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Abstract

A graceful labeling of a graphG = (V,E) assigns |V | distinct integers from the set {0, . . . , |E|}
to the vertices of G so that the absolute values of their differences on the |E| edges of G constitute
the set {1, . . . , |E|}. A graph is graceful if it admits a graceful labeling. The forty-year old
Graceful Tree Conjecture, due to Ringel and Kotzig, states that every tree is graceful.

We prove a Substitution Theorem for graceful trees, which enables the construction of a
larger graceful tree through combining smaller and not necessarily identical graceful trees. We
present applications of the Substitution Theorem, which generalize earlier constructions com-
bining smaller trees.
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1 Introduction

A labeling of a graph G = (V,E) is an assignment θ : V → {0, . . . , |E|} of labels to the vertices of
G that induces for each edge uv an edge label depending on the labels θ(u) and θ(v) (cf. [4]). A
graceful labeling [14] of G = (V,E) is an injection from the vertices of G to the set {0, . . . , |E|} such
that when each edge uv is assigned the label |θ(u)− θ(v)|, the resulting edge labels are all distinct;
so, {|θ(u)− θ(v)| | uv ∈ E} = {1, . . . , |E|}. A graceful graph is one admitting a graceful labeling.
When the graph G is a tree, graceful labeling implies that θ is a bijection. The long-standing
Ringel-Kotzig Conjecture [13], also known as the Graceful Tree Conjecture, states that all trees are
graceful. Not too many classes of trees are yet known to be graceful — see, e.g., [1, 2, 6, 12, 13].

One successful approach toward extending the class of trees known to be graceful builds on
combining together or modifying trees already known to be graceful, henceforth called the con-
stituent trees, to produce a larger graceful tree, henceforth called the constructed tree (cf. [8]). This
approach has been taken, for example, in the following works:

Koh et al. [7, 9] and Rosa and Širáň [15] connect together the constituent trees by attaching
their roots in certain ways; they prove that the resulting tree is also graceful. Lladó and López [10]
extend the constructions in [7, 9, 15] so that they apply to the case where each of the constituent
trees is bigraceful ; the constructed tree is then bigraceful. A bigraceful labeling [11] is strictly weaker
than a graceful labeling; the essential deviation is that the labeling is no longer an injection.

Burzio and Ferrarese [3] prove that the tree obtained by subdividing every edge in a graceful
tree is also graceful. Furthermore, they provide ways to attach the constituent trees to vertices
of a given host tree. Lladó and López [10] extend some of the constructions in [3] to the case of
bigraceful labeling.

In this article we present and explore the Substitution Theorem for graceful trees (Theorem 2.3),
a combinatorial tool that enables extending previous results on combining a family of copies of a
graceful tree into a larger graceful tree. Its contribution lies in relaxing the requirement that the
constituent trees be identical; instead it allows arbitrary families of graceful trees to be combined
as long as these trees satisfy a certain combinatorial property.

The Substitution Theorem applies to families of gracefully labeled trees that are pairwise grace-
fully consistent ; a pair of gracefully labeled trees is gracefully consistent if there exists an integer
k such that the graceful labeling of each tree assigns to each pair of adjacent vertices a label larger
than k and a label at most equal to k. Such labelings will be called strongly graceful labelings,
and k will be called the strength of the labeling. A family of trees that admit strongly graceful
labelings with the same strength will be called a gracefully consistent family ; each tree in the family
has a designated vertex, called the root. Through an application of the Substitution Theorem to a
gracefully consistent family, we obtain the following results:

(1) We present the Extended Garland Construction, where the roots of the constituent trees from
a gracefully consistent family are connected to a new distinct vertex (Theorem 3.2). This
extends the class of graceful trees resulting from the original Garland Construction in [7].

Lladó and López [10, Lemma 2.2] provide a generalization of the Garland Construction where
the roots of the constituent trees are identified with the leaves of an arbitrary tree. In their
generalization, the constituent trees are only bigraceful, as also is the constructed tree.
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(2) We present the Extended Attachment Construction, where the roots of the constituent trees
from a gracefully consistent family are unified into a single vertex (Theorem 3.4). This extends
the class of graceful trees resulting from the original Attachment Construction in [9].

Lladó and López [10, Lemma 2.1] show that the Attachment Construction can be applied to
two arbitrary bigraceful trees to construct a new bigraceful tree; if the two trees are strongly
graceful (but not necessarily gracefully consistent), the constructed tree is strongly graceful.
The root (vertex labeled with 0) of the constructed tree is necessarily different than the
vertex unifying the roots of the two constituent trees. To extend to an arbitrary number of
constituent trees, the new root must be identified with the root of the third constituent tree,
and so on. In contrast, the roots of all constituent trees in the construction from Theorem 3.4
are unified together. Hence, the two results are incomparable.

Rosa and Širáň [15, Lemma 2] show that the Attachment Construction can be applied to
two arbitrary strongly graceful trees to construct a new graceful tree. Much in the same way
as [10, Lemma 2.1], this result is incomparable to Theorem 3.4.

(3) We present the Extended ∆-Construction, where the roots of the constituent trees from a
gracefully consistent family are unified with the vertices of some fixed but arbitrary tree,
called the host (Theorem 3.6). This extends the class of graceful trees resulting from the
original ∆-Construction in [9].

The construction in [10, Lemma 2.1] is the special case of the ∆-Construction where the host
tree is a single edge. However, this construction assumes that the two arbitrary constituent
trees are bigraceful and the constructed tree is bigraceful. In [10, discussion following Lemma
2.1], the authors note that when their construction is applied to two strongly graceful (but
not necessarily gracefully consistent) trees, the constructed tree is strongly graceful. Since
there is no assumption on the graceful consistency of the constituent trees in [10, Lemma 2.1],
this result is strictly stronger than Theorem 3.6, but it only applies to the special case where
the host tree is a single edge.

The construction in [10, Lemma 2.2] generalizes the ∆-Construction where the roots of the
constituent trees are unified with some leaves of the host tree. Furthermore, it is assumed
in [10, Lemma 2.2] only that all constituent trees have the same number of edges, while
Theorem 3.6 assumes that they come from a gracefully consistent family. However, [10,
Lemma 2.2] applies when the constituent trees are bigraceful and yields a bigraceful tree.

We also present the Generalized Extended ∆-Construction, which parallels the Generalized
∆-Construction in [3] by allowing certain edges to be moved around in a tree constructed via
the Extended ∆-Construction while preserving its gracefulness (Theorem 3.7).

(4) We present the Extended ∆+1-Construction, which resembles the Extended ∆-Construction;
however, it allows for one vertex of the host tree not to be unified with a root (Theorem 3.9).
This extends the class of graceful trees resulting from the original ∆+1-Construction in [3].

We also present the Generalized Extended ∆+1-Construction, which parallels the Generalized
∆+1-Construction by allowing certain edges to be moved around in a tree constructed via
the Extended ∆+1-Construction while preserving its gracefulness (Theorem 3.10).
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2 The Substitution Theorem

We will focus on graceful labelings for trees, where a graceful labeling θ for a tree T = (V,E) is
a bijection from V to {0, . . . , |E|}. For a graceful labeling θ, the vertex assigned the value 0 will
be called the 0-vertex of θ and denoted as 0θ; thus, θ(0θ) = 0. In what follows, we will use a
triple 〈T, θ, w〉 to simultaneously refer to a gracefully labeled tree T , its graceful labeling θ, and a
distinguished vertex w ∈ V (T ), which we will call the root. In general, the root is a single vertex
that satisfies some property specific to each particular construction. By dist(u, v) we will denote
the distance between u and v in a tree.

2.1 Strongly Graceful Labeling

The definition of strongly graceful labeling is due to Rosa [14], who called it α-valuation. For a
gracefully labeled tree 〈T, θ, w〉, say that θ is a strongly graceful labeling of T with strength k ∈ N

if for every edge uv ∈ E(T ), either θ(u) ≤ k < θ(v) or θ(v) ≤ k < θ(u). In such case, say that
〈T, θ, w〉 is strongly gracefully labeled with strength k ∈ N. Define now the sets

EvenLabels(〈T, θ, w〉) = {θ(v) | v ∈ V (T ) and dist(v, w) is even}

and
OddLabels(〈T, θ, w〉) = {θ(v) | v ∈ V (T ) and dist(v, w) is odd} .

The following claim is a direct consequence of the bipartiteness of trees:

Lemma 2.1 Consider a strongly gracefully labeled tree 〈T, θ, w〉 with strength k ∈ N. Then:

(1) If θ(w) ≤ k, then
EvenLabels(〈T, θ, w〉) = {0, . . . , k} and OddLabels(〈T, θ, w〉) = {k + 1, . . . , |V (T )| − 1}.

(2) If θ(w) > k, then
OddLabels(〈T, θ, w〉) = {0, . . . , k} and EvenLabels(〈T, θ, w〉) = {k + 1, . . . , |V (T )| − 1}.

2.2 Gracefully Consistent Trees

Say that two gracefully labeled trees 〈T1, θ1, w1〉 and 〈T2, θ2, w2〉 with |V (T1)| = |V (T2)| are grace-
fully consistent if either of the following conditions holds:

(1) The gracefully labeled trees 〈T1, θ1, w1〉 and 〈T2, θ2, w2〉 are identical.

(2) The labelings θ1 and θ2 are strongly graceful with the same strength, and θ1(w1) = θ2(w2).

Say that a family of gracefully labeled trees is gracefully consistent if the trees in the family are
pairwise gracefully consistent. Observe that for any pair of gracefully consistent trees 〈T1, θ1, w1〉
and 〈T2, θ2, w2〉, EvenLabels(〈T1, θ1, w1〉) = EvenLabels(〈T2, θ2, w2〉) and OddLabels(〈T1, θ1, w1〉) =
OddLabels(〈T2, θ2, w2〉). This property is illustrated in Figure 1.
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Figure 1: The gracefully consistent family {〈T1, θ1, w1〉, 〈T2, θ2, w2〉, 〈T3, θ3, w3〉}.

2.3 Relabeling Function

We define:

Definition 2.1 (Relabeling Function) Consider a gracefully labeled tree 〈T, θ, w〉, and a triple

of integers 〈c, e, o〉 ∈ Z
3. Define the relabeling function R

〈T,θ,w〉
〈c,e,o〉 : V (T )→ Z with

R
〈T,θ,w〉
〈c,e,o〉 (v) =

{

c(θ(v) + e) , if dist(v, w) is even
c(θ(v) + o) , if dist(v, w) is odd

The triple 〈c, e, o〉 and the root of the tree T in the definition of the relabeling function depend
on each specific construction. Roughly speaking, the integers e and o correspond to offsets applied,
respectively, to the labels of vertices at even and odd distance from the root, while the integer c

corresponds to a multiplicative factor applied to the labels of all vertices. We observe:

Lemma 2.2 Consider a strongly gracefully labeled tree 〈T, θ, w〉 with strength k ∈ N. Then, for all
edges uv ∈ E(T ),

∣

∣

∣
R

〈T,θ,w〉
〈c,e,o〉 (u)−R

〈T,θ,w〉
〈c,e,o〉 (v)

∣

∣

∣
=

{

|c| ||θ(u)− θ(v)| − e+ o| , if θ(w) ≤ k

|c| ||θ(u)− θ(v)|+ e− o| , if θ(w) > k
,

so that

{∣

∣

∣
R

〈T,θ,w〉
〈c,e,o〉 (u)−R

〈T,θ,w〉
〈c,e,o〉 (v)

∣

∣

∣
| uv ∈ E(T )

}

=

{

{|c| |δ − e+ o| | 1 ≤ δ ≤ |V (T )| − 1} , if θ(w) ≤ k

{|c| |δ + e− o| | 1 ≤ δ ≤ |V (T )| − 1} , if θ(w) > k
.

The claim follows immediately from Definition 2.1 and Lemma 2.1.

2.4 The Theorem

We are now ready to state and prove the Substitution Theorem:
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Theorem 2.3 Consider any pair of gracefully consistent trees 〈T1, θ1, w1〉 and 〈T2, θ2, w2〉. Then,
for all triples of integers 〈c, e, o〉 ∈ Z

3,

(1) R
〈T1,θ1,w1〉
〈c,e,o〉 (w1) = R

〈T2,θ2,w2〉
〈c,e,o〉 (w2);

(2)
{

R
〈T1,θ1,w1〉
〈c,e,o〉 (v) | v ∈ V (T1)

}

=
{

R
〈T2,θ2,w2〉
〈c,e,o〉 (v) | v ∈ V (T2)

}

;

(3)
{∣

∣

∣
R

〈T1,θ1,w1〉
〈c,e,o〉 (u)−R

〈T1,θ1,w1〉
〈c,e,o〉 (v)

∣

∣

∣
| uv ∈ E(T1)

}

=
{∣

∣

∣
R

〈T2,θ2,w2〉
〈c,e,o〉 (u)−R

〈T2,θ2,w2〉
〈c,e,o〉 (v)

∣

∣

∣
| uv ∈ E(T2)

}

.

Proof: Assume that the labelings θ1 and θ2 are strongly graceful with the same strength k ∈ N,
and θ1(w1) = θ2(w2).

For (1), since dist(w1, w1) = dist(w2, w2) = 0, the definition of relabeling function implies that

R
〈T1,θ1,w1〉
〈c,e,o〉 (w1) = c(θ1(w1)+e) andR

〈T2,θ2,w2〉
〈c,e,o〉 (w2) = c(θ2(w2)+e). By assumption θ1(w1) = θ2(w2).

It follows that R
〈T1,θ1,w1〉
〈c,e,o〉 (w1) = R

〈T2,θ2,w2〉
〈c,e,o〉 (w2).

For (2), the definition of relabeling function and an earlier observation imply that
{

R
〈T1,θ1,w1〉
〈c,e,o〉 (v) | v ∈ V (T1)

}

= {c(θ1(v) + e) | v ∈ V (T1) and dist(v, w1) is even} ∪ {c(θ1(v) + o) | v ∈ V (T1) and dist(v, w1) is odd}

= {c(θ2(v) + e) | v ∈ V (T2) and dist(v, w2) is even} ∪ {c(θ2(v) + o) | v ∈ V (T2) and dist(v, w2) is odd}

=
{

R
〈T2,θ2,w2〉
〈c,e,o〉 (v) | v ∈ V (T2)

}

.

For (3), Lemma 2.2 implies that
{
∣

∣

∣
R

〈T1,θ1,w1〉
〈c,e,o〉 (u)−R

〈T1,θ1,w1〉
〈c,e,o〉 (v)

∣

∣

∣
| uv ∈ E(T1)

}

=

{

{|c| |δ − e+ o| | 1 ≤ δ ≤ |V (T1)| − 1} , if θ1(w1) ≤ k

{|c| |δ + e− o| | 1 ≤ δ ≤ |V (T1)| − 1} , if θ1(w1) > k

=

{

{|c| |δ − e+ o| | 1 ≤ δ ≤ |V (T2)| − 1} , if θ2(w2) ≤ k

{|c| |δ + e− o| | 1 ≤ δ ≤ |V (T2)| − 1} , if θ2(w2) > k

=
{∣

∣

∣
R

〈T2,θ2,w2〉
〈c,e,o〉 (u)−R

〈T2,θ2,w2〉
〈c,e,o〉 (v)

∣

∣

∣
| uv ∈ E(T2)

}

.

Since the three conditions also hold (trivially) when 〈T1, θ1, w1〉 ≡ 〈T2, θ2, w2〉, the claim follows.

The Substitution Theorem implies that applying the same relabeling function on any of a pair of
gracefully consistent trees produces the same sets of vertex and edge labels; moreover, the roots of
the two relabeled trees have the same label.

3 Applications

Unless otherwise stated, the family S = {〈T1, θ1, w1〉, . . . , 〈Th, θh, wh〉} of gracefully labeled trees is
employed in all constructions.
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Figure 2: The tree garland(S), when S consists of the trees 〈T1, θ1, w1〉, 〈T2, θ2, w2〉, and
〈T3, θ3, w3〉 taken from Figure 1. The special vertex of the constructed tree is circled.

3.1 The Garland Construction

Denote by garland(S) the tree constructed by connecting a distinguished vertex r to the roots of
all the trees in S; we call r the special vertex of the constructed tree. The original construction is
due to Koh et al. [7]; Goldenberg [5] calls it the Garland Construction. Koh et al. [7] prove:

Proposition 3.1 Consider a gracefully labeled tree 〈T, θ, w〉 with θ(w) = |V (T )|−1. Let S consist
of h copies of 〈T, θ, w〉. Then, the labeling

θ∗(v) =







h|V (T )| , if v = r

−(θi(v) + 1− i|V (Ti)|) , if v ∈ V (Ti) and dist(v, wi) is even
−(θi(v) + 1− (h+ 1− i)|V (Ti)|) , if v ∈ V (Ti) and dist(v, wi) is odd

is a graceful labeling for the tree garland(S).

Note that the relabeling function used on copy 〈Ti, θi, wi〉 is R
〈Ti,θi,wi〉
〈−1,1−i|V (Ti)|,1−(h+1−i)|V (Ti)|〉

.

The Extended Garland Construction requires that S be a gracefully consistent family; it returns
a graceful labeling θ∗ for the tree garland(S) as follows:

θ∗(v) =

{

h|V (T1)| (= h|V (T2)| = . . . = h|V (Th)|) , if v = r

R
〈Ti,θi,wi〉
〈−1,1−i|V (Ti)|,1−(h+1−i)|V (Ti)|〉

(v) , if v ∈ V (Ti)
.

Figure 2 provides an illustration for the Extended Garland Construction. We show:

Theorem 3.2 Consider a gracefully consistent family S with θi(wi) = |V (Ti)| − 1, 1 ≤ i ≤ h.
Then, the Extended Garland Construction provides a graceful labeling θ∗ for the tree garland(S).

Proof: Consider the family S =
{

〈Ti, θi, wi〉 | 〈Ti, θi, wi〉 ≡ 〈Th, θh, wh〉, 1 ≤ i ≤ h
}

. By Proposi-

tion 3.1, the tree garland(S) is graceful. Recall that the labeling θ∗ for the tree garland(S) is

obtained by relabeling every tree Ti, 1 ≤ i ≤ h using the function R
〈Ti,θi,wi〉

〈−1,1−i|V (Ti)|,1−(h+1−i)|V (Ti)|〉
;

the labeling θ∗ for the tree garland(S) is obtained by relabeling every tree Ti, 1 ≤ i ≤ h using

the function R
〈Ti,θi,wi〉
〈−1,1−i|V (Ti)|,1−(h+1−i)|V (Ti)|〉

.
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Since 〈Ti, θi, wi〉 ≡ 〈Th, θh, wh〉 and 〈Ti, θi, wi〉 are gracefully consistent, |V (Ti)| = |V (Ti)|; thus,
for each i, 1 ≤ i ≤ h, 〈Ti, θi, wi〉 and 〈Ti, θi, wi〉 are relabeled using a relabeling function with
the same triple of integers 〈c, e, o〉. Hence, by the Substitution Theorem, we get that for each
i, 1 ≤ i ≤ h: (i) θ∗ and θ∗ assign the same labels to the roots of Ti and Ti, respectively; (ii) θ∗

and θ∗ assign the same vertex and edge labels to the trees Ti and Ti, respectively. In addition, θ∗

and θ∗ assign the same label to the special vertices r and r of the constructed trees garland(S)
and garland(S), respectively. Hence, the labels of the edges that are adjacent to r and r are also
the same under the two labelings.

In conclusion, the two labelings θ∗ and θ∗ assign the same vertex and edge labels to the trees
garland(S) and garland(S), respectively. By Proposition 3.1, θ∗ is a graceful labeling for the
tree garland(S). Hence, θ∗ is a graceful labeling for the tree garland(S).

3.2 The Attachment Construction

Denote by attachment(S) the tree constructed by unifying together the roots of all the trees in S
into a single vertex r; we call r the special vertex of the constructed tree. The original construction
is due to Koh et al. [9]; Goldenberg [5] calls it the Attachment Construction; a technical condition
on the graceful labeling θ is assumed. Koh et al. [9] prove:

Proposition 3.3 Consider a gracefully labeled tree 〈T, θ, w〉 with θ(w) = |V (T )|−1. Let S consist
of h copies of 〈T, θ, w〉. Assume that

{θ(u) | uw ∈ E(T )} ⊂ {0} ∪ {(|V (T )| − 1)− θ(u) | uw ∈ E(T )}.

Then, the labeling

θ∗(v) =







h(|V (T )| − 1) , if v = r

θi(v) + (h− i)(|V (Ti)| − 1) , if v ∈ V (Ti) \ {wi} and dist(v, wi) is even
θi(v) + (i− 1)(|V (Ti)| − 1) , if v ∈ V (Ti) \ {wi} and dist(v, wi) is odd

is a graceful labeling for the tree attachment(S).

Note that the relabeling function used on copy 〈Ti, θi, wi〉, with the single exception of its root wi,

is R
〈Ti,θi,wi〉
〈1,(h−i)(|V (Ti)|−1),(i−1)(|V (Ti)|−1)〉.

The Extended Attachment Construction requires that S be a gracefully consistent family; it
returns a graceful labeling θ∗ for the tree attachment(S) as follows:

θ∗(v) =

{

h(|V (T1)| − 1) (= h(|V (T2)| − 1) = . . . = h(|V (Th)| − 1)) , if v = r

R
〈Ti,θi,wi〉
〈1,(h−i)(|V (Ti)|−1),(i−1)(|V (Ti)|−1)〉(v) , if v ∈ V (Ti) \ {wi}

.

Figure 3 provides an illustration for the Extended Attachment Construction. We show:

Theorem 3.4 Consider a gracefully consistent family S with θi(wi) = |V (Ti)| − 1, 1 ≤ i ≤ h.
Assume that

{θh(u) | uwh ∈ E(Th)} ⊂ {0} ∪ {(|V (Th)| − 1)− θh(u) | uwh ∈ E(Th)}

and that {θi(u) | uwi ∈ E(Ti)} = {θh(u) | uwh ∈ E(Th)}, for each i, 2 ≤ i ≤ h. Then, the Extended
Attachment Construction provides a graceful labeling θ∗ for the tree attachment(S).
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Figure 3: The tree attachment(S), when S consists of the trees 〈T1, θ1, w1〉, 〈T2, θ2, w2〉, and
〈T3, θ3, w3〉 taken from Figure 1. The special vertex of the constructed tree is circled.

Proof: Consider the family S =
{

〈Ti, θi, wi〉 | 〈Ti, θi, wi〉 ≡ 〈Th, θh, wh〉, 1 ≤ i ≤ h
}

. Consider the
following algorithm for labeling the tree attachment(S):

• For each i, 1 ≤ i ≤ h, do:

– Label r ≡ wi with the value |V (Ti)| − 1.

– Relabel the tree Ti using the function R
〈Ti,θi,wi〉

〈1,(h−i)(|V (Ti)|−1),(i−1)(|V (Ti)|−1)〉
.

• Label r with the value h(|V (Th)| − 1).

Clearly, the resulting labeling for the tree attachment(S) that is obtained by applying this algo-
rithm is θ∗, which is a graceful labeling for the tree attachment(S) (by Proposition 3.3). Now
consider the following algorithm for labeling the tree attachment(S):

• For each i, 1 ≤ i ≤ h, do:

– Label r ≡ wi with the value |V (Ti)| − 1.

– Relabel the tree Ti using the function R
〈Ti,θi,wi〉
〈1,(h−i)(|V (Ti)|−1),(i−1)(|V (Ti)|−1)〉.

• Label r with the value h(|V (Th)| − 1).

Clearly, the resulting labeling for the tree attachment(S) that is obtained by applying this algo-
rithm is θ∗, which would also have been obtained if we had applied instead the Extended Attachment
Construction on the tree attachment(S). Therefore, to establish the claim it suffices to show that
the two algorithms assign the same vertex and edge labels to each constituent tree.

Since 〈Ti, θi, wi〉 ≡ 〈Th, θh, wh〉 and 〈Ti, θi, wi〉 are gracefully consistent, |V (Ti)| = |V (Ti)|; thus,
in the first step of the two algorithms above, for each i, 1 ≤ i ≤ h, 〈Ti, θi, wi〉 and 〈Ti, θi, wi〉
are relabeled using a relabeling function with the same triple of integers 〈c, e, o〉. Hence, by the
Substitution Theorem, we get that for each i, 1 ≤ i ≤ h, immediately after the relabeling step in the
i-th iteration: (i) the two algorithms assign the same labels to the roots of Ti and Ti, respectively;
(ii) the two algorithms assign the same vertex and edge labels to the trees Ti and Ti, respectively.

We now examine two cases:

9



(1) Consider first the case i = 1. Following the first iteration of the two algorithms and the
application of the same relabeling function to the trees T1 and T1, their roots are both assigned
the label h(|V (T1)| − 1) = h(|V (Th)| − 1) = h(|V (T1)| − 1); so, the two trees have the same
vertex and edge labels. Their roots are their only vertices that change labels subsequently.
Upon completion of executing the two algorithms, the roots are again assigned the label
h(|V (Th)| − 1). So, each tree has the same vertex and edge labels as it had immediately
following the first iteration; hence, the two trees have the same vertex and edge labels.

(2) Consider now the case i > 1. Following the relabeling step of the trees Ti and Ti, the only way
the labels of those trees are affected by the execution of the two algorithms is by having the
labels of their roots changed. Since both roots are eventually assigned the value h(|V (Th)|−1),
it follows that at the end the two trees have the same vertex labels. It remains to show that
they also have the same edge labels. The only edge labels that change are the labels of the
edges that are adjacent to the tree roots. We show that these edge labels are affected in the
same way in the trees Ti and Ti; thus, the two trees have the same edge labels at the end.

Let Ni = {u | uwi ∈ E(Ti)} (resp., Ni = {u | uwi ∈ E(Ti)}), and let Li,j (resp., Li,j) denote
the set of labels of vertices in Ni (resp., Ni), following iteration j of the first (resp., second)
algorithm. When j = i − 1, the vertices of the trees Ti and Ti other than their roots are
labeled according to the graceful labelings θi and θi, respectively. Thus, Li,i−1 = {θi(u) |
uwi ∈ E(Ti)} and Li,i−1 = {θi(u) | uwi ∈ E(Ti)}. By assumption, {θi(u) | uwi ∈ E(Ti)} =
{θh(u) | uwh ∈ E(Th)}; since 〈Ti, θi, wi〉 ≡ 〈Th, θh, wh〉, it also holds that {θi(u) | uwi ∈
E(Ti)} = {θh(u) | uwh ∈ E(Th)}. Thus, Li,i−1 = Li,i−1.

When j = i, the vertices in Ni and Ni are relabeled using the same relabeling function. Recall
that vertices in Ni and Ni are all at odd distance from the roots of their respective trees; since
Li,i−1 = Li,i−1, it follows by definition of relabeling function that Li,i = Li,i. Since the two
algorithms do not affect the labels of vertices in Ni and Ni during subsequent iterations, it
holds that Li,h = Li,h. Since the roots of Ti and Ti are assigned the same label after iteration
h, the set of labels of the edges of the two trees that are adjacent to the roots are the same.

In conclusion, the two labelings θ∗ and θ∗ assign the same vertex and edge labels to the trees
attachment(S) and attachment(S), respectively. By Proposition 3.3, θ∗ is a graceful labeling
for the tree attachment(S). Hence, θ∗ is a graceful labeling for the tree attachment(S).

We note here that the two assumptions in the Extended Attachment Construction are a strict
relaxation of the technical assumption of the original Attachment Construction, since now the
special technical assumption need not hold for every tree. This is yet another generalization.

3.3 The ∆-Construction

Consider a gracefully labeled tree 〈T0, θ0, w0〉 with V (T0) = {u1, . . . , uh}, called the host tree.
Denote by delta(〈T0, θ0, w0〉,S) the tree constructed by unifying the root of every tree 〈Ti, θi, wi〉
in S with vertex ui of the host tree 〈T0, θ0, w0〉. The original construction is due to Koh et al. [9],
who call it the ∆-Construction. Koh et al. [9] prove:
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Figure 4: (a) The tree delta(〈T1, θ1, w1〉,S), when S consists of three copies of tree 〈T2, θ2, w2〉
and three copies of tree 〈T3, θ3, w3〉; the host and all constituent trees are taken from Figure 1. The
dotted vertices are those of the host tree, which are identified with the roots of the constituent
trees. (b) The gracefully labeled tree obtained by moving around some edges (drawn in bold) of
the tree in Figure 4(a).

Proposition 3.5 Consider two gracefully labeled trees 〈T, θ, w〉 and 〈T0, θ0, w0〉 with V (T0) =
{u1, . . . , uh}. Let S consist of h copies of 〈T, θ, w〉. Then, the labeling

θ∗(v) =

{

θi(v) + θ0(ui)|V (Ti)| , if v ∈ V (Ti) and dist(v, wi) is even
θi(v) + (h− θ0(ui)− 1)|V (Ti)| , if v ∈ V (Ti) and dist(v, wi) is odd

is a graceful labeling for the tree delta(〈T0, θ0, w0〉,S).

Note that the relabeling function used on copy 〈Ti, θi, wi〉 is R
〈Ti,θi,wi〉
〈1,θ0(ui)|V (Ti)|,(h−θ0(ui)−1)|V (Ti)|〉

. Note
also that, unlike the Garland and Attachment Constructions, the ∆-Construction does not make
any assumption on the roots of the trees in S.

Burzio and Ferrarese [3] generalize the ∆-Construction by observing that for any two (identical)
constituent trees 〈Ti, θi, wi〉 and 〈Tj , θj , wj〉 of the constructed tree delta(〈T0, θ0, w0〉,S) such that
Ti and Tj are attached to adjacent vertices ui and uj of the host tree, the edge uiuj ≡ wiwj

connecting their roots can be replaced by a new edge connecting two corresponding vertices in the
identical trees Ti and Tj . Call the resulting construction the Generalized ∆-Construction.

The Extended ∆-Construction requires that S be a gracefully consistent family; it returns a
graceful labeling θ∗ for the tree delta(〈T0, θ0, w0〉,S) as follows:

θ∗(v) = R
〈Ti,θi,wi〉
〈1,θ0(ui)|V (Ti)|,(h−θ0(ui)−1)|V (Ti)|〉

(v) , if v ∈ V (Ti) .

Figure 4(a) provides an illustration for the Extended ∆-Construction. We show:

Theorem 3.6 Consider a gracefully consistent family S and a gracefully labeled tree 〈T0, θ0, w0〉
with V (T0) = {u1, . . . , uh}. Then, the Extended ∆-Construction provides a graceful labeling θ∗ for
the tree delta(〈T0, θ0, w0〉,S).
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Proof: Consider the family S =
{

〈Ti, θi, wi〉 | 〈Ti, θi, wi〉 ≡ 〈Th, θh, wh〉, 1 ≤ i ≤ h
}

. By Propo-

sition 3.5, the tree delta(〈T0, θ0, w0〉,S) is graceful. Recall that the labeling θ∗ for the tree
delta(〈T0, θ0, w0〉,S) is obtained by relabeling every tree Ti, 1 ≤ i ≤ h using the function

R
〈Ti,θi,wi〉

〈1,θ0(ui)|V (Ti)|,(h−θ0(ui)−1)|V (Ti)|〉
; the labeling θ∗ for the tree delta(〈T0, θ0, w0〉,S) is obtained by

relabeling every tree Ti, 1 ≤ i ≤ h using the function R
〈Ti,θi,wi〉
〈1,θ0(ui)|V (Ti)|,(h−θ0(ui)−1)|V (Ti)|〉

.

Since 〈Ti, θi, wi〉 ≡ 〈Th, θh, wh〉 and 〈Ti, θi, wi〉 are gracefully consistent, |V (Ti)| = |V (Ti)|; thus,
for each i, 1 ≤ i ≤ h, 〈Ti, θi, wi〉 and 〈Ti, θi, wi〉 are relabeled using a relabeling function with
the same triple of integers 〈c, e, o〉. Hence, by the Substitution Theorem, we get that for each
i, 1 ≤ i ≤ h: (i) θ∗ and θ∗ assign the same labels to the roots of Ti and Ti, respectively; (ii) θ∗

and θ∗ assign the same vertex and edge labels to the trees Ti and Ti, respectively. So, θ∗ and θ∗

assign the same edge labels to the edges that connect the roots of the constituent trees in S and
S, respectively; these are the edges of the host trees.

In conclusion, the two labelings θ∗ and θ∗ assign the same vertex and edge labels to the
trees delta(〈T0, θ0, w0〉,S) and delta(〈T0, θ0, w0〉,S), respectively. By Proposition 3.5, θ∗ is a
graceful labeling for the tree delta(〈T0, θ0, w0〉,S). Hence, θ∗ is a graceful labeling for the tree
delta(〈T0, θ0, w0〉,S).

We generalize the Extended ∆-Construction to the Generalized Extended ∆-Construction, much
in the same way that the ∆-Construction is generalized to the Generalized ∆-Construction by
Burzio and Ferrarese [3]: Consider any two constituent trees 〈Ti, θi, wi〉 and 〈Tj , θj , wj〉 of the tree
delta(〈T0, θ0, w0〉,S) such that Ti and Tj are attached to adjacent vertices ui and uj of the host
tree. Replace the edge uiuj ≡ wiwj with an edge vivj where vi and vj are vertices of the trees Ti

and Tj , respectively, that had been assigned the same label in the original graceful labelings θi and
θj , respectively. Figure 4(b) provides an illustration for the Generalized Extended ∆-Construction.
We show:

Theorem 3.7 Consider a gracefully consistent family S and a gracefully labeled tree 〈T0, θ0, w0〉
with V (T0) = {u1, . . . , uh}. Then, the Generalized Extended ∆-Construction provides a graceful
labeling θ∗ for the tree obtained by moving around some edges of the tree delta(〈T0, θ0, w0〉,S) as
described in the preceding paragraph.

Proof: Let θ∗ be the graceful labeling for the tree delta(〈T0, θ0, w0〉,S), whose gracefulness is
established by Theorem 3.6. Recall that the distances dist(vi, wi) and dist(vj , wj) of the vertices
vi and vj from the roots wi and wj , respectively, are either both even or both odd. By the
Extended ∆-Construction, it follows that either θ∗(vi) = θi(vi)+θ0(ui)|V (Ti)| and θ∗(vj) = θj(vj)+
θ0(uj)|V (Tj)|, or θ

∗(vi) = θi(vi)+(h−θ0(ui)−1)|V (Ti)| and θ∗(vj) = θj(vj)+(h−θ0(uj)−1)|V (Tj)|.
Since 〈Ti, θi, wi〉 and 〈Tj , θj , wj〉 are gracefully consistent, |V (Ti)| = |V (Tj)|. Since also θi(vi) =
θj(vj), it follows that in all cases, |θ∗(vi)− θ∗(vj)| = |θ0(ui)− θ0(uj)||V (Ti)|. By the Extended ∆-
Construction, θ∗(wi) = θi(wi)+θ0(ui)|V (Ti)| and θ∗(wj) = θj(wj)+θ0(uj)|V (Tj)|. Since 〈Ti, θi, wi〉
and 〈Tj , θj , wj〉 are gracefully consistent, |V (Ti)| = |V (Tj)| and θi(wi) = θj(wj). It follows that
|θ∗(vi)− θ∗(vj)| = |θ

∗(wi)− θ∗(wj)|, so that the label of the removed edge uiuj ≡ wiwj is the same
as the label of the added edge vivj . Hence, θ∗ is a graceful labeling for the tree constructed under
the Generalized Extended ∆-Construction.
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3.4 The ∆+1-Construction

Consider a gracefully labeled tree 〈T0, θ0, w0〉 with V (T0) = {u1, . . . , uh, w0}, called the host tree.
Denote by delta+1(〈T0, θ0, w0〉,S) the tree constructed by the following procedure:

• Remove the root w0 of 〈T0, θ0, w0〉 and all its adjacent edges.

• Unify the root of every tree 〈Ti, θi, wi〉 in S with vertex ui of the host tree 〈T0, θ0, w0〉.

• Add a distinguished vertex r; we call r the special vertex of the constructed tree.

• For every tree 〈Ti, θi, wi〉 in S such that uiw0 is an edge of T0, connect r to 0θi
.

The original construction is due to Burzio and Ferrarese [3], who call it the ∆+1-Construction; a
condition on the 0-vertex of T is assumed. Burzio and Ferrarese [3] prove:

Proposition 3.8 Consider two gracefully labeled trees 〈T, θ, w〉 and 〈T0, θ0, w0〉 with V (T0) =
{u1, . . . , uh, w0} and θ0(w0) = h. Let S consist of h copies of 〈T, θ, w〉. Assume that the 0-vertex
of T is at even distance from its root w. Then, the labeling

θ∗(v) =







h|V (T )| , if v = r

θi(v) + θ0(ui)|V (Ti)| , if v ∈ V (Ti) and dist(v, wi) is even
θi(v) + (h− θ0(ui)− 1)|V (Ti)| , if v ∈ V (Ti) and dist(v, wi) is odd

is a graceful labeling for the tree delta+1(〈T0, θ0, w0〉,S).

Note that the relabeling function used on copy 〈Ti, θi, wi〉 is R
〈Ti,θi,wi〉
〈1,θ0(ui)|V (Ti)|,(h−θ0(ui)−1)|V (Ti)|〉

. Note
also that, unlike the Garland and Attachment Constructions, the ∆+1-Construction only makes an
indirect (and weaker) assumption on the roots of the trees in S.

We generalize the ∆+1-Construction by observing that for any two (identical) constituent trees
〈Ti, θi, wi〉 and 〈Tj , θj , wj〉 of the constructed tree delta+1(〈T0, θ0, w0〉,S) such that Ti and Tj are
attached to adjacent vertices ui and uj of the host tree, the edge uiuj ≡ wiwj connecting their
roots can be replaced by a new edge connecting two corresponding vertices in the identical trees Ti

and Tj . Call the resulting construction the Generalized ∆+1-Construction.

The Extended ∆+1-Construction requires that S be a gracefully consistent family; it returns a
graceful labeling θ∗ for the tree delta+1(〈T0, θ0, w0〉,S) as follows:

θ∗(v) =

{

h|V (T1)| (= h|V (T2)| = . . . = h|V (Th)|) , if v = r

R
〈Ti,θi,wi〉
〈1,θ0(ui)|V (Ti)|,(h−θ0(ui)−1)|V (Ti)|〉

(v) , if v ∈ V (Ti)
.

Figure 5(a) provides an illustration for the Extended ∆+1-Construction. We show:

Theorem 3.9 Consider a gracefully consistent family S and a gracefully labeled tree 〈T0, θ0, w0〉
with V (T0) = {u1, . . . , uh, w0} and θ0(w0) = h. Assume that the 0-vertex of Ti is at even distance
from its root wi, for every 〈Ti, θi, wi〉 ∈ S such that uiw0 ∈ E(T0). Then, the Extended ∆+1-
Construction provides a graceful labeling θ∗ for the tree delta+1(〈T0, θ0, w0〉,S).
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Figure 5: (a) The tree delta+1(〈T1, θ1, w1〉,S), when S consists of three copies of tree 〈T2, θ2, w2〉
and two copies of tree 〈T3, θ3, w3〉; the host and all constituent trees are taken from Figure 1. The
dotted vertices are those of the host tree other than its root, which are identified with the roots
of the constituent trees; the special vertex of the constructed tree is circled. (b) The gracefully
labeled tree obtained by moving around some edges (drawn in bold) of the tree in Figure 5(a).

Proof: Consider the family S =
{

〈Ti, θi, wi〉 | 〈Ti, θi, wi〉 ≡ 〈Th, θh, wh〉, 1 ≤ i ≤ h
}

. By Propo-

sition 3.8, the tree delta+1(〈T0, θ0, w0〉,S) is graceful. Recall that the labeling θ∗ for the tree
delta+1(〈T0, θ0, w0〉,S) is obtained by relabeling every tree Ti, 1 ≤ i ≤ h using the function

R
〈Ti,θi,wi〉

〈1,θ0(ui)|V (Ti)|,(h−θ0(ui)−1)|V (Ti)|〉
; the labeling θ∗ for the tree delta+1(〈T0, θ0, w0〉,S) is obtained

by relabeling every tree Ti, 1 ≤ i ≤ h using the function R
〈Ti,θi,wi〉
〈1,θ0(ui)|V (Ti)|,(h−θ0(ui)−1)|V (Ti)|〉

.

Since 〈Ti, θi, wi〉 ≡ 〈Th, θh, wh〉 and 〈Ti, θi, wi〉 are gracefully consistent, |V (Ti)| = |V (Ti)|; thus,
for each i, 1 ≤ i ≤ h, the trees 〈Ti, θi, wi〉 and 〈Ti, θi, wi〉 are relabeled using a relabeling function
with the same triple of integers 〈c, e, o〉. Hence, by the Substitution Theorem, we get that for each
i, 1 ≤ i ≤ h: (i) θ∗ and θ∗ assign the same labels to the roots of Ti and Ti, respectively; (ii) θ∗

and θ∗ assign the same vertex and edge labels to the trees Ti and Ti, respectively. So, θ∗ and θ∗

assign the same edge labels to the edges that connect the roots of the constituent trees in S and
S, respectively; these are the edges of the host trees.

Recall that the final step of the Extended ∆+1-Construction connects the 0-vertex of every
constituent tree 〈Ti, θi, wi〉 in S such that uiw0 ∈ E(T0) to the special vertex r of the constructed tree
delta+1(〈T0, θ0, w0〉,S); analogously, it connects the 0-vertex of every constituent tree 〈Ti, θi, wi〉
in S such that uiw0 ∈ E(T0) to the special vertex r of the constructed tree delta+1(〈T0, θ0, w0〉,S).
By assumption, the 0-vertices that are connected to r and r are at even distances from the original
roots of their respective constituent trees. Hence, by definition of relabeling function, they are
relabeled in the same way, and end up, therefore, with the same label. Since r and r are assigned
the same label in the trees delta+1(〈T0, θ0, w0〉,S) and delta+1(〈T0, θ0, w0〉,S), respectively, it
follows that the edges connecting the 0-vertices of the constituent trees to r and r, respectively, are
also assigned the same edge labels. Thus, the last step in the Extended ∆+1-Construction preserves
the labels between the trees delta+1(〈T0, θ0, w0〉,S) and delta+1(〈T0, θ0, w0〉,S).

In conclusion, the two labelings θ∗ and θ∗ assign the same vertex and edge labels to the trees
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delta+1(〈T0, θ0, w0〉,S) and delta+1(〈T0, θ0, w0〉,S), respectively. By Proposition 3.8, θ∗ is a
graceful labeling for the tree delta+1(〈T0, θ0, w0〉,S). Hence, θ∗ is a graceful labeling for the tree
delta+1(〈T0, θ0, w0〉,S).

We note here that the assumption on the Extended ∆+1-Construction is a strict relaxation of the
technical assumption of the original ∆+1-Construction, since now the special technical assumption
need not hold for every tree. This is yet another generalization.

We generalize the Extended ∆+1-Construction to the Generalized Extended ∆+1-Construction,
much in the same way that the ∆+1-Construction is generalized to the Generalized ∆+1-Construction:
Consider any two constituent trees 〈Ti, θi, wi〉 and 〈Tj , θj , wj〉 of the tree delta+1(〈T0, θ0, w0〉,S)
such that Ti and Tj are attached to adjacent vertices ui and uj of the host tree. Replace the edge
uiuj ≡ wiwj with an edge vivj where vi and vj are vertices of the trees Ti and Tj , respectively,
that had been assigned the same label in the original graceful labelings θi and θj , respectively.
Figure 5(b) provides an illustration for the Generalized Extended ∆+1-Construction. We show:

Theorem 3.10 Consider a gracefully consistent family S and a gracefully labeled tree 〈T0, θ0, w0〉
with V (T0) = {u1, . . . , uh, w0} and θ0(w0) = h. Assume that the 0-vertex of Ti is at even distance
from its root wi, for every 〈Ti, θi, wi〉 ∈ S such that uiw0 ∈ E(T0). Then, the Generalized Extended
∆+1-Construction provides a graceful labeling θ∗ for the tree obtained by moving around some edges
of the tree delta+1(〈T0, θ0, w0〉,S) as described in the preceding paragraph.

Proof: Let θ∗ be the graceful labeling for the tree delta+1(〈T0, θ0, w0〉,S), whose gracefulness
is established by Theorem 3.9. Recall that the distances dist(vi, wi) and dist(vj , wj) of the vertices
vi and vj from the roots wi and wj , respectively, are either both even or both odd. By the
Extended ∆+1-Construction, it follows that either θ∗(vi) = θi(vi) + θ0(ui)|V (Ti)| and θ∗(vj) =
θj(vj)+θ0(uj)|V (Tj)|, or θ

∗(vi) = θi(vi)+(h−θ0(ui)−1)|V (Ti)| and θ∗(vj) = θj(vj)+(h−θ0(uj)−
1)|V (Tj)|. Since 〈Ti, θi, wi〉 and 〈Tj , θj , wj〉 are gracefully consistent, |V (Ti)| = |V (Tj)|. Since also
θi(vi) = θj(vj), it follows that in all cases, |θ∗(vi) − θ∗(vj)| = |θ0(ui) − θ0(uj)||V (Ti)|. By the
Extended ∆+1-Construction, θ

∗(wi) = θi(wi) + θ0(ui)|V (Ti)| and θ∗(wj) = θj(wj) + θ0(uj)|V (Tj)|.
Since 〈Ti, θi, wi〉 and 〈Tj , θj , wj〉 are gracefully consistent, |V (Ti)| = |V (Tj)| and θi(wi) = θj(wj). It
follows that |θ∗(vi)−θ∗(vj)| = |θ

∗(wi)−θ∗(wj)|, so that the label of the removed edge uiuj ≡ wiwj is
the same as the label of the added edge vivj . Hence, θ∗ is a graceful labeling for the tree constructed
under the Generalized Extended ∆+1-Construction.

4 Conclusion

We presented a Substitution Theorem for graceful trees as a combinatorial tool for the enlargement
of known graceful classes of trees. In turn, we applied the Substitution Theorem on several known
constructions [3, 7, 9]. Our results extend the class of trees known to be graceful. Wu [16, 17]
has recently and independently investigated alternative extensions for the particular case of the
Garland Construction [7] to families of bipartite or isomorphic graphs.
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