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Abstract

Counting networks were introduced as a new class of
concurrent, distributed, low contention data structures suit-
able for implementing shared counters. Their structure
is similar to that of sorting networks. High-performance
asynchronous multiprocessing requires counting networks
to both have smalldepthand incur lowcontention. In order
to achieve this, we relax in this work the requirement that
the input width of the counting network is equal to its output
width. More specifically, we present an explicit, determin-
istic construction of a counting network witht input width
andw output width, wheret � w, t = 2k andw = p2l.
This construction is practical and achieves depthO(lg2 t)
which is independent from the output widthw. Further-
more, by takingw to be�(t lg t) it incurs an amortized
contention of the orderO((n lg t)=t), wheren is the concur-
rency, which improves by a logarithmic factor over all pre-
viously known practical counting networks constructions of
widtht.

1. Introduction

A shared counter can be easily implemented using a sin-
gle sharedFetch&Incrementvariable. However, empiri-
cally, the time to access a shared variable grows at least
linearly with thecontention, the extent to which concur-
rent processors simultaneously attempt to access the vari-
able. Aspneset al. [3] suggested thecounting networkas
an alternative approach for implementing shared counters.

Counting networks are constructed from simple ele-
ments calledbalancersin a similar way that sorting net-
works are constructed from comparators (see [4, 10]).
Loosely speaking, a balancer can be thought of as a tog-
gle mechanism withp input and output wires that receives
tokens from its input wires and forwards them to its output
wires (see [3, 5, 8]). When a token appears on an input wire,
it takes the output wire to which the toggle is set, and tog-

gles the balancer so that the input next to come will leave on
the next output wire. If the toggle was set to the last output
wire it is set back to the first output wire.

One can connect a collection of balancers to form abal-
ancing network.This is done by connecting output wires
from some balancers to input wires of others. The remain-
ing unconnected input and output wires are the input and
output wires, respectively, of the network. The number of
input and output wires is the same and is called thewidth
t of the network. Like the balancer, the balancing network
receives tokens in its inputs and forwards them in its out-
puts. A counting network is a balancing network that has
thestep property(see Section 2), a property which makes it
able to behave like a counter. A processor that wants to ob-
tain a new value from the counter traverses the network by
issuing a token, and according to the output it leaves from
the network it takes an appropriate value.

In this work we deviate from the “traditional” approach
and we construct counting networks which have different
input and output widths (different number of input and out-
put wires). In our construction the input widtht is smaller
or equal to the output widthw. More specifically, we have
t = 2k, w = p2l andk � l. Our counting network, denoted
asC(t; w), is constructed from regular balancers with2 in-
puts and outputs and from balancers with different number
of input and output wires. Aq-input,p-output balancer be-
haves in the same as a regular balancer, that is, a token is
received from one of itsq inputs and is forwarded to one of
its p outputs using the same toggle mechanism withp set-
tings (see also [2, 11]). InC(t; w) we use balancers with
q = 2 andp � 2. In figure 1 we see the construction of
C(4; 8), where the balancers are drawn with vertical lines
and the wires are drawn with horizontal lines. We see that
this construction uses2-input, 2-output balancers, and2-
input,4-output balancers.

Our construction improves over all known practical con-
structions in terms ofdepthandcontention, two important
measures for balancing and counting networks. The depth
of a balancing network is the maximal path length from an



Figure 1. The counting network C(4; 8).

input wire to an output wire. The depth is important since
the number of memory locations that a processor may have
to access, before its incremental request is satisfied, is at
most the depth of the network. The contention is the ex-
tent to which concurrent processors access the same mem-
ory location (the balancer in our case) at the same time. The
amortized contention, defined by Dworket al.[7], measures
contention in the worst-case and in the limit when many
processors access the balancing network concurrently. In
order to achieve good performance in a counting network it
is necessary to achieve both small depth and low contention
(see [6]).

The traditional practical counting networks known so far
achieve depthO(lg2 t), wheret is the width of the network.
Such networks are the bitonic and periodic counting net-
works [3], which use2-input,2-output balancers, and other
constructions which use balancers of larger widths [1, 8, 9].
The amortized contention that is achieved by these networks
is of the orderO((n lg2 t)=t), wheren is the processor con-
currency. It is easy to see that in these networks if we need
low contention we have to use large widths. However, this
has the side effect that it increases the depth of the network.
Therefore, there exists a trade off between the choice of
the appropriate depth and contention which is related to the
width of the counting network.

Our construction, due to its irregular structure, achieves
depth O(lg2 t) which is independent from its output
width. Simultaneously, the amortized contention is
�((n lg2 t)=w+ (n lg t)=t))) which means that by increas-
ing the output width the contention drops. Therefore, for
any fixed input widtht we can decrease the contention by
increasing only the output width, while preserving the depth
of the network. This way, we avoid the trade off between
depth and contention found in traditional networks. Actu-
ally, by makingw to be of the order�(t lg t) we achieve
amortized contention of the orderO((n lg t)=t) which im-
proves by a logarithmic factor over all known best practical
counting network constructions.

The performance of our network can be explained as fol-

lows. A balancing network can be divided in layers, where
each layer contains the balancers that are in a specific depth.
In the traditional counting networks the width of all the lay-
ers is equal tot, making the contention to be the same for
each layer. On the other hand, in our network, only the first
lg t layers have widtht, and the rest layers, which are the
majority, have widthw. By takingw to be larger thant
more balancers are available at each of the last layers. Thus
the contention of the balancers of these layers decreases as
w increases, making the total contention to decrease.

The construction uses as a building block a network with
a novel merging property which we callbounded difference
�-merging network. This network mergers the outputs of
two counting networks which have a difference of at most
�. The contention measurement is done using the recursive
method introduced in [9]. The rest of the paper is orga-
nized as follows. In Section 2 we give the necessary defini-
tions, in Section 3 we present the construction of a bounded
difference�-merging network, and in section 4 we present
the construction of our counting network. Finally, in Sec-
tion 5 we give our concluding remarks and present some
open problems.

2. Definitions

We denote an integer sequence with a capital letter, e.g.
X, and its elements with small letters e.g.xi. The first
index of a sequence is0. Let �(X) denote the sum of all
the elements ofX. From know on whenever we say that we
compare two sequencesX andY we mean that we compare
their sums, that is, we actually compare�(X) and�(Y ).
Take a sequenceX of length (width)p. We say thatX has
the step property, or alternativelyX is step, if0 � xi�xj �
1, for any i; j, 0 � i < j � p � 1. We say thatX has
the k-smooth property, or alternativelyX is k-smooth, if
0 � jxi � xjj � k, for any0 � i; j � p� 1

Let b be a q-input, p-output balancer. LetX be the
sequence (input sequence) of widthq such thatxi is the
number of tokens received on theith wire of b, for all
0 � i � q � 1. In a similar way we define the sequenceY
(output sequence) for the output wires. Let thestateof b at
a given time be defined as the collections of tokens received
on its input and left from its output wires. A state ofb isqui-
escentif �(X) = �(Y ); that is, the number of tokens that
entered the balancer is equal to the number of tokens that
left it. The following formal safety, liveness and step prop-
erties are required forb: (1) In any state,�(X) � �(Y ) (b
never creates output tokens). (2) Given any finite number
of input tokens tob it reaches within a finite amount of time
a quiescent state (b never “swallows” input tokens). (3) In
any quiescent stateY has the step property.

Let B be any balancing network of input widtht and
output widthw. Let X andY be the input and output se-



quences, respectively, ofB. The state ofB is defined as the
collection of states of all its component balancers. Similarly
to the balancer, the state ofB is quiescent if�(X) = �(Y ).
As in the balancer, we requireB to have the safety and live-
ness properties. For the rest of the paper we will assume that
the balancing networks we consider are in quiescent state.

A counting network is a balancing network such that its
output sequence has the step property. We will denote a
counting network of input widtht and output widthw as
C(t; w).

A bounded difference�-merging network is a balancing
network of equal input and output width, whose input se-
quence can be divided into two equal length subsequences
A andB such that its output sequence has the step prop-
erty wheneverA andB both have the step property and
0 � �(A) � �(B) � �. That is the difference between
A andB is bounded by�. We denote such a network of
widthw asM (w; �). We will refer to the sequencesA and
B as the first and second input sequence, respectively, of
M (w; �).

On an MIMD shared memory multiprocessor machine,
a balancing networkB is implemented as a shared data
structure, where balancers are records and wires are point-
ers from one record to another. Each of the machine’s
n asynchronous processors runs a program that repeat-
edly traverses the data structure from some input pointer
to some output pointer, each time shepherding a new to-
ken through the network. Tokens generated by proces-
sor pl, l 2 f0; : : : ; n � 1g, enter the network on input
wire l mod t. The limitation on the number of concur-
rent processors implies a limitation on the number of to-
kens concurrently traversing the network at any given time:
�(X) � �(Y ) � n.

Consider an execution ofB entering a quiescent state
afterm tokens pass through it. Each time a token passes
through a balancer, all tokens pending at this balancer in-
cur astall step, modeling their delay due to contention with
each other. The number of stall steps has been introduced
in [7] as a measure of contention. The contention incurred
by the traversal ofm tokens through the networkB at con-
currencyn, denotedcont(m;n;B), is the maximum num-
ber of stalls, over all possible executions, induced by an
adversary scheduler. The amortized contention of the net-
work B at concurrencyn, denotedcont(n;B), is the limit
supremum ofcont(m;n;B) divided bym, asm goes to
infinity.

3. A Bounded Difference�-Merging Network

In this section we present the construction of a bounded
difference�-merging networkM (w; �) wherew = p2l,
� = 2k, p � 1, l � 2, and1 � k < l. Let A andB
denote the first and second input sequences, respectively, of

M (w; �) and letY denote its output sequence.
The construction is by induction on�. For the base

case we have� = 2 and the networkM (w; 2) consists
from w=2 2-input,2-output balancersb0; : : : ; bw=2�1. The
first and second input wires of balancerbi are connected
to bi�1 andai, respectively, and its first and second out-
put wires are connected toy2i�1 andy2i, respectively, for
1 � i � w=2 � 1. The first and second input wires of
balancerb0, are connected toa0 andbw=2�1, respectively,
and its first and second output wires are connected toy0 and
yw�1, respectively.

For the inductive case� > 2, the networkM (w; �) is
constructed as follows (see figure 2). We take two copies
of the networkM (w=2; �=2) denoted asM0(w=2; �=2) and
M1(w=2; �=2). The first and second input sequences of
M0(w=2; �=2) are connected to the even subsequences of
A and B, respectively. The first and second input se-
quences ofM1(w=2; �=2) are connected to the odd subse-
quences ofA andB, respectively. Next, we take a copy
of the networkM (w; 2). The first and second input se-
quences ofM (w; 2) are connected to the output sequences
ofM0(w=2; �=2) andM1(w=2; �=2), respectively. The out-
put sequence ofM (w; 2) is connected to the sequenceY .
This completes the construction. Next, we show the cor-
rectness ofM (w; �), then we calculate its depth and we es-
timate its contention.
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Figure 2. The network M (8; �).

Proposition 3.1 M (w; �) is a bounded difference�-
merging network.

Sketch of proof: First we examine the base case� = 2.
If the difference between the input sequencesA andB is
exactly0 or 1 then the balancers do not affect the input se-
quences and the output sequenceY has the step property.
If the actual difference is exactly2 then there are two sub-
cases. In the first subcase the two input sequences form a
1-smooth sequence and one of the balancersb1; : : : ; bw=2�1



makes the output sequence to have the step property. In the
second subcase the two input sequences form a2-smooth
sequence and the balancerb0 makes the output sequence to
have the step property.

Next, we examine the inductive case� > 2. Since the
difference between the sequencesA andB is at most� we
have that the difference between their even subsequences
is at most�=2, and similarly the difference between their
odd subsequences is at most�=2. Furthermore, these sub-
sequences have the step property. Therefore, by the induc-
tion hypothesis, the outputs of networksM0(w=2; �=2) and
M0(w=2; �=2) have the step property. Since in a sequence
the even subsequence is greater by one or equal than the
odd subsequence, we have that the output sequence of net-
workM0(w=2; �=2) is bigger by at most two or equal to the
output sequence of networkM1(w=2; �=2). Therefore the
output sequence of networkM (w; 2) has the step property,
as needed.

Proposition 3.2 depth(M (w; �)) = lg �.

Sketch of proof: We solve the recurrence
depth(M (w; �)) = depth(M (w=2; �=2)) +
depth(M (w; 2)). For the base case we have
depth(M (w; 2)) = 1.

Proposition 3.3 cont (m;n;M (w; �)) � m(2n=w �
1) lg �

Sketch of proof: Let m0 and m1 denote the num-
ber of tokens that enter the networkM0(w=2; �=2)
and M1(w=2; �=2), respectively. The con-
struction guarantees concurrencyn=2 for each
of these networks. We solve the recurrence
cont(m;n;M (w; �)) � cont(m0; n=2;M0(w=2; �=2)) +
cont(m1; n=2;M1(w=2; �=2)) + cont(m;n;M (w; 2)).
For the base case we havecont(m;n;M (w; 2)) =
m(2n=w � 1), since the contention of a balancer with con-
currencyn which traversem tokens is equal tom(n � 1).

4. A Counting Network

In this Section, we present a counting networkC(t; w)
wheret = 2k, w = p2l, p; l � 1, and1 � k � l. Let X
andY denote the input and output sequences, respectively,
of C(t; w).

The construction is by induction ont. For the base case
we havet = 2 and the networkC(2; w) is just a2-input,
w-output balancer. For the inductive caset > 2 the net-
work C(t; w) is constructed as follows (see figure 3). We
take t=2 2-input, 2-output balancersb0; : : : ; bt=2�1. The
first and second input wires of balancerbi are connected
to x2i and x2i+1, respectively, for all0 � i � t=2 �

1. Next, we take two copies ofC(t=2; w=2) denoted as
C0(t=2; w=2) andC1(t=2; w=2). The first and second out-
put wires of balancerbi are connected to theith input of
the networkC0(t=2; w=2) andC1(t=2; w=2), respectively,
for all 0 � i � t=2 � 1. Next, we take the bounded dif-
ferencet=2-merging networkM (w; t=2) described in sec-
tion 3. The first and second input sequences of network
M (w; t=2) are connected to the output sequences of the net-
worksC0(t=2; w=2) andC1(t=2; w=2), respectively. The
output sequence ofM (w; t=2) is connected to the sequence
Y . This completes the construction. Next, we show the
correctness ofC(t; w), then we calculate its depth and we
estimate its contention.

C
0
(2
;4
)

C
1
(2
;4
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M
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Y
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Figure 3. The network C(4; 8).

Theorem 4.1 C(t; w) is a counting network.

Sketch of proof: For the base caset = 2 the network
C(2; w) is obviously a counting network. For the in-
ductive caset > 2 we have the following. The bal-
ancersb0; : : : ; bt=2�1 make the input sequence of network
C0(t=2; w=2) to be greater by at mostt=2 or equal to the
input sequence of networkC1(t=2; w=2). By the induc-
tion hypothesis, the output sequences of these two networks
have the step property and furthermore their output se-
quences have the same difference as their input sequences.
Therefore, by Proposition 3.1, we have that the output se-
quence ofM (w; t=2) has the step property, as needed.

Theorem 4.2 depth(St;w) = (lg2 t+ lg t)=2

Sketch of proof: We solve the recurrence
depth(C(t; w)) = 1 + depth(C(t=2; w=2)) +
depth(M (w; t=2)) by using the result of Proposition 3.2.
For the base case we havedepth(C(2; w)) = 1.

Theorem 4.3 cont(n;C(t; w)) � (n=w � 1=2) lg2 t +
(2n=t� n=w � 1=2) lg t

Sketch of proof: Let m0 and m1 denote the num-
ber of tokens that enter the networkC0(t=2; w=2) and



C1(t=2; w=2), respectively. LetL denote the first layer of
balancers. We solve the recurrencecont(m;n;C(t; w)) �
cont(m;n; L) + cont(m0; n=2; C0(t=2; w=2)) +
cont(m1; n=2; C1(t=2; w=2)) + cont(m;n;M (w; t=2)).
In order to do so we use Proposition 3.3. We also have
cont(m;n; L) � m(2n=t � 1). For the base case we
havecont(m;n;C(2; w)) � m(n � 1). Finally we take
cont(m;C(t; w)) = limm!1(cont (m;n;C(t; w))=m).

5. Concluding Remarks and Open Problems

We presented a counting network construction witht in-
put wires andw output wires. wheret = 2k andw = p2l,
andk � l. This is one of a very few constructions known
whose output width isnota power of two [1, 6, 9].

Several interesting questions remain. Is it possible to ex-
tend our construction to arbitrary input and output widths,
other than multiples of a power of two? It follows from
impossibility results in [1, 5] that appropriate sets of bal-
ancer types would have to be used for such extension. Using
such larger balancers is often expected to cause a reduction
in depth (see [8, 9]). What would be a trade-off between
depth and contention in this situation? Can the combinato-
rial techniques in [5] be used to show impossibility results
on constructible widths for bounded difference�-merging
networks?

We believe that our counting network will allow a signif-
icant improvement in performance when used in real shared
memory multiprocessors, over previously used counting
network constructions [1, 3, 6, 8, 9]. To verify our belief,
we are currently implementing a software simulation of our
counting network construction in a general asynchronous
multiprocessor. We hope this simulation will enable us to
evaluate the performance of our construction as measured
by contention. In our simulations, we fix a particular in-
put width and compare the counting network introduced in
this paper to the bitonic and periodic counting networks [3]
of the same width. Preliminary experimental investigations
reveal that for appropriately chosen values of the parame-
ter w, especially when it is taken to be of order�(t lg t),
the counting network resulting from our construction sig-
nificantly outperforms the other two under identical concur-
rency conditions.
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