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Abstract

In a distributed system with attacks and defenses, an economic investment in defense mechanisms aims
at increasing the degree of system protection against the attacks. We study such investments in the popular
selfish setting, where both attackers and defenders are self-interested entities. In particular, we assume a
reward-sharing scheme among interdependent defenders; each defender wishes to (locally) maximize its own
fair share of the attackers caught due to him (and possibly due to the involvement of others). Addressed
in this work is the fundamental question of determining the maximum amount of protection achievable
by a number of such defenders against a number of attackers if the system is in a Nash equilibrium. As
a measure of system protection, we adapt the Defense-Ratio [12], which describes the expected (inverse)
proportion of attackers caught by the defenders. In a Defense-Optimal Nash equilibrium, the Defense-Ratio
is optimized.

We discover that the answer to this question depends in a quantitatively subtle way on the invested
number of defenders. More specifically, we identify graph-theoretic thresholds for the number of defenders
that determine the possibility of optimizing Defense-Ratio. In this vein, we obtain, through an extensive
combinatorial analysis of Nash equilibria, a comprehensive collection of trade-off results:

• When the number of defenders is either sufficiently small or sufficiently large, there are cases where the
Defense-Ratio can be optimized. The corresponding optimization problem is then computationally
tractable when the number of defenders is large. The problem becomes NP-complete when the
number of defenders is small; the intractability is shown by reduction from a previously unconsidered
combinatorial problem in Fractional Graph Theory.

• Perhaps paradoxically, there is a middle range of values for the number of defenders where optimizing
the Defense-Ratio is impossible (in every case).

• It is always possible to apply a simple and efficient replication technique on the defenders in order to
achieve an arbitrarily good approximation to a Defense-Optimal Nash equilibrium.

Due to the space constraints, almost all technical proofs are shifted to the Appendix. The Appendix may be
consulted at the discretion of the Program Committee.
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1 Introduction

The Model and its Motivation. Safety and security have traditionally been included among the key is-
sues for the design and operation of a distributed system. With the unprecedented advent of the Internet,
there is a growing interest among the Distributed Computing community in formalizing, designing and ana-
lyzing distributed systems prone to security attacks and defenses. A new dimension is that Internet servers
(hosts) and clients are controlled by selfish agents whose interest is the local maximization of their own ben-
efits (rather than optimizing global performance). So, it is a challenging task to consider the simultaneous
impact of selfish and malicious behavior of Internet agents. In this work, a distributed system is modeled as
a graph G = (V, E); nodes represent the hosts and edges represent the links.

An attacker (also called virus) is a malicious client that targets a host to destroy. Associating attacks
with nodes make sense since malicious attacks are often targeted at destroying individual servers. A defender
is a non-malicious client modeling the antivirus software implemented on a link in order to protect its two
connected hosts. Associating defenses with edges is motivated by Network Edge Security [8]; this is a recently
proposed, distributed, firewall architecture, where antivirus software, rather than being statically installed
and licensed at a host, is implemented by a distributed algorithm running on a specific subnetwork. Such
distributed implementations are attractive since they offer to the hosts more fault-tolerance and the benefit
of sharing the antivirus licensing costs. In this work, we focus on the simplest possible case where the
subnetwork is just a single link; a precise understanding of the mathematical pitfalls of attacks and defenses
for this simplest case is a necessary prerequisite to making progress for the general case.

Since malicious attacks are independent, each trying to maximize the amount of harm it causes during its
lifetime, it is natural to model each attacker as a strategic player wishing to maximize the chance of escaping
the antivirus software; thus, the strategy of one attacker does not (directly) affect the profit of another.
In contrast, one may consider at least three approaches for modeling the defenses: (1) Defenses are not
strategic at all; such an assumption would lead to a (centralized) optimization problem of computing the best
locations for the defenders (given that attackers are strategic). (2) Defenses are strategic, and they cooperate
to maximize the number of caught viruses. This is modeled by assuming a single (strategic) defender, which
centrally chooses multiple links and it has been studied in [5]. (3) Defenses are strategic and non-cooperative.

We have chosen to adopt the third approach. This choice is motivated as follows: (1) In a large network,
the defense policies are independent and decentralized. Hence, it may not be so realistic to assume that a
centralized entity coordinates all defenses. (2) There are financial incentives offered by hosts to heterogeneous
(locally installed) defense mechanisms on the basis of effectiveness (i.e., number of sustained attacks); for
example, prices for antivirus software may be determined on the basis of recommendation systems, which
collect data about effectiveness from scrutinized hosts. Such incentives induce a natural competition among
the defenses. (3) Think of a network owner, who is interested in maximizing the protection of the network
against attacks. To that end, the owner has subcontracted the task to a set of independent, deployable agents.
Clearly, each such agent is selfish, trying to optimize the protection he offers in order to be paid more.

We materialize the assumption that defenses are non-cooperative by considering an intuitive reward-
sharing scheme among the defenders. When more than one colocated defenders are extinguishing the same
attacker(s), each will be rewarded with the fair share of the number of attackers caught. Thus, each defender
is a strategic player wishing to maximize its fair share to the number of attackers caught. We assume that
there are ν attackers and µ defenders; they are allowed to use mixed strategies. In a Nash equilibrium [13, 14],
no player can unilaterally increase its (expected) profit. Motivated by the Price of Stability [1], we study
Defense-Optimal Nash equilibria, where the ratio of the expected number of attackers extinguished by the
defenders, over the optimum ν, called Defense-Ratio, is as small as possible. (Contrast this to worst-case
equilibria and the Price of Anarchy [6].) The very special but yet highly non-trivial case of this model with
a single defender was already introduced in [12] and further studied in [5, 9, 10, 11].

Summary of Results. We are interested in the possibility of achieving, and the complexity of computing,
a Defense-Optimal Nash equilibrium using a given number of defenders. Note that the number of defenders
in this theoretical model directly translates into the real cost of purchasing and installing several units of
(licensed) antivirus software. So, this question addresses the cost-effectiveness of economic investments in
security for a distributed system. Through a comprehensive collection of results, we discover that the answer
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depends in a quantitatively subtle way on the number of defenders: There are two graph-theoretic thresholds,

namely
|V |
2 and β′(G) (the size of a Minimum Edge Cover), which determine this possibility. (Recall that

always
|V |
2 ≤ β′(G).)

• When either µ ≤
|V |
2 or µ ≥ β′(G), there are cases with a Defense-Optimal Nash equilibrium.

– For µ ≤
|V |
2 , we provide a combinatorial characterization of graphs admitting a Defense-Optimal

Nash equilibrium (Theorem 5.3). Roughly speaking, these make a subclass of the class of graphs
with a Fractional Perfect Matching where it is possible to partition some Fractional Perfect Match-
ing into µ smaller, vertex-disjoint Fractional Perfect Matchings so that the total weight (inher-

ited from the Fractional Perfect Matching) in each partite is the same

(

and equal to
|V |
2 µ

)

. We

prove that the recognition problem for this subclass, a previously unconsidered, combinatorial
problem in Fractional Graph Theory [15], is NP-complete (cf. Proposition 5.7). Hence, the de-
cision problem for the existence of a Defense-Optimal Nash equilibrium is NP-complete as well
(

forµ ≤
|V |
2

)

(Corollary 5.8). A further interesting consequence of the combinatorial character-

ization

(

forµ ≤
|V |
2

)

is that if there is a Defense-Optimal Nash equilibrium, then µ divides |V |

(Corollary 5.4).

On the positive side, we identify a more restricted subclass of graphs (within the class of graphs
with a Fractional Perfect Matching), namely those with a Perfect Matching, that admit a Defense-
Optimal Nash equilibrium in certain, well-characterized and polynomial time recognizable cases
(Theorem 5.9).

– When there are µ ≥ β′(G) defenders, we identify two cases where there are Defense-Optimal
Nash equilibria with some special structure (namely, the balanced Nash equilibria); these can be
computed in polynomial time (Theorems 7.2 and 7.3).

• For the the middle range
|V |
2 < µ < β′(G) of values of µ, we provide a combinatorial proof that there is

no graph with a Defense-Optimal Nash equilibrium (Theorem 6.1). This is somehow paradoxical, since

with fewer defenders

(

µ ≤
|V |
2

)

, we already identified cases with a Defense-Optimal Nash equilibrium.

Since the value of the Defense-Ratio changes around µ =
|V |
2 , this paradox may not be wholly surprising.

• For any number of defenders µ, it is always possible to apply a replication technique on the defenders
in order to transform a Nash equilibrium for the case of one defender into a Nash equilibrium for µ > 1
defenders (Theorem 8.2). Since a Nash equilibrium for the case of one defender can be computed in
polynomial time [9], this implies that the same holds for the general case as well. Whenever the original
Nash equilibrium (for µ = 1) is Defense-Optimal, the resulting Nash equilibrium (for µ > 1) may get
arbitrarily close to (but never be) a Defense-Optimal Nash equilibrium. We propose this replication
technique as a compensation for the cases with no Defense-Optimal Nash equilibria.

Related Work. We emphasize that the assumption of µ > 1 defenders has required a far more challenging
combinatorial and graph-theoretic analysis than for the case of one defender studied in [5, 9, 10, 11, 12].
Hence, we view our work as a major generalization of the work in [5, 9, 10, 11, 12] towards the more realistic
case of µ > 1 defenders. The notion of Defense-Ratio generalizes a corresponding definition from [9] to the
case of µ > 1 defenders. The special case where µ = 1 of Theorem 5.3 was shown in [10]. (Note that this
special case allowed for a polynomial time algorithm to decide the existence of and compute a Defense-Optimal
Nash equilibrium, since it reduces to recognizing a graph with a Fractional Perfect Matching.)

2



2 Background and Preliminaries

Graph Theory. For an integer n ≥ 1, denote [n] = {1, . . . , n}. Throughout, we consider a simple undirected

graph G = 〈V, E〉 (with no isolated vertices). We will sometimes model an edge as the set of its two end
vertices. For a vertex set U ⊆ V , denote as G(U) the subgraph of G induced by U . For an edge set F ⊆ E,
denote as G(F ) the subgraph of G induced by F ; denote as VerticesG(F ) = {v ∈ V | (u, v) ∈ F for some u ∈
V }. A component of G is a maximal connected subgraph of it. Denote as dG(u) the degree of vertex u in G.
An edge (u, v) ∈ E is pendant if dG(u) = 1 but dG(v) > 1.

A Vertex Cover is a vertex set V C ⊆ V such that for each edge (u, v) ∈ E either u ∈ V C or v ∈ V C; a
Minimum Vertex Cover is one that has minimum size (denoted as β(G)). An Edge Cover is an edge set
EC ⊆ E such that for each vertex v ∈ V , there is an edge (u, v) ∈ EC; a Minimum Edge Cover is one that
has minimum size (denoted as β′(G)). Denote as EC(G) the set of all Edge Covers of G.

A Matching is a set M ⊆ E of non-incident edges; a Maximum Matching is one that has maximum size.
The first polynomial time algorithm to compute a Maximum Matching appears in [3]. It is known that
computing a Minimum Edge Cover reduces to computing a Maximum Matching. (See, e.g., [16, Theorem

3.1.22].) A Perfect Matching is a Matching that is also an Edge Cover; so, a Perfect Matching has size
|V |
2 . A

Fractional Matching is a function f : E → [0, 1] such that for each vertex v ∈ V ,
∑

e|v∈e f(e) ≤ 1. (Matching
is the special case where f(e) ∈ {0, 1} for each edge e ∈ E.) For a Fractional Perfect Matching f , denote as
Ef = {e ∈ E | f(e) > 0}. A Fractional Perfect Matching is a Fractional Matching f with

∑

e|v∈e f(e) = 1 for
all vertices v ∈ V . We observe a simple property of Fractional Perfect Matchings:

Lemma 2.1 For a Fractional Perfect Matching f , the graph G(Ef ) has no pendant edges.

Lemma 2.1 implies that each component of the graph G(Ef ) is either a single edge or a subgraph without
pendant edges. Given two Fractional Matchings f and f ′, write that f ′ ⊆ f (f ′ ⊂ f) if Ef ′ ⊆ Ef (Ef ′ ⊂ Ef ).
Say that two Fractional Matchings f and f ′ are equivalent if for each vertex v ∈ V ,

∑

e|v∈e f ′(e) =
∑

e|v∈e f(e).
We present two reduction techniques for the simplification of Fractional (Perfect) Matchings. We first prove:

Proposition 2.2 There is a polynomial time algorithm to transform a Fractional Matching f for a graph G

into an equivalent Fractional Matching f ′ ⊆ f for G such that G(Ef ′) has no even cycle.

To prove Proposition 2.2, we present and analyze the algorithm EliminateEvenCycles:

Algorithm EliminateEvenCycles
Input: A graph G(V,E) and a Fractional Matching f for G.
Output: An equivalent Fractional Matching f ′ ⊆ f for G such that G(Ef ′) has no even cycle.

While G(Ef ) has an even cycle C do:

(1) Choose an edge e0 ∈ E(C) such that f(e0) = mine∈E(C) f(e).

(2) Define a function g : E(C) → {−1, 0,+1} with g(e) = +1 or − 1 alternately, starting with g(e0) = −1.

(3) For each edge e ∈ E, set f ′(e) :=

{

f(e) + g(e) · f(e0), if e ∈ E(C)
f(e), if e 6∈ E(C)

(4) Set f := f ′.

Proposition 2.3 Consider a Fractional Perfect Matching f for a graph G such that G(Ef ) has no even cycle.
Then, there is a polynomial time algorithm to transform f into an equivalent Fractional Perfect Matching
f ′ ⊆ f such any odd cycle in the graph G(Ef ′) is a component of it.

To prove Proposition 2.3, we present and analyze the algorithm IsolateOddCycles:
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Algorithm IsolateOddCycles
Input: A graph G(V,E) and a Fractional Perfect Matching f for G such that G(Ef ) has no even cycles.
Output: An equivalent Fractional Perfect Matching f ′ ⊆ f for G such that any odd cycle in G(Ef ′) is a component.

While G(Ef ) has an odd cycle C that is not a component do:

(1) Take any vertex v0 ∈ V (C) with dG(Ef )(v0) ≥ 3 and an edge e0 = (v0, v1) ∈ Ef with v1 6∈ V (C).

(2) While E(C) ∪ {e0} ⊆ Ef do:

(2/a) Find a DFS path v1, v2, · · · , vr with vr = vl for some l, 1 ≤ l < r − 1.

(2/b) Define a function g : E(C) ∪ {(vi, vi+1) | 0 ≤ i ≤ r − 1} →
{

+1,−1,+1
2 ,−1

2

}

so that

g(e) =











+1 or − 1 (alternatily, starting with − 1), if e = (vi, vi+1) with 0 ≤ i ≤ l − 1

+1
2 or − 1

2 (alternatily, starting with + 1
2), if e ∈ E(C)

+1
2 or − 1

2 (alternatily, starting with − sgn(g(vl−1, vl)), if e = (vi, vi+1) with l ≤ i ≤ r − 1

(2/c) Find e′ that realizes min
{

min0≤i≤l−1 f((vi, vi+1)), 2mine∈E(C) f(e), 2minl≤i≤r−1 f((vi, vi+1))
}

.

(2/d) If g(e′) > 0 then set g := −g.

(2/e) For each edge e ∈ E, set

f ′(e) :=







f(e) + g(e) · min
{

min0≤i≤l−1 f((vi, vi+1)), 2mine∈E(C) f(e), 2minl≤i≤r−1 f((vi, vi+1))
}

,

if e ∈ E(C) ∪ {(vi, vi+1) | 0 ≤ i ≤ r − 1}
f(e), otherwise

(2/f) Set f := f ′.

It is known that the class of graphs with a Fractional Perfect Matching is recognizable in polynomial time.
(See [2] for an efficient combinatorial algorithm.) The same holds for the corresponding search problem.

3 Framework

Basics. Fix integers ν ≥ 1 and µ ≥ 1. Associated with G is a strategic game Πν,µ(G) on G:

• The set of players is N = NA ∪ND, where NA contains ν attackers Ai and ND contains µ defenders Di.

• The strategy set SAi
of attacker Ai is V , and the strategy set SDi

of defender Di is E. So, the strategy set
S of the game is S = (×Ai∈NA

SAi
) × (×Di∈ND

SDi
) = V ν × Eµ.

A profile (or pure profile) is a (ν + µ)-tuple s = 〈sA1
, . . . , sAν

, sD1
, . . . , sDµ

〉 ∈ S.

• – The Individual Profit of attacker Ai is a function IPAi
: S → {0, 1} with

IPAi
(s) =

{

0 , sAi
∈

⋃

Dj∈ND
{sDj

}

1 , sAi
6∈

⋃

Dj∈ND
{sDj

}

Intuitively, when the attacker Ai chooses vertex v, he receives 0 if it is caught by a defender; otherwise,
he receives 1.

– The Individual Profit of defender Dj is a function IPDj
: S → R with

IPDj
(s) =

1

|defenderss(u)|
· |{Ai | sAi

= u}| +
1

|defenderss(v)|
· |{Ai | sAi

= v}| ,

where (u, v) = sDj
and for each vertex v ∈ V , defenderss(v) = {Di ∈ ND | v ∈ sDi

} Intuitively, the
defender Dj receives the fair share of the total number of attackers choosing each of the two end vertices
of the edge it chooses.

In the sequel, we will, by abuse of notation, use IPs(Ai) and IPs(Di) for IPAi
(s) and IPDi

(s), respectively;
we do so in order to emphasize reference to the player rather than to s.

Assume that v ∈ sDi
. Then, the proportion Prop

s
(Di, v) of defender Di on vertex v in the profile s is

given by Prop
s
(Di, v) = 1

|defenderss(v)|
.
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Pure Nash equilibria. The profile s is a pure Nash equilibrium [13, 14] if for each player i ∈ N , it

maximizes IPi(s) over all profiles t that differ from s only with respect to the strategy of player i; so, a pure
Nash equilibrium is a local maximizer for the Individual Profit of each player. Say that G admits a pure

Nash equilibrium, or that G is pure if there is a pure Nash equilibrium for the strategic game Πν,µ(G).

Mixed profiles. A mixed strategy for player i ∈ N is a probability distribution over Si; so, a mixed

strategy for an attacker (resp., a defender) is a probability distribution over vertices (resp., edges). A mixed

profile (or profile for short) s = 〈sA1
, . . . , sAν

, sD1
, . . . , sDµ

〉 is a collection of mixed strategies, one for each
player; sAi

(v) is the probability that attacker Ai chooses vertex v, and sDj
(e) is the probability that defender

Dj chooses edge e.
Fix now a mixed profile s. The support of player i ∈ N in the profile s, denoted as Support

s
(i), is

the set of pure strategies in Si to which i assigns strictly positive probability. Denote as Supports
s
(A) =

⋃

Ai∈NA
Support

s
(Ai); denote as Supports

s
(D) =

⋃

Di∈ND
Support

s
(Di). A vertex v is multidefender in the

profile s if |{Di ∈ ND | there is an edge e ∈ Support
s
(Di) such that v ∈ e}| ≥ 2; that is, a multidefender

vertex is “hit” by more than one defenders. Else, the vertex v is unidefender. A profile s is unidefender

if every vertex v ∈ V is unidefender in s.
A mixed profile s induces a probability measure Ps in the natural way. Fix a vertex v ∈ V and an
edge e ∈ E. For a defender Di, denote as Hit(Di, v) the event that defender Di chooses an edge in-
cident to vertex v. Denote as Hit(v) the event that some defender chooses an edge incident to vertex
v. Clearly, Hit(v) =

⋃

Di∈ND
Hit(Di, v). Hence, by the Principle of Inclusion-Exclusion, Ps(Hit(v)) =

∑

j∈[µ](−1)j−1
∑

D⊆ND||D|=j

∏

Dk∈D
Ps (Hit(Dk, v)) . From this expression, we immediately observe:

Lemma 3.1 Assume that vertex v is multidefender in s. Then, Ps(Hit(v)) <
∑

Di∈ND
Ps(Hit(Di, v)) .

A vertex v ∈ V is maxhit in the profile s if Ps(Hit(v)) = 1; a defender Di ∈ ND is a maxhitter in s if there
is an edge e ∈ Support

s
(Di) such that Ps(Hit(Di, v)) = 1 for some vertex v ∈ e. We prove:

Lemma 3.2 For a profile s,
∑

v∈V Ps(Hit(v)) ≤ 2 µ. (and < 2µ if there is a multidefender vertex).

Denote as MinHits = minv∈V Ps(Hit(v)), the Minimum Hitting Probability associated with s. Denote as
VPs(v) the expected number of attackers choosing vertex v (according to s); so, VPs(v) =

∑

i∈[ν] sAi
(v) . For

an edge e = (u, v) ∈ E, VPs(e) = VPs(u) + VPs(v). We observe:

Lemma 3.3 For a profile s, MinHits ≤
2µ
|V |

.

The mixed profile s induces also an Expected Individual Profit IPi(s) for each player i ∈ N , which is the
expectation (according to s) of the Individual Profit of player i.

• Induced by s is also the Conditional Expected Individual Profit IPs(Ai, v) of attacker Ai ∈ NA on
vertex v, which is the conditional expectation (according to s) of the Individual Profit of attacker Ai

had he chosen vertex v. So, IPs(Ai, v) = 1 − Ps(Hit(v)) . Then, the Expected Individual Profit IPs(Ai)
is IPs(Ai) =

∑

v∈V sAi
(v) · IPs(Ai, v) =

∑

v∈V sAi
(v) · (1 − Ps(Hit(v))) .

• The Conditional Expected Proportion Prop
s
(Di, v) of defender Di ∈ ND on vertex v is his condi-

tional expected proportion on vertex v had he chosen an edge incident to vertex v:

Prop
s
(Di, v) =

∑

j∈[m]

1

j

∑

D⊆ND\{Di}||D|=j−1

∏

Dk∈D

Ps(Hit(Dk, v))
∏

Dk 6∈D∪{Di}

(1 − Ps(Hit(Dk, v)))

=
∑

j∈[m]

1

j
(−1)j−1

∑

D⊆ND\{Di}||D|=j−1

∏

Dk∈D

Ps(Hit(Dk, v)) ,

where Lemma A.8 was used for the last equality.

The Conditional Expected Individual Profit IPs(Di, v) of defender Di on edge e = (u, v) ∈ E is
the conditional expectation (according to s) of the Individual Profit of defender Di had he chosen edge
e. So, IPs(Di, e) = Prop

s
(Di, u) · VPs(u) + Prop

s
(Di, v) · VPs(v) . Then, the Expected Individual Profit

IPs(Di) of defender Di takes a particularly simple form:

IPs(Di) =
∑

v∈V

Ps(Hit(Di, v)) · Prop
s
(Di, v) · VPs(v) .
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Lemma 3.4 Fix a mixed profile s. Then, for any v ∈ V , Ps(Hit(v)) =
∑

Di∈ND
Ps(Hit(Di, v)) · Prop

s
(Di, v) .

Nash equilibria. A mixed profile s is a Nash equilibrium [13, 14] if for each player i ∈ N , it maximizes

IPi(s) over all profiles t that differ from s only with respect to the mixed strategy of player i; so, a Nash
equilibrium is a local maximizer of the Expected Individual Profit of each player. (Note that by the celebrated
Existence Theorem of Nash [13, 14], Πν,µ(G) has at least one Nash equilibrium.) Clearly, in a Nash equilibrium
s, for each attacker Ai, IPs(Ai, v) is constant over all vertices v ∈ Support

s
(Ai); for each defender Di, IPs(Di, e)

is constant over all edges e ∈ Support
s
(Di). It follows that in a Nash equilibrium s, for each attacker Ai,

IPs(Ai) = 1 − Ps(Hit(v)) for any vertex v ∈ Support
s
(Ai); for each defender Di, IPs(Di) = Prop

s
(Di, u) ·

VPs(u)+Prop
s
(Di, v) ·VPs(v) , for any edge e = (u, v) ∈ Support

s
(Di). Hence, for each attacker Ai, Ps(Hit(v))

is constant over all vertices v ∈ Support
s
(Ai).

Some notation. Set Edges
s
(v) = {(u, v) ∈ E | (u, v) ∈ Support

s
(D)}; so, Edges

s
(v) contains all edges in-

cident to v that are included in the union of supports of the defenders. For a vertex set U ⊆ V , set
Edges

s
(U) = {(u, v) ∈ Supports

s
(D) | u ∈ U}; so, Edges

s
(U) contains all edges incident to a vertex in U

that are included in the union of supports of the defenders. For an edge set F ⊆ E, set Verticess(F ) =
{u ∈ Supports

s
(A) | (u, v) ∈ F for some v ∈ V }.

Some special profiles. A profile s is uniform if each player uses a uniform probability distribution on

its support; so, for each attacker Ai, for each vertex v ∈ Support
s
(Ai), sAi

(v) = 1
|Support

s
(Ai)|

, and for

each defender Di, for each edge e ∈ E, sDi
(e) = 1

|Support
s
(Di)|

. A profile s is attacker symmetric (resp.,

defender symmetric) if for all pairs of attackers Ai and Ak (resp., all pairs of defenders Di and Dk) for
all vertices v ∈ V , (resp., all edges e ∈ E) sAi

(v) = sAk
(v) (resp., sDi

(v) = sDk
(v)). A profile is attacker

symmetric uniform (resp., defender symmetric uniform) if it is attacker symmetric (resp., defender
symmetric) and each attacker (resp., defender) uses a uniform probability distribution on his support. A
profile is attacker fully mixed (resp., defender fully mixed) if for each attacker Ai (resp., for each
defender Di), Support

s
(Ai) = V (resp., Support

s
(Di) = V ).

Defense-Ratio. The Defense-Ratio DRs of a Nash equilibrium s is the ratio of the optimal gain ν of the
defenders over their expected gain in s; so, DRs = ν

∑

Di∈ND
IPs(Di)

.

4 The Structure of Nash Equilibria

We provide an extensive combinatorial analysis of Nash equilibria. We first prove:

Proposition 4.1 (Characterization of Nash Equilibria) A profile s is a Nash equilibrium if and only
if the following conditions hold:

(1) For each vertex v ∈ Supports
s
(A), Ps(Hit(v)) = MinHits.

(2) For each defender Di, for each edge (u, v) ∈ Support
s
(Di),

Prop
s
(Di, v)VPs(v) + Prop

s
(Di, u)VPs(u) = max

(u′,v′)∈E
{Prop

s
(Di, v

′)VPs(v
′) + Prop

s
(Di, u

′)VPs(u
′)} .

We remark that Proposition 4.1 generalizes a corresponding characterization of Nash equilibria for Πν,1(G)
shown in [12], where Condition (2) had the simpler counterpart: (2’) For each edge e ∈ Supports

s
(D),

VPs(e) = maxe′∈E {VPs(e
′)}. We continue to prove:

Proposition 4.2 In a Nash equilibrium s,
∑

Di∈ND
IPs(Di) = ν · MinHits.

By the definition of Defense-Ratio, Proposition 4.2 immediately implies:

Corollary 4.3 In a Nash equilibrium s, DRs = 1
MinHits

.

Corollary 4.3 implies that DRs ≥ 1. Furthermore, we observe:

Lemma 4.4 For a Nash equilibrium s, DRs ≥
|V |
2 µ .
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We are now ready to provide a significant definition:

Definition 4.1 A Nash equilibrium s is Defense-Optimal if DRs = max

{

1,
|V |
2 µ

}

.

We will later construct Defense-Optimal Nash equilibria; so, max

{

1,
|V |
2µ

}

is a tight lower bound on Defense-

Ratio, and this will justify our definition of Defense-Optimal Nash equilibria. Say that G admits a Defense-

Optimal Nash equilibirum or that G is Defense-Optimal if there is a Defense-Optimal Nash equilibrium
for the strategic game Πν,µ(G). We continue to prove:

Proposition 4.5 In a Nash equilibrium s, Supports
s
(D) is an Edge Cover.

Proposition 4.6 In a Nash equilibrium s, Supports
s
(A) is a Vertex Cover of G(Supports

s
(D)).

We use Propositions 4.5 and 4.6 to prove:

Proposition 4.7 (Necessary Condition for Pure Nash Equilibria) Assume that G is pure. Then, µ ≥
β′(G) and ν ≥ minEC∈EC(G) β(G(EC)).

We finally prove:

Proposition 4.8 A Defender Pure Nash equilibrium is Defense-Optimal.

5 Few Defenders

We consider the case of few defenders where µ ≤
|V |
2 . There, a Defense-Optimal Nash equilibrium s has

DRs = max

{

1,
|V |
2 µ

}

=
|V |
2µ . We start with a structural property of Defense-Optimal Nash equilibria:

Proposition 5.1 Assume that µ ≤
|V |
2 . Then, a Defense-Optimal Nash equilibrium is unidefender.

Characterization of Defense-Optimal Graphs. We continue with a new graph-theoretic definition.

Definition 5.1 Fix an integer µ ≥ 1. A Fractional Perfect Matching f : E → R is µ-partitionable if the
edge set Ef can be partitioned into µ non-empty, vertex-disjoint subsets E1, · · · , Eµ so that for each subset

Ei,
∑

e∈Ei
f(e) =

|V |
2 µ .

Note that for µ = 1, the existence problem for a 1-partitionable Fractional Perfect Matching is trivially that
for a Fractional Perfect Matching, which can be solved in polynomial time [2]. We observe a preliminary
property of µ-partitionable Fractional Perfect Matchings:

Lemma 5.2 Assume that G has a µ-paritionable Fractional Perfect Matching. Then, µ divides |V |.

We now prove a characterization of Defense-Optimal graphs:

Theorem 5.3 Assume that µ ≤
|V |
2 . Then, a graph G is Defense-Optimal if and only if G has a µ-

partitionable Fractional Perfect Matching.

Theorem 5.3 immediately implies:

Corollary 5.4 For µ ≤
|V |
2 , assume that G is Defense-Optimal. Then, µ divides |V |.

Complexity of Defense-Optimal Graphs. By Theorem 5.3, the complexity of recognizing Defense-
Optimal graphs is that of the following, previously unconsidered combinatorial problem from Fractional
Graph Theory [15]:

µ-PARTITIONABLE FRACTIONAL PERFECT MATCHING
Instance: A graph G = 〈V, E〉 and an integer µ such that µ divides |V |.
Question: Is there a µ-partitionable Fractional Perfect Matching for G?

Note that the restriction to instances for which µ divides |V | is motivated from Lemma 5.2; it is made to
restrict to the set of interesting instances. We use Propositions 2.2 and 2.3 to prove:
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Proposition 5.5 Assume that G contains a µ-partitionable Fractional Perfect Matching f . Then, it also
has a µ-partitionable Fractional Perfect Matching f ′ such that G(Ef ′) consists only of either single edges and
odd cycles. Furthermore, f ′ can be computed from f in polynomial time.

We are now ready to prove:

Proposition 5.6 A graph G has a µ-partitionable Fractional Perfect Matching if and only if E can be
partitioned into a collection E1, · · · , Eµ of µ vertex-disjoint subsets and corresponding vertex sets V1, · · · , Vµ,

so that
⋃

i∈[µ] Vi = V , each Ei is a collection of single edges and odd cycles, and |Vi| =
|V |
µ , where i ∈ [µ].

We shall show an interesting relation of the problem of deciding the existence of a µ-partitionable Fractional
Perfect Matching to a well known graph-theoretic problem:

PARTITION INTO TRIANGLES
Instance: A graph G = 〈V, E〉 with |V | = 3q for some integer q.
Question: Can the vertices of G be partitioned into q disjoint sets V1, · · · , Vq, each containing exactly three
vertices, such that the subgraph of G induced by each Vi is a triangle graph?

This problem is known to be NP-complete [4, GT11, attribution to (personal communication with) Scheafer].
To prove that µ-PARTITIONABLE FRACTIONAL PERFECT MATCHING is NP-complete, we consider a spe-
cial case of it:

SPECIAL PARTITIONABLE FRACTIONAL PERFECT MATCHING
Instance: A graph G = 〈V, E〉 with |V | = 3q for some integer q.

Question: Is there a
|V |
3 -partitionable Fractional Perfect Matching for G?

Proposition 5.7 SPECIAL PARTITIONABLE FRACTIONAL PERFECT MATCHING ≡ PARTITION INTO
TRIANGLES

Proposition 5.7 gives that SPECIAL PARTITIONABLE FRACTIONAL PERFECT MATCHING is NP-complete.
Since SPECIAL PARTITIONABLE FRACTIONAL PERFECT MATCHING is a special case of µ-PARTITIONABLE
FRACTIONAL PERFECT MATCHING, we get that µ-PARTITIONABLE FRACTIONAL PERFECT MATCHING
is NP-complete as well. Hence, Theorem 5.3 implies:

Corollary 5.8 Assume that µ ≤
|V |
2 . Then, the recognition problem for Defense-Optimal graphs is NP-

complete.

Graphs with Perfect Matchings. We now restrict to graphs with Perfect Matchings. We show:

Theorem 5.9 Consider a graph G with a Perfect Matching and an integer µ ≤
|V |
2 . Then, G admits a

Defense-Optimal Nash equilibrium s where Support
s
(D) is a Perfect Matching if and only if 2 µ divides |V |.

Note that Corollary 5.4 applies to all graphs, while Proposition D.9 applies only to graphs with a Perfect
Matching. However, the restriction of Corollary 5.4 to graphs with a Perfect Matching does not imply
Proposition D.9 unless µ is odd. (This is because 2 divides |V | and µ divides |V | imply together that 2µ
divides |V | exactly when µ is odd.)

6 Many Defenders

We now consider the case of many defenders, where
|V |
2 < µ < β′(G). Note that in this case, a Defense-

Optimal Nash equilibrium has Defense-Ratio DRs = max

{

1,
|V |
2 µ

}

= 1. We show:

Theorem 6.1 (Non-existence of Defense-Optimal) Assume that
|V |
2 < µ < β′(G). Then, G admits

no Defense-Optimal Nash equilibrium.
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7 Too Many Defenders

We finally turn to the case of too many defenders, where µ ≥ β′(G). Note that, in this case, a Defense-Optimal

Nash equilibrium s has Defense-Ratio DRs = max

{

1,
|V |
2 µ

}

≤ max

{

1,
|V |

2 β′(G)

}

= 1 (since
|V |
2 ≤ β′(G) for

every graph G). For the analysis, we will use a special class of profiles that we introduce.

Definition 7.1 (Balanced profile) A profile s is balanced if there is a constant c > 0 such that for
each pair of a defender Di ∈ ND and a vertex v ∈ V , Prop

s
(Di, v) · VPs(v) = c.

Clearly, in a balanced profile, (i) for each defender Di and each vertex v ∈ V , Prop
s
(Di, v) > 0; and (ii)

for each vertex v ∈ V , VPs(v) > 0. From (i), it follows that the support of each defender is an Edge
Cover; note that this (necessary) condition is stronger than the necessary condition in Proposition 4.5. From
(ii), it follows that the supports of attackers is V ; note that this (necessary) condition is weaker than the
condition in the definition of an attacker fully mixed profile. Note also that by definition, a balanced profile
satisfies Condition (2) in the characterization of Nash equilibria (Proposition 4.1). We have been unable to
construct mixed balanced profiles for the general case. So, we focused on the special case of pure strategies.
A defender-pure balanced profile is a defender-pure profile s such that there is a constant c > 0 such that

for each vertex v ∈ V ,
VPs(v)

defenderss(v)
= c. We observe that a defender-pure balanced profile goes half the way

towards a Nash equilibrium:

Lemma 7.1 A defender-pure balanced profile is a local maximizer for the Individual Profit of each defender.

We will present polynomial time algorithms to compute Defender-Pure Balanced Nash equilibria in two cases.
Both algorithms will rely on a polynomial time algorithm for computing a Minimum Edge Cover.

Defender-Pure Balanced Nash Equilibria. We show:

Theorem 7.2 Assume that µ ≥ β′(G). Then, G admits a Defense-Optimal, Defender-Pure Nash equilib-
rium, which can be computed in polynomial time.

To prove Theorem 7.2, we present a polynomial time algorithm Defender-Pure&BalancedNE to compute a
Defender-Pure Balanced Nash equilibrium:

Algorithm Defender-Pure&BalancedNE
Input: A graph G(V,E) and a pair of integers ν and µ such that β′(G) ≤ µ.
Output: A Defender-Pure Balanced Nash equilibrium s.

(1) Compute a Minimum Edge Cover EC = {(vi, ui) | i ∈ [β′(G)]}.

(2) For each i ∈ [µ], set sDi
:= (v

i mod β′(G), ui mod β′(G)).

(3) Compute a solution {VP(vi) | i ∈ [|V |]} to the following linear system:

(a) For each i ∈ [|V |],
VP(vi)

defenderss(vi)
=

VP(v1)
defenderss(v1)

; (b)
∑

i∈[|V |] VPs(vi) = ν.

(4) Arbitrarily, assign probability distributions to the attackers so that for each vi ∈ V , VPs(vi) = VP(vi).

Pure Balanced Nash Equilibria. We now prove that adding a further constraint to those in Theorem 7.2

allows for a (Defense-Optimal) Pure Nash equilibrium.

Theorem 7.3 Assume that µ ≥ β′(G) and 2 µ divides ν. Then, G admits a Defense-Optimal, Pure Nash
equilibrium, which can be computed in polynomial time.

To prove Theorem 7.3, we present a polynomial time algorithm Defender-Pure&Balanced to compute a Pure
Balanced Nash equilibrium:
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Algorithm Pure&BalancedNE
Input: A graph G(V,E) and integers µ and ν such that β′(G) ≤ µ and ν

2 ≡ 0 (mod µ).
Output: A Pure Balanced Nash equilibrium s.

(1) Compute a Minimum Edge Cover EC = {(vi, ui) | i ∈ [β′(G)]}.

(2) For each i ∈ [µ], set sDi
:= (v

i mod β′(G), ui mod β′(G)).

(3) Arbitrarily assign pure strategies to the attackers so that for each vertex v ∈ V , VPs(v) = defenderss(v) · ν
2 µ

.

8 Replicated Defenders

We use an involved combinatorial analysis to prove:

Proposition 8.1 Consider an arbitrary Nash equilibrium s for the game Πν,1(G). Then, there is a Defender
Symmetric Nash equilibrium t for the game Πν,µ with MinHitt = 1 − (1 − MinHits)

µ.

By Corollary 4.3, Proposition 8.1 immediately implies:

Theorem 8.2 (From Single Defender to Symmetric Defenders) Consider an arbitrary Nash equi-
librium s for the game Πν,1(G). Then, there is a Defender Symmetric Nash equilibrium t for the game
Πν,µ(G) with Defense-Ratio DRt = 1

1−
�
1− 1

DRs

�µ .

It is simple to see that in the setting of Theorem 8.2, DRt ≥
DRs

µ
. (This should be expected since otherwise

the lower bound in Lemma 4.4 could be violated by choosing s to be a Perfect Matching Nash equilibrium

[9] for Πν,1(G) with DRs =
|V |
2 .)
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A Proofs from Section 2:

A.1 Lemma 2.1:

Assume, by way of contradiction, that G(Ef ) has a pendant edge (u, v) with dG(Ef )(u) = 1 and dG(Ef )(v) > 1.
Since f is a Fractional Perfect Matching,

∑

e|u∈e f(e) = 1 and
∑

e|v∈e f(e) = 1. By assumption on u, the first
condition implies that f((u, v)) = 1. By definition of G(Ef ), the second condition implies that f((u, v)) < 1.
A contradiction.

A.2 Proposition 2.2 (Continued):

We first prove:

Lemma A.1 For each loop iteration of EliminateEvenCycles, upon completion of Step (3), f ′ is equivalent to
f .

Proof: Take any vertex v ∈ V . Then,

∑

e|v∈e

f ′(e) =
∑

e∈E(C)|v∈e f ′(e) +
∑

e6∈E(C)|v∈e f ′(e)

=
∑

e∈E(C)|v∈e f ′(e) +
∑

e6∈E(C)|v∈e f(e) (by Step 3).

Note that if there are no edges e ∈ E(C) such that v ∈ e, then
∑

e∈E(C)|v∈e f ′(e) =
∑

e∈E(C)|v∈e f(e) = 0, and
we are done. Otherwise, there are two edges e1, e2 ∈ E(C) such that v ∈ e1 and v ∈ e2. Hence,

∑

e|v∈e

f ′(e) = f ′(e1) + f ′(e2) +
∑

e6∈E(C)|v∈e

f(e)

= f(e1) + g(e1) · f(e0) + f(e2) + g(e2) · f(e0) +
∑

e6∈E(C)|v∈e

f(e) (by Step (3))

= f(e1) + f(e2) + ((g(e1) + g(e2)) · f(e0) +
∑

e6∈E(C)|v∈e

f(e)

= f(e1) + f(e2) +
∑

e6∈E(C)|v∈e

f(e) (since g(e1) + g(e2) = 0 (by Step (2)))

=
∑

e|v∈e

f(e),

and we are done.

Since f is a Fractional Matching, Lemma A.1 immediately implies:

Corollary A.2 f ′ is a Fractional Matching.

We continue to prove:

Lemma A.3 For each loop iteration of EliminateEvenCycles, upon completion of Step (3), f ′ ⊂ f and the
even cycle C is eliminated from G(Ef ′).

Proof: We proceed by case analysis.

• Consider first an edge e 6∈ E(C). By Step (3), f ′(e) = f(e). So, e ∈ Ef ′ if and only if e ∈ Ef .
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• Consider now edge e0 ∈ E(C); clearly, eo ∈ Ef . Then,

f ′(e0) = f(e0) + g(e0) · f(e0) (by Step (3))

= f(e0) − f(e0) (by Step (2))

= 0.

It follows that e 6∈ Ef ′ . Hence, cycle C is eliminated from G(Ef ′).

• Consider finally an edge e ∈ E(C)\{e0}; clearly, eo ∈ Ef . Then,

f ′(e) = f(e) + g(e) · f(e0) (by Step (3))

≥ f(e) − f(e0) (by Step (2))

≥ 0 (by Step (1)).

It follows that if e ∈ Ef ′ then e ∈ Ef .

It follows that f ′ ⊂ f , as needed.

Lemmas A.1 and A.3 together imply that the output f ′ of algorithm EliminateEvenCycles is a Fractional
Matching which is equivalent to and strictly contained in f , and which contains no even cycles.

Recall that an even cycle for an undirected graph can be found in polynomial time [7]. Lemma A.3 implies
that there at most |E| loop iterations; each loop execution takes O(|E|) time. It follows that algorithm
EliminateEvenCycles runs in polynomial time.

A.3 Proposition 2.3 (Continued):

Since f is a Fractional Perfect Matching, Lemma 2.1 implies that G(Ef ) has no pendant edges. Thus, we
immediately obtain that Step (2/a) is necessarily successful:

Lemma A.4 There is a DFS path vl, · · · , vr with vr = vl for some l, 1 ≤ l < r − 1.

Note that since G(Ef ) has no even cycle, it follows that the cycle vl, · · · , vr is odd. We continue to prove a
preliminary property of the algorithm IsolateOddCycles:

Lemma A.5 The DFS path v1, v2, · · · , vr is disjoint from C.

Proof: By way of contradiction, assume otherwise. Then, there is some vertex vk, 1 ≤ k ≤ r, such that
vk ∈ V (C). Since C has odd length, the vertices v0 and vk partition C into two paths C1 and C2 of odd and
even length, respectively. Consider the concatenations of the path v1, · · · , vk with C1 and C2, respectively;
each of them is a cycle in G(Ef ). Clearly, one of these cycles has even length. A contradiction.

Lemma A.5 implies that the function g is well-defined. We prove:

Lemma A.6 For each loop iteration of IsolateOddCycles, upon completion of Step (2/e), f ′ is equivalent to
f .

Proof: Take any vertex v ∈ V . Then,

∑

e|v∈e

f ′(e) =
∑

e∈E(C)∪{(vi,vi+1) | 0≤i≤r−1} | v∈e

f ′(e) +
∑

e6∈E(C)∪{(vi,vi+1) | 0≤i≤r−1} | v∈e

f ′(e)

=
∑

e∈E(C)∪{(vi,vi+1) | 0≤i≤r−1} | v∈e

f ′(e) +
∑

e6∈E(C)∪{(vi,vi+1) | 0≤i≤r−1} | v∈e

f(e) (by Step (2/e)).
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Note that if there are no edges e ∈ E(C) ∪ {(vi, vi+1) | 0 ≤ i ≤ r − 1} such that v ∈ e, then
∑

e∈E(C)∪{(vi,vi+1) | 0≤i≤r−1} | v∈e f ′(e) =
∑

e∈E(C)∪{(vi,vi+1) | 0≤i≤r−1} | v∈e f(e) = 0, and we are done. Oth-
erwise,

∑

e|v∈e

f ′(e) =
∑

e∈E(C)∪{(vi,vi+1) | 0≤i≤r−1} | v∈e

f ′(e) +
∑

e6∈E(C)∪{(vi,vi+1) | 0≤i≤r−1} | v∈e

f(e)

=
∑

e∈E(C)∪{(vi,vi+1) | 0≤i≤r−1} | v∈e

(f(e) + g(e) · λ) +
∑

e6∈E(C)∪{(vi,vi+1) | 0≤i≤r−1} | v∈e

f(e)

=
∑

e | v∈e

f(e) (since
∑

e∈E(C)∪{(vi,vi+1) | 0≤i≤r−1} | v∈e g(e) = 0 (by Step (2/b))),

and we are done.

We continue to prove:

Lemma A.7 For each loop iteration of IsolateOddCycles, upon completion of Step (2/e), f ′ ⊂ f , and the odd
cycle C (which is not a component in G(Ef )) is eliminated from G(Ef ′).

Proof: We proceed by case analysis.

• Consider first e ∈ E(C) ∪ {(vi, vi+1) | 0 ≤ i ≤ r − 1}. By Step (2/e), f ′(e) = f(e). So, e ∈ Ef ′ if and
only if e ∈ Ef .

• Consider now edge e′ ∈ E(C) ∪ {(vi, vi+1) | 0 ≤ i ≤ r − 1} that realizes min{min0≤i≤l−1 f((vi, vi+1)),
2 mine∈E(C) f(e), 2 minl≤i≤r−1 f((vi, vi+1))}. Clearly, e′ ∈ Ef . Then,

f ′(e′) = f(e′) + g(e′) · f(e′) (by Step (2/d))

= f(e′) − f(e′) (by Step (2/c))

= 0.

It follows that e′ 6∈ Ef ′ .

• Consider finally an edge e ∈ E(C) ∪ {(vi, vi+1) | 0 ≤ i ≤ r − 1}\{e′}; clearly, e ∈ Ef . Then,

f ′(e) = f(e) + g(e) · f(e′) (by Step (2/e))

≥ f(e) +











−1 · min0≤i≤l−1 f((vi, vi+1)), if e = (vi, vi+1) with 0 ≤ i ≤ l − 1

−1
2 · 2 mine∈E(C) f(e), if e ∈ E(C)

−1
2 · 2 minl≤i≤r−1 f((vi, vi+1)), if e = (vi, vi+1) with l ≤ i ≤ r − 1

(by Steps (2/b), (2/c) and (2/d))

≥ 0.

It follows that if e ∈ Ef ′ then e ∈ Ef .

It follows that f ′ ⊂ f . It remains to show that the odd cycle C (which is not a component in G(Ef )) is
eliminated from G(Ef ′). Recall that e′ 6∈ Ef ′ . There are three possible cases to consider:

• Assume first that e′ ∈ E(C). Then, clearly, cycle C is eliminated from G(Ef ′).

• Assume first that e′ ∈ {(vi, vi+1) | 0 ≤ i ≤ l − 1}. Since f ′ is equivalent to f (by Lemma A.6) and f

is a Fractional Perfect Matching, it follows that f ′ is also a Fractional Perfect Matching. Lemma 2.1
implies that f ′ has no pendant edges. Since e′ 6∈ Ef ′ , this implies that either (v0, v1) 6∈ Ef ′ or (in case
(v0, v1) is an isolated edge in G(Ef ′)) both edges in E(C) containing v0 are eliminated from Ef ′ .
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• Assume finally that e′ ∈ {(vi, vi+1) | l ≤ i ≤ r − 1}. Since f ′ is equivalent to f (by Lemma A.6) and
f is a Fractional Perfect Matching, it follows that f ′ is also a Fractional Perfect Matching. Lemma 2.1
implies that f ′ has no pendant edges. Since Ef ′ has no pendant edges and e 6∈ Ef ′ , it follows that there
is some edge e′′ ∈ {vi, vi+1 | 0 ≤ i ≤ l− 1} such that e′′ 6∈ Ef ′ , and we are reduced in the previous case.

The proof is now complete.

Lemmas A.6 and A.7 imply together that the output f ′ of algorithm IsolateOddCycles is a Fractional Perfect
Matching which is equivalent to and strictly contained in f , and which contains no odd cycle that is not a
component.

Recall that an odd cycle for an undirected graph can be found in polynomial time [7]. Lemma A.7 implies
that there at most |E| loop iterations; each loop execution takes O(|E|) time. It follows that algorithm
IsolateOddCycles runs in polynomial time.

A.4 A Combinatorial Lemma.

Here, we will prove a combinatorial lemma (of independent interest) that will be useful later. For a probability
x, with 0 ≤ x ≤ 1, we make two probability literals, the positive literal x and the negative literal x̄ = 1 − x.
A probability product is a product of probability literals x1 · · ·xn for any n ≥ 1. For any integer j ≤ n,
the probability product x1 · · ·xn is j-positive if exactly j of its probability literals are positive. For each
j ≤ n, denote as Posj(x1, . . . , xn) the set of all j-positive probability products that use literals made from
the probabilities x1, . . . , xn.

Lemma A.8 For each integer n ≥ 2,

∑

j∈[n]

1

j

∑

x2...xn∈Posj−1(x2,...,xn)

x2 · · ·xn =
∑

j∈[n]

(−1)j−1 ·
1

j
·

∑

x2...xj∈Posj−1(x2,...,xn)

x2 · · ·xj .

Proof: It suffices to establish that each term x2 · · ·xj ∈ Posj−1(x2, . . . , xn) in the right-hand side (RHS)
appears in the left-hand side (LHS) with the same coefficient.

• Consider first the constant term x2 · · ·xj |j=1 = 1 in the RHS. Its coefficient is (−1)1−1 · 1
1 = 1.

In the LHS, the only constant term is the constant term in the sum
∑

x2···xn∈Posj−1(x2,...,xn) x2 · · ·xn

∣

∣

∣

j=1
=

x2 · · ·xn. Clearly, this constant term is 1 and its coefficient is 1
1 = 1, as needed.

• Consider now any term x2 · · ·xj ∈ Posj−1(x2, . . . , xn) from the sum
∑

x2···xj∈Posj−1(x2,...,xn) x2 · · ·xj in

the RHS with j ≥ 2. Note that all such terms (in the RHS) have the same coefficient, which is (−1)j−1 · 1
j

We calculate the coefficient of this term in the LHS.

Clearly, a k-positive term with k ≥ j in the LHS cannot include x2 · · ·xj in its expansion. So, we only
need to consider contributions from k-positive terms with 0 ≤ k ≤ j − 1 (in the LHS) to the coefficient
of the term x2 · · ·xj .

– Note that there are
(

j−1
k

)

ways to choose k positive literals (and therefore j−1−k negative literals)
out of the (j − 1) literals x2, . . . , xj in order to form a k-positive term that expands to x2 · · ·xj

multiplied with a coefficient. (The literals xj+1, . . . , xn all have to be negative since they do not
appear in the product x2 · · ·xj .)

– The sign of the resulting k-positive term is (−1)(j−1)−k, since each of the (j−1)−k negative literals
in it contributes one minus to the sign. (The negative literals xj+1, . . . , xn do not contribute to
the sign.).

– The (absolute value of the) coefficient of the resulting k-positive term is 1
k+1 (since a (j−1)-positive

term in the LHS is multiplied by 1
j
).
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So, in total, the coefficient of x2 · · ·xj in the LHS is

∑

0≤k≤j−1

(

j − 1

k

)

(−1)(j−1)−k 1

k + 1
=

∑

0≤k′≤j−1

(

j − 1

k′

)

(−1)k′ 1

j − k′

=
∑

0≤k≤j−1

(

j − 1

k

)

(−1)k 1

j − k

=
1

j

∑

0≤k≤j−1

(

j

k

)

(−1)k

=
1

j





∑

0≤k≤j

(

j

k

)

(−1)k −

(

j

j

)

(−1)j





=
1

j
(0 + (−1)j−1)

=
1

j
(−1)j−1 ,

and the claim follows.

B Proofs from Section 3:

B.1 Lemma 3.2:

Assume first that there is no multidefender vertex. So, for each vertex v, there is at most one defender D(v)
such that v ∈ e for some edge e ∈ Support

s
(D(v)). Then,

∑

v∈V

Ps(Hit(v))

=
∑

v∈V Ps(D(v), v)

=
∑

v∈V

∑

e∈Edges
s
(v) sD(v)(e)

=
∑

e∈E

∑

Di∈ND
(2 sDi

(e)) (by changing the order of summation)

= 2
∑

Di∈ND

∑

e∈E sD(e)

= 2µ .

Assume now that there is a multidefender vertex v ∈ V . Then,

Ps(Hit(v)) =
∑

j∈[µ]

(−1)j−1
∑

D⊆ND||D|=j

∏

Dk∈D

Ps (Hits(Dk, v))

<
∑

v∈V

∑

Dk∈ND

Ps(Hit(Dk, v))

=
∑

v∈V

∑

Dk∈ND

∑

e∈Edges
s
(v)

sDk
(e)

=
∑

e∈E



2
∑

Dk∈ND

sDk
(e)





= 2
∑

Dk∈ND

∑

e∈E

sDk
(e)

= 2µ .
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B.2 Lemma 3.3:

Assume, by way of contradiction, that MinHits >
2µ
|V |

. Then,
∑

v∈V Ps(Hit(v)) ≥ |V | · MinHits > 2µ, a

contradiction to Lemma 3.2.

B.3 Lemma 3.4:

Clearly,
∑

Di∈ND

Ps(Hit(Di, v)) · Prop
s
(Di, v)

=
∑

Di∈ND

Ps(Hit(Di, v)) ·





∑

j∈[µ]

1

j
(−1)j−1

∑

D⊆ND\{Di}||D|=j−1

∏

Dk∈D

Ps(Hit(Dk, v))





=
∑

Di∈ND

∑

j∈[µ]

1

j
(−1)j−1

∑

D⊆ND\{Di}|Di∈U∧|D|=j−1

∏

Dk∈D

Ps(Hit(Dk, v))

=
∑

Di∈ND

∑

j∈[µ]

(−1)j−1
∑

D⊆ND\{Di}||D|=j

∏

Dk∈D

Ps(Hit(Dk, v)) .

C Proofs from Section 4:

C.1 Proposition 4.1:

Assume first that s is a Nash equilibrium. To show Condition (1), consider any vertex v ∈ Supports
s
(A); so,

v ∈ Support
s
(Ai) for some attacker Ai. Since s is a Nash equilibrium, Ps(Hit(v′)) is constant over all vertices

v′ ∈ Support
s
(Ai). So, consider any vertex u 6∈ Support

s
(Ai). We prove that Ps(Hit(u)) ≥ Ps(Hit(v)).

Assume, by way of contradiction, that Ps(Hit(u)) < Ps(Hit(v)). Construct from s the mixed profile
t by only changing sAi

to tAi
so that u ∈ Support

s
(Ai). Then,

IPt(Ai)

= 1 − Pt(Hit(u)) (since u ∈ Support
t
(Ai))

= 1 − Ps(Hit(u)) (by construction)

> 1 − Ps(Hit(v)) (by assumption)

= IPs(Ai) ,

which contradicts the fact that s is a Nash equilibrium.

It follows that for each vertex v ∈ Support
s
(Ai), Ps(Hit(v)) ≤ Ps(Hit(u)) for all other vertices u ∈ V .

Consider now any vertex u 6∈ Support
s
(Ai) such that Ps(Hit(v)) ≤ Ps(Hit(u)). Since s is a local maximizer

of the Expected Individual Profit of each other attacker Ak, it follows that there is no attacker Ak such that
u ∈ Support

s
(Ak). This implies that u 6∈ Supports

s
(A). It follows that Ps(Hit(v)) = MinHits, as needed.

For Condition (2), fix any defender Di and consider any edge e = (u, v) ∈ Support
s
(Di). Recall that

IPs(Di) = Prop
s
(Di, v) · VPs(v) + Prop

s
(Di, u) · VPs(u) ,

so that in a Nash equilibrium, the quantity Prop
s
(Di, v

′) ·VPs(v
′) + Prop

s
(Di, u

′) ·VPs(u
′) is constant over all

edges (u′, v′) ∈ Support
s
(Di). So, consider any edge (u′, v′) 6∈ Support

s
(Di). Assume, by way of contradiction,

that

Prop
s
(Di, v

′) · VPs(v
′) + Prop

s
(Di, u

′) · VPs(u
′) > Prop

s
(Di, v) · VPs(v) + Prop

s
(Di, u) · VPs(u) .
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Construct from s the mixed profile t by only changing sDi
to tDi

so that e′ ∈ Support
t
(Di). Then,

IPt(Di)

= Prop
t
(Di, v

′) · VPt(v
′) + Prop

t
(Di, u

′) · VPt(u
′) (since e′ ∈ Support

t
(Di))

= Prop
s
(Di, v

′) · VPs(v
′) + Prop

s
(Di, u

′) · VPs(u
′) (by construction of t from s)

> Prop
s
(Di, v) · VPs(v) + Prop

s
(Di, u) · VPs(u) (by assumption)

= IPt(Di) (since e ∈ Support
t
(Di)) ,

which contradicts the fact that s is a Nash equilibrium.

Assume now that the mixed profile s satisfies Conditions (1) and (2). We will prove that s is a Nash
equilibrium.

• Consider first any attacker Ai. Then, for any vertex v ∈ Support
s
(Ai), for any other vertex u ∈ V ,

IPs(Ai, v)

= 1 − Ps(Hit(v)) (since v ∈ Support
s
(Di))

≥ 1 − Ps(Hit(u))(by Condition (1))

= IPs(Ai, u) .

• Consider now any defender Di. Then, for any edge e = (u, v) ∈ Support
s
(Di), for any edge e′ = (u′, v′) ∈

Support
s
(Di),

IPs(Ai, v)

> Prop
s
(Di, v) · VPs(v) + Prop

s
(Di, u) · VPs(u)

≥ Prop
s
(Di, v

′) · VPs(v
′) + Prop

s
(Di, u

′) · VPs(u
′) (by Condition (2)) .

It follows that s is a Nash equilibrium.

C.2 Proposition 4.2:

Clearly,

∑

Di∈ND

IPs(Di)

=
∑

Di∈ND

∑

v∈V Ps(Hit(Di, v)) · Prop
s
(Di, v) · VPs(v)

=
∑

v∈V

(
∑

Di∈ND
Ps(Hit(Di, v)) · Prop

s
(Di, v)

)

· VPs(v) (changing the order of summation)

=
∑

v∈V Ps(Hit(v)) · VPs(v) (by Lemma 3.4)

=
∑

v∈Supports
s
(A) Ps(Hit(v)) · VPs(v)

=
∑

v∈Supports
s
(A) MinHits · VPs(v)

=
∑

v∈Supports
s
(A) VPs(v) · MinHits

= ν · MinHits ,

as needed.

C.3 Proposition 4.5:

Assume, by way of contradiction, that Supports
s
(D) is not an Edge Cover. Then, there is a vertex v ∈ V such

that v 6∈ Vertices(Supports
s
(D)). So, Edges

s
(v) = ∅ and Ps(Hit(v)) = 0.
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Since s is a local maximizer for the Expected Individual Profit of each attacker Ai, which is at most 1,
it follows that attacker Ai chooses some such v with probability 1. It follows that for each edge e = (u, v) ∈
Supports

s
(D), VPs(e) = 0. So, for any defender Di,

IPs(Di) =
∑

e=(u,v)∈Support
s
(Di)

sDi
(e) · (Prop

s
(Di, v) · VPs(v) + Prop

s
(Di, u) · VPs(u))

= 0 .

Since s is a Nash equilibrium, IPs(Di) > 0. A contradiction.

C.4 Proposition 4.6:

Assume, by way of contradiction, that Supports
s
(A) is not a Vertex Cover of the graph G(Supports

s
(D)).

Then, there is some edge e ∈ Supports
s
(A) such that e ∈ Edges

s
(Supports

s
(A)). So, Verticess(e) = 0 and

VPs(e) = 0. Since s is a local maximizer for the Expected Individual Profit of each defender Di, it follows
that sD(e) = 0. So, e 6∈ Supports

s
(D). A contradiction.

C.5 Proposition 4.7:

Assume first that µ < β′(G). Consider any pure profile s. Clearly, |Supports
s
(D)| ≤ µ < β′(G). Hence,

Supports
s
(D) is not an Edge Cover. Hence, Proposition 4.5 implies that s is not a Nash equilibrium.

Assume now that ν < minEC∈EC(G) β(G(EC)). Consider any pure profile s. Thus, |Supports
s
(A)| ≤ ν <

minEC∈EC(G) β(G(EC)). By Lemma 4.5, Supports
s
(D) is an Edge Cover. It follows that |Supports

s
(A)| <

β(G(Supports
s
(D))). Hence, Supports

s
(A) is not a Vertex Cover of G(Supports

s
(D)). Proposition 4.6 implies

that s is not a Nash equilibrium.

C.6 Proposition 4.8:

Fix an arbitrary Defender-Pure Nash equilibrium s. Then,

DRs

= ν
∑

Di∈ND
IPs(Di)

= ν
∑

Di∈ND
(Prop

s
(Di, vi) · VPs(vi) + Prop

s
(Di, ui) · VPs(ui))

(by Condition (2) in Proposition 4.1)

= ν
∑

Di∈ND

(

VPs(vi)
defenderss(vi)

+
VPs(ui)

defenderss(ui)

) (since s is Defender-Pure)

= ν
∑

v∈Supports
s
(A) defenderss(v) ·

VPs(v)
defenderss(v)

= νP
v∈Supports

s
(A) VPs(v)

= 1 ,

which implies that s is Defense-Optimal.

D Proofs from Section 5:

D.1 Proposition 5.1:

Assume, by way of contradiction, that there is a Defense-Optimal Nash equilibrium s for which there

is a multidefender vertex. Since s is Defense-Optimal, Corollary 4.3 implies that MinHits =
2µ
|V |

. So,
∑

v∈V Ps(Hit(v)) ≥
∑

v∈V MinHits = 2µ. Since there is a multidefender vertex, Lemma 3.2 implies that
∑

v∈V Ps(Hit(v)) < 2µ. A contradiction.
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D.2 Lemma 5.2:

Consider a µ-Fractional Perfect Matching f . Then, Ef can be partitioned into µ non-empty, vertex-disjoint

subsets E1, · · · , Eµ so that for each subset Ei,
∑

e∈Ei
f(e) =

|V |
2 µ . Note that each set Ei is itself a Fractional

Perfect Matching; thus,
∑

e∈Ei
f(e) =

|Vi|
2 . It follows that for each i ∈ [µ], |Vi| =

|V |
µ . Since |Vi| is an integer,

it follows that µ divides |V |.

D.3 Theorem 5.3:

Theorem 5.3 will follow from Propositions D.1 and D.4.

Proposition D.1 Assume that G has a µ-partitionable Fractional Perfect Matching. Then, G is Defense-
Optimal.

Proof: Consider a µ-partitionable Fractional Perfect Matching f and the corresponding edge sets Ei, · · · , Eµ.
Construct a profile s as follows:

• For each index i ∈ [µ], Support
s
(Di) = Ei; for each edge e ∈ Ei, sDi

(e) =
2µ
|V |

· f(e).

• s is Attacker Symmetric Uniform and Attacker Fully Mixed. So, for each attacker Ai ∈ NA, for each
vertex v ∈ V , sAi

(v) = 1
|V |

; thus, for each vertex v ∈ V , VPs(v) = ν
|V |

.

To show that s is a profile, we prove:

Claim D.2 For each defender Di ∈ ND, sDi
is a probability distribution, so that s is a profile.

Proof: Clearly,

∑

e∈E

sDi
(e)

=
∑

e∈Ei
sDi

(e) (since Support
s
(Di) = Ei)

=
∑

e∈Ei

2µ
|V |

· f(e) (by construction)

=
2µ
|V |

∑

e∈Ei
f(e)

= 1, (since f is a µ-partitionable Fractional Perfect Matching)

which implies that s is a profile.

We continue to prove that s is a Nash equilibrium. We will establish Conditions (1) and (2) in the charac-
terization of Nash equilibria (Proposition 4.1).

• For condition (1), fix any vertex v ∈ V . Since Ef is an Edge Cover and f is a µ-partitionable Fractional
Perfect Matching, there is exactly one edge set Ei ⊆ Ef such that v ∈ Vertices(Ei). Since Support

s
(Di) =

Ei, the definition of a µ-partitionable Fractional Perfect Matchings implies that vertex v is unidefender
in the profile s. Then, we prove:

Claim D.3 Ps(Hit(v)) =
2µ
|V |
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Proof:

Ps(Hit(v))

= Ps(Hit(Di, v))

=
∑

e∈Support
s
(Di)|v∈e sDi

(e)

=
∑

e∈Support
s
(Di)|v∈e

2µ
|V |

· f(e) (by construction of s)

=
2µ
|V |

∑

e∈Support
s
(Di)|v∈e f(e)

=
2µ
|V |

∑

e∈Edges
s
(v) f(e) (since v is multidefender in s)

=
2µ
|V |

(since f is a Fractional Perfect Matching)

It now follows that Condition (1) holds trivially.

• For Condition (2), consider any defender Di ∈ ND. Fix an edge e = (u, v) ∈ Support
s
(Di). Since each

vertex is unidefender in s, it follows that Prop
s
(Di, v) = Prop

s
(Di, u) = 1. It follows that Prop

s
(Di, v) ·

VPs(v)+Prop
s
(Di, u) ·VPs(u) = VPs(v)+VPs(u) = 2ν

|V |
. On the other hand, fix any edge e′ = (v′, u′) 6∈

Support
s
(Di). Since Ef is an Edge Cover, it follows that for the vertex v′ (resp., vertex u′), there is a

defender Dj such that v′ ∈ Vertices(Support
s
(Dj)) (resp., u′ ∈ Vertices(Support

s
(Dj))).

Assume first that Dj = Di; since v′ is unidefender, it follows that Prop
s
(Di, v

′) = 1. (resp., Prop
s
(Di, u

′) =
1). Assume now that Dj 6= Di; since v′ is unidefender, Prop

s
(Di, v

′) < 1. (resp., Prop
s
(Di, u

′) < 1). So, in
all cases, Prop

s
(Di, v

′) ≤ 1 and Prop
s
(Di, u

′) ≤ 1. Thus, Prop
s
(Di, v

′) ·VPs(v
′)+Prop

s
(Di, u

′) ·VPs(u
′) ≤

VPs(v
′) + VPs(u

′) = 2ν
|V |

. Now, Condition (2) follows.

Hence, by Proposition 4.1, s is a Nash equilibrium. To prove that s is Defense-Optimal, recall that for each

vertex v ∈ V , Ps(Hit(v)) =
2µ
|V |

. Hence, MinHits =
2µ
|V |

. By Corollary 4.3, it follows that DRs =
|V |
2µ .

Proposition D.4 Assume that G is Defense-Optimal. Then, G has a µ-partitionable Fractional Perfect
Matching.

Proof: Consider a Defense-Optimal Nash equilibrium s; so, DRs =
|V |
2µ . Corollary 4.3 implies that

MinHits =
2µ
|V |

. Hence, Lemma 3.2 implies that for each vertex v ∈ V , Ps(Hit(v)) =
2µ
|V |

. Fix a vertex

v ∈ V . Since s is Defense-Optimal, Proposition 5.1 implies that there is at most one defender Dk such that
v ∈ Vertices(Support

s
(Dk)). By Proposition 4.5, Support

s
(D) is an Edge Cover, so that there is at least one

defender Dk such that v ∈ Verticess(Support
s
(Dk)). It follows that there is exactly one defender Dk such that

v ∈ Verticess(Support
s
(Dk)). This implies that for each edge e ∈ E, there is at most one defender Dk such

that e ∈ Support
s
(Dk). Thus, for all pairs of defenders Dj , Dk, Support

s
(Dj) ∩ Support

s
(Dk) = ∅. We define

now a function f : E → R; we will then prove that f is a µ-partitionable Fractional Perfect Matching.

• For any edgee ∈ E, if there is a defender Di such that e ∈ Support
s
(Di), then set f(e) :=

|V |
2µ · sDi

(e);

else, set f(e) := 0. Thus, Ef = Supports
s
(D).

Claim D.5
∑

e∈E f(e) =
|V |
2 .
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Proof: Clearly,
∑

e∈E

f(e)

=
∑

Di∈ND

∑

e∈Support
s
(Di)

|V |
2µ · sDi

(by construction of f)

=
|V |
2µ

∑

e∈ND

∑

e∈Support
s
(Di)

·sDi

=
|V |
2µ · µ (since s is a profile)

=
|V |
2 .

One the other hand, fix any vertex v ∈ V . Recall that there is exactly one defender Di such that v ∈
Verticess(Support

s
(Di)). This implies that Ps(Hit(v)) = Ps(Hit(Di, v)). We prove:

Claim D.6
∑

e∈Edgess(v)
f(e) = 1.

Proof: Clearly,
∑

e∈Edgess(v)

f(e)

=
∑

e∈Support
s
(Di)|v∈e f(e)

=
∑

e∈Support
s
(Di)|v∈e

|V |
2µ · sDi

(e) (by construction)

=
|V |
2µ

∑

e∈Support
s
(Di)|v∈e sDi

(e)

=
|V |
2µ · Ps(Hit(Di, v))

=
|V |
2µ · Ps(Hit(v))

=
|V |
2µ · 2µ

|V |
= 1.

It follows that f is a Fractional Perfect Matching. To prove that f is µ-partitionable, define edge sets
Ei := Support

s
(Di) for i ∈ [µ]. Clearly,

⋃

i∈[µ] Ei =
⋃

i∈[µ] Support
s
(Di) = Support

s
(D) = Ef . Since for all

pairs of defenders Dj and Dk, Support
s
(Dj) ∩ Support

s
(Dk) = ∅, it follows that the sets Ei, i ∈ [µ], partition

the set Ef . In addition, for each edge set Ei, with i ∈ [µ], we prove:

Claim D.7
∑

e∈Ei
f(e) =

|V |
2µ

Proof: Clearly,
∑

e∈Ei

f(e)

=
∑

e∈Support
s
(Di)

f(e) (by construction of the edge sets)

=
∑

e∈Support
s
(Di)

|V |
2µ · sDi

(e) (by construction of f)

=
|V |
2µ

∑

e∈Support
s
(Di)

sDi
(e)

=
|V |
2µ , (since s is a profile)
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Claim D.7 implies that f is a µ-partitionable Perfect Matching. The proof is now complete.

D.4 Corollary 5.4:

Since G is Defense-Optimal, Theorem 5.3 implies that G has a µ-partitionable Fractional Perfect Matching
f . Lemma 5.2 implies now the claim.

D.5 Proposition 5.5:

Apply the polynomial time algorithm EliminateEvenCycles (from Proposition 2.2), to compute from f an
equivalent Fractional (Perfect) Matching f ′′ ⊆ f such that G(Ef ′′) has no even cycle. Since f is µ-partitionable
and f ′′ is equivalent to f , it follows that f ′′ is also µ-partitionable.

Then, apply the polynomial time algorithm IsolateOddCycles (from Proposition 2.3), to compute from f ′′

an equivalent Fractional Perfect Matching f ′ such that any odd cycle in G(Ef ′) is a component of it. Since
f ′′ is µ-partitionable and f ′ is equivalent to it, it follows that f ′ is also µ-partitionable. Since f ′ is perfect,
Lemma 2.1 implies that G(Ef ′) has no pendant edges. Hence, it follows that G(Ef ′) consists only of single
edges and odd cycles.

D.6 Proposition 5.6:

Assume that G has a µ-partitionable Fractional Perfect Matching f . Proposition 5.5 implies the claim.
Conversely, assume that E contains a collection E1, · · ·Eµ of vertex-disjoint subsets so that

⋃

i∈[µ] Vi = V ,

each Ei is a collection of single edges and odd cycles, and |Vi| =
|V |
µ , for each i ∈ [µ]. We show that G admits

a µ-partitionable Fractional Perfect Matching f : for each edge e ∈ Ei, i ∈ [µ], set f(e) := 1 if Ei is a single

edge; otherwise, set f(e) := 1
2 (if Ei is an odd cycle). For any other edge e ∈ E\

⋃

i∈[µ] Ei, set f(e) := 0. We
show that f is a µ-partitionable Fractional Perfect Matching of G.

Since Ei are vertex-disjoint and
⋃

i∈[µ] Vi = V , it follows by construction that for each vertex v ∈ V ,
∑

e|v∈e f(e) = 1, so that f is a Fractional Perfect Matching of G. Moreover, observe that by construction,

Ef =
⋃

i∈[µ] Ei. Since |Vi| =
|V |
µ for each i ∈ [µ], it follows that f is also a µ-partitionable Fractional Perfect

Matching of G. The proof is now complete.

D.7 Proposition 5.7:

We employ the (trivially polynomial time) identity reduction. Assume first that SPECIAL PARTITIONABLE
FRACTIONAL PERFECT MATCHING is positive for G. Proposition 5.6 implies that E contains a collection
E1, · · · , E |V |

3

of vertex-disjoint subsets and corresponding vertex sets V1, · · · , V |V |
3

, so that
⋃

i∈
h
|V |
3

i Vi = V ,

each Ei is a collection of single edges and odd cycles, and |Vi| = |V |
|V |
3

= 3 for i ∈

[

|V |
3

]

. It follows that each

Ei is an odd cycle, so that PARTITION INTO TRIANGLES is positive for G.

Assume now that PARTITION INTO TRIANGLES is positive for G. Thus, V can be partitioned into q

disjoint sets V1, · · · , Vq, each containing exactly three vertices, such that the subgraph of G induced by each
Vi is a triangle graph. This partition induces a corresponding partition of E into a collection E1, · · ·E |V |

3

of
|V |
3 vertex-disjoint subsets, where each Ei is a single triangle. Proposition 5.6 implies that G has a

|V |
3

-partitionable Fractional Perfect Matching, so that SPECIAL PARTITIONABLE FRACTIONAL PERFECT
MATCHING is positive for G.
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D.8 Theorem 5.9:

Theorem 5.9 will follow from Propositions D.8 and D.9.

Proposition D.8 Assume a graph G with a Perfect Matching and an integer µ ≤
|V |
2 such that 2 µ divides

|V |. Then, G admits a Defense-Optimal Nash equilibrium s where Supports
s
(D) is a Perfect Matching.

Proof: Consider a Perfect Matching M . Construct a profile s as follows:

• s is Attacker Symmetric Uniform and Attacker Fully Mixed. So, for each attacker Ai ∈ NA, for each
vertex v ∈ V , sAi

(v) = 1
|V |

and VPs(v) = ν
|V |

.

• Partition M into µ subsets, each with
|V |
2µ edges; each defender uses a uniform probability distribution

over each one subset. Thus, Support
s
(D) = M and each edge is unidefender in s.

We now establish Conditions (1) and (2) in the characterization of Nash equilibria (Proposition 4.1).

• For Condition (1), fix any vertex v ∈ V . Since M is a (Perfect) Matching, there is a single edge e ∈

Edges
s
(v). Since e is unidefender (say by defender Di), it follows that Ps(Hit(v)) = Ps(Hit(Di, v)) =

2µ
|V |

.

Now, Condition (1) follows trivially.

• For Condition (2), consider any defender Di ∈ ND. Fix an edge e = (u, v) ∈ Support
s
(Di). Since each

edge e is unidefender, it follows that Prop
s
(Di, v) = Prop

s
(Di, u) = 1. It follows that Prop

s
(Di, v) ·

VPs(v) + Prop
s
(Di, u) · VPs(u) = 2ν

|V |
. On the other hand, fix any edge e′ = (v′, u′) 6∈ Support

s
(Di).

Since M is an Edge Cover, it follows that for the vertex v′ (resp., vertex u′), there is a defender Dj such
that v′ ∈ Vertices(Support

s
(Dj)) (resp., u′ ∈ Vertices(Support

s
(Dj))). (Note that Dj 6= Di since M is a

Matching.) It follows that Prop
s
(Di, v

′) < 1 (resp., Prop
s
(Di, u

′) < 1). Thus, Prop
s
(Di, v

′) · VPs(v
′) +

Prop
s
(Di, u

′) · VPs(u
′) < VPs(v

′) + VPs(u
′) = 2ν

|V |
. Now, Condition (2) follows.

Hence, by Proposition 4.1, s is a Nash equilibrium. To prove that s is Defense-Optimal, recall that for each

vertex v ∈ V , Ps(Hit(v)) =
2µ
|V |

. Hence, MinHits =
2µ
|V |

. By Corollary 4.3, it follows that DRs =
|V |
2µ .

Proposition D.9 Assume a graph G with a Perfect Matching and an integer µ ≤
|V |
2 such that G admits a

Defense-Optimal Nash equilibrium s where Supports
s
(D) is a Perfect Matching. Then, 2 µ divides |V |.

Proof: Consider such a Nash equilibrium s. Since s is Defense-Optimal, Corollary 4.3 implies that MinHits =
2µ
|V |

. Consider any edge e = (u, v) ∈ Support
s
(D); so, e ∈ Support

s
(Di) for some defender Di ∈ ND. Since

Support
s
(A) is a vertex Cover of the graph G(Support

s
(D)), it follows that v ∈ Support

s
(A) or u ∈ Support

s
(A)

(or both). Since Support
s
(D) is a Perfect Matching (and therefore an Edge Cover), there is at least one

defender Dk such that v ∈ Verticess(Support
s
(Dk)). Since s is Defense-Optimal, Proposition 5.1 implies that

there is at most one defender Dk such that v ∈ Verticess(Support
s
(Dk)). It follows that there is exactly one

defender Dk such that v ∈ Verticess(Support
s
(Dk)). So, clearly, Dk is Di. Since Support

s
(D) is a Perfect

Matching, this implies that Ps(Hit(v)) = sDi
(e). We prove:

Claim D.10 |Support
s
(Di)| =

|V |
2µ .
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Proof: Clearly,

∑

e∈Support
s
(Di)

sDi
(e)

=
∑

e∈Support
s
(Di)

Ps(Hit(v))

=
∑

e∈Support
s
(Di)

MinHits (since v ∈ Support
s
(A))

= |Support
s
(Di)| · MinHits

= |Support
s
(Di)| ·

1
DRs

(by Corollary 4.3)

= |Support
s
(Di)| ·

2µ
|V |

(since s is Defense-Optimal)

Note however, that
∑

e∈Support
s
(Di)

sDi
(e) = 1. It follows that |Support

s
(Di)| =

|V |
2µ .

Since |Support
s
(Di)| is an integer, Claim D.10 implies that 2µ divides |V |.

E Proofs from Section 6:

E.1 Theorem 6.1:

Assume, by way of contradiction, that G admits a Defense-Optimal Nash equilibrium s. So, DRs = 1.
Corollary 4.3 implies that MinHits = 1. It follows that for each vertex v ∈ V , Ps(Hit(v)) = 1; so, all vertices
are maxhit. So, fix a (maxhit) vertex v ∈ V . The expression

Ps(Hit(v)) =
∑

j∈[µ]

(−1)j−1
∑

D⊆ND||D|=j

∏

Dk∈D

Ps (Hits(Dk, v))

implies that there is at least one maxhitter Di ∈ ND (a defender Di such that Ps(Hit(Di, v)) = 1).

There are two cases for each maxhitter Di: (i) Di uses a pure strategy (u, v), so that there are two vertices
u, v ∈ Support

s
(Di) such that Ps(Hit(Di, v)) = Ps(Hit(Di, u)) = 1, or (ii) Di uses a mixed strategy, in which

case there is a single vertex v ∈ Support
s
(Di) such that Ps(Hit(Di, v)) = Ps(Hit(Di, u)) = 1.

Use s to construct a defender-pure profile t as follows: The pure strategy of each (multihitter or not)
defender Dk is some edge from Support

s
(Dk). Note that, by construction of t, (1) Support

t
(D) ≤ µ, and (2)

the number of maxhit vertices in s is at most the number of maxhit vertices in t. Since µ < β
′
(G), (1)

implies that |Supports
t
(D)| < β′(G). This implies that there is some vertex v ∈ V such that Pt(Hit(v)) = 0.

It follows that the number of maxhit vertices in t is at most |V | − 1. By (2), it follows that the number of
maxhit vertices in s is at most |V | − 1. A contradiction.

F Proofs from Section 7:

F.1 Lemma 7.1:

Fix a defender-pure balanced profile s and an arbitrary defender Di ∈ ND. For an edge e = (u, v) ∈

Support
s
(Di), IPs(Di, e) =

VPs(v)
defenderss(v)

+
VPs(u)

defenderss(u)
= 2c (since s is defender-pure balanced). On the

other hand, for an edge e′ = (u′, v′) 6∈ Support
s
(Di), IPs(Di, e

′) =
VPs(v

′)
defenderss(v

′) + 1
+

VPs(u
′)

defenderss(u
′) + 1

< 2c.

Hence, s is a local maximizer for the Individual Profit of defender Di.
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F.2 Theorem 7.2 (Continued):

Note that by construction (Step (2)), s is defender-pure balanced. Hence, by Lemma 7.1 s is a local maximizer
for the Individual Profit of each defender. So, consider any attacker Ai ∈ NA. Note that by construction
(Steps (1) and (2)) and the assumption that µ ≥ β′(G), it follows that Supports

s
(D) is a Minimum Edge

Cover. Since s is defender-pure, this implies that for each vertex v ∈ V , Ps(Hit(v)) = 1. Hence, for each
vertex v ∈ V , IPs(Ai, v) = 1 − Ps(Hit(v)) = 0. So, s is (vacuously) a local maximizer for the Expected
Individual Profit of each attacker. It follows that s is a Nash equilibrium. Since s is a Defender-Pure Nash
equilibrium, Proposition 4.8 implies that s is also Defense-Optimal, and we are done.

F.3 Theorem 7.3 (Continued):

Note that by construction (Step (2)), s is defender-pure, so that
∑

v∈V defenderss(v) = 2µ. Since ν
2 ≡

0 (mod µ), it follows that for each vertex v ∈ V , defenderss(v)· ν
2 µ is an integer. Observe that

∑

v∈V defenderss(v)·
ν
2µ = ν

2µ

∑

v∈V defenderss(v) = ν
2µ · 2µ = ν. Hence, Step (3) yields an attacker pure profile. It follows that s

is a pure profile. Note that by construction (Step (3)), for each vertex v ∈ V ,
VPs(v)

defenderss(v)
= ν

2µ . Hence, s is

a defender-pure balanced profile. Lemma 7.1 implies that s is a local maximizer for the Expected Individual
Profit for each defender.

So, consider any attacker Ai ∈ NA. Note that by construction (Steps (1) and (2)) and the assumption
that µ ≥ β′(G), it follows that Supports

s
(D) is a Minimum Edge Cover. Since s is defender-pure, this implies

that for each vertex v ∈ V , Ps(Hit(v)) = 1. Hence, for each vertex v ∈ V , IPs(Ai, v) = 1 − Ps(Hit(v)) = 0.
So, s is (vacuously) a local maximizer for the Expected Individual Profit of each attacker. It follows that s
is a Nash equilibrium. Since s is a Defender-Pure Nash equilibrium, Proposition 4.8 implies that s is also
Defense-Optimal, and we are done.

G Proofs from Section 8:

G.1 Proposition 8.1:

Construct from s a Defender-Symmetric profile t for the game Πν,µ as follows:

• For each attacker Ai, tAi
= sAi

. (So, Supports
t

= Supports
s
.)

• For each defender Di, tDi
= sD. (So, Supports

t
(D) = Supports

s
(D).)

We now show that t is a Nash equilibrium by proving that it saqtisfies Conditions (1) and (2) in the
characterization of Nash equilibria (Proposition 4.1).

• For Condition (1), fix any vertex v ∈ V . Clearly,

Pt(Hit(v))

=
∑

j∈[m](−1)j−1
∑

D⊆ND||D|=j

∏

Dk∈D Pt(Hit(Dk, v))

=
∑

j∈[m](−1)j−1
∑

D⊆ND||D|=j (Pt(Hit(D1, v)))
j

(since defenders are symmetric)

=
∑

j∈[m](−1)j−1
(

µ
j

)

(Ps(Hit(D, v)))
j

(by construction)

= 1 − (1 − Ps(Hit(v)))
µ

.

Since s is a Nash equilibrium, it follows by Condition (1) in the characterization of Nash equilibria
(Proposition 4.1) that Ps(Hit(v)) is minimized on Supports

s
(A). Since Supports

t
(A) = Supports

s
(A), the

derived formula implies that Pt(Hit(v)) is minimized on Supports
t
(A). So, t satisfies Condition (1) in

the characterization of Nash equilibria (Proposition 4.1).
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• For Condition (2), fix any defender Di ∈ ND. Then, for each vertex v ∈ V ,

Prop
t
(Di, v)

=
∑

j∈[m]
1
j

(−1)j−1
∑

D⊆ND\Di||D|=j−1

∏

Dk∈D Pt(Hit(Dk, v))

=
∑

j∈[m]
1
j

(−1)j−1
∑

D⊆ND\Di||D|=j−1 (Pt(Hit(D1, v)))
j−1

(since defenders are symmetric)

=
∑

j∈[m]
1
j

(−1)j−1
(

µ−1
j−1

)

(Ps(Hit(D, v)))
j−1

(by construction)

=
∑

j∈[m]
1
j

(−1)j−1
(

µ−1
j−1

)

(Ps(Hit(v)))
j−1

(since ND = {D}) .

Note that for any vertex v ∈ Supports
s
(A) = Supports

t
(A), Condition (1) in the characterization of Nash

equilibria (Proposition 4.1) implies that Ps(Hit(v)) = MinHits. Since Supports
s
(A) = Supports

t
(A), it

follows that for each vertex t ∈ Supports
t
(A).

Prop
t
(Di, v) =

∑

j∈[m]

1

j
(−1)j−1

(

µ − 1

j − 1

)

(MinHitt)
j−1

.

Note also that for a vertex v 6∈ Supports
t
(A) = Supports

s
(A), VPt(v) = 0. It follows that for any vertex

v ∈ V ,

Prop
t
(Di, v) · VPt(v) =

{

∑

j∈[m]
1
j

(−1)j−1
(

µ−1
j−1

)

(MinHits)
j−1 if v ∈ Supports

t
(A)

0 otherwise

Consider first any edge e = (u, v) ∈ Supports
t
(D). Since Supports

t
(D) = Support

s
(D), it follows that

e ∈ Support
t
(D). Since s is a Nash equilibrium, Lemma 4.6 implies that either u ∈ Support

s
(A) or

u ∈ Support
s
(A) (or both). There are two cases to consider:

1. Both v ∈ Support
s
(A) and u ∈ Support

s
(A). Then,

Prop
t
(Di, v) · VPt(v) + Prop

t
(Di, u) · VPt(u)

=
(

∑

j∈[m]
1
j

(−1)j−1
(

µ−1
j−1

)

(MinHits)
j−1

)

(VPt(v) + VPt(u))

=
(

∑

j∈[m]
1
j

(−1)j−1
(

µ−1
j−1

)

(MinHits)
j−1

)

(VPs(v) + VPs(u)) (by construction of t)

=
(

∑

j∈[m]
1
j

(−1)j−1
(

µ−1
j−1

)

(MinHits)
j−1

)

VPs(e)

=
(

∑

j∈[m]
1
j

(−1)j−1
(

µ−1
j−1

)

(MinHits)
j−1

)

maxe′∈E VPs(e
′) (by Proposition 4.1 (1))

2. v ∈ Support
s
(A) but u 6∈ Support

s
(A). Then,

Prop
t
(Di, v) · VPt(v) + Prop

t
(Di, u) · VPt(u)

= (Prop
t
(Di, v) + Prop

t
(Di, u)) · (VPt(v) + 0)

= (Prop
t
(Di, v) + Prop

t
(Di, u)) · (VPs(v) + 0) (by construction of t)

= (Prop
t
(Di, v) + Prop

t
(Di, u)) · maxe′∈E VPs(e

′) (by Proposition 4.1 (1))

Consider now any edge e = (u, v) 6∈ Support
t
(D). Since Support

t
(D) = Support

s
(D), it follows that

e 6∈ vSupport
s
(D). Hence,

Prop
t
(Di, v) · VPt(v) + Prop

t
(Di, u) · VPt(u)

≤ (Prop
t
(Di, v) + Prop

t
(Di, u)) · (VPt(v) + VPt(u))

= (Prop
t
(Di, v) + Prop

t
(Di, u)) · (VPs(v) + VPs(u)) (by construction of t)

= (Prop
t
(Di, v) + Prop

t
(Di, u)) · VPs(e)

≤ (Prop
t
(Di, v) + Prop

t
(Di, u)) · maxe′∈E VPs(e

′) (by Proposition 4.1 (1))

Condition (2) follows. Hence, t is a Nash euilibrium.
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