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ABSTRACT
We consider the problem of routing n users on m paral-
lel links, under the restriction that each user may only be
routed on a link from a certain set of allowed links for the
user. Thus, the problem is equivalent to the correspond-
ingly restricted problem of assigning n jobs to m parallel
machines. In a pure Nash equilibrium, no user may im-
prove its own individual cost (delay) by unilaterally switch-
ing to another link from its set of allowed links. As our
main result, we introduce a polynomial time algorithm to
compute from any given assignment a pure Nash equilib-
rium with non-increased makespan. The algorithm gradu-
ally changes a given assignment by pushing unsplittable user
traffics through a network that is defined by the users and
the links. Here, we use ideas from blocking flows. Further-
more, we use similar techniques as in the generic Preflow-

Push algorithm to approximate a schedule with minimum
makespan, gaining an improved approximation factor of 2−
1

w1
for identical links, where w1 is the largest user traffic.

We extend this result to related links, gaining an approx-
imation factor of 2. Our approximation algorithms run in
polynomial time. We close with tight upper bounds on the
coordination ratio for pure Nash equilibria.
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1. INTRODUCTION
Motivation and Framework: The concept of Nash

equilibria has become an important mathematical tool for
analyzing the behavior of selfish users in non-cooperative
systems [22]. Many algorithms have been developed to com-
pute a Nash equilibrium in a general game (see [20] for an
overview). Although the theorem of Nash [21] guarantees
the existence of a Nash equilibrium for any finite game,
the complexity of computing a Nash equilibrium in general
games is open even if only two users are involved.

In this work, we continue the study of Nash equilibria for
the selfish routing problem introduced by Koutsoupias and
Papadimitriou [17], where n selfish users wish to route their
traffics w1, . . . , wn through a shared network consisting of
two nodes and m parallel links with capacities c1, . . . , cm.
This is widely known as the KP-model. Here, each user
chooses a probability distribution over all links as its strat-
egy, trying to minimize its expected latency without coop-
erating with other users or adhering to a global objective
function, the so-called social cost (or makespan). A sta-
ble state in which no user has an incentive to unilaterally
change its strategy is called Nash equilibrium. The Nash
equilibrium is pure if each user chooses a single link.

In contrast to general non-cooperative games, there al-
ways exists a pure Nash equilibrium with minimum social
cost in the KP-model, and there exist polynomial algorithms
to compute pure Nash equilibria on related links. However,
the most general setting of unrelated links seems to be in-
tractable right now. We study a special case of the model
of unrelated links: each user i ∈ [n] is only allowed to ship
its traffic along a subset Ai ⊆ [m] of allowed links.
Contribution and Significance: We first consider the
problem of computing an assignment approximating the min-
imum social cost. This problem is a special case of the
general single source unsplittable flow problem. Recently,
many approaches have been made to compute a solution for
the single source unsplittable flow problem. They are either
based on rounding techniques [13, 14] or they directly com-
pute an unsplittable flow from a splittable flow [3]. Applying
these techniques yields an approximation factor of 2.



In this work, we choose a simpler approach. We use
similar techniques as in the generic Preflow-Push algo-
rithm[10], only allowing to push traffics without splitting
them. This yields an approximation factor of 2 − 1

w1
if

the links are identical, using O(mA log(W )) time, where
A =

�
i∈[n] |Ai|, and W =

�
i∈[n] wi, wi ∈ � is the total

traffic. This improves on the best known approximation
factor for the job scheduling problem on unrelated parallel
machines. We extend the algorithm to related links, gaining
an approximation factor of 2. Both algorithms are combi-
natorial, they do not rely on linear programming.

For the model of identical links, we present as our main re-
sult, an algorithm which computes a pure Nash equilibrium
for users with restricted assignments from any given (not
necessarily equilibrium) assignment without increasing the
social cost. This technique is called Nashification. The al-
gorithm uses techniques from Blocking-Flows and needs
O(nmA(log W + m2)) time. To the best of our knowledge
this is the first polynomial-time algorithm computing a Nash
equilibrium in this model. Computing a Nash equilibrium
in the model of related links for users with restricted assign-
ments remains open. Of course, this also holds for unrelated
links.

We close by showing that for the model of arbitrary users
on identical links, the coordination ratio for pure Nash equi-
libria is Θ( log(m)

log(log(m))
). The coordination ratio is the ratio

between the worst and the best social cost over all Nash
equilibria. This holds even for the model of identical users
on identical links. For arbitrary users on related links, the
bound m− 1 is shown to be tight.
Related Work and Comparison: The scheduling prob-
lem with restricted assignments is a special case of the prob-
lem of scheduling jobs on unrelated parallel machines, orig-
inally considered by Horowitz and Sahni [12].

For the problem of scheduling jobs on unrelated machines,
Horowitz and Sahni [12] present a (non-polynomial) dy-
namic programming algorithm to compute a schedule with
minimum social cost; they also present a FPTAS to ap-
proximate an optimum schedule for the case of constant m.
For the general case, Lenstra et al. [18] prove that unless
P = NP, there is no polynomial-time approximation algo-
rithm for the optimum schedule with approximation factor
less than 3

2
. This holds even if all job processing times are

from {1, 2,∞}; in contrast the optimum schedule can be
computed in polynomial time if all processing times are from
{1, 2}. Lenstra et al. [18] also present a polynomial-time ap-
proximation algorithm, based on linear programming, for
the optimum schedule with approximation factor 2.

Kleinberg [13] formulated the problem of finding a re-
stricted schedule with minimum social cost for jobs on un-
related parallel machines as a single-source unsplittable flow
problem. Using this formulation, Kolliopoulos and Stein [15]
provided a polynomial time 3-approximation algorithm for
the general case, and they also presented an approximation
algorithm with approximation factor 2 − 1

C
for the special

case where all processing times are from {p, Cp,∞} for any
C > 1 and 1

C
≥ p > 0. All results in [13, 15] are based on

rounding techniques. For the general case, Dinitz et al. [3]
give a 2-approximation algorithm which directly computes
an unsplittable flow from a splittable flow and uses time
O(nm), assuming that a splittable flow solution is available.
Our algorithm has an approximation factor of 2 − 1

w
if the

traffics are from {1, 2, . . . , w}. We use techniques as in the

generic Preflow-Push algorithm [8, 10] for computing a
maximum flow in a network. For an overview of algorithms
to compute flows in networks, see Ahuja et al. [1] and the
introduction from Goldberg et al. [9].

The KP-model [17] for routing selfish users on parallel
links, and its Nash equilibria, were studied extensively in
the last years; see, for example, [2, 4, 6, 7, 16, 19], and [5]
for a recent survey.

For the case of related links, Graham’s LPT scheduling
algorithm [11] computes a pure Nash equilibrium in the KP-
model [6]. However, computing the (pure) Nash equilibrium
with minimum social cost is NP-hard [6]. The Nashifica-
tion technique is due to Gairing et al. [7]; polynomial-time
Nashification algorithms for the cases of identical links and
related links have been presented by Gairing et al. [7] and
by Feldmann et al. [4], respectively. In order to compensate
for the restrictions imposed by the sets of allowed links, our
Nashification algorithm in Section 4 takes a completely dif-
ferent approach than those by employing techniques from
flow algorithms.

The coordination ratio, also known as price of anarchy [22],
was first introduced and studied by Koutsoupias and Pa-
padimitriou [17]. For the case of arbitrary users and identi-

cal links, a tight bound of Θ � log m
log log m � on coordination ratio

has been shown by Czumaj and Vöcking [2] and by Kout-
soupias et al. [16]; tightness follows from a lower bound ob-
served in [17]. The coordination ratio reduces to 2 − 2

m+1

when restricted to pure Nash equilibria [7]. For the case of
related links, Czumaj and Vöcking prove that the coordi-

nation ratio is Θ � min{ log m
log log m

, log c1
cm

} � for the case of pure

Nash equilibria and Θ � log m
log log log m � for the case of arbitrary

(mixed) Nash equilibria. Our bounds on coordination ratio
(for pure Nash equilibria) imply that the impact of restricted
schedules on coordination ratio is a multiplicative factor of

either Θ � log m
log log m � for the case of identical links, or Θ(m)

for the case of related links.
Road Map: The rest of this paper is organized as follows.
In Section 2, we introduce the model of selfish routing on
restricted parallel links. Our approximation algorithms for
a schedule with minimum social cost are presented in Sec-
tion 3. Section 4 presents our Nashification algorithm for
the case of identical links. Our bounds on coordination ra-
tio appear in Section 5.

2. MODEL
We consider a network consisting of a set of m parallel

links 1, 2, . . . , m from a source node to a destination node.
Each of n network users 1, 2, . . . , n, or users for short, wishes
to route a particular amount of traffic along a (non-fixed)
link from source to destination. For each user i denote the
strategy set Ai ⊆ [m] as the set of links to which user i can
possibly be assigned and let A =

�
i∈[n] |Ai| be the total

number of strategies. Denote wi the traffic of user i ∈ [n].
Assume, without loss of generality, that w1 ≥ . . . ≥ wn, and
denote W =

� n

i=1 wi the total traffic. A pure strategy for
user i ∈ [n] is some specific link. An assignment α is repre-
sented by an n-tuple 〈l1, l2, . . . , ln〉 ∈ [m]n where li ∈ Ai is
the strategy of user i. In other papers on Nash equilibria,
assignments are also called pure strategy profiles.

Denote cj > 0 the capacity of link j ∈ [m], representing
the rate at which the link processes traffic. In the model of



identical capacities, all link capacities are equal. Link capac-
ities may vary arbitrarily in the model of related capacities.
Without loss of generality assume c1 ≥ . . . ≥ cm, and denote
C =

� m

j=1 cj the total capacity. So, the latency for traffic wi

through link j equals wi

cj
. For an assignment 〈l1, l2, . . . , ln〉,

the load on link j is defined by the sum of the traffics as-
signed to j, that is δj =

�
k:lk=j

wk. The latency for user

i ∈ [n], denoted λi, is the latency of the link it chooses,

that is, λi =
δli

cli

. Associated with a traffic vector w and

an assignment α is the social cost [17, Section 2], denoted
SC(w, α), which is the maximum (over all links) latency of
traffic through a link; thus,

SC(w, α) = max
j∈[m]

�
k:lk=j

wk

cj

.

The social optimum [17, Section 2] associated with a traffic
vector w, denoted OPT(w), is the least possible maximum
(over all links) latency of traffic through a link. Note that
both SC(w, α) and OPT(w) also depend on the capacities
and the strategy sets.

We are interested in a special class of assignments called
Nash equilibria [21] that we describe below. A user i is satis-
fied if it has no incentive to unilaterally change its strategy,
that is,

λli ≤ λj +
wi

cj

for all j ∈ Ai.

If a user can improve by changing its strategy, we call it un-
satisfied. An assignment α is a Nash equilibrium [17, Section
2] if all users i ∈ [n] are satisfied. The coordination ratio [17]
is the maximum value, over all traffic vectors w and Nash
equilibria α of the ratio SC(w, α)/OPT(w).

Throughout the paper we assume that all user traffics wi

and link capacities cj are integer.

3. APPROXIMATION OF OPTIMUM
SOCIAL COST

In this section we show, how we can compute an assign-
ment (not necessarily an equilibrium one) that approximates
an assignment with minimum social cost. We adapt the
generic Preflow-Push algorithm for computing a maxi-
mum flow. Our first result considers the case that link ca-
pacities are identical. Here we show an approximation factor
of 2 − 1

w1
. Afterwards we show how this result can be gen-

eralized to the related link model, with a slight increase of
the approximation factor to 2.

3.1 Identical Links
We start with the model of identical links with restricted

assignments. We introduce a residual network Gα represent-
ing a partial assignment α.

Definition 3.1. Given a partial assignment α, we define
a directed bipartite graph Gα = (V, Eα) where V = L ∪ U
and each link is represented by a node in L whereas each
user defines a node in U . Furthermore, Eα = E1

α ∪E2
α with

E1
α = {(u, v) : u ∈ L, v ∈ U, u = lv} ,and

E2
α = {(u, v) : u ∈ U, v ∈ L, v ∈ Au − {lu}} .

We use an integer a to control the approximation of an op-
timal assignment. The intention is to find an a, which is a
lower bound on OPT(w) and then to compute an assignment

with SC(w, α) ≤ a+w1. For any integer a, we partition the
set of links L in three subsets:

L− = {j : δj(α) ≤ a}

L0 = {j : a + 1 ≤ δj(α) ≤ a + w1}

L+ = {j : δj(α) ≥ a + w1 + 1}

In this setting we do not have a dedicated source or sink.
However, at each time nodes in L+ and L− can be inter-
preted as source and sink nodes, respectively. Note, that
those sets change over time. As the generic Preflow-Push

algorithm we use a height function h : V → � with the
property that h(u) = 0, for all u ∈ L− and h(u) ≤ h(v) + 1
for every edge (u, v) ∈ Eα. For a given integer a define the
excess flow e(i) into node i ∈ V as follows

e(i) =

�� � 1 , if i ∈ L+

1 , if i ∈ U ∧ 6 ∃j ∈ L : (j, i) ∈ Eα

0 , otherwise.

We call a node u ∈ V overflowing, if e(u) = 1.
As the generic Preflow-Push we use two basic opera-

tions Push and Lift. A node u ∈ V can apply Push(u, v),
if u is overflowing, (u, v) ∈ Eα and h(u) = h(v)+1. Further-
more, for a node u ∈ L it must hold, that h(u) ≤ 2m. The
operation Push(u, v) then deletes (u, v) from and adds (v, u)
to Gα. In other words we change the direction of (u, v), thus
each Push is saturating. Afterwards e(u) and e(v) are re-
computed. If u ∈ L then Push(u, v) has the effect that user
v gets unassigned from link u (afterwards v is not assigned
to any link). On the other hand if u ∈ U then Push(u, v)
assigns an unassigned user u to link v.

Push(u, v)

Applies when:

e(u) > 0, h(u) = h(v) + 1, (u, v) ∈ Eα

and if u ∈ L then h(u) ≤ 2m
{

Eα ← Eα − {(u, v)}+ {(v, u)}
update e(u), e(v)

}

Lift(u)

Applies when:

e(u) > 0, ∀(u, v) ∈ Eα : h(u) ≤ h(v)
and if u ∈ L then h(u) ≤ 2m
{

h(u)← 1 + min{h(v) : (u, v) ∈ Eα}
}

Figure 1: Push and Lift

A node u ∈ V can apply Lift(u), if u is overflowing, and
∀(u, v) ∈ Eα : h(u) ≤ h(v). Furthermore, for a node u ∈ L it
must hold, that h(u) ≤ 2m. If this is the case, then Lift(u)
increases the height of u to h(u) ← 1 + min{h(v) : (u, v) ∈
Eα}.

The goal of algorithm Unsplittable-Preflow-Push in
Figure 2 is to compute an assignment of users to links, such
that for all links j ∈ [m] : δj ≤ a + w1 and a < OPT(w).
Unsplittable-Preflow-Push() first initializes the height
function h(u) = 0 and computes the excess e(u) for each



Unsplittable-Preflow-Push(Gα , a)

for each node u ∈ V
h(u) = 0; compute e(u)

while there exists an applicable

Push or Lift operation

and there exists u ∈ L−

do select applicable Push or

Lift operation and perform it

Figure 2: Unsplittable-Preflow-Push

node u ∈ V . Then it performs Push and Lift operations
as long as there are such applicable operations and as long
as there are still nodes in L−. From the conditions under
which Push and Lift are applicable, we derive the following
observation:

Observation 3.1. When Unsplittable-Preflow-Push

terminates then either e(u) = 0 for all u ∈ V , or h(u) > 2m
for all u ∈ L with e(u) = 1, or L− = ∅.

Lemma 3.1. Unsplittable-Preflow-Push performs at
most O(m(n + m)) Lift and O(mA) Push operations.

Proof. Lift always increases the height h(u) of some
node u. Consider a link u ∈ L. Link u can only Lift if
h(u) ≤ 2m. At the beginning h(u) = 0, which implies that u
can Lift at most 2m+1 times. Now consider a user u ∈ U .
We show, that if Lift(u) leaves u with h(u) > 2m + 1,
then u will never Lift again. Since we consider a bipartite
graph u has only edges (u, v) to links v ∈ L. If Lift(u)
increases the height of u to some value h(u) > 2m + 1 then
min{h(v) : (u, v) ∈ Eα} > 2m. But then v can never again
apply a Lift(v). It follows, that u can lift at most 2m + 2
times. We have m + n nodes and each node performs at
most 2m+2 Lift operations. This proves the bound on the
number of Lift operations.

For any edge (u, v) ∈ Eα consider the number of Push

operations from u to v and from v to u. By the time that
Push(u, v) was executed h(u) = h(v) + 1. Also (u, v) was
deleted from Eα and (v, u) was added. Before Push(v, u)
can be executed h(v) must increase by at least 2. There-
fore v first has to Lift. It follows, that in between any
two Push operations between u and v there must be a Lift

of u or v. This shows, that the number of Push opera-
tions per edge is bounded by O(m). Since A is the number
of edges in Gα Unsplittable-Preflow-Push performs at
most O(mA) Push operations.

Lemma 3.2. When Unsplittable-Preflow-Push ter-
minates and ∃u ∈ V : e(u) > 0, then OPT(w) > a + 1.

Proof. There are two cases to consider here. Either
Unsplittable-Preflow-Push terminated since L− = ∅
or L− 6= ∅ and ∀u ∈ V with e(u) > 0 we have h(u) > 2m.
First assume L− = ∅. We know that ∃u ∈ V with e(u) > 0
and therefore ∃u ∈ L : δu > a + w1 which immediately
implies that OPT(w) > a + 1. Now let L− 6= ∅. Since
Unsplittable-Preflow-Push terminated we know that
h(v) > 2m for all v with e(v) > 0. Since Gα is bipartite,
the maximum length of a path between two nodes in L is
at most 2m. If there is a path from v to some u ∈ L− then
for each edge (i, j) on this path h(i) ≤ h(j) + 1 and thus

h(v) ≤ 2m. This implies that there is no path from v to
any node u ∈ L−. Let B ⊂ L be the set links that are still
reachable from node v. No user that is assigned to a link
in B can be assigned to a link outside B (otherwise there
would be a path to this link). But δi ≥ a + 1, ∀i ∈ B and
δv > a + w1. It follows, that OPT(w) > a + 1.

We now show how to use Unsplittable-Preflow-Push

to approximate a routing with minimum social cost. We
do this by a series of calls to Unsplittable-Preflow-

Push(Gα, a). With a binary search on a ∈ [0, W ], a ∈ � ,
we find the smallest a, such that Unsplittable-Preflow-

Push(Gα, a) returns an assignment with δj ≤ a + w1, ∀j ∈
[m], that is e(u) = 0, ∀u ∈ V . Since a is the smallest value
for which this holds, Unsplittable-Preflow-Push(Gα , a−
1) returns with e(u) > 0 for some u ∈ V . It follows from
Lemma 3.2 that OPT(w) > a. Since also OPT(w) ≥ w1,
this implies, that

SC(w, α)

OPT(w)
≤

a + w1

OPT(w)
≤

OPT(w)− 1 + w1

OPT(w)
≤ 2−

1

w1
.

The following theorem follows immediately.

Theorem 3.3. There exists an algorithm, that approxi-
mates a routing on identical links with minimum social cost
within a factor of 2− 1

w1
in time O(mA log(W )).

Proof. Lemma 3.1 shows that at most O(mA) Push and
O(m(n + m) Lift operations are possible. Using standard
techniques [1] from Preflow-Push, this can be done in
time O(mA). The binary search on a ∈ [0, W ] contributes
a factor of log(W ).

3.2 Related Links
We now turn our attention to the related link model with

restricted assignments. We show how the approximation al-
gorithm from the previous section can be generalized to this
model.

Again for an assignment α we define Gα similar to Def-
inition 3.1. The set of nodes is the same as in Definition
3.1, but we consider a subset of the edges, namely all edges
{u, v} with u ∈ U and v ∈ L, such that wu ≤ a · cv. We
will see later, why we can make this restriction on Gα. We
adapt the partition of the links according to a positive ra-
tional number a as follows:

L− = {j : δj(α) ≤ acj}

L0 = {j : acj < δj(α) ≤ 2acj}

L+ = {j : δj(α) > 2acj}

The excess e(u) is defined as in Section 3.1, however the
partition of L and the graph Gα changed. We use exactly the
same algorithm as in Figure 1 and Figure 2. The adaption
does not influence the proof of Lemma 3.1. We proceed by
proving a lemma, comparable to Lemma 3.2.

Lemma 3.4. When Unsplittable-Preflow-Push ter-
minates and ∃u ∈ V : e(u) > 0, then OPT(w) > a.

Proof. We have to consider the same two cases as in
Lemma 3.2. If L− = ∅ then the lemma follows immediately
from the Definition of L−. So assume, that L− 6= ∅ and
∀v ∈ V with e(v) > 0 we have h(v) > 2m. This again
implies that there is no path from v to some node u ∈ L− in
Gα (see Lemma 3.2). Let B ⊂ L be the set of links that are



still reachable from node v. Since for Gα we considered only
edges {u, v} with u ∈ U, v ∈ V and wu ≤ a · cv, it is now
possible that a user that is assigned to a link in B could
be assigned to a link p 6∈ B. However on link p it would
cause latency λp > a. On the other hand, if we do not move
users from links in B to links outside B, then λu > a for all
u ∈ B. In either case OPT(w) > a

Again we make a series of calls to Unsplittable-Preflow-

Push(Gα, a) and we compute the smallest a, such that L+ =
∅ in the computed assignment. However, this time we do the
binary search for a on the set of points { 1

c1
, . . . , W

c1
} ∪ . . . ∪

{ 1
cm

, . . . , W
cm
}. These are at most mW points and they in-

clude all possible values of link latencies. After the binary
search, Unsplittable-Preflow-Push(Gα, a) returned an
assignment with L+ = ∅ and therefore SC(w, α) ≤ 2a.
On the other hand let a′ be the largest value with a′ <
a in our sample space. Then Unsplittable-Preflow-

Push(Gα, a′) returned an assignment with L+ 6= ∅. By
Lemma 3.4 this directly implies that OPT(w) > a′ and thus
OPT(w) ≥ a. The following theorem follows immediately.

Theorem 3.5. There exists an algorithm that approxi-
mates a routing on related links with minimum social cost
within a factor of 2 in time O(mA log(mW )).

Proof. One call to Unsplittable-Preflow-Push() can
be done in time O(mA) (see Theorem 3.3). The binary
search on a ∈ { j

ci
: 1 ≤ j ≤ W, 1 ≤ i ≤ m} can be imple-

mented to run in O(log(mW )) time.

Other approaches that solve this problem use methods
from linear programming [18] or they compute an unsplit-
table flow using rounding techniques [13, 14] or directly com-
pute an unsplittable flow from a splittable flow [3]. Our
combinatorial algorithm is simpler and improves on the ap-
proximation quality if we restrict to identical links.

4. NASHIFICATION
In Section 3.1 we gave an algorithm that approximates an

optimal routing up to a constant factor on identical links.
However, this algorithm does not necessarily compute a Nash
equilibrium. The approximation algorithm returns an as-
signment with δj ≤ a + w1, ∀j ∈ [m] and OPT(w) > a + 1,
which does not imply that w1 is satisfied. However, w1

would be satisfied, if a < δj ≤ a + w1 holds for all j ∈ [m].
We have already seen in Section 3.1 that this is not always
possible, and we will show in the following, how to find an
assignment satisfying w1. We then fix the assignment of
all users with traffic w1 and proceed with the next smaller
traffic. This is done until all users are satisfied. In each
step we make sure, that fixed users stay satisfied. The algo-
rithm, called Unsplittable-Blocking-Flow(), combines
ideas from blocking flows with the idea of pushing users
without splitting them. We adapt the definitions of L−, L0

and L+ from Section 3.1 by replacing w1 by an arbitrary
traffic size w.

For a total assignment α, that is each user is assigned to
a link, we use the graph Gα from Definition 3.1 to define
a graph Gα(w) where V stays the same, but from Eα we
now only consider edges Eα(w) = Eα − {(u, v) : u ∈ U, v ∈
V, wu > w}. This means that users u with wu > w stay
assigned to their link. We will use Gα instead of Gα(w)
if it is clear from the context, which w is used.

We will now present Algorithm Unsplittable-Blocking-

Flow() that will shift users so that the latencies of links
from L− are never decreased, the latencies of links from L+

are never increased, and links from L0 stay in L0. Our al-
gorithm is controlled by a height function h : V → � 0 with
h(j) = distGα (j, L−), ∀j ∈ V . We call an edge (u, v) admis-
sible, if h(u) = h(v) + 1. In an admissible path all edges
are admissible. For each node j ∈ V with 0 < h(j) < ∞
let S(j) be the set of successors of node j, that is the set of
nodes to which j has an admissible edge, i.e.

S(j) = {i ∈ V : (j, i) ∈ Eα and h(j) = h(i) + 1} .

Note that S(j) also defines the set of admissible edges leav-
ing j. Let s(j) be the first node on list S(j).

Definition 4.1. A link j ∈ L with 0 < h(j) < ∞ is
called helpful if δj(α) ≥ a + 1 + ws(j).

Lemma 4.1. Let v0 be a helpful link of minimum height.
Then there exists a sequence v0, . . . , vr where v2i ∈ L, ∀0 ≤
i ≤ r/2 and v2i+1 ∈ U, ∀0 ≤ i < r/2 with the following
properties:

(a) (vi, vi+1) ∈ Eα and h(vi) = h(vi+1) + 1

(b) δv0
≥ a + 1 + ws(v0)

(c) a+1 ≤ δv2i
+ws(v2i−2)−ws(v2i) ≤ a+w,∀0 < i < r/2

(d) δvr + ws(vr−2) ≤ a + w

Proof. By the definition of a helpful link 0 < h(v0) <∞
and thus there exists a path from v0 to a link in L− that
defines the height of v0. On this path (a) must hold. Fur-
thermore, condition (b) follows directly from the definition
of a helpful link.

Note that a link j ∈ L+ is helpful if h(j) < ∞. So if we
start a path with a helpful link of minimum height, then all
link nodes v2, v4, . . . , vr−2 belong to L0 and vr may belong
to L0 or L−. Therefore

δv2i
≤ a + w, ∀0 < i ≤ r/2.

Furthermore, none of these nodes is helpful, which implies
that

δv2i
< a + 1 + ws(v2i), ∀0 < i ≤ r/2.

There are two cases to consider now. If δv2i
+ ws(v2i−2) ≤

a + w then vr = v2i and condition (d) holds. On the other
hand, since w ≥ ws(v2i)

δv2i
+ ws(v2i−2) ≥ a + w + 1

⇒ δv2i
+ ws(v2i−2) − ws(v2i) ≥ a + w + 1− ws(v2i)

⇒ δv2i
+ ws(v2i−2) − ws(v2i) ≥ a + 1,

proving the lower bound in (c). To proof the upper bound,
note that v2i is not helpful ∀0 < i ≤ r/2. It follows that

δv2i
< a + 1 + ws(v2i)

⇒ δv2i
−ws(v2i) + ws(v2i−2) ≤ a + ws(v2i−2)

⇒ δv2i
+ ws(v2i−2) − ws(v2i) ≤ a + w,

proving the upper bound in (c). This completes the proof
of the lemma.

We are now ready to present Algorithm Unsplittable-

Blocking-Flow(). Algorithm Unsplittable-Blocking-

Flow() stops, when L− = ∅ or ∀v ∈ L+ : h(v) = ∞. The



Unsplittable-Blocking-Flow(α, a, w)

Input: assignment α
positive integers a, w

Output: assignment β

compute h
while L− 6= ∅ and ∃v ∈ L+ : h(v) <∞
{

d = minv∈L+(h(v))
while ∃ admissible path from

v ∈ L+, h(v) = d to L−

{
choose helpful link v of

minimum height

push users along helpful path

defined by v
adjust α, Gα

}
recompute h

}
return α

Figure 3: Unsplittable-Blocking-Flow

algorithm works in phases. Before the first phase starts, the
height function h is computed as the distance in Gα of each
node to a node in L−. In each phase first the minimum
height d = h(v) of a node v ∈ L+ is computed. Inside a
phase we do not update the height function, but we suc-
cessively choose a helpful link v of minimum height and we
push users along the helpful path induced by v and adjust
the assignment accordingly. In order to update Gα we have
to change the direction of two arcs for each user push. The
phase ends, when no further admissible path from an node
v ∈ L+ with h(v) = d to some node in L− exists. Before
the new phase start we recompute h and we check whether
we have to start a new phase or not.

Lemma 4.2. Let β be the assignment computed by
Unsplittable-Blocking-Flow(α, a, w) then

(a) j ∈ L−(α)⇒ δj(β) ≥ δj(α)

(b) j ∈ L0(α)⇒ a + 1 ≤ δj(β) ≤ a + w

(c) j ∈ L+(α)⇒ δj(β) ≤ δj(α).

Proof. Unsplittable-Blocking-Flow() only pushes
users along a helpful path that is defined by a helpful link
v of minimum height h(v). Lemma 4.1 shows that by doing
this we never add a link to L−. Furthermore, a link in L−

can only be the last link in such a helpful path. But this
link only receives load which implies (a). On the other hand
a link v ∈ L+ can only be the first link in such a helpful
path, (c) follows. Condition (b) also follows directly from
Lemma 4.1.

As an immediate consequence of Lemma 4.2 we get the fol-
lowing corollary:

Corollary 4.3. Let β be the assignment computed by
Unsplittable-Blocking-Flow(α, a, w) then

max
j∈[m]

δj(β) ≤ max
j∈[m]

δj(α) ,and

min
j∈[m]

δj(β) ≥ min
j∈[m]

δj(α).

Lemma 4.4. Let β be the assignment computed by
Unsplittable-Blocking-Flow(α, a,w) then one of the
following 3 conditions is true

(a) L−(β) = ∅

(b) L+(β) = ∅

(c) ∃B ⊂ [m] such that

(c1) δj(β) ≥ a + 1 , ∀j ∈ B, and

(c2) δj(β) ≤ a + w , ∀j ∈ [m] −B, and

(c3) li ∈ B ⇒ Ai ⊆ B, ∀i ∈ [n] with wi ≤ w.

Proof. If either (a) or (b) holds then the algorithm ter-
minates. So assume that L−(β) 6= ∅ and L+(β) 6= ∅ and the
algorithm terminates. It follows that ∀v ∈ L+ : h(v) = ∞
which implies that in Gβ there is no path from a link in L+

to a link in L−. Define B to be the set of links that are
reachable from some link in L+. Since L− is not reachable
from a link in L+, (c1) holds. All links in L+ are also in B,
therefore (c2). By the definition of B, if a user i is assigned
to a link li ∈ B, then it can not be assigned to a link in
[m]−B which implies (c3). This completes the proof of the
lemma.

Theorem 4.5. Unsplittable-Blocking-Flow() can be
implemented to run in O(m ·A) time.

Proof. We consider a phase of algorithm Unsplittable-

Blocking-Flow() to be a single pass through the outer
while-loop. In a phase we compute the minimum height
d = minv∈L+(h(v)) of a link in L+. Then we successively
choose a helpful link v of minimum height and we push users
along the helpful path induced by v by changing the direc-
tion of each arc along this path. This can make other nodes
helpful. We will see later, how the problem of finding the
next helpful link of minimum height is solved. We push users
along such helpful paths until no further helpful path from
a link v ∈ L+ with h(v) = d exists. We only change the di-
rection of admissible edges, therefore if no further such path
exists, then we reached a blocking flow. Thus, after updat-
ing the height function, the minimum height d of a link in
L+ increased (see Ahuja et al. [1]). Since we have a bipar-
tite graph, d has to increase by at least 2 and furthermore
the maximum height of any link v with admissible path to
a link in L− is at most 2m. This implies, that the number
of phases is a most m.

Note, that A is an upper bound on the number of edges
in Gα(w). Therefore computing the height function h can
be done in O(A) time using breadth-first search. While com-
puting the height function we built a graph Gad that only
contains nodes and edges that are on an admissible path
from any node u with h(u) = d to any node v with h(v) = 0.
Furthermore, every node v saves the set of nodes defining
its height in list S(v) and every node keeps track of its po-
sitions in this lists. Note that each entry in a list defines
an admissible edge. Even if S(u) holds all possible neigh-
bors for a path to a link in L−, we always choose the first
entry s(u) from S(u) to define a helpful path. This is done
to bound the running time. Inside a phase we always push
users along a path that is induced by a helpful link v of min-
imum height h(v). There are two ways, how a link v′ with
h(v′) ≤ h(v) can become helpful. Either the load δv′ or the
first successor s(v′) ∈ S(v′) changed. Consider a link v′ on
the path induced by v. Link v′ can become helpful, since



both the load δv′ and s(v′) have changed. Furthermore, it
is possible that S(v′) became empty. In this case v′ is no
longer on an admissible path to a link in L− and therefore
v′ and all edges (u, v′) entering v′ are deleted from Gad. So,
v′ is extracted from S(u). This again can make u helpful,
since s(u) may have changed. It is also possible that S(u)
became empty and we have to proceed recursively.

We now show, how to find the next helpful link of mini-
mum height efficiently using a stack K. Intuitively, K holds
all nodes that could be helpful or could make other nodes
helpful. To simplify the notation we say that user u is help-
ful, if u is not assigned to any link. Since we already used
Push in our algorithm, we will use Write and Read for
the basic stack operations. At the beginning of each phase
every link could be helpful. We initialized K with all nodes
from u ∈ Gad, ordered by the height h(u), such that on the
top of K there is a node u with h(u) = 0. A level on the
stack is a set of successive entries where the height stays the
same. We now do the following until K becomes empty:

• We first take node u =Read from K.

• If s(u) is not defined, then we define s(u) as the next
element from S(u).

• If s(u) is now defined and if u is a helpful link then we
Push(u, s(u)), we delete the edge (u, s(u)) from Gad,
we Write(u) to K (since u may still be helpful) and
we Write(s(u)) to K (since s(u) may now be helpful).

• Else if s(u) is not defined, then u is no longer on an
admissible path to a link in L−. In this case ∀(v, u) ∈
Gad we delete (v, u) from Gad (since (u, v) is no longer
admissible) and we Insert(v) to the previous level (v
may be helpful now). Here Insert(v) means that v is
inserted into K such that the order of the heights on
K is preserved. This can be done in constant time.

If K becomes empty, then the phase end. At the beginning
there are n+m nodes on K. Each time that we Read from
K, we also delete at least one edge from Gad. And each time
that we delete one edge from Gad, we add at most two nodes
to K. Since A is an upper bound on the number of edges in
Gad, we know that the time that the algorithm spends per
phase is bounded by O(n + m + A) = O(A).

We will now show how algorithm Unsplittable-Blocking-

Flow() can be used to convert a given assignment α into a
pure Nash equilibrium β with non-increased social cost. Let

�

w1 > . . . >
�

wr be all different user traffics from w1, . . . , wn.
The idea is to compute a sequence of assignments β0, . . . , βr

such that β0 = α, and in βi, 1 ≤ i ≤ r, all users j with
wj ≥

�

wi are satisfied. We call the computation of βi from
βi−1 stage i. The aim in stage i is to compute an assignment
βi from βi−1, such that in βi all users u with wu ≥

�

wi are
satisfied. In stage i we set w =

�

wi.
We first define stage 1. By a series of calls to Unsplit-

table-Blocking-Flow() we compute an assignment where
L− and L+ are either both empty or both not empty. We do
this by binary search on a ∈ [minj δj(β0), maxj δj(β0)], a ∈� as follows: If Unsplittable-Blocking-Flow() returns
an assignment with L− = ∅ and L+ 6= ∅, then we increase
a. On the other hand, if Unsplittable-Blocking-Flow()
returns an assignment with L− 6= ∅ and L+ = ∅, then we
decrease a. If after the binary search L− = ∅ and L+ =
∅, then we have computed an assignment where all users

with traffic at least
�

w1 are satisfied. If neither L− = ∅
nor L+ = ∅ it follows that condition (c) from Lemma 4.4
holds. Define B as in Lemma 4.4. In this case we split our
instance into two parts. One part with all links in B and all
users that are currently assigned to a link in B, the other
part holds the complement. Condition (c) from Lemma 4.4
implies that no user u with wu ≤

�

w1 that is assigned to a
link in B has a link from B in its set of possible strategies.
Furthermore, by conditions (c1) and (c2) from Lemma 4.4,
no user u with wu =

�

w1 that is assigned to a link in B can
improve by moving to a link in B, and Corollary 4.3 shows
that this property is preserved. We now recursively proceed
with the binary search on a in both parts. For the part that
corresponds to B we increase a, and in the other part we
decrease a. At the end of stage 1 all parts B1, . . . , Bp(1) are
put together to form β1. This completes the definition of
stage 1. After stage 1 we can define bounds on the load of
each link as follows. For each Bk, k ∈ [p(1)], define a lower
bound Low(Bk) on the load of all links from Bk as the last
value for a after the binary search on a in Bk. Moreover,
define an upper bound Up(Bk) = Low(Bk) +

�

w1. Assume,
that B1, . . . , Bp(1) are ordered, such that Low(B1) ≥ . . . ≥
Low(Bp(1)). By Lemma 4.4 there are no edges from a link in
Bk to a link in B` when k < `. Furthermore, after stage 1
all users with traffic

�

w1 are satisfied, and they stay satisfied
if the load on each link resides within the defined bounds.

We now describe stage i > 1. At the beginning of stage i
we have an assignment βi−1, where the links are partitioned
into sets B1, . . . , Bp(i−1) with Up(Bk) = Low(Bk) +

�

wi−1,
for all k ∈ [p(i − 1)], and no edges from a link in Bk to
a link in B` exist for k < `. As an invariant during stage
i, we always have an assignment with properties as shown
in Figure 4: We have a partition of the links into sets
B1, . . . , Bp with Low(B1) ≥ . . . ≥ Low(Bp) and Up(B1) >
. . . > Up(Bp). Furthermore, there are no edges from a link
in Bk to a link in B` when k < `. Note that the number of
partitions p changes over time. In stage i the lower bound on
the load of a link only increases and the upper bound only
decreases. This implies, that users with traffic at least

�

wi−1

stay satisfied during stage i. Some sets of links Bk, k < x
have not been considered yet and fulfill Up(Bk)−Low(Bk) =

�

wi−1. Moreover, some sets of links Bk, k > y have been
processed already and fulfill Up(Bk) − Low(Bk) =

�

wi. Fi-
nally, we have sets Bx, . . . , By of active links, with

�

wi <
Up(Bk)− Low(Bk) ≤

�

wi−1 for all k ∈ [x, y] and Low(Bx) =
. . . = Low(By). Note, that at the beginning of stage i, the
links from Bp(i−1) are active, and the remaining links have
not been considered. By a sweep over the sets of active
links we compute a new assignment with the same structure.
However, either the number of processed links increases or
new links become active during a sweep.

A sweep works as follows: The aim of a sweep is either
to completely process all links in By by increasing the lower
bound of all active links to Up(By)−

�

wi, or to make all links
in Bx−1 active by increasing the lower bound of all active
links to Low(Bx−1). In order to preserve the structure of our
assignment, we choose a = min{Up(By) −

�

wi, Low(Bx−1)}.
First assume a = Up(By) −

�

wi. We apply Unsplittable-

Blocking-Flow() to the sub-instance defined by the set
Bx. Unsplittable-Blocking-Flow() returns an assign-
ment where one of the following cases holds.
L+ = ∅: Since all links in Bx have load at most a +

�

wi <
Up(Bx+1) and Corollary 4.3 implies that this property is
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Figure 4: Sets of active links in stage i

preserved, we set Up(Bx) = Up(Bx+1) and merge Bx and
Bx+1. Thus Bx+1 = Bx ∪Bx+1.
L− = ∅ and L+ 6= ∅: In this case all links in Bx have load at
least a and Corollary 4.3 implies that this property is pre-
served. Thus, we set Low(Bx) = a.
L− 6= ∅ and L+ 6= ∅: Here, we split Bx according to condi-

tion (c) from Lemma 4.4 into sets B′
x and B′

x. Condition
(c3) implies, that there are no edges from a link in B′

x to a
link in B′

x. For B′
x we set Low(B′

x) = a. For B′
x we set

Up(B′
x) = Up(Bx+1) and we merge B′

x with Bx+1. Thus
Bx+1 = B′

x ∪Bx+1.
We iteratively proceed with Bx+1, . . . , By. When we have

reached By, Low(Bk) +
�

wi ≥ Up(By) holds for all k < y.
Thus, no user with traffic

�

wi can improve by moving from
a link in By to a link in Bk, k < y. By Corollary 4.3, this
property is preserved. Moreover, by Lemma 4.4 there are
no edges from a link in By to a link in Bk, k > y. Thus, in
order to satisfy users with traffic

�

wi (that were assigned to
links in By), we make a binary search on [Low(By), a] in By

as we did in the first stage for the whole instance. For the
partitions By1, . . . Byp, that we receive we have Up(Byk) =
Low(Byk)+

�

wi, for all k ∈ [p]. Thus, these links are processed
and become inactive.

Now, assume a = Low(Bx−1). In this case all links in
Bx−1, . . . , By are active. We do the same procedure as
above. However, this time we start with Bx−1. Moreover,
we have to treat By differently. We apply Unsplittable-

Blocking-Flow() to By with a = Low(Bx−1). If L− = ∅,
then we set Low(By) = a; if L+ = ∅ then we set Up(By) =
a +

�

wi and do a binary search on [Low(By), a] as before; if
L− 6= ∅ and L+ 6= ∅ then we split By according to condition
(c) from Lemma 4.4 into sets B′

y and B′
y. For B′

y we set

Low(B′
y) = a and for B′

y we set Up(B′
y) = a +

�

wi. Fur-

thermore, we again do a binary search in B′
y as above, thus

the links from B′
y are processed and become inactive. After

each sweep, by renumbering the partitions, we get a new as-
signment that again has the same structure as in Figure 4.
This completes the description of a sweep.

In each sweep we either add a set of links to the active links
or we completely process some links. Stage i ends, when all
links are processed. After stage i we have an assignment
βi, where the links are partitioned into sets B1, . . . , Bp(i)

with Up(Bk) = Low(Bk) +
�

wi, for all k ∈ [p(i)] and there
are no edges from a link in Bk to a link in B` for k < `.
Thus, all users with traffic

�

wi are satisfied. Since we only
increased the lower bounds and decreased the upper bounds
on the load of the links, all users u with traffic wu >

�

wi stay
satisfied during stage i. Hence we obtain:

Lemma 4.6. After stage i, every user u with traffic wu ≥
�

wi is satisfied and stays satisfied until the end of stage r.

Theorem 4.7. Consider the model of restricted strate-
gies, arbitrary users and identical links. Then, it is possible
to compute a Nash equilibrium in time O(rmA(log W+m2)),
where r is the number of distinct traffic sizes.

Proof. Lemma 4.6 implies that after stage r all users
are satisfied and therefore the resulting assignment βr is
a Nash equilibrium. It remains to show the running time
of O(rmA(log W + m2)). One call to Unsplittable-

Blocking-Flow() with an instance of n users and m links
can be done in O(mA) time. Since in each sweep either a
set of links becomes active or some links are completely pro-
cessed, we have at most O(m) sweeps per stage. Not count-
ing the (possible) binary search at the end of a sweep, we
do at most O(m) calls to Unsplittable-Blocking-Flow()
per sweep. Since in a stage the binary search is done on dis-
tinct subsets of the users and links, the total time for the bi-
nary searches in a stage is O(mA log W ). There are r stages,
thus we get the running time of O(rmA(log W + m2)).

5. COORDINATION RATIO
In this section we prove upper bounds on the coordination

ratio for pure Nash equilibria. We first give an assignment
in Example 5.1 yielding a lower bound (Lemma 5.1). We
then use similar techniques as in [2] to prove two upper
bounds for arbitrary users on identical links (Theorem 5.2)
and identical users on related links (Theorem 5.3), which are
asymptotically tight due to Lemma 5.1. We close by giving
a tight upper bound for arbitrary users on related links.

Example 5.1. We consider the following instance of n
identical users on m identical links:

• LetM0, . . . ,Mk be disjoint subsets of the m links with
|M0| = 1 and |Mi| = (k − 1)

�
1≤j≤i−1(k − j) for all

2 ≤ i ≤ k.

• Let U0, . . . ,Uk−1 be disjoint subsets of the n users. U0

contains k users with strategy set M0 ∪ M1, and Ui

contains (k−i)·|Mi| users with strategy setMi∪Mi+1

for 1 ≤ i ≤ k − 1.

The assignment α is defined as follows: to linkM0 we assign
all k users in U0; to each link in Mi we assign k − i users
in Ui for all 2 ≤ i ≤ k− 1. The links in Mk remain empty.

Lemma 5.1. The assignment α given in Example 5.1 is a
pure Nash equilibrium with

SC(w, α)

OPT(w)
> Γ−1(m)− 2.

Theorem 5.2. Consider the model of arbitrary users with
restricted strategy sets on identical links. Then, for any pure
Nash equilibrium α, we have the tight bound

SC(w, α)

OPT(w)
= O

�
log m

log log m � .

Proof. Consider a pure Nash equilibrium α with

k ·OPT(w) ≤ SC(w, α) < (k + 1) · OPT(w), k ∈ � .

We give a lower bound on the number of links that are nec-
essary for such a pure Nash equilibrium α. We then use this
lower bound to prove an upper bound on k.



Denote by δj the total traffic on link j ∈ [m], denote byM0

the set of links with latency at least k · OPT(w), and let
∆0 =

�
j∈M0

δj . Thus,

∆0 = �
j∈M0

δj ≥ k ·OPT(w) · |M0|. (1)

We show by induction on 1 ≤ l ≤ k − 1 that for all l, there
exists a set of linksMl,Ml ∩ (M0 ∪ . . . ∪Ml−1) = ∅, such
that the cardinality of Ml is at least

|Ml| ≥ (k − 1) �
1≤j≤l−1

(k − j) · |M0|, (2)

for all j ∈ Ml, the total traffic on link j is bounded by

δj ≥ (k − l) ·OPT(w) ∀j ∈ Ml, (3)

the total traffic on links in Ml is at least

∆l ≥ (k − 1) �
1≤j≤l

(k − j) · |M0| · OPT(w), (4)

and there exist users, assigned to links in M0 ∪ . . . ∪Ml,
with total traffic at least

�
0≤i≤l

(∆i − |Mi| · OPT(w))

≥ (k − 1) �
1≤j≤l

(k − j) · |M0| · OPT(w). (5)

containing links in their strategy sets not inM0 ∪ · · · ∪Ml.
First let l = 1. Since δi ≥ k · OPT(w) for all i ∈ M0,
there exist users assigned to links in M0 with total traffic
at least (k−1) ·OPT(w) · |M0| containing links not inM0 in
their strategy sets. This holds since it is possible to assign
all users to links with latency at most OPT(w). Denote by
M1, M1 ∩M0 = ∅, the set of these links. It follows that

|M1| ≥ (k − 1) · |M0|, (6)

proving (2). Since each user causes latency at most OPT(w)
on each link, the Nash condition implies δi ≤ δj + OPT(w)
for all i ∈ M0, ∀j ∈ M1. Thus, for all links j ∈ M1 the
total traffic on link j is bounded from below by

δj ≥ (k − 1) ·OPT(w) ∀j ∈M1, (7)

proving (3), and therefore

∆1 = �
j∈M1

δj

(7)

≥ (k − 1) · |M1| ·OPT(w) (8)

(6)

≥ (k − 1)2 · |M0| ·OPT(w),

proving (4). Moreover, by (1),(6) and (8),

�
0≤i≤1

(∆i − |Mi| ·OPT(w)) ≥ (k − 1)2 · |M0| · OPT(w),

proving (5), and thus the claim holds for l = 1.
For the induction step, let l ≥ 2. By induction hypothesis,

�
0≤i≤l−1

(∆i − |Mi| · OPT(w))

(5)

≥ (k − 1) �
1≤j≤l−1

(k − j) · |M0| ·OPT(w).

Thus, there exist users assigned to links inM0 ∪ . . .∪Ml−1

with total traffic at least (k − 1)
�

1≤j≤l−1(k − j) · |M0| ·

OPT(w) containing links not in M0 ∪ . . . ∪Ml−1 in their
set of allowed links, since it is possible to assign all users to
links with latency at most OPT(w). Denote by Ml, Ml ∩
(M0∪ . . .∪Ml−1) = ∅, the set of these links. It follows that

|Ml| ≥ (k − 1) �
1≤j≤l−1

(k − j) · |M0|, (9)

proving (2). Since each user causes latency at most OPT(w)
on each link, the Nash condition implies δi ≤ δj + OPT(w)
for all i ∈ M0 ∪ . . . ∪Ml−1 and for all j ∈ Ml. Thus, for
all links j ∈Ml the total traffic on link j is bounded by

δj ≥ (k − l) ·OPT(w) ∀j ∈Ml, (10)

proving (3), and therefore

∆l = �
j∈Ml

δj

(10)

≥ |Ml| · (k − l) ·OPT(w) (11)

(9)

≥ (k − 1) �
1≤j≤l

(k − j) · |M0| · OPT(w),

proving (4). By induction hypothesis, (9) and (11),

�
0≤i≤l

(∆i − |Mi| · OPT(w))

≥ (k − 1) �
1≤j≤l

(k − j) · |M0| ·OPT(w),

proving (5). This completes the proof of the inductive claim.
We proceed by showing an upper bound on k. Since m ≥
|Mk−1|+ |Mk−2|, we get

m ≥ |Mk−1|+ |Mk−2|
(2)

≥ |M0| · k! = Γ(k + 1).

Thus,

k ≤ Γ−1(m)− 1 = O

�
log m

log log m � .

Combined with Lemma 5.1, this proves the claim.

Theorem 5.3. Consider the model of identical users with
restricted strategy sets on related links. Then, for any pure
Nash equilibrium α, we have the tight bound

SC(w, α)

OPT(w)
= O

�
log n

log log n � .

Proof. Since we consider identical users, the total traffic
of a link j ∈ [m] is the number of users assigned to j, divided
by cj . Similar to the proof of Theorem 5.2 we prove a lower
bound on the number of users needed to construct a Nash
equilibrium α with SC(w, α)/OPT(w) = k. In the same way
as in Theorem 5.2, this yields the stated upper bound. The
tightness follows with Lemma 5.1 when n = m.

Theorem 5.4. Consider arbitrary users with restricted
strategy sets on related links. Then, for any pure Nash equi-
librium α, we have the tight bound

SC(w, α)

OPT(w)
≤ m− 1.

Proof. Consider a pure Nash equilibrium α with (k +
1) · OPT(w) > SC(w, α) ≥ k ·OPT(w), k ∈ � .
Upper bound: We now show by induction on 1 ≤ i ≤ k that
there exist links l1, . . . , li with latency λli ≥ (k − i + 1) ·



OPT(w). Since SC(w, α) = k · OPT(w), there exists a link
l1 ∈ [m] with latency λl1 ≥ k · OPT(w), proving the claim
for i = 1. Now assume i ≥ 2. By induction hypothesis
we know that there exist i − 1 links l1, . . . , li−1 with λlj ≥
(k− j + 1) ·OPT(w) > OPT(w) for all 1 ≤ j ≤ i− 1. Thus,
there exists a user on l1 ∪ . . .∪ li−1 that is assigned to some
other link li in an optimal assignment, and the latency on li
is at least λli = (k− i + 1) due to the Nash condition. This
completes the proof of the inductive claim.
Since there exists at least one additional link with latency
smaller than OPT(w), we have m ≥ k + 1 and therefore
k ≤ m− 1. This proves the upper bound.
Tightness: Consider the following instance: We are given m
links with capacities

cj =
(m− 1)!

(j − 1)!
for all j ∈ [m],

and m−1 users with traffics wi = ci and strategy set {i, i+1}
for all i ∈ [m − 1]. The assignment α is defined as follows:
We assign user i to link i + 1 for all i ∈ [m− 1]. Note that
each user i ∈ [m−1]\{1} experiences latency wi

ci+1
= i on its

link i+1, and that moving to the other link i in its strategy
set would lead to latency

wi−1 + wi

ci

=
1

ci

�
(m− 1)!

(i− 2)!
+

(m− 1)!

(i − 1)! � = i.

Furthermore, since c1 = c2, user 1 has no incentive to move
from link 2 to link 1, showing that the given assignment is
a Nash equilibrium. In an optimal assignment, each user
i ∈ [n] chooses link i as its strategy, yielding social cost
OPT(w) = 1. This implies

SC(w, α)

OPT(w)
= m− 1,

and we are done.
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