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Abstract. In this work, we study the combinatorial structure and the
computational complexity of Nash equilibria for a certain game that
models selfish routing over a network consisting of m parallel links. We
assume a collection of n users, each employing a mixed strategy, which
is a probability distribution over links, to control the routing of its own
assigned traffic. In a Nash equilibrium, each user selfishly routes its traffic
on those links that minimize its expected latency cost, given the network
congestion caused by the other users. The social cost of a Nash equi-
librium is the expectation, over all random choices of the users, of the
maximum, over all links, latency through a link.
We embark on a systematic study of several algorithmic problems related
to the computation of Nash equilibria for the selfish routing game we con-
sider. In a nutshell, these problems relate to deciding the existence of a
Nash equilibrium, constructing a Nash equilibrium with given support
characteristics, constructing the worst Nash equilibrium (the one with
maximum social cost), constructing the best Nash equilibrium (the one
withminimum social cost), or computing the social cost of a (given) Nash
equilibrium. Our work provides a comprehensive collection of efficient al-
gorithms, hardness results (both as NP-hardness and #P-completeness
results), and structural results for these algorithmic problems. Our re-
sults span and contrast a wide range of assumptions on the syntax of the
Nash equilibria and on the parameters of the system.

1 Introduction

Nash equilibrium [14] is arguably the most important solution concept in Game
Theory [15]. It may be viewed to represent a steady state of the play of a strategic
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game in which each player holds an accurate opinion about the (expected) be-
havior of other players and acts rationally. Despite the apparent simplicity of the
concept, computation of Nash equilibria in finite games has been long observed
to be difficult (cf. [10,19]); in fact, it is arguably one of the few, most important
algorithmic problems for which no polynomial-time algorithms are known. In-
deed, Papadimitriou [18, p. 1] actively advocates the problem of computing Nash
equilibria as one of the most significant open problems in Theoretical Computer
Science today.

In this work, we embark on a systematic study of the computational com-
plexity of Nash equilibria in the context of a simple selfish routing game, origi-
nally introduced by Koutsoupias and Papadimitriou [7], that we describe here.
We assume a collection of n users, each employing a mixed strategy, which is
a probability distribution over m parallel links, to control the shipping of its
own assigned traffic. For each link, a capacity specifies the rate at which the link
processes traffic. In a Nash equilibrium, each user selfishly routes its traffic on
those links that minimize its expected latency cost, given the network congestion
caused by the other users. A user’s support is the set of those links on which it
may ship its traffic with non-zero probability. The social cost of a Nash equilib-
rium is the expectation. over all random choices of the users, of the maximum,
over all links, latency through a link.

We are interested in algorithmic problems related to the computation of
Nash equilibria for the selfish routing game we consider. More specifically, we
aim at determining the computational complexity of the following prototype
problems, assuming that users’ traffics and links’ capacities are given: Given
users’ supports, decide whether there exists a Nash equilibrium; if so, determine
the corresponding users’ (mixed) strategies (this is an existence and computa-
tion problem). Decide whether there exists a Nash equilibrium; if so, determine
the corresponding users’ supports and (mixed) strategies (this is an existence
and computation problem). Determine the supports of the worst (or the best)
Nash equilibrium (these are optimization problems). Given a Nash equilibrium,
determine its social cost (this turns out to be a hard counting problem.

Our study distinguishes between pure Nash equilibria, where each user
chooses exactly one link (with probability one), andmixed Nash equilibria, where
the choices of each user are modeled by a probability distribution over links. We
also distinguish in some cases between models of uniform capacities, where all
link capacities are equal, and of arbitrary capacities; also, we do so between
models of identical traffics, where all user traffics are equal, and of arbitrary
traffics.

Contribution. We start with pure Nash equilibria. By the linearity of the ex-
pected latency cost functions we consider, a mixed, but not necessarily pure,
Nash equilibrium always exists. The first result (Theorem 1), remarked by Kurt
Mehlhorn, establishes that a pure Nash equilibrium always exists. To this end, we
continue to present an efficient, yet simple algorithm (Theorem 2) that computes
a pure Nash equilibrium.
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We proceed to consider the related problems BEST NASH EQUILIBRIUM
SUPPORTS and WORST NASH EQUILIBRIUM SUPPORTS of determining ei-
ther the best or the worst pure Nash equilibrium (with respect to social cost),
respectively. Not surprisingly, we show that both are NP-hard (Theorems 3
and 4).

We now turn to mixed Nash equilibria. Our first major result here is an
efficient and elegant algorithm for computing a mixed Nash equilibrium (Theo-
rem 5). More specifically, the algorithm computes a generalized fully mixed Nash
equilibrium; this is a generalization of fully mixed Nash equilibria [9].

We continue to establish that for the model of uniform capacities, and as-
suming that there are only two users, the worst mixed Nash equilibrium (with
respect to social cost) is the fully mixed Nash equilibrium (Theorem 6). In close
relation, we have attempted to obtain an analog of this result for the model of
arbitrary capacities. We establish that any mixed Nash equilibrium, in particular
the worst one, incurs a social cost that does not exceed 49.02 times the social
cost of the fully mixed Nash equilibrium (Theorem 7). Theorems 6 and 7 provide
together substantial evidence about the “completeness” of the fully mixed Nash
equilibrium: it appears that it suffices, in general, to focus on bounding the social
cost of the fully mixed Nash equilibrium and then use reduction results (such as
Theorems 6 and 7) to obtain bounds for the general case.

We then shift gears to study the computational complexity of NASH EQUI-
LIBRIUM SOCIAL COST. We have obtained both negative and positive results
here. We first show that the problem is #P-complete (see, e.g., [16]) in general
for the case of mixed Nash equilibria (Theorem 8). On the positive side, we get
around the established hardness of computing exacly the social cost of any mixed
Nash equilibrium by presenting a fully polynomial, randomized approximation
scheme for computing the social cost of any given mixed Nash equilibrium to
any required degree of approximation (Theorem 9).

We point out that the polynomial algorithms we have presented for the com-
putation of pure and mixed Nash equilibria (Theorems 2 and 5, respectively) are
the first known polynomial algorithms for the problem (for either the general case
of a strategic game with a finite number of strategies, or even for a specific game).
On the other hand, the hardness results we have obtained (Theorems 3, 4, and 8)
indicate that optimization and counting problems in Computational Game The-
ory may be hard even when restricted to specific, simple games such as the selfish
routing game considered in our work.
Related Work. The selfish routing game considered in this paper was first in-
troduced by Koutsoupias and Papadimitriou [7] as a vehicle for the study of
the price of selfishness for routing over non-cooperative networks, like the In-
ternet. This game was subsequently studied in the work of Mavronicolas and
Spirakis [9], where fully mixed Nash equilibria were introduced and analyzed.
In both works, the aim had been to quantify the amount of performance loss in
routing due to selfish behavior of the users. (Later studies of the selfish routing
game from the same point of view, that of performance, include the works by
Koutsoupias et al. [6], and by Czumaj and Vöcking [1].) Unlike these previous
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papers, our work considers the selfish routing game from the point of view of
computational complexity and attempts to classify certain algorithmic problems
related to the computation of Nash equilibria of the game with respect to their
computational complexity.

Extensive surveys of algorithms and techniques from the literature of Game
Theory for the computation of Nash equilibria of general bimatrix games in either
strategic or extensive form appear in [10,19]. All known such algorithms incur
exponential running time, with the seminal algorithm of Lemke and Howson [8]
being the prime example. Issues of computational complexity for the compu-
tation of Nash equilibria in general games have been raised by Megiddo [11],
Megiddo and Papadimitriou [12], and Papadimitriou [17]. The NP-hardness of
computing a Nash equilibrium of a general bimatrix game with maximum payoff
has been established by Gilboa and Zemel [3]. Similar in motivation and spirit
to our paper is the very recent paper by Deng et al. [2], which proves complexity,
approximability and inapproximability results for the problem of computing an
exchange equilibrium in markets with indivisible goods.

2 Framework

Most of our definitions are patterned after those in [7, Sections 1 & 2] and [9,
Section 2].

We consider a network consisting of a set of m parallel links 1, 2, . . . ,m from
a source node to a destination node. Each of n network users 1, 2, . . . , n, or users
for short, wishes to route a particular amount of traffic along a (non-fixed) link
from source to destination. (Throughout, we will be using subscripts for users
and superscripts for links.) Denote wi the traffic of user i ∈ [n]. Define the n× 1
traffic vector w in the natural way. Assume throughout that m > 1 and n > 1.

A pure strategy for user i ∈ [n] is some specific link. a mixed strategy for user
i ∈ [n] is a probability distribution over pure strategies; thus, a mixed strategy is
a probability distribution over the set of links. The support of the mixed strategy
for user i ∈ [n], denoted support(i), is the set of those pure strategies (links) to
which i assigns positive probability. A pure strategy profile is represented by an
n-tuple 〈�1, �2, . . . , �n〉 ∈ [m]n; a mixed strategy profile is represented by an n×m
probability matrix P of nm probabilities pj

i , i ∈ [n] and j ∈ [m], where pj
i is the

probability that user i chooses link j.
For a probability matrix P, define indicator variables I�

i ∈ {0, 1}, i ∈ [n] and
� ∈ [m], such that I�

i = 1 if and only if p�
i > 0. Thus, the support of the mixed

strategy for user i ∈ [n] is the set {� ∈ [m] | I�
i = 1}. For each link � ∈ [m], define

the view of link �, denoted view(�), as the set of users i ∈ [n] that potentially
assign their traffics to link �; so, view(�) = {i ∈ [n] | I�

i = 1}. A link � ∈ [m]
is solo [9] if |view(�)| = 1; thus, there is exactly one user, denoted s(�), that
considers a solo link �.
Syntactic Classes of Mixed Strategies. By a syntactic class of mixed strategies, we
mean a class of mixed strategies with common support characteristics. A mixed
strategy profile P is fully mixed [9] if for all users i ∈ [n] and links j ∈ [m],
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Ij
i = 1. Throughout, we will be considering a pure strategy profile as a special
case of a mixed strategy profile. in which all (mixed) strategies are pure. We
proceed to define two new variations of fully mixed strategy profiles. A mixed
strategy profile P is generalized fully mixed if there exists a subset Links ⊆ [m]
such that for each pair of a user i ∈ [n], and a link j ∈ [m], Ij

i = 1 if j ∈ Links
and 0 if j �∈ Links. Thus, the fully mixed strategy profile is the special case of
generalized fully mixed strategy profiles where Links = [m].

Cost Measures. Denote c� > 0 the capacity of link � ∈ [m], representing the rate
at which the link processes traffic. So, the latency for traffic w through link �
equals w/c�. In the model of uniform capacities, all link capacities are equal to
c, for some constant c > 0; link capacities may vary arbitrarily in the model of
arbitrary capacities. For a pure strategy profile 〈�1, �2, . . . , �n〉, the latency cost
for user i ∈ [n], denoted λi, is (

∑
k:�k=�i

wk)/c�i ; that is, the latency cost for
user i is the latency of the link it chooses. For a mixed strategy profile P, denote
W � the expected traffic on link � ∈ [m]; clearly,W � =

∑n
i=1 p

�
iwi. Given P, define

the m× 1 expected traffic vectorW induced by P in the natural way. Given P,
denote Λ� the expected latency on link � ∈ [m]; clearly, Λ� = W �

c� . Define the
m× 1 expected latency vector Λ in the natural way. For a mixed strategy profile
P, the expected latency cost for user i ∈ [n] on link � ∈ [m], denoted λ�

i , is the
expectation, over all random choices of the remaining users, of the latency cost

for user i had its traffic been assigned to link �; thus, λ�
i =

wi+
∑

k=1,k �=i
p�

kwk

c� =
(1−p�

i)wi+W �

c� . For each user i ∈ [n], the minimum expected latency cost, denoted
λi, is the minimum, over all links � ∈ [m], of the expected latency cost for user
i on link �; thus, λi = min�∈[m] λ

�
i . For a probability matrix P, define the n× 1

minimum expected latency cost vector λ induced by P in the natural way.

Associated with a traffic vector w and a mixed strategy profile P is the social
cost [7, Section 2], denoted SC(w,P), which is the expectation, over all random
choices of the users, of the maximum (over all links) latency of traffic through

a link; thus, SC(w,P) =
∑

〈�1,�2,...,�n〉∈[m]n

(∏n
k=1 p

�k

k · max�∈[m]

∑
k:�k=�

wk

c�

)
.

Note that SC (w,P) reduces to the maximum latency through a link in the
case of pure strategies. On the other hand, the social optimum [7, Section
2] associated with a traffic vector w, denoted OPT(w), is the least possible
maximum (over all links) latency of traffic through a link; thus, OPT(w) =

min〈�1,�2,...,�n〉∈[m]n max�∈[m]

∑
k:�k=�

wk

c� . Note that while SC(w,P) is defined in
relation to a mixed strategy profile P, OPT(w) refers to the optimum pure strat-
egy profile.

Nash Equilibria. We are interested in a special class of mixed strategies called
Nash equilibria [14] that we describe below. Formally, the probability matrix P
is a Nash equilibrium [7, Section 2] if for all users i ∈ [n] and links � ∈ [m],
λ�

i = λi if I�
i = 1, and λ�

i > λi if I�
i = 0. Thus, each user assigns its traffic with

positive probability only on links (possibly more than one of them) for which
its expected latency cost is minimized; this implies that there is no incentive for
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a user to unilaterally deviate from its mixed strategy in order to avoid links on
which its expected latency cost is higher than necessary.

For each link � ∈ [m], denote c̃� = c�/(
∑n

j=1 c
j), the normalized capacity of

link �. The following result due to Mavronicolas and Spirakis [9, Theorem 14]
provides necessary and sufficient conditions for the existence (and uniqueness)
of Nash equilibria in the case of fully mixed strategies, assuming that all traffics
are identical.

Lemma 1 (Mavronicolas and Spirakis [9]). Consider the case of fully mixed
strategy profiles, under the model of arbitrary capacities. Assume that all traffics
are identical. Then, for all links � ∈ [m], c̃� ∈

(
1

m+n−1 ,
n

m+n−1

)
if and only if

there exists a Nash equilibrium, which must be unique.

We remark that although, apparently, Lemma 1 determines a collection of 2m
necessary and sufficient conditions (m pairs with two conditions per pair) for
a fully mixed Nash equilibrium, the fact that all normalized capacities sum to
1 implies that each pair reduces to one condition (say the one establishing the
lower bound for c�, � ∈ [m]. Furthermore, all m conditions hold if (and only if)
the one for min�∈[m] c

� holds. Thus, Lemma 1 establishes that existence of a fully
mixed Nash equilibrium can be decided in Θ(m) time by finding the minimum
capacity c�0 and checking whether or not the corresponding normalized capacity
c̃�0 satisfies c̃�0 > 1

m+n−1 . (This observation is due to B. Monien [13].)
Algorithmic Problems. We now formally define several algorithmic problems re-
lated to Nash equilibria. A typical instance is defined by: a number n of users; a
number m of links; for each user i, a rational number wi > 0, called the traffic
of user i; for each link j, a rational number cj > 0, called the capacity of link j.

In NASH EQUILIBRIUM SUPPORTS, we want to compute indicator variables
Ij
i ∈ {0, 1}, where 1 ≤ i ≤ n and 1 ≤ j ≤ m, that support a Nash equilibrium
for the system of the users and the links.

In BEST NASH EQUILIBRIUM SUPPORTS, we seek the user supports cor-
responding to the Nash equilibrium with the minimum social cost for the given
system of users and links.

In WORST NASH EQUILIBRIUM SUPPORTS, we seek the user supports
defining the Nash equilibrium with the maximum social cost for the given system
of users and links.

NASH EQUILIBRIUM SOCIAL COST is a problem of a somehow counting
nature. In addition to the user traffics and the link capacities, an instance is
defined by a Nash equilibrium P for the system of the users and the links, and
we want to compute the social cost of the Nash equilibrium P.

3 Pure Nash Equilibria

We start with a preliminary result remarked by Kurt Mehlhorn.

Theorem 1. There exists at least one pure Nash equilibrium.
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Proof sketch. Consider the universe of pure strategy profiles. Each such pro-
file induces a sorted expected latency vector Λ = 〈Λ1, Λ2, . . . , Λm〉, such that
Λ1 ≥ Λ2 ≥ . . . ≥ Λm, in the natural way. (Rearrangement of links may be
necessary to guarantee that the expected latency vector is sorted.) Consider the
lexicographically minimum expected latency vector Λ0 and assume that it cor-
responds to a pure strategy profile P0. We will argue that P0 is a (pure) Nash
equilibrium. Indeed, assume, by way of contradiction, that P0 is not a Nash equi-
librium. By definition of Nash equilibrium, there exists a user i ∈ [n] assigned
by P0 to link j ∈ [m], and a link κ ∈ [m] such that Λj > Λκ + wi

cκ . Construct
now from P0 a pure strategy profile P̂0 which is identical to P0 except that
user i is now assigned to link κ. Denote Λ̂0 = 〈Λ̂1, Λ̂2, . . . , Λ̂m〉 the traffic vector
induced by P̂0. By construction, Λ̂j = Λj − wi

cj < Λj , while by construction and
assumption, Λ̂κ = Λκ + wi

cκ < Λj . Since Λ0 is sorted in non-increasing order
and Λκ + wi

cκ < Λ
j , Λj precedes Λκ in Λ0. Clearly, all entries preceding Λj in Λ0

remain unchanged in Λ̂0. Consider now the j-th entry of Λ̂0. There are three
possibilities. The j-th entry of Λ̂0 is either Λ̂j , or Λ̂κ, or some entry of Λ0 that
followed Λj in Λ0 and remained unchanged in Λ̂0. We obtain a contradiction in
all possible cases. ��

We remark that the proof of Theorem 1 establishes that the lexicographically
minimum expected traffic vector represents a (pure) Nash equilibrium. Since
there are exponentially many pure strategy profiles and that many expected
traffic vectors, Theorem 1 only provides an inefficient proof of existence of pure
Nash equilibria (cf. Papadimitriou [17]).
Computing a Pure Nash Equilibrium. We show:

Theorem 2. NASH EQUILIBRIUM SUPPORTS is in P when restricted to pure
equilibria.

Proof sketch. We present a polynomial-time algorithm Apure that computes the
supports of a pure Nash equilibrium. Roughly speaking, the algorithm Apure

works in a greedy fashion; it considers each of the user traffics in non-increasing
order and assigns it to the link that minimizes (among all links) the latency
cost of the user had its traffic been assigned to that link. Clearly, the supports
computed by Apure represent a pure strategy profile. We will show that this
profile is a Nash equilibrium. We argue inductively on the number of i iterations,
1 ≤ i ≤ n, of the main loop of Apure. We prove that the system of users and
links is in Nash equilibrium after each such iteration. ��

(This nice observation is due to B. Monien [13].) We remark that Apure can be
viewed as a variant of Graham’s Longest Processing Time (LPT [4]) algorithm
for assigning tasks to identical machines. Nevertheless, since in our case the links
may have different capacities, our algorithm instead of choosing the link that will
first become idle, it actually chooses the link that minimizes the completion time
of the specific task (i.e., the load of a machine prior to the assignment of the
task under consideration, plus the overhead of this task). Clearly, this greedy
algorithm leads to an assignment which is, as we establish, a Nash equilibrium.
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Computing the Supports of the Best or Worst Pure Nash Equilibria. We show:

Theorem 3. BEST NASH EQUILIBRIUM SUPPORTS is NP-hard.
Proof sketch. Reduction from BIN PACKING (see, e.g., [16]). ��
Theorem 4. WORST NASH EQUILIBRIUM SUPPORTS is NP-hard when re-
stricted to pure equilibria.

Proof sketch. Reduction from BIN PACKING (see, e.g., [16]). ��

4 Mixed Nash Equilibria

We present a polynomial upper bound on the complexity of computing a mixed
Nash equilibrium for the case where all traffics are identical. We show:

Theorem 5. Assume that all traffics are identical. Then, NASH EQUILIBRIUM
SUPPORTS is in P when it asks for the supports of a mixed equilibrium.
Proof sketch. We present a polynomial-time algorithm Agfm that computes the
supports of a generalized fully mixed Nash equilibrium. We start with an in-
formal description of Agfm. In a preprocessing step, Agfm sorts all capacities
and computes all normalized capacities. Roughly speaking, Agfm considers all
subsets of fast links, starting with the set of all links; for each subset, it checks
whether there exists a Nash equilibrium for the system of all users and the links
in the subset, by using Lemma 1 (and the discussion following it). The algorithm
Agfm stops when it finds one; else, it drops the slowest link in the subset and
continues recursively. Assume wlog that c1 ≥ c2 ≥ . . . ≥ cm. For any integer m′,
where 1 ≤ m′ ≤ m, call a set of links {�1, . . . , �m′} a fast link set. So, we observe
that Agfm examines all generalized fully mixed strategy profiles for a system of
all users and a fast link set. Hence, to establish correctness for Agfm, we need
to show that at least one of the generalized fully mixed strategy profiles for a
system of all users and a fast link set is a Nash equilibrium. We show this by
induction on m. ��

We note that the preprocessing step of Agfm takes Θ(m lgm) + Θ(m) =
Θ(m lgm) time. Next, the initial step of Agfm (which considers all links) checks
the validity of a single condition (by the discussion following Lemma 1). After
this, the loop is executed at most m − 1 times. For 1 ≤ m′ ≤ m − 1, the m′-th
execution checks the validity of a single condition (by the discussion following
Lemma 1) and the validity of an additional condition (from the definition of
Nash equilibrium). Thus, the time complexity of Agfm is at most Θ(m lgm) +∑

1≤m′≤m−1 2 = Θ(m lgm).
A Characterization of the Worst Mixed Nash Equilibrium. We first prove a struc-
tural property of mixed Nash equilibria, which we then use to provide a syntactic
characterization of the worst mixed Nash equilibrium under the model of uniform
capacities.

For the following proposition, recall the concepts of solo link and view. In
addition, let us say that a user crosses another user if their supports cross each
other, i.e. their supports are neither disjoint nor the same.
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Proposition 1. In any Nash equilibrium P under the model of uniform capac-
ities, P induces no solo link considered by a user that crosses another user.

Proof. Assume that P induces a solo link � considered by a user s(�) that crosses
another user; thus, there exists another link �0 ∈ support(s(�)) and a user i0 ∈
view(�0), so that p�0

i0
> 0. Therefore, λ�0

s(�) = ws(�) + p�0
i0
wi0 > ws(�) = λ�

s(�),
which contradicts the hypothesis that P is a Nash equilibrium. ��
Theorem 6. Consider the model of uniform capacities and assume that n = 2.
Then, the worst Nash equilibrium is the fully mixed Nash equilibrium.

Proof sketch. Assume wlog that w1 ≥ w2, and consider any Nash equilibrium
P. If P is pure, we observe that it is not possible for both users to have the
same pure strategy. This implies that the social cost of any pure equilibrium
is max{w1, w2} = w1. If P is a mixed equilibrium, Proposition 1 implies that
there are only two cases to consider: either support(1) ∩ support(2) = ∅ or
support(1) = support(2). In the former case, the social cost is w1. In the latter
case, the only possible Nash equilibrium is the fully mixed one having social cost
SC(w,P) = w1 + w2

∑
�∈[m] p

�
1p

�
2 = w1 + w2 · 1

m . ��
Worst Versus Fully Mixed Nash Equilibria. We show:

Theorem 7. Consider the model of identical traffics. Then, the social cost of
the worst mixed Nash equilibrium is at most 49.02 times the social cost of any
generalized fully mixed Nash equilibrium.

Proof sketch. Assume that c1 ≥ c2 ≥ . . . ≥ cm. Let Ctot =
∑m

�=1 c
�. Wlog, we

can assume that the minimum link capacity is 1 (i.e., cm = 1) and that all users
have a unit amount of traffic (i.e. for all i ∈ [n], wi = w = 1). We use 1 to denote
the corresponding traffic vector. It can be easily verified that it suffices to show
the following:

Lemma 2. Let cm = 1, c1 ≥ 2, and n ≥ min{3 lnm,Ctot −m+2}. In addition,
let P be the generalized fully mixed strategy profile computed by the algorithm
Agfm, and let P be a strategy profile corresponding to an arbitrary Nash equilib-
rium. Then, 49.02SC(1,P) ≥ SC(1,P).

Proof sketch. To distinguish between the expected latencies of the generalized
fully mixed Nash equilibrium defined by P and the expected latencies of the
Nash equilibrium defined by P, throughout our proof, we use Λ1, . . . , Λm to
denote the expected link latencies in the generalized fully mixed equilibrium
computed by the algorithm Agfm, and Λ1, . . . , Λm to denote the expected link
latencies in P. In addition, we use Λmax and Λmax to denote the maximum
link latency in the P and P, respectively. We first show some bounds on the
expected link latencies for any Nash equilibrium. The first bound states that,
for any non-solo link � ∈ [m], the expected latency of � in any Nash equilibrium
is bounded from above by a small constant factor times the expected latency of
the same link in the generalized fully mixed equilibrium computed by Agfm, i.e.

Λ� ≤ 2
(
1 + 1

|view(�)|−1

)
Λ�, From now on, the analysis focuses on mixed strategy
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profiles P. Then, we upper bound the probability that the maximum latency of
the generalized fully mixed equilibrium does not exceed a given number µ by

proving that for any µ ∈
[
Λ1, n

c1

]
, Pr[Λmax < µ] ≤ 4 exp

(
−∑m

j=1

(
Λj

2µ

)µcj )
.

We also bound from above the probability that the maximum latency of the
equilibrium P is greater than or equal to a given number µ. In particular, we

prove that for any µ > n
Ctot

+ m−1
Ctot

, Pr[Λmax ≥ µ] ≤ ∑m
j=1

(
eΛj

µ

)µcj

. So, we

combine these to show that there exists a number µ∗ ≥ Λ1 such that SC(1,P) ≥
µ∗

3 and 6e(1 + 0.0018625)µ∗ ≥ SC(1,P). ��
The proof is now complete. ��

Computing the Social Cost of a Mixed Nash Equilibrium. We show:

Theorem 8. NASH EQUILIBRIUM SOCIAL COST is #P-complete when re-
stricted to mixed equilibria.

Proof sketch. First of all, we remark that given a set of integer weights J =
{w1, . . . , wn} and an integer C ≥ w1+···+wn

2 , it is #P-complete to count the
number of subsets of J with total weight at most C, since this corresponds to
counting the number of feasible solutions of a KNAPSACK instance (see, e.g.,
[16]). Therefore, given n Bernoulli random variables Yi, each taking an integer
value wi with probability 1

2 and 0 otherwise, and an integer C as above, it
is #P-complete to compute the probability that Y =

∑n
i=1 Yi exceeds C, i.e.

Pr(Y ≤ C). We show that two calls to a (hypothetical) oracle computing the
social cost of a given mixed Nash equilibrium suffice to compute the above
probability.

Given the random variables Yi, we consider three identical capacity links
(denoted as links 0, 1, 2 respectively) and n + 1 users, where the user 0 has
traffic C and the user i, i ∈ [n], has traffic wi. Since C ≥ w1+···+wn

2 , if user
0 chooses link 0 with certainty (i.e. p00 = 1) and each of the remaining users
chooses link 1 or 2 with probability 1

2 (i.e. p1i = p2i = 1
2 ), this mixed strategy

profile corresponds to a Nash equilibrium. In addition, since wi’s are integers,
the social cost equals SC1 = C+2

∑∞
B=C+1 Pr(Y ≥ B). If we increase the traffic

of user 0 to C+1, the social cost becomes SC2 = C+1+2
∑∞

B=C+2 Pr(Y ≥ B).
Therefore, 2 Pr(Y ≥ C + 1) = 1+ SC1 − SC2, and since C and wi’s are integers,
Pr(Y ≤ C) = 1 − Pr(Y ≥ C + 1) = 1−SC1+SC2

2 . ��
Approximating the Social Cost of a Mixed Nash Equilibrium. We show:

Theorem 9. Consider the model of uniform capacities. Then, there exists a
fully polynomial, randomized approximation scheme for NASH EQUILIBRIUM
SOCIAL COST.

Proof sketch. The idea of the scheme is to define an efficiently samplable random
variable Λ which accurately estimates the social cost of the given Nash equilib-
rium P on a (given) traffic vectorw. For this, we design the following experiment,
where N is a fixed parameter that will be specified later: “Repeat N times the
random experiment of assigning each user to a link in its support according to
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the (given) Nash probabilities. Define Λ to be the random variable representing
the maximum latency (over all links); for each experiment Ei, 1 ≤ i ≤ N , denote

Λi the measured value for Λ. Output the mean
∑N

r=1
Λr

N of the measured val-
ues.” By the Strong Law of Large Numbers (see, e.g., [5, Section 7.5]), it follows

that
∣∣∣∣
∑N

r=1
Λr

N − SC (w,P)
∣∣∣∣ ≤ ε SC (w,P), for any constant ε > 0 provided that

N ≥ 1
ε SC (w,P). By the results in [1,6], SC (w,P) = O

(
lgn
lg lg n

)
· OPT (w).

Since OPT (w) ≤ ∑n
i=1 wi, it follows that SC (w,P) = O

(
lgn
lg lg n

)
· ∑n

i=1 wi. It

suffices to take N to be 1
ε times this upper bound on SC (w,P). ��

5 Open Problems

Our work leaves open numerous interesting questions that are directly related to
our results. We list a few of them here: What is the time complexity of computing
the supports of a pure Nash equilibrium? Theorem 2 shows that it is O(n lg n+
nm) = O(nmax{lg n,m}). Can this be further improved? Consider the specific
pure Nash equilibria that are computed by the algorithm that is implicit in the
proof of Theorem 1 and the algorithm Apure in the proof of Theorem 2. It would
be interesting to study how well these specific pure Nash equilibria approximate
the worst one (in terms of social cost). What is the complexity of computing
the supports of a generalized fully mixed Nash equilibrium? Theorem 5 shows
that it is O(m lgm) in the case where all traffics are identical. Can this be
further improved? Nothing is known about the general case, where traffics are
not necessarily identical.

It is tempting to conjecture that Theorem 6 holds for all values of n ≥ 2. In
addition, we conjecture that the generalized fully mixed strategy is actually the
worst-case Nash equilibrium for identical traffics and capacitated links (Theo-
rem 7 proves that it is already within constant factor from the worst case social
cost).

Besides these directly related open problems, we feel that the most significant
extension of our work would be to study other specific games and classify their
instances according to the computational complexity of computing the Nash
equilibria of the game. We hope that our work provides an initial solid ground
for such studies.

Some additional results on the combinatorial structure and the computa-
tional complexity of Nash equilibria for the selfish routing game considered in
this paper were obtained recently in a follow-up work by Burkhard Monien [13].
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