
Direct Routing: Algorithms and Complexity

Costas Busch1, Malik Magdon-Ismail1, Marios Mavronicolas2, and Paul
Spirakis3

1 Department of Computer Science,Rensselaer Polytechnic Institute,
110 8th Street,Troy, NY 12180, USA. Email: {buschc,magdon}@cs.rpi.edu

2 Department of Computer Science, University of Cyprus,
P. O. Box 20537, Nicosia CY-1678, Cyprus. Email: mavronic@ucy.ac.cy

3 Department of Computer Engineering and Informatics,
University of Patras, Rion, 265 00 Patras,Greece.

Abstract. Direct routing is the special case of bufferless routing where
N packets, once injected into the network, must be routed along specific
paths to their destinations without conflicts. We give a general treatment
of three facets of direct routing:
(i) Algorithms. We present a polynomial time greedy algorithm for arbi-

trary direct routing problems which is worst-case optimal, i.e., there
exist instances for which no direct routing algorithm is better than
the greedy. We apply variants of this algorithm to commonly used
network topologies. In particular, we obtain near-optimal routing
time for the tree and d-dimensional mesh, given arbitrary sources
and destinations; for the butterfly and the hypercube, the same result
holds for random destinations.

(ii) Complexity. By a reduction from Vertex Coloring, we show that Di-
rect Routing is inapproximable, unless P=NP.

(iii) Lower Bounds for Buffering. We show that certain direct routing
problems cannot be solved efficiently; to solve these problems, any

routing algorithm needs buffers. We give non-trivial lower bounds
on such buffering requirements for general routing algorithms.

1 Introduction

Direct routing is the special case of bufferless routing where N packets are routed
along specific paths from source to destination so that they do not conflict with
each other, i.e., once injected, the packets proceed “directly” to their destination
without being delayed (buffered) at intermediate nodes. Since direct routing
is bufferless, packets spend the minimum possible time in the network given
the paths they must follow – this is appealing in power/resource constrained
environments (for example optical networks or sensor networks). From the point
of view of quality of service, it is often desirable to provide a guarantee on the
delivery time after injection, for example in streaming applications like audio
and video. Direct routing can provide such guarantees.

The task of a direct routing algorithm is to compute the injection times
of the packets so as to minimize the routing time, which is the time at which

2 Busch, Magdon-Ismail, Mavronicolas, Spirakis

the last packet is delivered to its destination. Algorithms for direct routing are
inherently offline in order to guarantee no conflicts. We give a general analysis of
three aspects of direct routing, namely efficient algorithms for direct routing; the
computational complexity of direct routing; and, the connection between direct
routing and buffering.

Algorithms for direct routing. We give a general and efficient (polynomial time)
algorithm. We modify this algorithm for specific routing problems on commonly
used network topologies to obtain more optimal routing times; thus, in many
cases, efficient routing can be achieved without the use of buffers.

Arbitrary: We give a simple greedy algorithm which considers packets in some
order, assigning the first available injection time to each packet. This algo-
rithm is worst-case optimal: there exist instances of direct routing for which
no direct routing algorithm achieves better routing time.

Tree: For arbitrary sources and destinations on arbitrary trees, we give a direct
routing algorithm with routing time rt = O(rt∗) where rt∗ is the minimum
possible routing time achievable by any routing algorithm (direct or not).

d-Dimensional Mesh: For arbitrary sources and destinations on a d-dimensional
mesh with n nodes, we give a direct routing algorithm with routing time
rt = O(d2 · log2 n · rt∗) with high probability (w.h.p.).

Butterfly and Hypercube: For permutation and random destination problems
with one packet per node, we obtain routing time rt = O(rt∗) w.h.p. for the
butterfly with n inputs and the n-node hypercube.

Computational complexity of direct routing. By a reduction from vertex coloring,
we show that direct routing is NP-complete. The reduction is gap-preserving, so
direct routing is as hard to approximate as coloring.

Lower bounds for buffering. There exist direct routing problems which cannot be
efficienty solved; such problems require buffering. We show that for any buffered

algorithm there exist routing instances, for which packets are buffered Ω(N4/3)
times in order to achieve near-optimal routing time.

Next, we discuss related work, followed by preliminaries and main results.

Related Work

The only previous known work on direct routing is for permutation problems on
trees [1, 2], where the authors obtain routing time O(n) for any tree with n nodes,
which is worst-case optimal. Our algorithm for trees is every-case optimal for
arbitrary routing problems. Cypher et al. [3] study an online version of direct
routing in which a worm (packet of length L) can be re-transmitted if it is
dropped (they also allow the links to have bandwidth B ≥ 1). For the case
corresponding to our work (L = B = 1), they give an algorithm with routing
time O((C+log n) ·D). We give an off line algorithm with routing time O(C ·D),
show that this is worst case optimal, and that it is NP-hard to give a good

Direct Routing: Algorithms and Complexity 3

approximation to the optimal direct routing time. We also obtain near-optimal
routing time (with respect to buffered routing) for many interesting networks,
for example the Mesh.

A dual to direct routing is time constrained routing where the task is to
schedule as many packets as possible within a given time frame [4]. In these
papers, the authors show that the time constrained version of the problem is
NP-complete, and also study approximation algorithms on linear networks, trees
and meshes. They also discuss how much buffering could help in this setting.

Other models of bufferless routing in which packets do not follow specific
paths are matching routing [5] and hot-potato routing [6–8]. In [6], the authors
also study lower bounds for near-greedy hot-potato algorithms on the mesh. Op-
timal routing for given paths on arbitrary networks has been studied extensively
in the context of store-and-forward algorithms, [9–11].

2 Preliminaries

Problem Definition. We are given a graph G = (V, E) with n ≥ 1 nodes, and
a set of packets Π = {πi}N

i=1. Each packet πi is to be routed from its source,
s(πi) ∈ V , to its destination, δ(πi) ∈ V , along a pre-specified path pi. The
nodes in the graph are synchronous: time is discrete and all nodes take steps
simultaneously. At each time step, at most one packet can follow a link in each
direction (thus, at most two packets can follow a link at the same time, one
packet at each direction).

A path p is a sequence of vertices p = (v1, v2, . . . , vk). Two paths p1 and
p2 collide if they share an edge in the same direction. We also say that their
respective packets π1 and π2 collide. Two packets conflict if they are routed in
such a way that they appear in the same node at the same time, and the next
edge in their paths is the same. The length of a path p, denoted |p|, is the number
of edges in the path. For any edge e = (vi, vj) ∈ p, let dp(e) denote the length of
path (v1, . . . , vi, vj). The distance between two nodes, is the length of a shortest
path that connects the two nodes.

A direct routing problem has the following components. Input: (G, Π,P),
where G is a graph, and the packets Π = {πi}N

i=1 have respective paths
P = {pi}N

i=1. Output: The injection times T = {τi}N
i=1, denoted a routing sched-

ule for the routing problem. Validity: If each packet πi is injected at its corre-
sponding time τi into its source si, then it will follow a conflict-free path to its
destination where it will be absorbed at time ti = τi + |pi|.

For a routing problem (G, Π,P), the routing time rt(G, Π,P) is the max-
imum time at which a packet gets absorbed at its destination, rt(G, Π,P) =
maxi{τi + |pi|}. The offline time, ol(G, Π,P) is the number of operations used
to compute the routing schedule T . We measure the efficiency of a direct routing
algorithm with respect to the congestion C (the maximum number of packets
that use an edge) and the dilation D (the maximum length of any path). A well
known lower bound on the routing time of any routing algorithm (direct or not)
is given by Ω(C + D).

4 Busch, Magdon-Ismail, Mavronicolas, Spirakis

Dependency Graphs. Consider a routing problem (G, Π,P). The dependency

graph D of the routing problem is a graph in which each packet πi ∈ Π is a
node. We will use πi to refer to the corresponding node in D. There is an edge
between two packets in D if their paths collide. An edge (πi, πj) with i < j in D
has an associated set of weights Wi,j : w ∈ Wi,j if and only if πi and πj collide
on some edge e for which dpi

(e) − dpj
(e) = w. Thus, in a valid direct routing

schedule with injection times τi, τj for πi, πj , it must be that τj − τi 6∈ Wi,j . An
illustration of a direct routing problem and its corresponding dependency graph
are shown in Figure 1.

π1

π3

π2

π4

W1,3 = {2}

W1,2 = {0,−2}

π2

π1 π3

π4

routing problem, (G, Π,P) dependency graph, D

Fig. 1. An example direct routing problem and its dependency graph.

We say that two packets are synchronized, if the packets are adjacent in D
with some edge e and 0 is in the weight set of e. A clique K in D is synchronized

if all the packets in K are synchronized, i.e., if 0 is in the weight set of every
edge in K. No pair in a synchronized clique can have the same injection time,
as otherwise they would conflict. Thus, the size of the maximum synchronized
clique in D gives a lower bound on the routing time:

Lemma 1 (Lower Bound on Routing Time). Let K be a maximum syn-

chronized clique in the dependency graph D. Then, for any routing algorithm,

rt(G, Π,P) ≥ |K|
We define the weight degree of an edge e in D, denoted W (e), as the size of the
edge’s weight set. We define the weight degree of a node π in D, denoted W (π),
as the sum of the weight degrees of all edges incident with π. We define the
weight of the dependency graph, W (D), as the sum of the weight degrees of all
its edges, W (D) =

∑

e∈E(D) W (e). For the example in Figure 1, W (D) = 3.

3 Algorithms for Direct Routing

Here we consider algorithms for direct routing. The algorithms we consider are
variations of the following greedy algorithm, which we apply to the tree, the
mesh, the butterfly and the hypercube.

Direct Routing: Algorithms and Complexity 5

1: // Greedy direct routing algorithm:
2: // Input: routing problem (G, Π,P) with N packets Π = {πi}N

i=1.
3: // Output: Set of injection times T = {τi}N

i=1.
4: Let π1, . . . , πN be any specific, arbitrarily chosen ordering of the packets.
5: for i = 1 to N do
6: Greedily assign the first available injection time τi to packet πi ∈ Π , so

that it does not conflict with any packet already assigned an injection
time.

7: end for

The greedy direct routing algorithm is really a family of algorithms, one for
each specific ordering of the packets. It is easy to show by induction, that no
packet πj conflicts with any packet πi with i < j, and thus the greedy algorithm
produces a valid routing schedule. The routing time for the greedy algorithm
will be denoted rtGr(G, Π,P). Consider the dependency graph D for the routing
problem (G, Π,P). We can show that τi ≤ W (πi), where W (πi) is the weight
degree of packet πi, which implies:

Lemma 2. rtGr(G, Π,P) ≤ maxi{W (πi) + |pi|}.
We now give an upper bound on the routing time of the greedy algorithm. Since
the congestion is C and |pi| ≤ D ∀i, a packet collides with other packets at most
(C − 1) ·D times. Thus, W (πi) ≤ (C − 1) ·D, ∀i. Therefore, using Lemma 2 we
obtain:

Theorem 1 (Greedy Routing Time Bound). rtGr(G, Π,P) ≤ C · D.

The general O(C · D) bound on the routing time of the greedy algorithm is
worst-case optimal, within constant factors, since from Theorem 9, there exist
worst-case routing problems with Ω(C ·D) routing time. In the next sections, we
will show how the greedy algorithm can do better for particular routing problems
by using a more careful choice of the order in which packets are considered.

Now we discuss the offline time of the greedy algorithm. Each time an edge
on a packets path is used by some other packet, the greedy algorithm will need
to desynchronize these packets if necessary. This will occur at most C · D times
for a packet, hence, the offline computation time of the greedy algorithm is
olGr(G, Π,P) = O(N ·C · D), which is polynomial. This bound is tight since, in
the worst case, each packet may have C · D collisions with other packets.

3.1 Trees

Consider the routing problem (T, Π,P), in which T is a tree with n nodes,
and all the paths in P are shortest paths. Shortest paths are optimal on trees
given sources and destinations because any paths must contain the shortest path.
Thus, rt∗ = Ω(C + D), where rt∗ is the minimum routing time for the given
sources and destinations using any routing algorithm. The greedy algorithm with
a particular order in which the packets are considered gives an asymptotically
optimal schedule.

6 Busch, Magdon-Ismail, Mavronicolas, Spirakis

Let r be an arbitrary node of T . Let di be the closest distance that π′
is path

comes to r. The direct routing algorithm can now be simply stated as the greedy
algorithm with the packets considered in sorted order, according to the distance
di, with di1 ≤ di2 ≤ · · · ≤ diN

.

Theorem 2. Let (T, Π,P) be any routing problem on the tree T . Then the

routing time of the greedy algorithm using the distance-ordered packets is

rt(T, Π,P) ≤ 2C + D − 2.

Proof. We show that every injection time satisfies τi ≤ 2C − 2. When packet πi

with distance di is considered, let vi be the closest node to r on its path. All
packets that are already assigned times that could possibly conflict with πi are
those that use the two edges in πi’s path incident with vi, hence there are at
most 2C − 2 such packets. Since πi is assigned the smallest available injection
time, it must therefore be assigned a time in [0, 2C − 2].

3.2 d-Dimensional Mesh

A d-dimensional mesh network M = M(m1, m2, . . . , md) is a multi-dimensional
grid of nodes with side length mi in dimension i. The number of nodes is
n =

∏d
i=1 mi, and define m =

∑d
i=1 mi. Every node is connected to up to

2d of its neighbors on the grid. Theorem 1 implies that the greedy routing algo-
rithm achieves asymptotically optimal worst case routing time in the mesh. We
discuss some important special cases where the situation is considerably better.
In particular, we give a variation of the greedy direct routing algorithm which
is analyzed in terms of the number of times that the packet paths “bend” on
the mesh. We then apply this algorithm to the 2-dimensional mesh in order to
obtain optimal permutation routing, and the d-dimensional mesh, in order to
obtain near-optimal routing, given arbitrary sources and destinations.

Multi-bend Paths. Here, we give a variation of the greedy direct routing algo-
rithm which we analyze in terms of the number of times a packet bends in the
network. Consider a routing problem (G, Π,P). We first give an upper bound on
the weight degree W (D) of dependency graph D in terms of bends of the paths.
We then use the weight degree bound in order to obtain an upper bound on the
routing time of the algorithm.

For any subset of packets Π ′ ⊆ Π , let DΠ′ denote the subgraph of D induced
by the set of packets Π ′. (Note that D = DΠ .) Consider the path p of a packet
π. Let’s assume that p = (. . . , vi, v, vj , . . .), such that the edges (vi, v) and (v, vj)
are in different dimensions. We say that the path of packet π bends at node v,
and that v is an internal bending node. We define the source and destination
nodes of a packet π to be external bending nodes. The segment p′ = (vi, . . . , vj)
of a path p, is a subpath of p in which only vi and vj are bending nodes. Consider
two packets π1 and π2 whose respective paths p1 and p2 collide at some edge e.
Let p′1 and p′2 be the two respective segments of p1 and p2 which contain e. Let
p′ be the longest subpath of p′1 and p′2 which is common to p′1 and p′2; clearly e is

Direct Routing: Algorithms and Complexity 7

an edge in p′. Let’s assume that p′ = (vi, . . . , vj). It must be that vi is a bending
node of one of the two packets, and the same is true of vj . Further, none of the
other nodes in p′ are bending nodes of either of the two packets. We refer to such
a path p′ as a common subpath. Note there could be many common subpaths for
the packets π1 and π2, if they meet multiple times on their paths.

Since p1 and p2 collide on e, the edge h = (π1, π2) will be present in the
dependency graph D with some weight w ∈ W1,2 representing this collision.
Weight w suffices to represent the collision of the two packets on the entire
subpath p′. Therefore, a common subpath contributes at most one to the weight-
number of D. Let AP denote the number of common subpaths. We have that
W (D) ≤ AP . Therefore, in order to find an upper bound on W (D), we only
need to find an upper bound on the number of common subpaths.

For each common subpath, one of the packets must bend at the beginning
and one at end nodes of the subpath. Thus, a packet contributes to the number
of total subpaths only when it bends. Consider a packet π which bends at a node
v. Let e1 and e2 be the two edges of the path of π adjacent to v. On e1 the packet
may meet with at most C − 1 other packets. Thus, e1 contributes at most C − 1
to the number of common subpaths. Similarly, e2 contributes at most C − 1
to the number of common subpaths. Thus, each internal bend contributes at
most 2C − 2 to the number of common subpaths, and each external bend C − 1.
Therefore, for the set of packets Π ′, where the maximum number of internal
bends is b, AP ≤ 2(b + 1)|Π ′|(C − 1). Hence, it follows:

Lemma 3. For any subset Π ′ ⊆ Π, W (DΠ′) ≤ 2(b + 1)|Π ′|(C − 1), where b is

the maximum number of internal bending nodes of any path in Π ′.

Since the sum of the node weight degrees is 2W (D), we have that the average
node weight degree of the dependency graph for any subset of the packets is
upper bounded by 4(b + 1)(C − 1). We say that a graph D is K-amortized if the
average weight degree for every subgraph is at most K. K-amortized graphs are
similar to balanced graphs [12]. Thus D is 4(b + 1)C-amortized. A generalized

coloring of a graph with weights on each edge is a coloring in which the difference
between the colors of adjacend nodes cannot equal a weight. K-Amortized graphs
admit generalized colorings with K + 1 colors. This is the content of the next
lemma.

Lemma 4 (Efficient Coloring of Amortized Graphs). Let D be a K-

amortized graph. Then D has a valid K + 1 generalized coloring.

A generalized coloring of the dependency graph gives a valid injection schedule
with maximum injection time one less than the largest color, since with such an
injection schedule no pair of packets is sycnhronized. Lemma 4 implies that the
dependency graph D has a valid 4(b+1)(C−1)+1 generalized coloring. Lemma
4 essentially determines the order in which the greedy algorithm considers the
packets so as to ensure the desired routing time. Hence, we get the following
result:

Theorem 3 (Multi-bend Direct Routing Time). Let (M, Π,P) be a direct

routing problem on a mesh M with congestion C and dilation D. Suppose that

8 Busch, Magdon-Ismail, Mavronicolas, Spirakis

each packet has at most b internal bends. Then there is a direct routing schedule

with routing time rt ≤ 4(b + 1)(C − 1) + D.

Permutation Routing on the 2-Dimensional Mesh. Consider a
√

n ×√
n mesh.

In a permutation routing problem every node is the source and destination of
exaclty one packet. We solve permutation routing problems by using paths with
one internal bend. Let e be a column edge in the up direction. Since at most

√
n

packet originate and have destination at each row, the congestion at each edge
in the row is at most O(

√
n). Similarly for edges in rows. Applying Theorem 3,

and the fact that D = O(
√

n), we then get that rt = O(
√

n), which is worst case
optimal for permutation routing on the mesh.

Near Optimal Direct Routing on the Mesh. Maggs et al. [13, Section 3] give a
strategy to select paths in the mesh M for a routing problem with arbitrary
sources and destinations. The congestion achieved by the paths is within a log-
arithmic factor from the optimal, i.e., C = O(dC∗ log n) w.h.p., where C∗ is the
minimum congestion possible for the given sources and destinations. Following
the construction in [13], it can be shown that the packet paths are constructed
from O(log n) shortest paths between random nodes in the mesh. Hence, the
number of bends b that a packet makes is b = O(d log n), and D = O(m log n),
where m is the sum of the side lengths. We can thus use Theorem 3 to obtain a
direct routing schedule with the following properties:

Theorem 4. For any routing problem (M, Π) with given sources and des-

tinations, there exists a direct routing schedule with routing time rt =
O(d2C∗ log2 n + m log n), w.h.p..

Let D∗ denote the maximum length of the shortest paths between sources and
destinations for the packets in Π . D∗ is the minimum possible dilation. Let
rt∗ denote the optimal routing time (direct or not). For any set of paths, C +
D = Ω(C∗ + D∗), and so the optimal routing time rt∗ is also Ω(C∗ + D∗). If
D∗ = Ω(m/(d2 log n)), then rt∗ = Ω(C∗ + m/(d2 log n)), so Theorem 4 implies:

Corollary 1. If D∗ = Ω(m/(d2 log n)), then there exists a direct routing sched-

ule with rt = O(rt∗d2 log2 n), w.h.p..

3.3 Butterfly and Hypercube

We consider the n-input butterfly network B, where n = 2k, [14]. There is a
unique path from an input node to an output node of length lg n+1. Assume that
every input node is the source of one packet and the destinations are randomly
chosen.

For packet πi, we consider the Bernoulli random variables xj which are one
if packet πj collides with πi. Then the degree of πi in the dependency graph,
Xi =

∑

j xj . We show that E[Xi] = 1
4 (lg n−1), and since the xj are independent,

we use the Chernoff bound to get a concentration result on Xi. Thus, we show
that w.h.p, maxi Xi = O(lg n). Since the injection time assigned by the greedy

Direct Routing: Algorithms and Complexity 9

algorithm to any packet is at most its degree in the dependency graph, we show
that the routing time of the greedy algorithm for a random destination problem
on the butterfly satisfies P

[

rtGr(B, Π,P) ≤ 5
2 lg n

]

> 1 − 2
√

2n− 1

2 . (the details
are given in an appendix).

Valiant [15, 16] proposed permutation routing on butterfly-like networks by
connecting two butterflies, with the outputs of one as the inputs to the other.
The permutation is routed by first sending the packets to random destinations
on the outputs of the first butterfly. This approach avoids hot-spots and converts
the permutation problem to two random destinations problems. Thus, we can
apply the result for random destinations twice to obtain the following theorem:

Theorem 5. For permutation routing on the double-butterfly with random

intermediate destinations, the routing time of the greedy algorithm satisfies

P [rtGr ≤ 5 lg n] > 1 − 4
√

2n− 1

2 .

A similar analysis holds for the hypercube network (see appendix).

Theorem 6. For a permutation routing using random intermediate destina-

tions and bit-fixing paths, the routing time of the greedy algorithm satisfies

P [rtGr < 14 lg n] > 1 − 1/(16n).

4 Computational Complexity of Direct Routing

In this section, we show that direct routing and approximate versions of it are
NP-complete. First, we introduce the formal definition of the direct routing de-
cision problem. In our reductions, we will use the wll known NP-complete prob-
lem Vertex Color, the vertex coloring problem [17], which asks whether a
given graph G is κ-colorable. The chromatic number, χ(G) is the smallest κ for
which G is κ-colorable. An algorithm approximates χ(G) with approximation ra-

tio q(G) if on any input G, the algorithm outputs u(G) such that χ(G) ≤ u(G)
and u(G)/χ(G) ≤ q(G). Typically, q(G) is expressed only as a function of the
number of vertices in G. It is known [18] that unless P=NP†, there does not ex-
ist a polynomial time algorithm to approximate χ(G) with approximation ratio
N1/2−ε for any constant ε > 0.

By polynomially reducing coloring to direct routing, we will obtain hard-
ness and inapproximability results for direct routing. We now formally define a
generalization of the direct routing decision problem which allows for collisions.
We say that an injection schedule is a valid K-collision schedule if at most K
collisions occur during the course of the routing (a collision is counted for every
collision of every pair of packets on every edge).

Problem: Approximate Direct Route

Input: A direct routing problem (G, Π,P) and integers T, K ≥ 0,
Question: Does there exist a valid k–collision direct routing schedule T for

some k ≤ K and with maximum injection time τmax ≤ T ?

† It is also known that if NP6⊆ZPP then χ is inapproximable to within N1−ε, however
we cannot use this result as it requires both upper and lower bounds.

10 Busch, Magdon-Ismail, Mavronicolas, Spirakis

The problem Direct Route is the restriction of Approximate Direct Route

to instances where K = 0. Denoting the maximum injection time of a valid
K-collision injection schedule by T , we define the K-collision injection num-

ber τK(G, Π,P) for a direct routing problem as the minimum value of T for
which a valid K-collision schedule exists. We say that a schedule approximates
τK(G, Π,P) with ratio q if it is a schedule with at most K collisions and the
maximum injection time for this schedule approximates τK(G, Π,P) with ap-
proximation ratio q. We now show that direct routing is NP-hard.

Theorem 7 (Direct Route is NP-Hard). There exists a polynomial

time reduction from any instance (G, κ) of Vertex Color to an instance

(G′, Π,P , T = κ − 1) of Direct Route.

x = 0 x = 1 x = 2 x = 3 x = 4

Fig. 2. A mesh routing problem.

Sketch of Proof. We will use the direct
routing problem illustrated to the right,
for which the dependency graph is a
synchronized clique. Each path is as-
sociated to a level, which denotes the
x-coordinate at which the path moves
vertically up after making its final left
turn. There is a path for every level in
[0, L], and the total number of packets is
N = L+1. The level-i path for i > 0 be-
gins at (1−i, i−1) and ends at (i, L+i),
and is constructed as follows. Beginning
at (1− i, i−1), the path moves right till
(0, i − 1), then alternating between up
and right moves till it reaches level i at
node (i, 2i − 1) (i alternating up and
right moves), at which point the path moves up to (i, L + i). Every packet is
synchronized with every other packet, and meets every other packet exactly once.

Given an instance I = (G, K) of Vertex Color, we reduce it in polynomial
time to an instance I ′ = (G′, Π,P , T = K − 1) of Direct Route. Each node
in G corresponds to a packet in Π . The paths are initially as illustrated in the
routing problem above with L = N − 1. The transformed problem will have
dependency graph D that is isomorphic to G, thus a coloring of G will imply a
schedule for D and vice versa.

If (u, v) is not an edge in G, then we remove that edge in the dependency
graph by altering the path of u and v without affecting their relationship to any
other paths; we do so via altering the edges of G′ by making one of them to pass
above the other, thus avoiding the conflict. After this construction, the resulting
dependency graph is isomorphic to G.

Direct Route is in NP, as one can check the validity and routing time of a
direct routing schedule, by traversing every pair of packets, so Direct Route

is NP complete. Further, we see that the reduction is gap preserving with gap
preserving parameter ρ = 1 [19].

Direct Routing: Algorithms and Complexity 11

Theorem 8 (Inapproximability of Collision Injection Number). A poly-

nomial time algorithm that approximates τK(G, Π,P) with ratio r for an arbi-

trary direct routing problem yields a polynomial time algorithm that approximates

the chromatic number of an arbitrary graph with ratio r + K + 1. In particular,

choosing K = O(r) preserves the approximation ratio.

For K = O(N1/2−ε), since χ is inapproximable with ratio O(N1/2−ε), we have

Corollary 2 (Inapproximability of Scheduling). Unless P=NP, for K =
O(N1/2−ε), there is no polynomial time algorithm to determine a valid K-

collision direct routing schedule that approximates τK(G, Π,P) with ratio

O(N1/2−ε) for any ε > 0.

5 Lower Bounds for Buffering

Here we consider the buffering requirements of any routing algorithm. We con-
struct a “hard” routing problem for which any direct routing algorithm has
routing time rt = Ω(C · D) = Ω(C + D)2, which is asymptotically worse than
optimal. We then analyze the amount of buffering that would be required to
attain near optimal routing time, which results in a lower bound on the amount
of buffering needed by any store-and-forward algorithm.

Theorem 9 (Hard Routing Problem). For every direct routing algorithm,

there exist routing problems for which the routing time is Ω(C ·D) = Ω((C+D)2)

Proof. We construct a routing problem for which the dependency graph is a
synchronized clique. The paths are as in Figure 2, and the description of the
routing problem is in the proof of Theorem 7. The only difference is that c packets
use each path. The congestion is C = 2c and the dilation is D = 3L. Since every
pair of packets is synchronized, Lemma 1 implies that rt(G, Π,P) ≥ N . Since
N = c(L + 1) = C

2 (D
3 + 1), rt(G, Π,P) = Ω(C · D). Choosing c = Θ(

√
N) and

L = Θ(
√

N), we have that C + D = Θ(
√

N) so C + D = Θ(
√

C · D).

Let problem A denote the routing problem in the proof of Theorem 9. We would
like to determine how much buffering is necessary in order to decrease the routing
time for routing problem A. Let T be the maximum injection time (so the routing
time is bounded by T + D). We give a lower bound on the number of packets
that need to be buffered at least once:

Lemma 5. In routing problem A, if T ≤ α, then at least N − α packets are

buffered at least once.

Sketch of Proof. If β packets are not buffered at all, then they form a synchro-
nized clique, hence T ≥ β. Therefore α ≥ β, and since N−β packets are buffered
at least once, the proof is complete.

If the routing time is O(C + D), then α = O(C + D). Choosing c and L to
be Θ(N1/2), we have that α = O(N1/2), and so from Lemma 5, the number of
packets buffered is Ω(N):

12 Busch, Magdon-Ismail, Mavronicolas, Spirakis

Corollary 3. There exists a routing problem for which any algorithm will buffer

Ω(N) packets at least once to achieve asymptotically optimal routing time.

Repeating problem A appropriately, we can strengthen this corrollary to obtain

Theorem 10 (Buffering-Routing Time Tradeoff). There exists a routing

problem which, for any ε > 0, requires Ω(N (4−2ε)/3) buffering in order to obtain

a routing time that is a factor O(N ε) from optimal.

References

1. Symvonis, A.: Routing on trees. Information Processing Letters 57 (1996) 215–223
2. Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Direct routing on trees. In:

Proc. 9th Symposium on Discrete Algorithms (SODA 98). (1998) 342–349
3. Cypher, R., auf der Heide, F.M., Scheideler, C., Vöcking, B.: Universal algorithms

for store-and-forward and wormhole routing. (1996) 356–365
4. Adler, M., Khanna, S., Rajaraman, R., Rosen, A.: Time-constrained scheduling

of weighted packets on trees and meshes. In: Proc. 11th Symposium on Parallel
Algorithms and Architectures (SPAA). (1999)

5. Alon, N., Chung, F., R.L.Graham: Routing permutations on graphs via matching.
SIAM Journal on Discrete Mathematics 7 (1994) 513–530

6. Ben-Aroya, I., Chinn, D.D., Schuster, A.: A lower bound for nearly minimal adap-
tive and hot potato algorithms. Algorithmica 21 (1998) 347–376

7. Busch, C., Herlihy, M., Wattenhofer, R.: Hard-potato routing. In: Proceedings of
the 32nd Annual ACM Symposium on Theory of Computing. (2000) 278–285

8. Meyer auf der Heide, F., Scheideler, C.: Routing with bounded buffers and hot-
potato routing in vertex-symmetric networks. In: Proc. 3rd European Symposium
on Algorithms (ESA). (1995) 341–354

9. Leighton, T., Maggs, B., Richa, A.W.: Fast algorithms for finding O(congestion +
dilation) packet routing schedules. Combinatorica 19 (1999) 375–401

10. Meyer auf der Heide, F., Vöcking, B.: Shortest-path routing in arbitrary networks.
Journal of Algorithms 31 (1999) 105–131

11. Ostrovsky, R., Rabani, Y.: Universal O(congestion+dilation+log1+ε N) local con-
trol packet switching algorithms. In: Proceedings of the 29th Annual ACM Sym-
posium on the Theory of Computing, New York (1997) 644–653

12. Bollobás, B.: Random Graphs. 2nd edn. Cambridge University Press (2001)
13. Maggs, B.M., auf der Heide, F.M., Vocking, B., Westermann, M.: Exploiting local-

ity for data management in systems of limited bandwidth. In: IEEE Symposium
on Foundations of Computer Science. (1997) 284–293

14. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays -
Trees - Hypercubes. Morgan Kaufmann, San Mateo (1992)

15. Valiant, L.G.: A scheme for fast parallel communication. SIAM Journal on Com-
puting 11 (1982) 350–361

16. Valiant, L.G., Brebner, G.J.: Universal schemes for parallel communication. In:
Proc. 13th Annual ACM Symposium on Theory of Computing. (1981) 263–277

17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, Ney York (1979)

18. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. In: IEEE Con-
ference on Computational Complexity. (1996) 278–287

19. Hochbaum, D.S.: Approximation Algorithms for NP-Hard Problems. PWS Pub-
lishing Company, New York (1997)

