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Abstract

We studyextremeNash equilibria in the context of aselfish routinggame. Specifically, we assume
a collection ofn users, each employing amixed strategy, which is a probability distribution overm
parallelidentical links, to control the routing of its own assignedtraffic. In aNash equilibrium, each
user selfishly routes its traffic on those links that minimize itsexpected latency cost. Thesocial cost
of a Nash equilibrium is the expectation, over all random choices of the users, of the maximum, over
all links, latencythrough a link.
We provide substantial evidence for theFully Mixed Nash Equilibrium Conjecture, which states

that theworst Nash equilibrium is thefullymixedNash equilibrium, where each user chooses each link
with positive probability. Specifically, we prove that the Fully Mixed Nash Equilibrium Conjecture is
valid for pure Nash equilibria. Furthermore, we show, that under a certain condition, the social cost
of any Nash equilibrium is within a factor of 2h(1+ ε) of that of the fully mixed Nash equilibrium,
whereh is the factor by which the largest user traffic deviates from the average user traffic.
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Considering pure Nash equilibria, we provide aPTAS to approximate the best social cost, we give
an upper bound on the worst social cost and we show that it isNP-hard to approximate the worst
social cost within a multiplicative factor better than 2− 2/(m+ 1).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Motivation and framework

A Nash equilibrium[22,23] represents a stable state of the play of astrategic game, in
which each player holds an accurate opinion about the (expected) behavior of other players
and acts rationally. An issue that arises naturally in this context concerns the computational
complexity of Nash equilibria of any given strategic game. Due to the ultimate significance
of Nash equilibrium as a prime solution concept in contemporaryGame Theory[24], this
issue has become a fundamental algorithmic problem that is being intensively studied in
the Theory of Computing community today (see, e.g., [4,7,31]); in fact, it is arguably one
of the few, most important algorithmic problems for which nogeneralpolynomial-time
algorithms are known today (cf. [26]).
The problem of computing arbitrary Nash equilibria becomes even more challenging

when one considersextremeNash equilibria, ones that maximize or minimize a certain
objective function. So, understanding the combinatorial structure of extreme Nash
equilibria is a necessary prerequisite to either designing efficient algorithms to compute
them or establishing corresponding hardness and thereby designing efficient
approximation algorithms. In this work, we embark on a systematic study of the
combinatorial structure and the computational complexity of extreme Nash equilibria;
our study is carried out within the context of a simpleselfish routinggame, originally intro-
duced in a pioneering work by Koutsoupias and Papadimitriou [16], that we
describe next.
Weassumea collection ofnusers, each employing amixed strategy, which is a probability

distribution overmparallellinks, to control the shipping of its own assignedtraffic. For each
link, a capacityspecifies the rate at which the link processes traffic. In a Nash equilibrium,
each user selfishly routes its traffic on those links that minimize itsexpected latency cost,
given the network congestion caused by the other users. A user’ssupportis the set of those
links on which it may ship its traffic with non-zero probability. Thesocial costof a Nash
equilibrium is the expectation, over all random choices of the users, of the maximum, over
all links, latencythrough a link.
Our study distinguishes betweenpureNash equilibria, where each user chooses exactly

one link (with probability one), andmixedNash equilibria, where the choices of each user
are modeled by a probability distribution over links. We also distinguish in some cases
betweenmodels ofidentical capacities, where all link capacities are equal, and ofarbitrary
capacities.
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1.2. The fully mixed Nash equilibrium conjecture

In this work, we formulate and study a natural conjecture asserting that the fully mixed
Nash equilibriumF is theworstNash equilibrium with respect to social cost. Formally, we
conjecture:

Conjecture 1.1(Fully Mixed Nash Equilibrium Conjecture). For any traffic vectorw such
that the fully mixed Nash equilibriumF exists, and for any Nash equilibriumP, SC(w,P)�
SC(w,F).

Clearly, the Fully Mixed Nash Equilibrium Conjecture is intuitive and natural: the fully
mixed Nash equilibrium favors “collisions” between different users (since each user as-
signs its traffic with positive probability toevery link); thus, this increased probability
of “collisions” favors a corresponding increase to the (expected) maximum total traffic
through a link, which is, precisely, the social cost. More importantly, the Fully Mixed Nash
Equilibrium Conjecture is also significant since it precisely identifies theworst possible
Nash equilibrium for the selfish routing game we consider; this will enable designers of
Internet protocols not only to avoid choosing the worst-case Nash equilibrium, but also to
calculate the worst-case loss to the system atanyNash equilibrium due to its deliberate
lack of coordination, and to evaluate the Nash equilibrium of choice against the (provably)
worst-case one.

1.3. Contribution and significance

Our study provides quite strong evidence in support of the Fully Mixed Nash Equilib-
rium Conjecture by either establishing or near establishing the conjecture in a number of
interesting instances of the problem.
We start with themodel of arbitrary capacities, where traffics are allowed to vary arbitrar-

ily. There we prove that the Fully Mixed Nash Equilibrium Conjecture holds forpureNash
equilibria. We next turn to the case of identical capacities. Through a delicate probabilistic
analysis, we establish that in the special case, the number of links is equal to the number
of users and for a suitable large number of users, the social cost ofanyNash equilibrium
is less than 2h(1+ ε) (for anyε >0) times the social cost of the fully mixed Nash equi-
librium, whereh is the factor by which the largest user traffic deviates from the average
user traffic. Our proof employs concepts and techniques frommajorization theory[18] and
stochastic orders[30], suchas comparing two randomvariables according to theirstochastic
variability (cf. [28, Section 9.5]).
For pure Nash equilibria we show that it isNP-hard to decide whether or not any given

allocation of users to links can be transformed into a pure Nash equilibrium using at most
k selfish steps, even if the number of links is 2. Furthermore, we prove that there exists
a polynomial-time approximation scheme (PTAS) to approximate the social cost of the
best pure Nash equilibrium to any arbitrary accuracy. The proof involves an algorithm that
transforms any pure strategy profile into a pure Nash equilibrium with at most the same
social cost, using at mostn reassignments of users. We call this techniqueNashification,
and it may apply to other instances of the problem as well.
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Still for pure Nash equilibria, we give a tight upper bound on the ratio betweenSC(w,L)
andOPT(w) for any Nash equilibriumL . Then we show that it isNP-hard to approximate
the worst-case Nash equilibrium with a ratio that is better than this upper bound. We close
our section about pure Nash equilibria with a pseudopolynomial algorithm for computing
the worst-case Nash equilibrium for any fixed number of links.

1.4. Related work and comparison

The selfish routing game considered in this paper was first introduced by Koutsoupias
and Papadimitriou[16] as a vehicle for the study of the price of selfishness for routing over
non-cooperative networks, subsequently studied in the work of Mavronicolas and Spirakis
[19], where fully mixed Nash equilibria were introduced and analyzed. In both works,
the aim had been to quantify the amount of performance loss in routing due to selfish
behavior of the users. (Later studies of the selfish routing game from the same point of
view, that of performance, include the works by Koutsoupias et al. [15] and by Czumaj and
Vöcking [2].)
The closest to our work is the one by Fotakis et al. [7], which focuses on the combinatorial

structure and the computational complexity of Nash equilibria for the selfish routing game
we consider. The Fully Mixed Nash Equilibrium Conjecture formulated and systematically
studied in this paper has been inspired by two results due to Fotakis et al. [7] that confirm
or support the conjecture. First, Fotakis et al. [7, Theorem 4.2] establish the Fully Mixed
Nash EquilibriumConjecture for themodel of identical capacities and assuming thatn = 2.
Second, Fotakis et al. [7, Theorem 4.3] establish that, for the model of arbitrary capacities,
the social cost of any Nash equilibrium is no more than 49.02 times the social cost of the
(generalized) fully mixed Nash equilibrium.
The routing problem considered in this paper is equivalent to themultiprocessor schedul-

ing problem. Here, pure Nash equilibria and Nashification translate to local optima and
sequences of local improvements. A schedule is said to bejump optimalif no job on a
processor with maximum load can improve by moving to another processor [29].
Obviously, the set of pure Nash equilibria is a subset of the set of jump optimal schedules.

Moreover, in the model of identical processors every jump optimal schedule can be trans-
formed into a pure Nash equilibrium without altering the makespan. Thus, for this model
the strict upper bound 2−2/(m+1) on the ratio between best and worst makespan of jump
optimal schedules [6,29] also holds for pure Nash equilibria.
Algorithms for computing a jump optimal schedule from any given schedule have been

proposed in [1,6,29]. The fastest algorithm is given by Schuurman and Vredeveld [29]. It
alwaysmoves the jobwithmaximumweight from amakespan processor to a processor with
minimum load, using O(n) moves. However, in all algorithms the resulting jump optimal
schedule is not necessarily a Nash equilibrium.

1.5. Road map

The rest of this paper is organized as follows. Section 2 presents some preliminaries.
Stochastic orders are treated in Section 3. Pure Nash equilibria are contrasted to the fully
mixed Nash equilibrium in Section 4. Worst mixed Nash equilibria are contrasted to the
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fully mixed Nash equilibrium in Section5. Sections 6 and 7 consider best and worst pure
Nash equilibria, respectively. We conclude, in Section 8, with a discussion of our results
and some open problems.

2. Framework

Most of our definitions are patterned after those in [19, Section 2] and [7, Section 2],
which, in turn, were based on those in [16, Sections 1 and 2].

2.1. Mathematical preliminaries and notation

For any integerm�1, denote[m] = {1, . . . , m}. Denote� theGamma function; that is,
for any natural numberN, �(N + 1) = N !, while for any arbitrary real numberx > 0,
�(x) = ∫∞

0 tx−1e−t dt . The Gamma function is invertible; both� and its inverse�−1 are
increasing. It is well known that�−1(N) = (logN/ log logN)(1+ o(1)) (see, e.g., [10]).
For our purposes, we shall use the fact that for any pair of an arbitrary real number� and an
arbitrary natural numberN, (�/e)� = N if and only if � = �−1(N) + �(1). For an event
E in a sample space, denotePr(E) the probability of eventE happening.
For a randomvariableX, denoteE(X) theexpectationofX. In theballs-and-binsproblem,

mballs are thrown intombins uniformly at random. (See [14] for a classical introduction
to this problem.) It is known that the expected maximum number of balls thrown over a bin
equals the quantityR(m) = �−1(m)− 3

2 + o(1) [10].
In the paper, we make use of the following inequality, which holds due to Hoeffding.

Theorem 2.1(McDiarmid [20, Theorem 2.3]). Let X1, X2, . . . , Xn be independent ran-
dom variables with0�Xk�1 for each k. Let Sn = ∑

Xk and� = E(Sn). Then, for any
� > 0,

Pr(Sn�(1+ �)�)�e−((1+�)ln(1+�)−�)�.

Note that if 0�Xk�� for all k ∈ [n] and for some constant� > 0, then for any� > 0,

Pr(Sn�(1+ �)�)�e−((1+�)ln(1+�)−�)
�
�
.

2.2. General

We consider anetworkconsisting of a set ofmparallellinks1,2, . . . , m from asource
node to adestinationnode. Each ofn network users1,2, . . . , n, or usersfor short, wishes
to route a particular amount of traffic along a (non-fixed) link from source to destination.
Denotewi the traffic of useri ∈ [n]. Define then × 1 traffic vectorw in the natural way.
Assume throughout thatm > 1 andn > 1. Assume also, without loss of generality, that
w1�w2� · · · �wn. For a traffic vectorw, denoteW = ∑n

1wi . Defineh as the factor by
which the largest user traffic deviates from the average user traffic, thus,h = w1

n
W
.

A pure strategyfor useri ∈ [n] is some specific link. Amixed strategyfor useri ∈ [n]
is a probability distribution over pure strategies; thus, a mixed strategy is a probability
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distribution over the set of links. Thesupportof themixed strategy for useri ∈ [n], denoted
support(i), is the set of those pure strategies (links) to whichi assigns positive probability.
A pure strategy profileis represented by ann-tuple 〈�1, �2, . . . , �n〉 ∈ [m]n; amixed

strategy profileis represented by ann × m probability matrixP of nm probabilitiespji ,

i ∈ [n] andj ∈ [m], wherepji is the probability that useri chooses linkj. For a probability
matrix P, defineindicator variablesI �i ∈ {0,1}, i ∈ [n] and� ∈ [m], such thatI �i = 1
if and only if p�i > 0. Thus, the support of the mixed strategy for useri ∈ [n] is the set
{� ∈ [m]|I �i = 1}.
For each link� ∈ [m], define theview of link �, denotedview(�), as the set of users

i ∈ [n] that potentially assign their traffics to link�; so, view(�) = {i ∈ [n]|I �i = 1}.
For each link� ∈ [m], denoteV � = |view(�)|. A mixed strategy profileP is fully mixed
[19, Section 2.2] if for all usersi ∈ [n] and linksj ∈ [m], I ji = 1.1

2.3. System, models and cost measures

Denotec� > 0 thecapacityof link � ∈ [m], representing the rate at which the link
processes traffic. So, thelatencyfor traffic w through link� equalsw/c�. In the model of
identical capacities, all link capacities are equal to 1; link capacities may vary arbitrarily in
the model ofarbitrary capacities. For a pure strategy profile〈�1, �2, . . . , �n〉, the latency
cost for user i, denoted�i , is (

∑
k:�k=�i wk)/c

�i ; that is, the latency cost for useri is the

latency of the link it chooses. For a mixed strategy profileP, denote�� theactual traffic
on link � ∈ [m]; so,�� is a random variable for each link� ∈ [m], denote�� theexpected
trafficon link � ∈ [m]; thus,�� = E(��) = ∑n

i=1p
�
i wi . GivenP, define them×1expected

traffic vector� induced byP in the natural way. GivenP, denote	� theexpected latency
on link � ∈ [m]; clearly,	� = ��/c�. Define them × 1 expected latency vector� in the
natural way. For a mixed strategy profileP, theexpected latency costfor useri ∈ [n] on
link � ∈ [m], denoted��i , is the expectation, over all random choices of the remaining users,
of the latency cost for useri had its traffic been assigned to link�; thus,

��i = wi + ∑
k=1,k �=i p�kwk
c�

= (1− p�i )wi + ��

c�
.

For each useri ∈ [n], theminimum expected latency cost, denoted�i , is the minimum, over
all links � ∈ [m], of the expected latency cost for useri on link �; thus,�i = min�∈[m] ��i .
For a probability matrixP, define then×1minimum expected latency cost vector� induced
byP in the natural way.
Associated with a traffic vectorw and a mixed strategy profileP is thesocial cost[16,

Section 2], denotedSC(w,P), which is the expectation, over all random choices of the

1An earlier treatment of fully mixed strategies in the context ofbimatrix gameshas been found in[27], called
therecompletely mixed strategies. See also[21] for a subsequent treatment in the context ofstrategically zero-sum
games. Datta[3] studied recently some universality properties of fully mixed Nash equilibria (calling themtotally
mixed).
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users, of the maximum (over all links) latency of traffic through a link; thus,

SC(w,P)= E
(
max
�∈[m]

∑
k:�k=� wk
c�

)
= ∑

〈�1,�2,...,�n〉∈[m]n

(
n∏
k=1

p
�k
k · max

�∈[m]

∑
k:�k=� wk
c�

)
.

Note thatSC(w,P) reduces to the maximum latency through a link in the case of pure
strategies. On the other hand, thesocial optimum[16, Section 2] associated with a traffic
vectorw, denotedOPT(w), is theleast possiblemaximum (over all links) latency of traffic
through a link; thus,

OPT(w) = min〈�1,�2,...,�n〉∈[m]n max�∈[m]

∑
k:�k=� wk
c�

.

2.4. Nash equilibria

We are interested in a special class of mixed strategies called Nash equilibria[22,23] that
we describe below. Say that a useri ∈ [n] is satisfied for the probability matrixP if for
all links � ∈ [m], ��i = �i if I �i = 1, and��i > �i if I �i = 0; thus, a satisfied user has no
incentive to unilaterally deviate from its mixed strategy. A useri ∈ [n] is unsatisfied for
the probability matrixP if i is not satisfied for the probability matrixP. The probability
matrixP is aNash equilibrium[16, Section 2] if for all usersi ∈ [n] and links� ∈ [m],
��i = �i if I �i = 1, and��i > �i if I �i = 0. Thus, each user assigns its traffic with positive
probability only on links (possibly more than one of them) for which its expected latency
cost is minimized. Thefully mixed Nash equilibrium[19], denotedF, is a Nash equilibrium
that is a fully mixed strategy. Mavronicolas and Spirakis [19, Lemma 15] show that all
links areequiprobablein a fully mixed Nash equilibrium, which is unique (for the model
of identical capacities).
Fix any traffic vectorw. Theworst Nash equilibriumis the Nash equilibriumP that

maximizesSC(w,P); the best Nash equilibriumis the Nash equilibrium that minimizes
SC(w,P). Theworst social cost, denotedWC(w), is the social cost of the worst Nash
equilibrium; correspondingly, thebest social cost, denotedBC(w), is the social cost of the
best Nash equilibrium.
Fotakis et al. [7, Theorem 1] consider starting from any arbitrary pure strategy profile

and following a particular sequence of selfish steps, where in aselfish step, exactly one
unsatisfied user is allowed to change its pure strategy. A selfish step is agreedy selfish
stepif the unsatisfied user chooses its best link. A (greedy) selfish step does not increase
the social cost of the initial pure strategy profile. Fotakis et al. [7, Theorem 1] show that
this sequence of selfish steps eventually converges to a Nash equilibrium, which proves its
existence; however, it may take a large number of steps. It follows that if the initial pure
strategy profile has minimum social cost, then the resulting (pure) Nash equilibrium will
have minimum social cost as well. This implies that there exists a pure Nash equilibrium
with minimum social cost. Thus, we haveBC(w) = OPT(w).
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2.5. Algorithmic problems

We list a few algorithmic problems related to Nash equilibria that will be considered
in this work. The definitions are given in the style of Garey and Johnson[9]. A prob-
lem instance is a tuple (n,m,w, c), wheren is the number of users,m is the number
of links, w = (wi) is a vector ofn user traffics andc = (cj ) is a vector ofm link
capacities.

�1: NASH EQUILIBRIUM SUPPORTS
INSTANCE: A problem instance (n,m,w, c).
OUTPUT: Indicator variablesI ji ∈ {0,1}, wherei ∈ [n] andj ∈ [m], that support a Nash
equilibrium for the system of the users and the links.
Fotakis et al. [7, Theorem 2] establish thatNASH EQUILIBRIUM SUPPORTS is in

P when restricted to pure equilibria. We continue with two complementary to each other
optimization problems (with respect to social cost).

�2: BEST NASH EQUILIBRIUM SUPPORTS
INSTANCE: A problem instance (n,m,w, c).
OUTPUT: Indicator variablesI ji ∈ {0,1}, wherei ∈ [n] andj ∈ [m], that support the best
Nash equilibrium for the system of the users and the links.

�3: WORST NASH EQUILIBRIUM SUPPORTS
INSTANCE: A problem instance (n,m,w, c).
OUTPUT: Indicator variablesI ji ∈ {0,1}, wherei ∈ [n] andj ∈ [m], that support the worst
Nash equilibrium for the system of the users and the links.
Fotakis et al. [7, Theorems 3 and 4] establish that bothBEST NASH EQUILIBRIUM

SUPPORTS andWORST NASH EQUILIBRIUM SUPPORTS areNP-hard. Since
both problems can be formulated as an integer program, it follows that they areNP-
complete.

�4: NASH EQUILIBRIUM SOCIAL COST
INSTANCE: A problem instance (n,m,w, c); a Nash equilibriumP for the system of the
users and the links.
OUTPUT: The social cost of the Nash equilibriumP.
Fotakis et al. [7, Theorem 8] establish thatNASH EQUILIBRIUM SOCIAL COST is

#P-complete. Furthermore, Fotakis et al. [7, Theorem 9] show that there exists a fully poly-
nomial, randomized approximation scheme forNASH EQUILIBRIUM SOCIAL COST.
The following two problems, inspired byNASH EQUILIBRIUM SOCIAL COST , are

introduced for the first time in this work.

�5: WORST NASH EQUILIBRIUM SOCIAL COST
INSTANCE: A problem instance (n,m,w, c).
OUTPUT: The worst social costWSC(w).

�6: BEST NASH EQUILIBRIUM SOCIAL COST
INSTANCE: A problem instance (n,m,w, c).
OUTPUT: The best social costBSC(w).
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�7: k-NASHIFY
INSTANCE: A problem instance (n,m,w, c); a pure strategy profileL for the system of the
users and the links.
QUESTION: Is there a sequence of at mostk selfish steps that transformL to a (pure) Nash
equilibrium?
The following problem is a variant ofk-NASHIFY in whichk is part of the input.

�8: NASHIFY
INSTANCE: A problem instance (n,m,w, c); a pure strategy profileL for the system of the
users and the links; an integerk > 0.
QUESTION: Is there a sequence of at mostk selfish steps that transformL to a (pure) Nash
equilibrium?
In our hardness and completeness proofs, we will employ the followingNP-complete

problems[13]:

�9: BIN PACKING
INSTANCE: A finite setU of items, a sizes(u) ∈ N for eachu ∈ U , a positive integer bin
capacityB, and a positive integerK.
QUESTION: Is there a partition ofU into disjoint setsU1, . . . ,UK such that for each setUi ,
1� i�K,

∑
u∈Ui s(u)�B?

�10: PARTITION
INSTANCE: A finite setU and a sizes(u) ∈ N for each elementu ∈ U .
QUESTION: Is there a subsetU ′ ⊆ U such that

∑
u∈U ′ s(u) = ∑

u∈U\U ′ s(u)?

We note thatBIN PACKING is stronglyNP-complete[8,25].2

3. Stochastic order relations

In this section, we treat stochastic order relations; we establish a certain stochastic order
relation for the expected maxima of certain sums of Bernoulli random variables. We will
show that in the balls-and-bins game (mballs are thrown at random intombins), if the sum
of the ball weights is the same, the expected maximum load over all bins is larger when
the balls have different weight in comparison to all balls having the same weight. This will
be used in Section 5 to prove an upper bound on the social cost of a worst mixed Nash
equilibrium.
Recall that a functionf : � → � is convexif for all numbers� such that 0< � < 1,

f (�x1 + (1− �)x2)��f (x1) + (1− �)f (x2). We proceed to describe a stochastic order
relation between two random variables.

Definition 3.1. For any pair of arbitrary random variablesX andY, say thatX is stochas-
tically more variable than Yif for all increasing and convex functionsf : � → �,
E(f (X))�E(f (Y )).

2A problem isstronglyNP-completeif it remainsNP-complete even if any instance of lengthn is restricted
to contain integers of size polynomial inn. So, stronglyNP-complete problems admit no pseudopolynomial-time
algorithms unlessP = NP .
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Call stochastically more variabilitythe corresponding stochastic order relation on the set
of random variables. (See[28, Section 9.5] for a more complete treatment of the notion
of stochastically more variable and [18,30] for more on majorization theory and stochas-
tic orders.) The following lemma [28, Proposition 9.5.1] provides an alternative, analytic
characterization of stochastically more variability.

Lemma 3.1. Consider any pair of non-negative random variables X andX̂. Then, X is
stochastically more variable than̂X if and only if for all numbers��0,

∫∞
x=� Pr(X >

x)dx�
∫∞
x=� Pr(X̂ > x)dx.

Consider now a setting of the balls-and-bins problem wherenballs 1, . . . , nwith traffics
w1, . . . , wn are allocated intombins 1, . . . , m uniformly at random. So, for each pair of a
ball i ∈ [n] and a linkj ∈ [m], define Bernoulli random variablesY ji = wi with probability

1/m and 0 with probability 1− 1/m, andỸ ji = W/n with probability 1/m and 0 with

probability 1− 1/m. For each linkj ∈ [m], define the random variables�j = ∑
i∈[n] Y

j
i

and �̃j = ∑
i∈[n] Ỹ

j
i ; thus, each of�j and �̃j , j ∈ [m], is a sum of Bernoulli random

variables; denote�j = E(�j ) and�̃j = E(�̃j ) the expectations of�j and�̃j , respectively.
Note that

�j = E
( ∑
i∈[n]

Y
j
i

)
= ∑

i∈[n]
E(Y ji )

= ∑
i∈[n]

(
wi

1

m
+ 0

(
1− 1

m

))
=
∑

i∈[n]wi
m

= W

m
,

while

�̃j = E(�̃j ) = E
( ∑
i∈[n]

Ỹ
j
i

)
= ∑

i∈[n]
E
(
Ỹ
j
i

)

= ∑
i∈[n]

(
W

n

1

m
+ 0

(
1− 1

m

))
= n

W

n

1

m
= W

m
.

So,�j = �̃j for each binj ∈ [m].
For two numbersx, y ∈ �+ define

[x − y] =
{
x − y if x > y,

0 else.

We can then show the following preliminary lemma:

Lemma 3.2. Letbi ∈ �+ for i ∈ [n] and letd = (1/n)
∑n

i=1 bi . Then for allx�0

n∑
i=1

[bi − x]�n · [d − x].
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Proof. Without loss of generality, assume thatb1�b2� · · · �bn. The claim is true if
x > d. If x�b1, thenx�d and

n∑
i=1

[bi − x] =
n∑
i=1

(bi − x) = n · (d − x).

Now letbj < x�bj+1 andd > x. It follows that
n∑
i=1

[bi − x] =
n∑

i=j+1
(bi − x) =

n∑
i=j+1

bi − (n− j)x =
n∑

i=j+1
bi − n · x + j · x

�
n∑

i=j+1
bi − n · x +

j∑
i=1

bi =
n∑
i=1

bi − n · x
= n · (d − x) �

We finally prove:

Lemma 3.3(Stochastically More Variability Lemma). For any traffic vectorw, max{�1,
. . . , �m} is stochastically more variable thanmax{�̃1, . . . , �̃m}.

Proof. Define the discrete random variablesX = max{�1, . . . , �m} andX̃ = max{�̃1, . . . ,
�̃m}. We then have to show that for all��0,∫ ∞

x=�
Pr(X > x)dx�

∫ ∞

x=�
Pr(X̃ > x)dx.

LetSk be the collection of all pure strategy profiles, where the maximum number of traffics
on any linkj ∈ [m] is exactlyk. If i �= j , thenSi ∩ Sj = ∅. Furthermore

n⋃
i=�n/m�

Si = [m]n.

For any pure strategy profileL ∈ Sk, define Link(L) to be the smallest index of a link,
holdingk traffics. Furthermore, for any pure strategy profileL, let I (L) be the collection
of users that are assigned to Link(L). Every set ofk traffics is equal to someI (L), L ∈ Sk
with the same probability, saypk. Define the actual traffic onLink(L) as

b(L) = ∑
i∈I (L)

wi.

If all traffics are identical the actual traffic onLink(L) for a pure strategy profileL ∈ Sk is
simply b̃(L) = k ·W/n.
Every pure strategy profileL ∈ [m]n occurs with the same probability 1/mn and defines

together withb(L) a discrete random variableZ. Z is a discrete random variable that can
take every possible valueb(L), L ∈ [m]n.
It is easy to see thatX is stochastically more variable thanZ, since for any pure strategy

profileL, Z refers to the actual traffic onLink(L), whereasX refers to the maximum actual
traffic over all links.
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We will complete our proof by showing thatZ is stochastically more variable thañX.

SinceZ andX̃ are discrete random variables,∫ ∞

x=�
Pr(Z > x)dx =

n∑
k=�n/m�

(pk · Ak), whereAk = ∑
L∈Sk

[b(L)− �]

and ∫ ∞

x=�
Pr(X̃ > x)dx =

n∑
k=�n/m�

(pk · Ãk), whereÃk = |Sk| ·
[
k · W

n
− �

]
.

Since for a fixedk each traffic contributes with the same probability tob(L),∑
L∈Sk

b(L) = |Sk| · k · W
n
.

It follows from Lemma3.2 thatAk�Ãk for eachk. ThereforeZ is stochastically more
variable thañX, which completes the proof of the lemma.�

By definition of stochastically more variability, Lemma 3.3 immediately implies:

Corollary 3.4. For any traffic vectorw,

E(max{�1, . . . , �m})�E(max{�̃1, . . . , �̃m}).

In the balls-and-bins game in whichmballs are thrown uniformly at random intombins,
Corollary3.4 shows that if the sum of the ball weights is the same, the expected maximum
load over all bins is larger when the balls have different weights in comparison to all balls
having the same weight.

4. Pure versus fully mixed Nash equilibria

In this section, we establish the Fully Mixed Nash Equilibrium Conjecture for the case
of pure Nash equilibria. This result holds also for the model of arbitrary capacities.
We show that the minimum expected latency cost of a user in any (mixed) Nash equi-

librium is at most its minimum expected latency cost in the fully mixed Nash equilibrium.
Afterwards we prove that this implies validity of the Fully Mixed Nash Equilibrium Con-
jecture for pure Nash equilibria.
We start by proving:

Lemma 4.1. Fix any traffic vectorw,mixed Nash equilibriumP and user i.Then, �i (w,P)
��i (w,F).

Proof. LetP = (p
j
k ),F = (f

j
k ) for k ∈ [n] andj ∈ [m]. Then

∑
j∈[m]

( ∑
k∈[n],k �=i

p
j
kwk

)
= ∑

k∈[n],k �=i
wk

( ∑
j∈[m]

p
j
k

)
= ∑

k∈[n],k �=i
wk
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and ∑
j∈[m]

( ∑
k∈[n],k �=i

f
j
k wk

)
= ∑

k∈[n],k �=i
wk

( ∑
j∈[m]

f
j
k

)
= ∑

k∈[n],k �=i
wk.

It follows that∑
j∈[m]

( ∑
k∈[n],k �=i

p
j
kwk

)
= ∑

j∈[m]

( ∑
k∈[n],k �=i

f
j
k wk

)
,

and therefore there exists some linkj0 ∈ [m] such that∑
k∈[n],k �=i

p
j0
k wk�

∑
k∈[n],k �=i

f
j0
k wk.

Then,

�i (w,P) � �j0i (w,P) (since�i is the minimum of all�ji , j ∈ [n])

= wi +∑
k∈[n],k �=i p

j0
k wk

cj0

�
wi +∑

k∈[n],k �=i f
j0
k wk

cj0

= �j0i (w,F)

= �i (w,F) (sincef j0i > 0 andF is a Nash equilibrium). �

The following theorem shows that the Fully Mixed Nash Equilibrium Conjecture is valid
for pure Nash equilibria.

Theorem 4.2. Fix any traffic vectorw and pure Nash equilibriumL . Then, SC(w,L)�
SC(w,F).

Proof. For each useri ∈ [n], �i (w,P) is the minimum, over all linksj ∈ [m], of the
expected latency cost for useri on link j, andSC(w,P) is the expectation of the maximum
(over all links) latency of traffic through a link. This implies that�i (w,P)�SC(w,P) for
every mixed Nash equilibriumP. Hence,

�i (w,P) � �i (w,F) (by Lemma 4.1)
� SC(w,F) (as shown above).

The claim follows now sinceSC(w,L) = maxi∈[n] �i (w,L) holds for every pure Nash
equilibriumL . �

5. Worst mixed Nash equilibria

In this section we show that ifn = m andm is suitably large then the social cost of
any Nash equilibrium is at most 2h(1+ ε) times the social cost of the fully mixed Nash
equilibrium. Recall, thath = w1n

W
= w1m

W
.
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Theorem 5.1. Consider the model of identical capacities. Let n = m, m suitably large.
Then, for any traffic vectorw and Nash equilibriumP, SC(w,P) < 2h(1+ ε)SC(w,F),
for anyε > 0.

Proof. Fix any traffic vectorw and Nash equilibriumP. We start by showing a simple
technical fact.

Claim 1. Fix any pair of a link� ∈ [m] and a useri ∈ view(�). Then, p�i wi��� −W/m.

Proof. Clearly,∑
j∈[m]

�j = ∑
j∈[m]

( ∑
i∈[n]

p
j
i wi

)
= ∑

i∈[n]

( ∑
j∈[m]

p
j
i wi

)

= ∑
i∈[n]

(
wi

∑
j∈[m]

p
j
i

)
= ∑

i∈[n]
wi = W.

This implies that there exists some link�′ ∈ [m] such that��′ �W/m. Note that by definition
of social cost,��

′
i = (1− pi)wi + ��

′
. It follows that��

′
i �wi +W/m. On the other hand,

��i = (1− p�i )wi + ��.

Sincei ∈ view(�), we have, by definition of Nash equilibria, that��i ���
′
i (with equality

holdingwheni ∈ view(�′)). It follows that(1−p�i )wi+���wi+W/m, or thatp�i wi���−
W/m, as needed.�

As an immediate consequence of Claim1, we obtain:

Corollary 5.2. Fix any link� ∈ [m]. Then, ���(V �/(V � − 1))W/m.

Proof. Clearly, by Claim1,

�� = ∑
i∈[n]

p�i wi = ∑
i∈view(�)

p�i wi�
∑

i∈view(�)

(
�� − W

m

)
= V �

(
�� − W

m

)
,

or, by rearrangement of terms,���(V �/(V � − 1))W/m, as needed.�

SinceV ��2,V �/(V � − 1)�2. Thus, by Corollary5.2:

Lemma 5.3. Fix any link� ∈ [m] with V ��2.Then, ���2W/m.

Wenowprovea complementary lemma.Fix any link� ∈ [m]withV � = 1. Letview(l) =
{i}. Then�l�wi� maxi wi�OPT(w)�SC(w,F). Thus:

Lemma 5.4. Fix any link� ∈ [m] with V � = 1.Then, ���SC(w,F).

Usew to define the vector̃w with all entries equal toW/n. By definition of social cost,
SC(w̃,F) is the loadW/m of each ball times the expectedmaximumnumber of balls thrown
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uniformly at random intom bins. Sincen = m, we can stateSC (w̃,F) = R(m) ·W/m,
orW/m = SC(w̃,F)/R(m). Fix now any linkj ∈ [n] with V j �2. Then,

�j � 2
W

m
(by Lemma 5.3)

= 2
w1

h

Furthermore,
SC(w,F)

�SC(w̃,F) (by Corollary 3.4)

= R(m)
W

m

= R(m)
w1

h
(by Definition ofh).

Let r�2, r ∈ N. Then, for any constantε > 0, arbitrarily close to 0,

Pr (�j > rh(1+ ε) SC(w,F))

� Pr(�j > r(1+ ε)R(m)w1)

(
sinceSC(w,F)�R(m)W

m
= R(m)

w1

h

)
.

From Theorem2.1 it follows that for any� > 0,

Pr(�j �(1+ �)E(�j )) � e
−((1+�)ln(1+�)−�)E(�j )

w1 = e
� E(�j )

w1

(1+ �)
(1+�)E(�j )

w1

<

(
e

1+ �

)(1+�)E(�j )
w1

.

With (1+ �) = r(1+ ε)R(m) w1

E(�j ) and sinceE(�
j ) � 2w1

h
� 2w1 � rw1 we get:

Pr(�j > rh(1+ ε)SC(w,F)) � Pr(�j > r(1+ ε)R(m)w1)

<

(
e · E(�j )

r(1+ ε)R(m)w1

) r(1+ε)R(m)w1
w1

�
(

e

(1+ ε)R(m)

)r(1+ε)R(m)
=
((

e

(1+ ε)R(m)

)(1+ε)R(m))r
.

Define now� > 0 so that(�/e)� = m. Then, clearly,� = �−1(m)+ �(1). Note that

(1+ ε)R(m)= (1+ ε)�−1(m)− (1+ ε)32 + o(1) (by definition ofR(m))

= (1+ ε)�−1(m)+ �(1)

> � (for suitably largem, sinceε > 0).
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Since(x/e)x is an increasing function ofx, this implies that(
(1+ ε)R(m)

e

)(1+ε)R(m)
>
(�

e

)� = m.

This implies that((
e

(1+ ε)R(m)

)(1+ε)R(m))r
<

1

mr
.

It follows that

Pr(�j > rh (1+ ε)SC(w,F)) <
1

mr
.

Hence

Pr
(

max
�∈[m] | |V �|�2

�� > rh(1+ ε)SC(w,F)
)

= Pr

( ∨
�∈[m] | |V �|�2

�� > rh(1+ ε)SC(w,F)

)
�

∑
�∈[m] | |V �|�2

Pr(�� > rh(1+ ε)SC(w,F))

<
∑

�∈[m] | |V �|�2

1

mr
�m · 1

mr

= 1

mr−1 .

Sinceh � 1, r � 2 and since�l � SC(w,F) for all � ∈ [m] with V � = 1 (by Lemma 5.4),
we have

Pr
(
max
�∈[m] �

� > rh(1+ ε)SC(w,F)
)

= Pr
(

max
�∈[m] | |V �|�2

�� > rh(1+ ε)SC(w,F)
)

� 1

mr−1 ,

so that

E
(
max
�∈[m] �

�

)
= ∑

0���W

�Pr
(
max
�∈[m] �� = �

)
(by definition of expectation)

= ∑
0���2h(1+ε)SC(w,F)

�Pr
(
max
�∈[m] �

� = �

)
+ ∑
2h(1+ε)SC(w,F)<��W

�Pr
(
max
�∈[m] �

� = �

)
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= ∑
0���2h(1+ε)SC(w,F)

�Pr
(
max
�∈[m] �

� = �

)
+ ∑
2� r�∞

∑
rh(1+ε)SC(w,F)<�� (r+1)h(1+ε)SC(w,F)

�Pr
(
max
�∈[m] �

� = �

)
� 2h(1+ ε)SC(w,F)Pr

(
max
�∈[m] �

�� 2h(1+ ε)SC(w,F)
)

+ ∑
2� r�∞

(r+1)h(1+ε)SC(w,F) ·Pr
(
max
�∈[m] �

�>rh(1+ε)SC(w,F)
)

< 2h(1+ ε)SC(w,F) ·1
+ ∑
2� r�∞

(r + 1)h(1+ ε)SC(w,F)
1

mr−1(
sincePr(max�∈[m] �� > rh(1+ ε)SC(w,F)) <

1

mr−1

)
= 2h(1+ ε)SC(w,F)

+h(1+ ε)SC(w,F)
1

m

∑
2� r�∞

r + 1

mr−2

= 2h(1+ ε)SC(w,F)

+h(1+ ε)SC(w,F) ·O
(
1

m

)
(since

∑
2� r�∞ r+1

mr−2 = O(1) for m�2)

� 2h(1+ 2ε)SC(w,F),

for suitable largem. Hence,

SC(w,P) = E
(
max
�∈[m] �

�

)
< 2h(1+ 2ε)SC(w,F)

for anyε, where 0< ε < 1. This completes the proof of Theorem5.1. �

If all user traffics areidentical, that is,w1 = w2 = . . . = wn, thenh = mw1
W

= 1. Thus,
Theorem 5.1 immediately implies:

Corollary 0.1. Consider the model of identical capacities. Letn = m,m suitable large.
Then, for any traffic vectorw with w1 = w2 = . . . = wn and Nash equilibriumP,
SC(w,P) < (2+ ε)SC(w,F), for anyε > 0.

Recall that there is a randomized, polynomial-time approximation scheme (RPTAS) to
approximate the social cost of any Nash equilibrium (in particular, the fully mixed) within
any arbitraryε > 0 [7, Theorem 9]. Thus, since, by Theorem 5.1, the worst social cost
is bounded by 2h(1 + ε) times the social cost of the fully mixed Nash equilibrium, this
yields:
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Theorem 5.5. Consider the model of identical capacities. Let n = m, m suitably large.
Then, there exists a randomized, polynomial-time algorithm with approximation factor
2h(1+ ε), for anyε > 0, for WORST NASH EQUILIBRIUM SOCIAL COST.

We significantly improve Theorem5.1 under a certain assumption on the traffics.

Theorem 5.6. Consider any traffic vectorw such thatw1�w2 + · · · + wn. Then, for any
Nash equilibriumP, SC(w,P)�SC(w,F).

Proof. Sincew1�w2 + · · · + wn, it follows that the link with maximum latency has user
1 assigned to it in any pure strategy profile. Thus, in particular,SC(w,P) = �1(w,P) and
SC(w,F) = �1(w,F). By Lemma4.1, �1(w,P)��1(w,F). It follows thatSC(w,P)�
SC(w,F), as needed.�

6. Best pure Nash equilibria and Nashification

We start by establishingNP-hardness forNASHIFY. Then we provide a polynomial-
time algorithm to convert any pure strategy profile into a pure Nash equilibrium with non-
increased social cost. Together with a PTAS for schedulingn jobs onm identical machines
[11], this yields a PTAS forBEST PURE NASH EQUILIBRIUM .

Theorem 6.1. NASHIFY isNP-hard, even ifm = 2.

Proof. By reduction fromPARTITION. Consider any arbitrary instance ofPARTITION
consisting of a setA of k itemsa1, a2, . . . , ak with item sizess(a1), s(a2), . . . , s(ak) ∈ N,
for any integerk. Construct from it an instance ofNASHIFY as follows: Setn = 3k and
m = 2. Setwi = s(ai) for 1� i�k, andwi = 1/2k for k + 1� i�3k. Take the pure
strategy profile that assigns users 1,2, . . . ,2k to link 1 and users 2k + 1, . . . ,3k to link 2.
We establish that this yields a reduction fromPARTITION to NASHIFY. Assume first

that the instance ofPARTITION is positive; that is, there exists a subsetA′ ⊆ A such
that

∑
a∈A′ s(a) = ∑

a∈A\A′ s(a). Since either|A′|�k/2 or |A\A′|�k/2, assume, without
loss of generality, that|A′|�k/2. Note that each user assigned to link 1 is unsatisfied in the
constructed pure strategy profile since its latency cost on link 1 is

∑
a∈A s(a)+ k · 1/2k =∑

a∈A s(a)+ 1
2, while its latency cost on link 2 isk · 1/2k = 1

2, which is less. Thus, each
step that transfers an unsatisfied user that corresponds to an elementa ∈ A′ from link 1
to link 2 is a selfish step, and the sequence of steps that transfer all users that correspond
to elements ofA′ from link 1 to link 2 is a sequence of at mostk/2 < k steps. As a result
of this sequence of selfish steps, the latency of link 1 will be

∑
a∈A\A′ s(a)+ 1

2, while the

latency of link 2 will be
∑

a∈A′ s(a) + 1
2. Since

∑
a∈A′ s(a) = ∑

a∈A\A′ s(a), these two
latencies are equal and the resulting pure strategy profile is therefore a Nash equilibrium,
which implies thatNASHIFY is positive.
Assume now that the instance ofNASHIFY is positive; that is, there exists a sequence

of at mostk selfish steps that transforms pure strategy profile in the constructed instance
of NASHIFY to a Nash equilibrium. Assume that in the resulting pure strategy profile
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Fig. 1. The algorithmAnashify.

users corresponding to a subsetA′ ⊆ A remain in link 1, users corresponding to the subset
A\A′ ⊆ A are transfered to 2, while the sums of traffics of users with traffic 1/2k that
reside in links 1 and 2 arex and 1− x, respectively; thus, the latencies of links 1 and 2 are∑

a∈A′ s(a)+ x and
∑

a∈A\A′ s(a)+ 1− x, respectively. We consider two cases:
Assume first thatA′ = A. Then after at mostkselfish steps the latency on link 2 is at most

1 whereas the latency on link 1 is at least
∑

a∈A s(a)�k. So there exists an unsatisfied user
a ∈ A, a contradiction to the fact thatNASHIFY is positive. So letA′ �= A. We show that
this implies

∑
a∈A′ s(a)−∑a∈A\A′ s(a) = 0.Assume|∑a∈A′ s(a)−∑a∈A\A′ s(a)| �= 0.

Since the trafficsof users inAare integer, this implies|∑a∈A′ s(a)−∑a∈A\A′ s(a)|�1.The
fact thatA′ �= A shows that at least one user with large traffic was transformed to link 2. So
we canmake at mostk−1 selfish steps with the small traffics. However, transformingk−1
small traffics to the link with smaller latency leaves one user with small traffic unsatisfied, a
contradiction to the fact thatNASHIFY is positive. So|∑a∈A′ s(a)−∑

a∈A\A′ s(a)| = 0,
which implies thatPARTITION is positive. �

We remark thatNASHIFY isNP-complete in the strong sense (cf.[9, Section 4.2]) ifmis
part of the input. Thus, there is no pseudopolynomial-time algorithm forNASHIFY (unless
P = NP). In contrast, there is a natural pseudopolynomial-time algorithmAk-nashify for
k-NASHIFY, which exhaustively searches all sequences ofk selfish steps; since a selfish
step involves a (unsatisfied) user and a link for a total ofmnchoices, the running time of
Ak-nashify is�((mn)k). We continue to present an algorithmAnashify that solvesNASHIFY
whenn selfish steps are allowed (Fig. 1).
ThealgorithmAnashifysorts theuser traffics in non-increasingorder so thatw1� · · · �wn.

Then for each useri := 1 to n, it removes useri from the link it is currently assigned, it
finds the link� with the minimum latency, and it reassigns useri to the link�.
The following lemma is crucial to prove the correctness of algorithmAnashify.

Lemma 6.2. A greedy selfish step of an unsatisfied user i with trafficwi makes no user k
with trafficwk�wi unsatisfied.

Proof. Let L = 〈l1, . . . , ln〉 be a pure strategy profile. Furthermore, letp = li and letq be

the link with minimum latency. Denote�j and�̂
j
the latency of linkj ∈ [m] before and
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after useri changed its strategy, respectively. Assume that userk becomes unsatisfied due
to the move of useri. Since only the latency on linkpandq changed, we have to distinguish
between two cases. Eitherlk �= q and userkwants to change its strategy top, or lk = q and
userk becomes unsatisfied due to the additional trafficwi on link q.
First, assume thatlk �= q, and that userk wants to change its strategy top. Since useri

changed its strategy fromp to qwe know that�q < �̂
p
and thereforewk + �q < wk + �̂

p
.

So if userkwants to change its strategy top, then userkwas already unsatisfied before user
i changed its strategy, a contradiction.
For the case that the strategy of userk is qwe definẽ�q = �q −wk. We have∀j ∈ [m] :

�j + wk��j + wi��q + wi = �̃q + wk + wi . Thereforek stays satisfied. �

Theorem 6.3. Let L = 〈l1, . . . , ln〉 be a pure strategy profile for n users with traffics
w1, . . . , wn onm links with social costSC(w,L).Then algorithmAnashifycomputes a Nash
equilibrium fromL with social cost�SC(w,L) in O(n logn) time.

Proof. In order to complete the proof of Theorem6.3, we have to show that algorithm
Anashify returns a pure strategy profileL ′ that is a Nash equilibrium and has social cost
SC(w,L ′)�SC(w,L). It is easy to see thatSC(w,L ′)�SC(w,L), since for userj we
always choose the link with lowest latency as its strategy. After every iteration the user that
changed its strategy is satisfied. Since we go through the list of users in descending order
of their traffic and because of Lemma 6.2, all users that changed their strategy in earlier
iterations stay satisfied. Therefore after we went through the complete list of users, all users
are satisfied and thusL ′ is a Nash equilibrium.
The running time of algorithmAnashify is O(n logn) for sorting then user traffics,

O(m logm) for constructing a heap with all latencies in the input pure strategy profile
L , and O(n logm) for finding the minimum element of the heap in each of then iterations
of the algorithm. Thus, the total running time is O(n logn + m logm + n logm). The in-
teresting case is whenm�n (since otherwise, a single user can be assigned to each link,
achieving an optimal Nash equilibrium). Thus, in the interesting case, the total running time
of Anashify is O(n logn). �

Running thePTAS of Hochbaum and Shmoys [11] for schedulingn jobsonm iden-
ticalmachinesyields a pure strategy profileL such thatSC(w,L)�(1+ ε)OPT(w). On
the other hand, applying the algorithmAnashify on L yields a Nash equilibriumL ′ such
thatSC(w,L ′)�SC(w,L). Thus,SC(w,L ′)�(1+ ε)OPT(w). Since alsoOPT(w)�SC
(w,L ′), it follows that:

Theorem 6.4. There exists aPTAS forBEST PURE NASH EQUILIBRIUM, for themodel
of identical capacities.

7. Worst pure Nash equilibria

In this section we consider worst pure Nash equilibria. We start by proving a tight up-
per bound on the social cost of any pure Nash equilibrium. Then, by reduction fromBIN
PACKING, we establishNP-hardness for approximating a pure Nash equilibrium with
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worst social costwithina factorbetter than2−2/(m+ 1).Weclosewithapseudopolynomial-
time algorithm to compute a worst pure Nash equilibrium if the number of links is fixed.
Denote withm-WCpNE the decision problem corresponding to the problem to compute

the worst-case pure Nash equilibrium forn users with trafficsw1, . . . , wn onm links. If m
is part of the input, then we call the problemWCpNE. We first show:

Theorem 7.1. Fix any traffic vectorw and pure Nash equilibriumL . Then, SC(w,L)/
OPT(w)�2− 2/(m+ 1). Furthermore, this upper bound is tight.

Proof. Schuurman and Vredeveld[29] showed the tightness of the upper bound for jump
optimal schedules proved by Finn and Horowitz [6]. Since every pure Nash equilibrium
is also jump optimal, the upper bound follows directly. Greedy selfish steps on identical
links can only increase the minimum load over all links. Thus, we can transform every
jump optimal schedule into a Nash equilibrium without altering the makespan, proving
tightness. �

Theorem 7.2. It is NP-hard to find a pure Nash equilibrium L withWC(w)/SC(w,L) <
2− 2/(m+ 1)− ε, for anyε > 0. It is NP-hard in the strong sense if the number of links
m is part of the input.

Proof. We show that for a certain class of instances we have to solveBIN PACKING in
order to find a Nash equilibrium with desired property.BIN PACKING isNP-complete in
the strong sense[9]. Consider an arbitrary instance ofBIN PACKING consisting of a set
of itemsU = {u1, . . . , u|U |} with sizess(uj )��,

∑
uj∈U = m − 1, andK = m − 1 bins

of capacityB = 1. From this instance we construct an instance for the stated problem as
follows: Setε = 2�. There aren−2 = |U | users with trafficwi = s(ui) and two users with
trafficwn−1 = wn = 1. Note that the social cost of a Nash equilibrium is either 2 when the
users with traffic 1 are on the same link, or at most(m+ 1)/m+ � otherwise.
If BIN PACKING is negative, then there exists no Nash equilibrium with both users with

traffic 1 on the same link. Thus every Nash equilibrium has the desired property. IfBIN
PACKING is positive, then there exists a Nash equilibrium with both users with traffic 1 on
the same link. The social cost of this Nash equilibrium isWC(w) = 2. For any other Nash
equilibriumL where the users with traffic 1 use different links,SC(w,L)�(m+ 1)/m+�.
This yields

WC(w)
SC(w,L)

� 2
m+ 1

m
+ �

= 2
m+ 1

m
+ ε

2

= 2m

m+ 1+ εm

2

= 2− 2

m+ 1+ εm

2

− εm

m+ 1+ εm

2

> 2− 2

m+ 1
− ε.

So, to find a Nash equilibrium with desired property, we have to find a distribution of the
small trafficsw1, . . . , wn−2 tom− 1 links which solvesBIN PACKING.
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SinceBIN PACKING is NP-hard in the strong sense, if the number of bins is part of
the input, it follows that computing a pure Nash equilibriumL with WC(w)/SC(w,L) <
2− 2/(m+ 1)− ε is alsoNP-hard in the strong sense, ifm is part of the input. �

SinceWCpNE is NP-hard in the strong sense[7], there exists no pseudopolynomial
algorithm to solveWCpNE . However, we can give such an algorithm form-WCpNE .

Theorem 7.3. There exists a pseudopolynomial-time algorithm for m-WCpNE .

Proof. We start with the state setS0 in which all links are empty. After inserting the first
i traffics, the state setSi consists of all(2m)-tuples(�1, w̃1, . . . , �m, w̃m) describing a
possible placement of the largesti traffics with�j being the latency on linkj andw̃j the
smallest traffic placed on linkj. We need at mostm · |Si | steps to createSi+1 from Si ,
and|Si |�(Wi)

m · (w1)
m, whereWi = ∑i

j=1wj . Therefore the overall computation time is
bounded byO(n ·m ·Wm ·(w1)

m). The best-case Nash equilibrium and the worst-case Nash
equilibriumcanbe foundbyexhaustive searchover thestate setSn usingO(n·m·Wm·(w1)

m)

time. �

Remark. Theorem7.3 also holds for the case of arbitrary link capacities.

8. Conclusions and discussion

In this work, we have studied the combinatorial structure and the computational com-
plexity of the extreme (eitherworstor best) Nash equilibria for the selfish routing game
introduced in the pioneering work of Koutsoupias and Papadimitriou [16].
Our study of the combinatorial structure has revealed an interesting, highly non-trivial,

combinatorial conjecture about the worst such Nash equilibrium, namely theFully Mixed
Nash Equilibrium Conjecture, abbreviated asFMNE Conjecture; the conjecture states that
the fully mixed Nash equilibrium [19] is the worst Nash equilibrium in the setting we
consider. We have established that theFMNE Conjecture is valid when restricted to pure
Nash equilibria. Furthermore, we have come close to establishing theFMNE Conjecture in
its full generality by proving that the social cost of any (pure or mixed) Nash equilibrium is
within a factor of 2h(1+ε), for anyε > 0, of that of the fullymixedNashequilibrium,where
h is the factor by which the largest user traffic deviates from the average user traffic, and
under the assumptions that all link capacities are identical, the number of users is equal to the
number of links and the number of links is suitably large. The proof of this result has relied
very heavily on applying and extending techniques from the theory ofstochastic orders
andmajorization[18,30]; such techniques are imported for thefirst time into the context
of selfish routing, and their application and extension are both of independent interest. We
hope that the application and extension of techniques from the theory of stochastic orders
and majorization will be valuable to further studies of the selfish routing game considered
in this paper and for the analysis and evaluation of mixed Nash equilibria for other games
as well.
Our study of the computational complexity of extreme Nash equilibria has resulted in

both positive and negative results. On the positive side, we have devised, for the case of
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identical link capacities, equal numbers of users and links and a suitably large number of
links, a randomized, polynomial-time algorithm to approximate the worst social cost within
a factor arbitrarily close to 2h(1+ ε), for anyε > 0. The approximation factor 2h(1+ ε) of
this randomized algorithm will immediately improve upon reducing2h further down in our
combinatorial result described above, relating the social cost of any Nash equilibrium to
that of the fully mixed.We have also introduced the technique ofNashificationas a tool for
converging to aNash equilibrium starting with any assignment of users to links in away that
doesnot increase the social cost; coupling this techniquewith apolynomial-timeapproxima-
tion scheme for the optimal assignment of users to links[11] has yielded a polynomial-time
approximation scheme for the social cost of thebestNash equilibrium. In sharp contrast, we
have established atight limit on the approximation factor of any polynomial-time algorithm
that approximates the social cost of theworstNash equilibrium (assumingP �= NP).
Our approximability and inapproximability results for the best and worst Nash equilibria,
respectively, establish an essential difference between the approximation properties of the
two types of extreme Nash equilibria.
The most obvious problem left open by our work is to establish theFMNE Conjecture.

Some progress on this problem has been already reported by Lücking et al. [17], where
the conjecture is proved in various special cases of the model of selfish routing introduced
by Koutsoupias and Papadimitriou [16] and considered in this work; furthermore, Lücking
et al. disprove theFMNE Conjecture in a different model for selfish routing that borrows
from the model ofunrelated machines[12] studied in the scheduling literature.
The technique ofNashification, as an algorithmic tool for the computation of Nash equi-

libria, also deserves further study. Some steps in this direction have been taken already by
Feldmann et al. [5].
Establishment of the Fully Mixed Nash EquilibriumConjecture will reveal an interesting

complexity-theoretic contrast between theworst pure andmixedNash equilibria.On the one
hand, computing the (supports of) theworstpure Nash equilibrium is anNP-hard problem
[7, Theorem 4]; however, computing the social cost of a worst pure Nash equilibrium is
trivially in P (since it amounts to computing the maximum). On the other hand, if the
fully mixed Nash equilibrium conjecture is true, computing the supports of a worst mixed
Nash equilibrium is a trivial problem and, moreover, the polynomial characterization of the
fully mixed Nash equilibrium shown in [19, Theorem 14] implies that a worst mixed Nash
equilibrium can be computed in polynomial time; however, computing the social of a worst
mixed Nash equilibrium remains #P-complete. This result follows from an inspection of
the proof of [7, Theorem 8], which establishes that computing the social cost of a Nash
equilibrium is a #P-complete problem. We consider this different behavior of pure and
mixed Nash equilibria to be an interesting complexity-theoretic consequence of the Fully
Mixed Nash Equilibrium Conjecture.
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