cj� for every

l �
 i and valuel�Cj��� 
 valuel�Cj� for every l �
 k�

That is� in an execution the changes in processes� states and shared variables� values are

according to the local algorithms� only a process which takes a step changes its state� and

only a shared variable on which an operation is performed changes its value� We adopt the

convention that �nite pre�xes of an execution end with a con�guration� and denote the last

con�guration in a �nite execution pre�x � by last���� We say that �j 
 comp�i� R� is a

non�idle step of the execution if statei�Cj��� �� Ii� i�e�� it is taken from a non�idle state�

A timed event is a pair �t� ��� where t� the �time�� is a nonnegative real number� and �

is an event� A timed sequence is an in�nite sequence of alternating con�gurations and timed

events

� 
 C�� �t�� ���� C�� � � � � �tj � �j�� Cj� � � � �

where the times are nondecreasing and unbounded�

In our model� timed executions are de�ned as follows� Fix a real number c such that

� � c � �� Letting � be a timed sequence as above� we say that � is a timed execution of A

provided that the following all hold�

�� C�� ��� C�� � � � � �j� Cj� � � � is an execution of A�

�� �Synchronous start� There are computation steps for all processes with time ��

�� �Upper bound on step time� If the jth timed event is �tj � comp�ij � R��� then there exists

a k � j with tk � tj 
 � such that the kth timed event is �tk� comp�ij � R
����

�� �Lower bound on step time� If the jth timed event is �tj � comp�ij � R��� then there does

not exist a k � j with tk � tj 
 c such that the kth timed event is �tk� comp�ij� R����
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We say that � is an execution fragment of A if there is an execution �� of A of the form

�� 
 ����� This de�nition is extended to apply to timed executions in the obvious way� For

a �nite execution fragment � 
 C�� �t�� ���� C�� � � � � �tk� �k�� Ck� we de�ne tstart��� 
 t� and

tend ��� 
 tk�

The asynchronous model is de�ned by taking c 
 �� while the semi�synchronous model is

de�ned by taking � � c � �� the synchronous model is the special case of the latter where

c 
 �� Note that the asynchronous model allows� as de�ned above� two computation steps

of the same process to occur at the same time �Condition � is vacuous when c 
 ��� If we

want to de�ne the more common asynchronous model where a process can have at most one

computation step at each time� we have to replace Condition � above with�

�Lower bound on step time� If the jth timed event is �tj � comp�ij� R��� then there

does not exist a k � j with tk 
 tj such that the kth timed event is �tk� comp�ij� R
����

In both models� we say that a process pi enters an idle state by time t� �in a timed execution

�� if there exists a timed event �tj��� �j��� in � such that tj�� � t�� �j�� 
 comp�i� R� and

statei�Cj� � Ii�

��� The Session Problem

An execution fragment C�� ��� C� � � � � �m� Cm is a session if for each i� i � �n	� there exists at

least one event �j 
 comp�i�� for some j � �m	� which is a non�idle step of the underlying

execution� Intuitively� a session is an execution fragment in which each process takes at least

one non�idle step� An execution � contains s sessions if it can be partitioned into at least s

disjoint execution fragments such that each of them is a session� These de�nitions are extended

to apply to timed executions in the obvious way�

An algorithm solves the s�session problem within time t if each of its timed executions �

satis�es the following� � contains s sessions and all processes enter an idle state no later than

time t in ��

� Simple Bounds

In this section� we brie�y mention some simple algorithms and lower bounds for the s�session

problem from previous work ���� �	� that also hold for the asynchronous and semi�synchronous

models considered in this paper�
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For the asynchronous model where there is no lower bound on processes� step time� the

lower bound proof in ��	� relying on the ability to schedule many steps by the same process

at the same time� still works to yield a lower bound of ��s logb n�
�� Also� the �tree network�

algorithm sketched in ��	 �Section �� still works in our model� The �tree network� algorithm

relies entirely on explicit communication between processes to ensure that the needed steps

have occurred and does not use any timing information� Roughly speaking� this algorithm

consists of building up a �tree�out of b�atomic registers� whose leaves are the n processes�

Neglecting roundo�s� this network has depth logb n� Processes communicate through this

network in order to learn about completion of a session before advancing to the next session�

Thus� the necessary communication for one session can be accomplished in time O�logb n� and

the total time for all processes to enter an idle state after performing s sessions is O�s logb n�

in both the asynchronous and the semi�synchronous models�

On the other hand� an algorithm which relies entirely on timing information and does

not use any communication� is one presented for the semi�synchronous network model in ��	

�Theorem ���� which still works for the semi�synchronous shared�memory model considered in

this paper� This algorithm exploits the timing information available in the semi�synchronous

model to obtain a bound which is sometimes better than the bound of the �tree network�

algorithm� Roughly speaking� in this algorithm each process takes about sb�
c
c computation

steps before entering an idle state�

It is possible to run the two previous algorithms �side by side�� halting when the �rst

of them does� and get a bound of O�sminf�
c
� logb ng� for the s�session problem in the semi�

synchronous shared�memory model� Note that� by an appropriate choice of the various param�

eters� this upper bound and the ��s logb n� tight bound for the asynchronous model together

imply a time separation between semi�synchronous and asynchronous shared�memory models�

� Main Result

We show that communication and timing information cannot be combined to yield an up�

per bound that is signi�cantly better than the O�sminf�
c
� logb ng� upper bound discussed in

Section ��
�Note that in ���	 the asynchronous model is de�ned in a slightly di�erent way than ours	 more speci�cally

by having all in�nite admissible computations be allowable	 and puts no restriction on the number of steps a

process takes at a time�
�This means that no state transition can result in an operation on a shared variable�
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In our lower bound proof� we use an in�nite timed execution in which processes take steps in

round�robin order� starting with p�� with step time equal to �� It is a called a slow� synchronous

timed execution� We have�

Theorem ��� There does not exist a semi�synchronous algorithm which solves the s�session

problem within time strictly less than � 
minfb �
�cc� blogb�n� ��� �cg�s� ���

Proof� Assume� by way of contradiction� that there exists a semi�synchronous algorithm� A�

which solves the s�session problem within time strictly less than � 
minfb �
�cc� blogk�n� ���

�cg�s� ��� We construct a timed execution of A which does not include s sessions�

We start with a slow� synchronous timed execution of A and partition it into an execution

fragment containing the events at time � and at most s � � other execution fragments each

of which is completed within time � minfb �
�cc� blogb�n � ��� �cg� We use causality and fan�

out arguments to argue that there is no communication through shared memory between a

certain pair of processes within each fragment� Furthermore� since the execution is slow� a

process takes� roughly� at most �
�c steps in each fragment� so it is possible to have all these

steps occur while another process takes only one step� By �retiming�� we will perturb each

fragment to get a new one in which there is a �fast� process which takes all of its steps before

a �slow� process takes any of its steps� The part of the proof that shows that the �retimed�

execution preserves the timing constraints of the semi�synchronous model requires to choose

the execution fragments to take time � b �
�c c� so that it will be possible for a process to not take

a computation step during a large part of the execution� Our construction will have the �fast�

process of each execution fragment be identical to the �slow� process of the next execution

fragment� This will guarantee that at most one session is completed in each execution fragment�

Thus� the total number of sessions in the �retimed� execution is at most s � �� contradicting

the correctness of A�

We now present the details of the formal proof�

Denote e 
 minfb �
�cc� blogb�n� ��� �cg�

If e � �� then the lower bound we are trying to prove is � � 
 ��s � �� 
 s � �� Since s

steps of each process are necessary if s sessions are to occur and they can occur � time unit

apart� it follows that s� � is a lower bound� Thus� we assume� without loss of generality� that

e � ��

Let � be a slow� synchronous timed execution of A� Assume � 
 ����
�� where �� contains

only events that occur at time � �� ��� is the shortest pre�x of � such that all processes are in

�



Figure � should appear here�

Figure �� The timed execution ����
�

an idle state in last������ and �� is the remaining part of �� Denote T 
 tend ������ Since � is

slow and s steps of each process are necessary to guarantee s sessions� T � s��� Since A solves

the s�session problem within time strictly less than �
e�s���� it follows that T � �
e�s����

Note that� by construction� tstart��� 
 �� Thus� tend ���� tstart��� 
 T � � � e�s� ��� Denote

s� 
 dT��
e
e� it follows that s� � s� ��

We write � 
 ���� � � ��s� � where�

� For each k� � � k � s�� �k contains all events that occur at time t� where � 
 �k � ��e �

t � � 
 ke� and

� �s� contains all events occurring at time t� where � 
 �s� � ��e � t � T �

That is� we partition � into execution fragments� each taking time � e�

Figure � depicts the timed execution ����
�� Each horizontal line represents events hap�

pening at one process� We use the symbol � to mark non�idle process steps� similarly� we use

the symbol � to mark idle process steps� Dashed vertical lines mark time points that are used

in the proof�

We reorder and retime events in � to obtain a timed sequence � and reorder and retime

events in �� to obtain a timed sequence ��� such that ����
� is a timed execution of A that

does not include s sessions�

In our construction� we will use a partial order ��� representing �causality�� on the com�

putation steps that processes take in �� We start by de�ning ��� For every pair of steps ���

�� in �� we let �� �� �� if �� 
 �� or if �� precedes �� in � and either �� and �� are steps

taken by the same process or by di�erent processes� but on the same shared variable� Close

�� under transitivity� �� is a partial order� and every total order of computation steps in �

consistent with �� represents a computation which leaves the system in the same con�guration

as �� �Clearly� � itself provides such a total order��

We �rst show how to modify � to obtain an execution fragment � 
 ���� � � � �s� that

includes at most s� � s� � sessions� For some sequence pi� � � � � � pis� of processes� we construct

from each execution fragment �k an execution fragment �k 
 �k	k� such that�

�



��� �k contains no computation step of pik�� � and

��� 	k contains no computation step of pik �

In this construction� pik is the �fast� process which takes all its steps in �k� before the

�slow� process pik�� takes any of its steps� �All the steps of pik�� are in 	k��

For each k� � � k � s�� we show how to construct �k inductively� For the base case� let pi�
be an arbitrary process�

Assume we have picked pi� � � � � � pik�� and constructed ��� � � � � �k��� We �rst show that there

exists some process such that a communication between it and pik�� cannot be established in

�k�

Lemma ��� Let �� be the �rst step of pik�� in �k� There is some process of which there is no

computation step 	 in �k such that �� �� 	�

Proof� Clearly� it su�ces to show that the number of steps 
 in �k such that � �� 
 � where

� is any step of pik�� in �k� is at most n � �� We proceed to count the number of such steps�

By construction�

tend��k�� tstart��k� � � 
 ke� �� �k � ��e 
 e�

Let m be the maximum number of steps over all processes that some process takes within �k�

Since � is a slow execution�

m � dtend��k�� tstart��k�e � dee � dblogb�n� ��� �ce 
 blogb�n� ��� �c�

Clearly� the number of steps 
 taken by any process in �k such that �i �� 
 � where �i is the

ith step of pik�� in � is at most bm�i��� Thus� the number of steps 
 in �k such that � �� 
 �

where � is any step of �ik�� is at most�

mX

i��

bm�i�� 
 b
m��X

i��

bi 
 b
bm � �

b� �
� bm�� � bblogb	n��
��c�� � blogb	n��
 
 n � ��

The claim follows�

Fix pik to be any process such that a communication between pik�� and pik is not established

in �k� We now show how to construct �k� For any process u� 	k includes all steps 
 of u in

��



Figure � should appear here�

Figure �� The timed execution ����
�

�k such that � �� 
 � where � is any step of �ik�� in �k� �k includes all remaining steps of u

in �k� Steps at each process occur in the same order as in �k and all occur at step time of c�

in both �k and 	k� In addition� ordering of steps by di�erent processes that occur at the same

time in �k is preserved within each of �k and 	k � By Lemma ���� there is no step 	 of pik in

�k such that� for some step � of pik�� in �k � � �� 	� This implies that all steps of pik in �k

will appear in �k� On the other hand� since � �� � for any step � of pik�� in �k� all steps of

pik�� in �k will appear in 	k � Thus� �k 
 �k	k has properties ��� and ��� above�

To complete our construction� we assign times to steps in �k� Let tstart���� 
 c� The �rst

and last steps of pik in �k occur at times tstart��k� 
 tend �	k��� 
 c and tend ��k�� respectively�

Similarly� the �rst and last steps of pik�� in 	k occur at times tstart�	k� 
 tend ��k� and tend �	k��

respectively� Steps are taken c time units apart� For each process pj � we schedule each step

�j of pj in �k to occur simultaneously with a step� �ik � of pik which is such that �j and �ik
occurred at the same time in �k � Similarly� for each process pj � we schedule each step �j of

pj in 	k to occur simultaneously with a step� �ik�� � of pik�� which is such that �j and �ik��
occurred at the same time in �k� We will shortly show that assigning times in this manner is

consistent with the requirements for a timed execution�

We now modify �� to obtain ��� The �rst computation step of any process in �� will occur

at time c after its last computation step in � and all later computation steps of it will occur c

time units apart in ���

Figure � depicts the timed execution ����
� using the same conventions as in Figure ��

We remark that what allowed us to �separate� the steps of pik�� from those of pik in each

of the execution fragments was the assumption that the length of each execution fragment is

less than blogb�n � �� � �c which� due to the communication limitations of the model� is not

enough to guarantee that a process can �a�ect� at least one step of every other process�

We next establish that ����
� is a timed execution of A� We start by showing�

Lemma ��� Ordering of computation steps operating on the same shared variable is preserved

in ����
��

��



Proof� Let �� and �� be computation steps operating on the same shared variable in �k�

such that �� �� ��� The only non�trivial case is when �� and �� occur in the same �k� for

some k� � � k � s�� We show that the ordering of �� and �� is the same in �k as in �k �

The only case of interest is when �� occurs in 	k� while �� occurs in �k� By construction�

there is some step ��
� of pik�� in �k such that ��

� �� ��� while there is no step ��
� of pik�� in

�k such that ��
� �� ��� But� from ��

� �� �� and �� �� ��� it follows� by transitivity� that

��
� �� ��� A contradiction�

Before showing that the timing constraints are preserved in ����
�� we prove the following

simple fact�

Claim ��� For any k� � � k � s� � �� tend ��k���� tend ��k� � �� c�

Proof� We �rst show that for any k� � � k � s� � �� tend ��k���� tend ��k� �
�
� � and for any

k� � � k � s�� tend ��k�� tend ��k� �
�
� � c�

Fix some k� � � k � s�� Recall that� by construction�

tend ��k�� tstart��k� � � 
 ke � �� �k � ��e 
 e � b
�

�c
c�

Let m be the maximum number of steps over all processes that some process takes within �k�

Since both tstart��k� and tend��k� are integral� tend��k�� tstart��k� � b �
�cc � �� then� since

� is a slow execution�

m � tend ��k�� tstart��k� 
 � � b
�

�c
c �

�

�c
�

Let nk be the number of steps of process pik�� in �k and nk�� be the number of computation

steps of process pik�� in �k��� �Recall that� by construction� in �k� pik�� will have all of its

steps in 	k� while in �k��� pik�� will have all of its steps in �k���� Thus�

tend ��k���� tend ��k� 
 nk��c � mc �
�

�c
c 


�

�
�

Also� since pik�� takes nk steps in 	k with the �rst and last occurring at times tstart�	k� 


tend��k� and tend�	k� 
 tend��k�� respectively� we have�

tend ��k�� tend ��k� 
 �nk � ��c � �m� ��c � �
�

�c
� ��c 


�

�
� c �

Now� we have

tend ��k���� tend ��k� 
 tend ��k���� tend ��k� 
 tend ��k�� tend ��k� �
�

�


�

�
� c 
 �� c�

as needed�

��



We next show�

Lemma ��� Lower and upper bounds on step time are preserved in ����
��

Proof� By construction� no two computation steps are closer than c in ����
�� so� the lower

bound on step time is preserved� Note also that the time di�erence between consecutive

computation steps of a process is maximized when the process is some pik � for some k such

that � � k � s� � �� that has no computation steps in either 	k or �k��� By Claim ���� this

time di�erence is less than or equal to ��

This completes the proof that ����
� is a timed execution� To derive a contradiction� we �nally

prove�

Lemma ��� There are at most s� sessions in ��

Proof� We show� by induction on k� that �� � � � �k���k does not contain k sessions� for � �

k � s�� �By convention� �� denotes the empty execution��

For the base case� note that� by construction� �� does not include a computation step of

pi� � Thus� ���� cannot contain one session�

For the induction step� assume that the claim holds for k � �� i�e�� �� � � ��k���k�� does

not contain k � � sessions for � � k � s�� Hence� the kth session does not start within

�� � � � �k���k��� Since neither 	k�� nor �k contains a computation step of pik�� � 	k���k does

not contain a session� Thus� �� � � � �k�� does not contain k sessions�

To complete the proof� note that 	s� does not contain a session since� by construction� it

does not contain a computation step of pi
s�
�

Lemma ��� implies that � contains at most s� � s � � sessions� also� �� contains exactly

one session� Therefore� there are at most s� � sessions in ���� Since in �� no process takes a

non�idle step� there is no additional session in ��� Thus� there are strictly less than s sessions

in ����
�� A contradiction�

We remark that the general structure of our proof closely follows ��� �	� It uses causality

arguments as in ��	 to reorder the steps in the execution and presents an explicit retiming of

them as in ��	�

��



� Discussion and Future Research

We showed a lower bound of �
minfb �
�cc� blogb�n�����cg�s��� on the time complexity of the

s�session problem in a realistic semi�synchronous� shared�memory model� Neglecting round�

o�s� this lower bound is no less than ��� of the simple �combined� upper bound described in

Section �� This lower bound shows the inherent limitations on using timing information in

systems where communication is achieved through atomic shared memory�

This work continues the study of time bounds in the presence of timing uncertainty within

the framework of the semi�synchronous model ���� �� �� ��	�� Our results give a time separation

between semi�synchronous and asynchronous shared�memory systems� Like the results in ��	

�and unlike the separation results in ��	�� our results do not rely on the ability to schedule

several steps by the same process at the same real time�

It would be very interesting to study the relative di�erences in e�ciency between asyn�

chronous and semi�synchronous shared�memory systems supporting di�erent� possibly weaker�

primitives such as regular or safe registers �cf� ��	� Lecture ���� still subject to communication

bounds� Preliminary steps in this direction already appear in ���	� where an upper bound l is

assumed on the worst�case response time of performing an operation on such registers� These

results suggest that the time bounds of performing tasks in semi�synchronous shared�memory

models critically depend on the strength of the available primitives of communication through

shared memory�

A more general direction is to study similar problems in the semi�synchronous� shared�

memory model� The consensus problem �cf� ��	� is a good such candidate� a �rst step would

naturally be to design a �timeout� strategy for detecting faulty processes �see Section � in ��	��

assuming that communication is done through b�atomic registers�

As in ��	� our results show that there are some timing�based algorithms for which any asyn�

chronous simulation incurs a �non�constant� time overhead dependent on communication pa�

rameters of the model like� e�g�� b or d� the message delay uncertainty of the semi�synchronous

network model in ��	� It would be of extreme importance to characterize the timing�based

algorithms whose overhead cost of asynchronous simulation is independent of particular com�

munication parameters�
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