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Abstract

The s-session problem is studied in asynchronous and semi-synchronous shared-memory sys-
tems, under a particular shared-memory communication primitive — b-atomic registers, — where
b > 1is an integer reflecting the communication bound in the model. A session is a part of an
execution in which each of n processes takes at least one step; an algorithm for the s-session
problem guarantees the existence of at least s disjoint sessions. The existence of many sessions
guarantees a degree of interleaving which is necessary for certain computations. In the asyn-
chronous model, it is assumed that the time between any two consecutive steps of any process
is in the interval [0, 1]; in the semi-synchronous model, the time between any two consecutive
steps of any process is in the interval [¢, 1] for some ¢ such that 0 < ¢ < 1, the synchronous
model being the special case where ¢ = 1. All processes are initially synchronized and take a

step at time 0.

Our main result is a tight (within a constant factor) lower bound of 1+ min{| -], |log,(n —
1) — 1]}(s — 2) for the time complexity of any semi-synchronous algorithm for the s-session
problem. This result shows the inherent limitations on using timing information in shared—
memory systems subject to communication bounds, and implies a time separation between

semi-synchronous and asynchronous such systems.



1 Introduction

In shared-memory distributed systems, some number n of independent processes communicate
by reading and writing to shared memory. Central to the programming of such systems are
synchronization problems, where a process is required to guarantee that all processes have
performed a particular set of steps. Naturally, the timing information available to processes

has critical impact on the time complexity of synchronization.

Arjomandi, Fischer and Lynch ([1]) introduced the session problem to study the impact of
timing information on the time complexity of synchronization. Roughly speaking, a session
is a sequence of events that contains at least one step by each process. An algorithm for the
s-session problem guarantees that each execution of the algorithm includes at least s disjoint

sessions.

The session problem is an abstraction of the synchronization needed for the execution of
some tasks that arise in a distributed system, where separate components are each responsible
for performing a small part of a computation. Consider, for example, a system which solves a
set of equations by successive relaxation, where every process holds part of the data (cf. [5]).
Interleaving of steps by different processes is necessary in order to ensure that a correct value
was computed, since it implies sufficient interaction among the intermediate values computed
by the processes. Any algorithm which ensures that sufficient interleaving has occurred also
solves the s-session problem. The session problem is also an abstraction of some problems in
real-time computing which involve synchronization of several computer system components, in
order that they cooperate in performing a task involving real-world components. For example,
multiple robots might cooperate in moving machinery pieces around different sites of a large
manufacturing system. This cooperation requires to synthesize a motion, through physical
space, avoiding obstacles present therein while respecting certain dynamic constraints, such
as given bounds on the velocity and acceleration. Interleaving of motion by different robots
is necessary to ensure that pieces are delivered in the right order; a robot should deliver a
particular machinery item early enough at a site before another robot arrives at the site to
collect all machinery pieces delivered there. Clearly, any algorithm which ensures that sufficient
motion interleaving has occurred also solves the s-session problem. Thus, the difficulty of
solving the s-session problem reflects those of implementing the successive relaxation method

and moving machinery pieces around in the manufacturing system.

Arjomandi, Fischer and Lynch ([1]) assumed that processes communicate via shared vari-
ables and studied the time complexity of the session problem in synchronous and asynchronous

shared-memory systems. Informally, in a synchronous system, processes operate in lock-step,



taking steps simultaneously, while in an asynchronous system, processes work at completely
independent rates and have no way to estimate time. The results of Arjomandi, Fischer and
Lynch ([1]) show that there is a significant gap between the time complexities of solving the

session problem in the synchronous and the asynchronous models.

In reality, however, there is an important middle ground between the synchronous and the
asynchronous models of computation: in most distributed systems, processes operate neither
at lock-step nor at a completely independent rate. For example, processes may have access to
inaccurate clocks that operate at approximately, but not exactly, the same rate. Following [3],
Attiya and Mavronicolas ([4]) modeled these semi-synchronous systems by assuming that there
exist a lower and an upper bound on processes’ step time that enable processes to estimate time;
they addressed the cost of synchronization in semi-synchronous and asynchronous networks by
presenting upper and lower bounds for the time complexity of solving the s-session problem.
The results of Attiva and Mavronicolas imply a time separation between semi-synchronous
and asynchronous networks. In this paper, we revisit the shared-memory model introduced
by Arjomandi, Fischer and Lynch and address the effect of the timing assumptions in the

semi-synchronous model on the time complexity of solving the s-session problem.

Informally, the time complexity of an algorithm is the maximal time, over all executions,
until every process stops executing the algorithm. The following timing assumptions are made
on the system. In the asynchronous model, processes’ step time is in the range [0, 1]; in the
semi-synchronous model, processes’ step time is in the range [¢, 1], for some parameter ¢ such
that 0 < ¢ < 11. Processes are initially synchronized and take a step at time 0. Following [1],
we consider a particular shared-memory primitive, b-atomic registers, where the integer b > 1
is an upper bound on the number of processes that may instantaneously and indivisibly access
(read and, possibly, modify) each of the registers. Thus, b reflects the communication bound
in the model and captures communication limitations of existing distributed systems such as

those of a message-passing system which accesses buffers of finite fan-in.

An algorithm sketched in [1] relies on explicit communication through shared memory to
ensure that the needed steps have occurred and does not use any timing information. This
algorithm achieves time complexity of O(slog,n) in both the asynchronous and the semi-
synchronous models. On the other hand, an algorithm presented in [4] (Theorem 3.8) does
not use any communication, but relies on timing information and works only in the semi-
synchronous model to achieve time complexity of O(s%). These two algorithms can be combined

to yield a semi-synchronous algorithm for the s-session problem whose time complexity is

!The synchronous model is the special case of the semi-synchronous model where ¢ = 1.



O(smin{l, log, n}). On the other hand, a lower bound of Q(slog, n) shown in [1] holds for our
asynchronous model as well and implies, for appropriate values of the various parameters, a
time separation between semi-synchronous and asynchronous systems that use communication

through atomic shared memory.

At this point, it is natural to ask whether communication and timing information can be
combined to yield an upper bound that is significantly better than O(s min{%,logb n}). Our
main result, a lower bound of 1 + min{| 4, [logy(n — 1) — 1]}(s — 2) for the time complexity
of any semi-synchronous algorithm for the s-session problem?, shows the inherent limitations

on using timing information and implies that such a combination is impossible.

As in [4], our main lower bound result can also be used to derive a lower bound of 1 +
|logy(n—1)—1](s—2) for a shared-memory model in which processes’ step time is in the range
(0, 1] (rather than in [0, 1], as in the asynchronous model). This is equivalent to requiring that
two steps by the same process do not occur at the same time®. Fix some ¢ > 0 such that
| 57| > [logy(n—1)—1], and use the proof of the lower bound for the model where the rate of
processes steps is in [¢/, 1]; since [¢/, 1] C (0, 1], the claim follows. This implies a time separation
between this model and the synchronous shared-memory model. (Note that the proof in [1]

relies heavily on the ability to schedule many steps by the same process at the same time.)

Our lower bound uses the same general approach as in [1] and [4]. Specifically, our proof
combines fan-in and causality arguments as in [1], along with information propagation and

careful timing arguments as in [4] .

The rest of this paper is organized as follows. Section 2 presents the system model and
defines the session problem. Section 3 discusses some simple bounds for both the semi-
synchronous and asynchronous models. Section 4 includes our main lower bound for the
semi-synchronous model. We conclude, in Section 5, with a discussion and some open prob-

lems.

2 Definitions

In this section, we present the definitions for the underlying formal model?, and define what

it means for an algorithm to solve the s-session problem.

2 An essentially identical lower bound has been obtained independently by Rhee and Welch ([14]).
?We remark that this is the most common way of measuring time in an asynchronous system (see, e.g., [12]).

*These definitions could be expressed in terms of the general timed automaton model described in [11, 3, 6].



2.1 The System Model

In this subsection, we describe the system model and the time measure we will consider. Qur

definitions are standard and are similar to the ones in, e.g., [4, 3, 2, 1, 12, 7, 9].

A system consists of n processes py,...,p,. Each process p; is modeled as a (possibly
infinite) state machine with state set ;. The state set (); contains a distinguished initial state

go,i- The state set (); also includes a subset I; of idle states; we assume ¢qo; & I;.

Processes communicate through b-atomic registers (also called shared variables), Ry, Ra, . . ..
Each shared variable may attain values from a domain, a set V of values, which includes a
special undefined value 1. Fach process p; has a single read-modify-write atomic operation
available to it that may read a shared variable R, return its value v, and modify R. Associated
with each shared variable R is a set Access(R) that includes the processes which may perform

atomic operations on R; we assume that for each R, |Access(R)| < b.

A system configuration consists of the states of the processes and the values of the shared
variables. Formally, a configuration is a vector C' = (q1,...,¢u,v1,02,...) where ¢; is the
local state of p; and vy is the value of the shared variable Rjy; denote state;(C') = ¢; and
valuer(C') = vg. Each shared variable may attain values from some domain V of values which
includes a special “undefined” value, 1. The initial configuration is the configuration in which

every local state is an initial state and all shared variables are set to L.

We consider an interleaving model of concurrency, in the style of Lynch and Tuttle (cf.
[9]), where computations of the system are modeled as sequences of atomic events, or simply
events. Fach event is a computation event representing a computation step of a single process;
it is specified by comp(i, R) for some i € [n] and some shared variable R. In this computation
step, the process p;, based on its local state, performs an operation on the shared variable R,

performs some local computation, and changes to its next state.

Each process p; follows a deterministic local algorithm A; that determines p;’s local com-
putation, i.e., the register to be accessed and the state transition to be performed. More

specifically, A; determines:

o A shared variable R as a function of p;’s local state.

e Whether p; is to modify R and, if so, the value v’ to be written and p;’s next state, as a

function of p;’s local state and the value v read from R.

We assume that when a proces enters an idle state, it will remain in an idle state. An

algorithm (or a protocol) is a sequence A = (A4,...,A,) of local algorithms.



An execution is an infinite sequence of alternating configurations and steps
a = Co,ﬂ'l,Cl,...,ﬂ']‘,C]‘ ey

satisfying the following conditions:

1. Cy is the initial configuration;

2. If 7; = comp(t, Ry), then Ry is obtained by applying A; to state;(C;_1), and state;(C};)
and valuey(C;) are obtained by applying A; to state;(C;_1) and valuey(C;_1);

3. If 7; involves process p; and shared variable Ry, then state;(C;_1) = state;(C;) for every
[ # ¢ and value(Ci_1) = value)(C;) for every [ # k.

That is, in an execution the changes in processes’ states and shared variables’ values are
according to the local algorithms, only a process which takes a step changes its state, and
only a shared variable on which an operation is performed changes its value. We adopt the
convention that finite prefixes of an execution end with a configuration, and denote the last
configuration in a finite execution prefix a by last(a). We say that 7; = comp(i, R) is a

non-idle step of the execution if state;(C;_1) € I;, i.e., it is taken from a non-idle state.

A timed event is a pair (t,7), where ¢, the “time”, is a nonnegative real number, and =
is an event. A timed sequence is an infinite sequence of alternating configurations and timed

events

o = Co, (tl,ﬂ'l),cl, .. .,(t]‘,ﬂ']‘),cj‘ ey
where the times are nondecreasing and unbounded.

In our model, timed executions are defined as follows. Fix a real number ¢ such that
0 < ¢ < 1. Letting a be a timed sequence as above, we say that « is a timed execution of A
provided that the following all hold:

1. Co,m,Ch,y...,m;,C5, ... is an execution of A;
2. (Synchronous start) There are computation steps for all processes with time 0.

3. (Upper bound on step time) If the jth timed event is (¢;, comp(i;, R)), then there exists
a k> j with ¢, <t; 4+ 1 such that the kth timed event is (t, comp(i;, R'));

4. (Lower bound on step time) If the jth timed event is (¢;, comp(i;, R)), then there does
not exist a k > j with ¢; < ¢; + ¢ such that the kth timed event is (¢x, comp(¢;, R')).



We say that a is an ewecution fragment of A if there is an execution o’ of A of the form
o' = BaB’. This definition is extended to apply to timed executions in the obvious way. For
a finite execution fragment a = Co, (t1,71),C1,. .., (tk, 7k), Ck, we define tgq,¢(a) = ¢1 and

tend(a) = 1.

The asynchronous model is defined by taking ¢ = 0, while the semi-synchronous model is
defined by taking 0 < ¢ < 1; the synchronous model is the special case of the latter where
¢ = 1. Note that the asynchronous model allows, as defined above, two computation steps
of the same process to occur at the same time (Condition 4 is vacuous when ¢ = 0). If we
want to define the more common asynchronous model where a process can have at most one

computation step at each time, we have to replace Condition 4 above with:

(Lower bound on step time) If the jth timed event is (¢;, comp(i;, R)), then there
does not exist a k > j with ¢, = ¢; such that the kth timed event is (¢x, comp(i;, R")).

In both models, we say that a process p; enters an idle state by time t' (in a timed execution
a) if there exists a timed event (¢;_y,7;_1) in « such that ¢,y < ¢, 7;_; = comp(i, R) and
state;(C) € 1.

2.2 The Session Problem

An execution fragment C'y, 7y, Cy..., Ty, Cpy is a session if for each i, ¢ € [n], there exists at
least one event m; = comp(i), for some j € [m], which is a non-idle step of the underlying
execution. Intuitively, a session is an execution fragment in which each process takes at least
one non-idle step. An execution a contains s sessions if it can be partitioned into at least s
disjoint execution fragments such that each of them is a session. These definitions are extended

to apply to timed executions in the obvious way.

An algorithm solves the s-session problem within time t if each of its timed executions «
satisfies the following: a contains s sessions and all processes enter an idle state no later than

time ¢ in a.

3 Simple Bounds

In this section, we briefly mention some simple algorithms and lower bounds for the s-session
problem from previous work ([1, 4]) that also hold for the asynchronous and semi-synchronous

models considered in this paper.



For the asynchronous model where there is no lower bound on processes’ step time, the
lower bound proof in [1], relying on the ability to schedule many steps by the same process
at the same time, still works to yield a lower bound of Q(slog, n). Also, the “tree network”
algorithm sketched in [1] (Section 4) still works in our model. The “tree network” algorithm
relies entirely on explicit communication between processes to ensure that the needed steps
have occurred and does not use any timing information. Roughly speaking, this algorithm
consists of building up a “tree”out of b-atomic registers, whose leaves are the n processes.
Neglecting roundoffs, this network has depth log, n. Processes communicate through this
network in order to learn about completion of a session before advancing to the next session.
Thus, the necessary communication for one session can be accomplished in time O(log, n) and
the total time for all processes to enter an idle state after performing s sessions is O(slog, n)

in both the asynchronous and the semi-synchronous models.

On the other hand, an algorithm which relies entirely on timing information and does
not use any communication® is one presented for the semi-synchronous network model in [4]
(Theorem 3.8) which still works for the semi-synchronous shared-memory model considered in
this paper. This algorithm exploits the timing information available in the semi-synchronous
model to obtain a bound which is sometimes better than the bound of the “tree network”
algorithm. Roughly speaking, in this algorithm each process takes about SL%J computation

steps before entering an idle state.

It is possible to run the two previous algorithms “side by side,” halting when the first
of them does, and get a bound of O(smin{l,log, n}) for the s-session problem in the semi-
synchronous shared-memory model. Note that, by an appropriate choice of the various param-
eters, this upper bound and the O(slog, n) tight bound for the asynchronous model together

imply a time separation between semi-synchronous and asynchronous shared-memory models.

4 Main Result

We show that communication and timing information cannot be combined to yield an up-
per bound that is significantly better than the O(s min{%,logb n}) upper bound discussed in

Section 3.

®Note that in [1], the asynchronous model is defined in a slightly different way than ours, more specifically
by having all infinite admissible computations be allowable, and puts no restriction on the number of steps a
process takes at a time.

6This means that no state transition can result in an operation on a shared variable.



In our lower bound proof, we use an infinite timed execution in which processes take steps in
round-robin order, starting with py, with step time equal to 1. It is a called a slow, synchronous

timed execution. We have:

Theorem 4.1 There does not exist a semi-synchronous algorithm which solves the s-session
problem within time strictly less than 1 4+ min{[5], [log,(n — 1) — 1]}(s — 2).

Proof: Assume, by way of contradiction, that there exists a semi-synchronous algorithm, A,
which solves the s-session problem within time strictly less than 1+ min{|J-], |log,(n — 1) —

1]}(s — 2). We construct a timed execution of A which does not include s sessions.

We start with a slow, synchronous timed execution of A and partition it into an execution
fragment containing the events at time 0 and at most s — 2 other execution fragments each
of which is completed within time < min{|J-|, [log,(n — 1) — 1]}. We use causality and fan-
out arguments to argue that there is no communication through shared memory between a
certain pair of processes within each fragment. Furthermore, since the execution is slow, a
process takes, roughly, at most % steps in each fragment, so it is possible to have all these
steps occur while another process takes only one step. By “retiming”, we will perturb each
fragment to get a new one in which there is a “fast” process which takes all of its steps before
a “slow” process takes any of its steps. The part of the proof that shows that the “retimed”
execution preserves the timing constraints of the semi-synchronous model requires to choose
the execution fragments to take time < L%J, so that it will be possible for a process to not take
a computation step during a large part of the execution. Our construction will have the “fast”
process of each execution fragment be identical to the “slow” process of the next execution
fragment. This will guarantee that at most one session is completed in each execution fragment.
Thus, the total number of sessions in the “retimed” execution is at most s — 1, contradicting

the correctness of A.
We now present the details of the formal proof.
Denote e = min{| |, [logy(n — 1) — 1]}.

If e < 1, then the lower bound we are trying to prove is < 1+ 1(s —2) = s — 1. Since s
steps of each process are necessary if s sessions are to occur and they can occur 1 time unit
apart, it follows that s — 1 is a lower bound. Thus, we assume, without loss of generality, that

e > 1.

Let v be a slow, synchronous timed execution of A. Assume v = agaa’, where ay contains

only events that occur at time < 1, aga is the shortest prefix of v such that all processes are in



Figure 1 should appear here.

Figure 1: The timed execution agaa’

an idle state in last(apa), and o is the remaining part of v. Denote T' = t.,4(apa). Since 7 is
slow and s steps of each process are necessary to guarantee s sessions, T' > s—1. Since A solves
the s-session problem within time strictly less than 1+e(s—2), it follows that 7' < 1+e(s—2).
Note that, by construction, tsq,¢(a) = 1. Thus, t.pq(@) — tsare(a) = T — 1 < e(s—2). Denote
s' = [T=1]; it follows that &' < s — 2.

We write a = ajay .. .ay, where:

o Foreach k, 1 <k < ¢, aj contains all events that occur at time ¢, where 1 + (k — 1)e <
t <1+ ke, and

e ay contains all events occurring at time ¢, where 1 4 (s’ — 1)e <t < T.

That is, we partition a into execution fragments, each taking time < e.

Figure 1 depicts the timed execution agaa’. Each horizontal line represents events hap-
pening at one process. We use the symbol e to mark non-idle process steps; similarly, we use
the symbol x to mark idle process steps. Dashed vertical lines mark time points that are used

in the proof.

We reorder and retime events in a to obtain a timed sequence 3 and reorder and retime
events in o’ to obtain a timed sequence ', such that agB3 is a timed execution of A that

does not include s sessions.

In our construction, we will use a partial order <., representing “causality”, on the com-
putation steps that processes take in . We start by defining <,. For every pair of steps 7y,
o in «, we let my <, w9 if 1y = w9 or if w1y precedes 7y in « and either 7y and 7y are steps
taken by the same process or by different processes, but on the same shared variable. Close
<, under transitivity. <, is a partial order, and every total order of computation steps in «
consistent with <, represents a computation which leaves the system in the same configuration

as a. (Clearly, a itself provides such a total order.)

We first show how to modify a to obtain an execution fragment 3 = (183...03s that
includes at most s’ < s — 2 sessions. For some sequence p;, ..., p; , of processes, we construct

from each execution fragment aj an execution fragment f; = pgok, such that:



(1) pr contains no computation step of p;, ., and

(2) oy contains no computation step of p;, .

In this construction, p;, is the “fast” process which takes all its steps in pj, before the

“slow” process p;,_, takes any of its steps. (All the steps of p;, _, are in oy.)

For each k, 1 <k < s, we show how to construct 35 inductively. For the base case, let p;,

be an arbitrary process.

Assume we have picked p;,,...,p;,_, and constructed 3y,..., Br_1. We first show that there
exists some process such that a communication between it and p;, _, cannot be established in

.

Lemma 4.2 Let m be the first step of p;,_, in ay. There is some process of which there is no

computation step o in ap such that T <, 0.

Proof: Clearly, it suffices to show that the number of steps 7 in ay such that 7 <, 7, where

7 is any step of p;,_, in ay, is at most n — 1. We proceed to count the number of such steps.
By construction,
tend(ak) - tstart(ak) <l4+ke—-1- (k - 1)6 = €.

Let m be the maximum number of steps over all processes that some process takes within ay.

Since a is a slow execution,
1 < [tena(an) = tosare(on)] < [€] < Tllogy(n — 1) — 1]] = [logy(n — 1) - 1].

Clearly, the number of steps 7 taken by any process in ay such that m; <, 7, where 7; is the
ith step of p;, _, in a is at most b~ *1 Thus, the number of steps 7 in ay such that = <, 7,

where 7 is any step of 7;,_, is at most:

m m—1 m
me—i—l—l =) Z bz _ bb -1 < bm—l—l < bLlogb(n—l)—1J+1 < blogb(n—l) -n_1.
=1 1=0 b—1
The claim follows. [ |

Fix p;, to be any process such that a communication between p;, _, and p;, is not established

in ag. We now show how to construct 8. For any process u, o includes all steps 7 of « in

10



Figure 2 should appear here.

Figure 2: The timed execution agB3’

ay such that 7 <, 7, where 7 is any step of 7;, _, in ay; pj includes all remaining steps of u
in ag. Steps at each process occur in the same order as in aj and all occur at step time of ¢,
in both py and 0. In addition, ordering of steps by different processes that occur at the same
time in ay, is preserved within each of p; and o;. By Lemma 4.2, there is no step o of p;, in
ay, such that, for some step m of p;, _, in ay, 7 <, 0. This implies that all steps of p;, in ay
will appear in pg. On the other hand, since m# <, 7 for any step = of p;, _, in ay, all steps of

Pi,_, in ap will appear in oy. Thus, B = proy has properties (1) and (2) above.

To complete our construction, we assign times to steps in 35. Let ty4,1(p1) = ¢. The first
and last steps of p;, in pj occur at times tsqpt(pr) = tend(o0k—1) + ¢ and ¢.,4(pr), respectively.
Similarly, the first and last steps of p;, | in o} occur at times tsq,¢(0%) = tena(pr) and tepq (o),
respectively. Steps are taken ¢ time units apart. For each process p;, we schedule each step
7; of p; in pj to occur simultaneously with a step, m;,, of p;, which is such that 7; and 7;,
occurred at the same time in «ay. Similarly, for each process p;, we schedule each step w; of
p; in oy, to occur simultaneously with a step, w;,_,, of p;,_, which is such that 7; and 7, _,
occurred at the same time in aj. We will shortly show that assigning times in this manner is

consistent with the requirements for a timed execution.

We now modify o’ to obtain 3’. The first computation step of any process in 3’ will occur
at time ¢ after its last computation step in # and all later computation steps of it will occur ¢

time units apart in &'.
Figure 2 depicts the timed execution apB3’ using the same conventions as in Figure 1.

We remark that what allowed us to “separate” the steps of p;, _, from those of p;, in each
of the execution fragments was the assumption that the length of each execution fragment is
less than [log,(n — 1) — 1] which, due to the communication limitations of the model, is not

enough to guarantee that a process can “affect” at least one step of every other process.

We next establish that ap@3’ is a timed execution of A. We start by showing;:

Lemma 4.3 Ordering of computation steps operating on the same shared variable is preserved

in agf.

11



Proof: Let m; and 7 be computation steps operating on the same shared variable in ay,
such that my <, m. The only non-trivial case is when 7y and 75 occur in the same a, for

some k, 1 < k < s'. We show that the ordering of 71 and 75 is the same in 35 as in «.

The only case of interest is when 7y occurs in oy, while 79 occurs in pg. By construction,
there is some step 71 of p;, _, in aj such that 7] <, 7y, while there is no step 74 of p;, _, in
ag such that 7, <, mp. But, from 7] <, m and m <, 7y, it follows, by transitivity, that

71 <4 T2. A contradiction. [

Before showing that the timing constraints are preserved in ag343’, we prove the following

simple fact:
Claim 4.4 Foranyk, 1 <k <s' —1, teni(prs1) — tena(pr) <1 —c.

Proof: We first show that for any k, 1 <k <" — 1, tena(prs1) — tend(Br) < %, and for any

k? 1 S k S 8/7 tend(ﬁk) - tend(pk) S % — C.
Fix some k, 1 < k < s’. Recall that, by construction,
1
tend(ar) — tsgari(ar) <1+ ke—1—(k—1)e=e< L%J
Let m be the maximum number of steps over all processes that some process takes within ay.

Since both ts4.(ar) and te,q(ay) are integral, tepg( o) — tsare( o) < L%J — 1; then, since

a is a slow execution,
M < tnd(0r) = tar(@) + 1 < [5-] < o=
2c 2c
Let nj be the number of steps of process p;,_, in aj and ng4q be the number of computation
steps of process p;, ., in aji1. (Recall that, by construction, in 8y, p;,_, will have all of its
steps in oy, while in Bgyq, p;,,, Will have all of its steps in pj4q.) Thus,
1 1
tend(Prt1) = tend(Br) = npg1e < me < 2= 5"

Also, since p;, _, takes nj steps in op with the first and last occurring at times tsq,4(0%) =

tend(pr) and tenq(ok) = tend(Br), respectively, we have:

tend(Br) — tena(pr) = (np — e < (m—1)e < (% —1e= % — .
Now, we have
tend (Pht1) — tend(Pk) = tend (Prt1) — tend (Bk) + tend(Br) — tena(pr) < % + % —e=1-c¢,
as needed. =
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We next show:
Lemma 4.5 Lower and upper bounds on step time are preserved in agf33 .

Proof: By construction, no two computation steps are closer than ¢ in agf3'; so, the lower
bound on step time is preserved. Note also that the time difference between consecutive
computation steps of a process is maximized when the process is some p;,, for some &k such
that 1 < k < s’ — 1, that has no computation steps in either o or pgyq. By Claim 4.4, this

time difference is less than or equal to 1. [ |

This completes the proof that ag35’ is a timed execution. To derive a contradiction, we finally

prove:
Lemma 4.6 There are at most s’ sessions in [3.

Proof: We show, by induction on k, that 8y ...0k_1pr does not contain k sessions, for 1 <

k < s'. (By convention, 3y denotes the empty execution.)

For the base case, note that, by construction, p; does not include a computation step of

Pio- Thus, Bgp1 cannot contain one session.

For the induction step, assume that the claim holds for k£ — 1, i.e., Bg...08k_2pr—1 does
not contain k& — 1 sessions for 1 < k& < s’. Hence, the kth session does not start within
Bo...Br—2pk—1. Since neither o,_; nor p; contains a computation step of p;, _,, or_1pp does

not contain a session. Thus, Gy ...3r_1 does not contain k sessions.

To complete the proof, note that oy does not contain a session since, by construction, it

does not contain a computation step of p; ,. [ |

Lemma 4.6 implies that § contains at most s’ < s — 2 sessions; also, ag contains exactly
one session. Therefore, there are at most s — 1 sessions in apf. Since in 3’ no process takes a
non-idle step, there is no additional session in #’. Thus, there are strictly less than s sessions

in apfB. A contradiction. [ ]

We remark that the general structure of our proof closely follows [1, 4]. It uses causality
arguments as in [1] to reorder the steps in the execution and presents an explicit retiming of

them as in [4].
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5 Discussion and Future Research

We showed a lower bound of 14+ min{|5-], [logy(n—1)—1|}(s—1) on the time complexity of the
s-session problem in a realistic semi-synchronous, shared-memory model. Neglecting round-
offs, this lower bound is no less than 1/2 of the simple (combined) upper bound described in
Section 3. This lower bound shows the inherent limitations on using timing information in

systems where communication is achieved through atomic shared memory.

This work continues the study of time bounds in the presence of timing uncertainty within
the framework of the semi-synchronous model (]2, 3, 4, 13]). Our results give a time separation
between semi-synchronous and asynchronous shared-memory systems. Like the results in [4]
(and unlike the separation results in [1]), our results do not rely on the ability to schedule

several steps by the same process at the same real time.

It would be very interesting to study the relative differences in efficiency between asyn-
chronous and semi-synchronous shared-memory systems supporting different, possibly weaker,
primitives such as regular or safe registers (cf. [8], Lecture 12), still subject to communication
bounds. Preliminary steps in this direction already appear in [10], where an upper bound [ is
assumed on the worst-case response time of performing an operation on such registers. These
results suggest that the time bounds of performing tasks in semi-synchronous shared-memory
models critically depend on the strength of the available primitives of communication through

shared memory.

A more general direction is to study similar problems in the semi-synchronous, shared-
memory model. The consensus problem (cf. [2]) is a good such candidate; a first step would
naturally be to design a “timeout” strategy for detecting faulty processes (see Section 3 in [2]),

assuming that communication is done through b-atomic registers.

As in [4], our results show that there are some timing-based algorithms for which any asyn-
chronous simulation incurs a (non-constant) time overhead dependent on communication pa-
rameters of the model like, e.g., b or d, the message delay uncertainty of the semi-synchronous
network model in [4]. It would be of extreme importance to characterize the timing-based
algorithms whose overhead cost of asynchronous simulation is independent of particular com-

munication parameters.
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