
Linearizability in the Presence of Drifting Clocks

and Under Different Delay Assumptions

Maria Eleftheriou1 and Marios Mavronicolas2

1 AMER World Research Ltd., Nicosia, CYPRUS
Eleftheriou.Maria@Cyprus.ACNielsen.com

2 Department of Computer Science and Engineering
University of Connecticut, Storrs, CT 06269–3155, USA

mavronic@engr.uconn.edu

Abstract. The cost of using message-passing to implement linearizable
read/write objects for shared memory multiprocessors with drifting clocks
is studied. We take as cost measures the response times for perform-
ing read and write operations in distributed implementations of virtual
shared memory consisting of such objects. A collection of necessary con-
ditions on these response times are presented for a large family of as-
sumptions on the network delays. The assumptions include the common
one of lower and upper bounds on delays, and bounds on the difference
between delays in opposite directions. In addition, we consider broadcast
networks, where each message sent from one node arrives at all other
nodes at approximately the same time.
The necessary conditions are stated in the form of “gaps” on the values
that the response times may attain in any arbitrary execution of the
system; the ends of the gap intervals depend solely on the delays in a
particular execution, and on certain fixed parameters of the system that
express each specific delay assumptions. The proofs of these necessary
conditions are comprehensive and modular; they consist of two major
components. The first component is independent of any particular type
of delay assumptions; it constructs a “counter-example” execution, which
respects the delay assumptions only if it is not linearizable. The second
component must be tailored for each specific delay assumption; it derives
necessary conditions for any linearizable implementation by requiring
that the “counter-example” execution does not respect the specific delay
assumptions.
Our results highlight inherent limitations on the best possible cost for
each specific execution of a linearizable implementation. Moreover, our
results imply lower bounds on the worst possible such costs as well; inter-
estingly, for the last two assumptions on mesage delays, these worst-case
lower bounds are products of the drifting factor of the clocks and the
delay uncertainty inherent for the specific assumption.

1 Introduction

Shared memory has become a convenient paradigm of interprocessor communi-
cation in contemporary computer systems. Perhaps this is so due to its combined

P. Jayanti (Ed.): DISC’99, LNCS 1693, pp. 327–341, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

328 Maria Eleftheriou and Marios Mavronicolas

features that, first, it facilitates a natural extension of sequential programming,
and, second, it is more high-level than message-passing in terms of semantics.
This convenience has favored the evolution of concurrent programming on top
of shared memory for the solution of many diverse problems. Thus, supporting
shared memory in distributed memory machines has become a currently major
objective.

Unfortunately, implementing shared memory in a distributed memory ma-
chine encounters a lot of complications; these complications are due to the high
degree of parallelism and the lack of synchronization between dispersed pro-
cessors, that are both inherent in a distributed architecture. This necessitates
the explicit and precise definition of the guarantees provided by shared memory
implemented this way; such definition is called a consistency condition. Lineariz-
ability is a basic consistency condition for concurrent objects of shared memory
due to Herlihy and Wing [7]. Informally, linearizability requires that each op-
eration, spanning over an interval of time from its invocation to its response,
appears to take effect at some instant in this interval. The use of linearizable
data abstractions simplifies both the specification and the proofs of multiple
instruction/multiple data shared memory algorithms, and enhances composi-
tionality.

In this work, we continue the study of the impact of timing assumptions
on the cost of supporting linearizability in distributed systems; this study has
been initiated by Attiya and Welch [2], and continued further by Mavronicolas
and Roth [12], Chaudhuri et al. [3], Friedman [5], and Kosa [9]. We consider
a distributed system that introduces non-negligible timing uncertainty in two
significant ways: first, in the synchronization with respect to real time of each
individual process, and, second, in the communication among different processes.

Following previous work [2,3,5,9,12], we consider a model consisting of a
collection of application programs running concurrently and communicating
through virtual shared memory, which consists of a collection of read/write ob-
jects. These programs are running in a distributed system consisting of a collec-
tion of processes located at the nodes of a communication network. The shared
memory abstraction is implemented by a memory consistency system (MCS),
which uses local memory at each process node. Each MCS process executes a
protocol, which defines the actions it takes on operation requests by the appli-
cation programs. Specifically, each application program may submit requests to
access shared data to a corresponding MCS process; the MCS process responds
to such a request, based, possibly, on information from messages it receives from
other MCS processes. In doing so, the MCS must, throughout the network, pro-
vide linearizability with respect to the values returned to application programs.

We take as cost measures the response times for performing read and write
operations on read/write objects in such a distributed system. However, a first
major diversion from previous works [2,3,5,9,12] addressing these particular cost
measures is that we show bounds on them that hold for each specific execution of
the system, while bounds established in previous work on the same cost measures
hold only for the worst execution. Recent research work in distributed computing

Linearizability in the Presence of Drifting Clocks 329

theory has addressed bounds that hold for each specific execution in the context
of the clock synchronization [1,13] and connection management [8,11] problems.
A common argument in support of showing such “per-execution” bounds is that
for certain kinds of assumptions on network delays, the costs for the worst-case
execution may, in fact, have to be unbounded [1], while one may still want to
award algorithms that achieve costs that are the best possible for each specific
instance [1].

A second major diversion from previous related work [2,3,5,9,12] is with re-
spect to assumptions on message delays; all that work has considered the rela-
tively simple case where there are lower and upper bounds on message delays.
Under this assumption, linearizable implementations of shared memory objects
have been designed [3,5,12], whose efficiency depends critically on the existence
of tight lower and upper bounds on message delays. This assumption, however,
may not always apply, since it is often the case that there do not exist tight lower
and upper bounds on message delays, while there is some other relevant infor-
mation about the delays. We draw excellent motivation from the work of Attiya
et al. [1] on clock synchronization under different delay assumptions to study
the problem of implementing linearizable read/write objects in message-passing
under the following assumptions on message delays (considered in [1]): (1) There
is a lower and an upper bound on delays, d−u and u, respectively. (2) There is a
bound ε on the difference between delays in opposite directions; this assumption
is supported by experimental results revealing that message delays in opposite
directions of a bidirectional link usually come very close (cf. [1]). The clock syn-
chronization problem has been already studied under this assumption [1]. (3)
There is a bound β on the difference between the times when different processes
receive a broadcast message; this assumption is useful for broadcast networks
that are used in many local area networks. The clock synchronization problem
has been studied under this assumption in [1,6,14].

A third major diversion from previous related work is with respect to the
amount of synchronization of processes to real time. While that work [2,3,5,9,12]
has assumed “perfect” (non-drifting, but possibly translated) clocks to be avail-
able to processes, we allow a small “drift” on the processes’ clocks; the impact
of this assumption on the time complexity of distributed algorithms has already
been studied for the clock synchronization problem (see, e.g., [13]), and the con-
nection management problem [8,11].

The main contribution of our work is a systematic methodology for prov-
ing necessary conditions on the response times of read and write operations,
that hold for each specific execution of any linearizable implementation, under
a variety of message delay assumptions, and allowing a small “drift” on the
processes’ clocks. This methodology yields a collection of corresponding nec-
ssary conditions. Our proof methodology is modular, and consists of two major
components. The first component is independent of the specific type of delay
assumptions, while the second one addresses each such type in a special way.

In more detail, the first component starts with a linearizable execution that
is chosen in a different way for the write operation, the read operation, and

330 Maria Eleftheriou and Marios Mavronicolas

their combination, respectively. In each of the three cases, we use the technique
of “retiming,” originally introduced by Lundelius and Lynch for showing lower
bounds for the clock synchronization problem [10], to transform this execution
into another possible execution of the system that is not linearizable. The trans-
formation maintains the view held by each process in the original execution to
the result of the transformation; moreover, the clocks in the latter are still drift-
ing. Roughly speaking, retiming is used to change the timing and the ordering
of events in an execution of the system, while precluding any particular process
from “realizing” the change.

The second component is tailored for each specific assumption on message
delays. More specifically, the starting point of the second component is the result
of transforming the original execution, and the corresponding message delays in
this result. For each specific assumption on message delays, we insist that the
resulting delays confirm to the assumption. This yields corresponding upper and
lower bounds on the response time of the read and write operations, as a function
of the message delays in the original linearizable execution.

Our lower and upper bounds highlight inherent limitations on the best possi-
ble cost for each specific execution of a linearizable implementation, as a function
of the message delays in the execution, and the parameters associated with each
specific assumption on message delays. Moreover, our results imply also Ω(ρ2ε)
and Ω(ρ2β) worst-case lower bounds on response times for both write and read
operations for the bias model and the model of broadcast networks, respectively.
These lower bounds indicate that the timing uncertainty ρ2 in the drifting clocks
model must multiply the delay uncertainty (ε and β, respectively) for each of
these models. We have not been able to deduce a corresponding fact for the
model with lower and upper bounds on delays. (However, for the special case
where ρ = 1, our general results imply worst-case results that are identical to
those in [2,12].) This model appears to be stronger than the previous two since
it does not allow unbounded delays; we conjecture that linearizable implementa-
tions allowing for response times o(ρ2u) for both write and read operations are
possible for this model.

2 Framework

For the system model, we follow [2,12]. We consider a collection of application
programs running concurrently and communicating through virtual shared mem-
ory, consisting of a collection X of read/write objects, or objects for short. Each
object X ∈ X attains values from a domain, a set V of values. We assume a
system consisting of a collection of nodes, connected via a communication net-
work. The shared memory abstraction is implemented by a memory consistency
system (MCS), consisting of a collection of MCS processes, one at each node,
that use local memory, execute some local protocol, and communicate through
sending messages along the network. Each MCS process pi, located at node i, is
associated with an application program Pi; pi and Pi interact by using call and
response events.

Linearizability in the Presence of Drifting Clocks 331

Call events at pi represent initiation of operations by the application pro-
gram Pi; they are Readi(X) and Writei(X, v), for all objects X ∈ X and values
v ∈ V . Response events represent responses by pi to operations initiated by
the application program Pi; they are Returni(X, v) and Acki(X), for all objects
X ∈ X and values v ∈ V . Message-delivery events represent delivery of a mes-
sage from any other MCS process to pi. Message-send events represent sending
of a message by pi to any other MCS process.

For each i, there is a physical, real-time clock at node i, readable by MCS
process pi but not under its control, that may drift away from the rate of real
time. Formally, a clock is a strictly increasing (hence, unbounded), piece-wise
continuous function of real time γi : � → �. Denote γ̃i the inverse of γ. Fix
any constant ρ > 1, called drift. A ρ-drifting clock, or drifting clock for short,
is a clock γi : � → � such that for all real times t1, t2 ∈ � with t1 < t2,
1/ρ ≤ (γi(t2) − γi(t1))/(t2 − t1) ≤ ρ. Define ρ2 to be the drifting factor of a ρ-
drifting clock. The clocks cannot be modified by the processes. Processes do not
have access to real time; instead, each process obtains information about time
from its clock. The call, message-delivery and timer-expire events are called
interrupt events. The response, message-send and timer-set events are called
react events.

Each MCS process pi is modeled as an automaton with a (possibly infinite)
set of states, including an initial state, and a transition function. Each interrupt
event at MCS process pi causes an application of its transition function, resulting
in a computation step. The transition function is a function from tuples of a
state, a clock time and an interrupt event to tuples of a state and sets of react
events. Thus, the transition function takes as input the current state, the local
clock time, and an interrupt event, and returns a new state, a set of response
events for the corresponding application program, a set of messages to be sent
to other MCS processes, and a set of timer-set events. A history for an MCS
process pi with clock γi is a mapping hi from � (real time) to finite sequences
of computation steps by pi such that: (1) For each real time t, there is only a
finite number of times t′ < t such that the corresponding sequence of steps hi(t′)
is non-empty; thus, the concatenation of all such sequences in real-time order
is also a sequence, called the history sequence. (2) The old state in the first
computation step in the history sequence is pi’s initial state. (3) The old state of
each subsequent computation step is the new state of the previous computation
step in the history sequence. (4) For each real time t, the clock time component
of every computation step in the sequence hi(t) is equal to γi(t). (5) For each
real time t, there is at most one computation step whose interrupt event is a
timer-set event; this step is ordered last in the sequence hi(t). (6) At most one
call event is “pending” at a time; this outlaws pipelining or prefetching at the
interface between pi and Pi. (8) For each call event, there exists a matching
response event in some subsequent computation step of the history sequence.

Each pair of matching call and response events forms an operation. The call
event marks the start of the operation, while the response event marks its end.
An operation op is invoked when the application program issues the appropriate

332 Maria Eleftheriou and Marios Mavronicolas

call event for op; op terminates when the MCS process issues the appropriate
response for op. For a given MCS, an execution σ is a set of histories, one for
each MCS process, such that for any pair of MCS processes pi and pj , i �= j,
there is a one-to-one correspondence between the messages sent by pi to pj and
those delivered at pj that were sent by pi. Use this message correspondence to
define the delay of any message in an execution to be the real time of delivery
minus the real time of sending. By definition of execution, a zero lower bound
and an infinite upper bound hold on delay. Define ∆

(e)
ij to be the set of delays of

messages from MCS process pi to MCS process pj in execution e. Two executions
are equivalent [10] if each process has the same history sequence and associated
local clock times in both. Intuitively, equivalent executions are indistinguishable
to the processes, and only an “outside observer” with access to real time can tell
them apart.

We continue with specific assumptions on the delays, borrowing from [1,13].
Each assumption gives rise to a particular delay model with an associated set
of admissible executions. The assumption of lower and upper bounds on the
delays [2,5,12] places a lower and an upper bound on the delay for any message
exchanged between any pair of processes. Fix some known parameters u and d,
0 ≤ u ≤ d ≤ ∞; u is the delay uncertainty, while d is the maximum delay.
Execution σ is admissible if for each pair of MCS processes pi and pj , for every
message m in σ from pi to pj , dσ(m) ∈ [d − u, d].

The assumption of bounds on the round trip delay bias [1, Section 5.2] re-
quires that the difference between the delays of any pair of messages in opposite
direction be bounded. Fix any constant ε > 0, called the delay uncertainty. For-
mally, an execution σ is admissible if for any pair processes pi and pj , and for
any pair of messages m and m′ received by pi from pj and received by pj from pi,
respectively, |dσ(m)− dσ(m′)| ≤ ε.

The assumption of multicast networks has been studied in [1,4,6,14] in the
context of the clock synchronization problem; our presentation follows [1, Section
5.3]. To define this assumption, we replace message-send events by events of
the form Broadcasti(m) at the MCS process pi, for all messages m; such events
represent a broadcast of m to all MCS processes. The definition of an execution
is modified so that for any pair of processes pi and pj , i �= j, there is a one-to-
one correspondence between the messages broadcast by pi, and those delivered
at pj and broadcast by pi. Use this message correspondence to define the delay
of message m to process pj in execution σ, denoted dσ(m, pj), to be the real time
of delivery at pj in σ minus the real time of broadcast by pi in σ. Fix any
constant β > 0, called the broadcast accuracy. Execution σ is admissible if for
any process pi, for any message m broadcast by pi, |dσ(m, pj) − dσ(m, pk)| ≤ β;
that is, m reaches pj at most β time units later it reaches pk, and vice versa.

Each object X has a serial specification [7], which describes its behavior in
the absence of concurrency and failures. Formally, it defines: (1) A set Op(X)
of operations on X, which are ordered pairs of call and response events. Each
operation op ∈ Op(X) has a value val(op) associated with it. (2) A set of legal
operation sequences for X, which are the allowable sequences of operations onX .

Linearizability in the Presence of Drifting Clocks 333

For each process pi, Op(X) contains a read operation [Readi(X), Returni(X, v)]
on X and a write operation [Writei(X, v), Ack i(X)] on X , for all values v ∈ V ; v
is the value associated with each of these operations. The set of legal operation
sequences forX contains all sequences of operations onX for which, for any read
operation rop in the sequence, either val (rop) = ⊥ and there is no preceding
write operation in the sequence, or val(wop) = val(rop) for the latest preceding
write operation wop. A sequence of operations τ for a collection of processes
and objects is legal if, for every object X ∈ X , the restriction of τ to operations
on X , denoted τ | X , is in the set of legal operation sequences for X .

Given an execution σ, let ops(σ) be the sequence of call and response events
appearing in σ in real-time order, breaking ties for each real time t as follows:
First, order all response events whose matching call events occur before time t,
using process identification numbers (ids) to break any remaining ties. Then,
order all operations whose call and response events both occur at time t. Preserve
the relative ordering of operations for each process, and break any remaining ties
using again process ids. Finally, order all call events whose matching response
events occur after time t, using process ids to break any remaining ties. An
execution σ specifies a partial order σ−→ on the operations appearing in σ: for
any operations op1 and op2 appearing in σ, op1

σ−→ op2 if the response for op1

precedes the call for op2 in ops(σ); that is, op1
σ−→ op2 if op1 completely precedes

op2 in ops(σ). Given an execution σ, an operation sequence τ is a serialization
of σ if it is a permutation of ops(σ). A serialization τ of σ is a linearization of σ

if it extends σ−→; that is, if op1
σ−→ op2, then op1

τ−→ op2. Let τ be a sequence
of operations. Denote by τ | i the restriction of τ to operations at process pi;
similarly, denote by τ | X the restriction of τ to operations on the object X . For
an execution σ, these definitions can be extended in the natural way to yield
ops(σ) | i and ops(σ) | X . An execution σ is linearizable [7] if there exists a legal
linearization τ of σ such that for each MCS process pi, ops(σ) | i = τ | i. An
MCS is a linearizable implementation of X if every admissible execution of the
MCS is linearizable.

The efficiency of an implementation A of X is measured by the response
time for any operation on an object X ∈ X . Given a particular MCS A and a
read/write object X implemented by it, the time |opA(X, σ)| taken by an op-
eration op on X in an admissible execution σ of A is the maximum difference
between the times at which the response and call events of op occur in σ, where
the maximum is taken over all occurrences of op in σ. In particular, we denote
by |RA(X, σ)| and |WA(X, σ)| the maximum time taken by a read and a write
operation, respectively, on X in σ, where the maximum is taken over all occur-
rences of the corresponding operations in σ. Define |RA(X)| (resp., |WA(X)|)
to be the maximum of |RA(X, σ)| (resp., |WA(X, σ)|) over all executions σ of A.

Fix e to be any execution, and let op = [Call(op), Response(op)] be any
operation in e. We denote by t

(e)
c (op) and t

(e)
r (op) the (real) times at which

Call(op) and Response(op), respectively, occur in e. We use val (e)(op) to denote
the value associated with the “execution” of operation op in e.

334 Maria Eleftheriou and Marios Mavronicolas

3 Writes

A construction of a non-linearizable, if admissible, execution is presented in
Section 3.1; this execution is used in Section 3.2 for deriving necessary conditions
for the write operation under specific assumptions on the delays. We refer to any
linearizable implementation A of read/write objects, including an object X with
at least two writers pi and pj, and a distinct reader pk.

3.1 A Non-Linearizable, if Admissible, Execution

This construction is based on one in [2, Section 4] and [12, Section 5]. We start
with an admissible execution e, in which pi writes xi toX , then pj writes xj toX ,
xj �= xi, and finally pk reads xj from X ; moreover, we assume that all clocks in e
run at a rate of σ for some constant σ such that 1/ρ ≤ σ ≤ ρ. If pi’s history is
shifted later, while pj ’s history is shifted earlier, each by an appropriate amount,
while both are either “stretched” or “shrinked” by a factor of σ, depending on
whether 1 ≤ σ ≤ ρ or 1/ρ ≤ σ ≤ 1, the result is an execution e′, not necessarily
admissible, in which the write operation by pj precedes the write operation
by pi, which, in turn, precedes the read operation by pk. If, in addition, all
clocks are correspondingly “stretched” or “shrinked” by the same factor of σ,
all three processes still “see” the same events occurring at the same local time
and cannot, therefore, distinguish between e and e′; thus, in particular, pk still
reads xj from X , which implies that e′, if admissible, is not linearizable. We now
present some details of the construction.

By the serial specification of X , there exists an admissible execution e of A
consisting of the following operations at processes pi, pj , and pk: pi performs a
write operation wopi on X with t

(e)
c (wopi) = 0 and val (e)(wopi) = xi; pj per-

forms a write operation wopj on X with t
(e)
c (wopj) = |wopi| and val (e)(wopj) =

xj ; pk performs a read operation ropk on X with t
(e)
c (ropk) = |wopi| +

max{|wopi|, |wopj |}; apparently, max{|wopi|, |wopj |} = |WA(X, e)|, so that
t
(e)
c (ropk) = |wopi| + |WA(X, e)|. Moreover, assume that γ

(e)
i (t) = γ

(e)
j (t) =

γ
(e)
k (t) = σt for some positive constant σ such that 1/ρ ≤ σ ≤ ρ, so that all
clocks are ρ-drifting. (We omit reference to clocks of other processes in this
extended abstract.)

Since A is a linearizable implementation and e is an admissible execution,
e is a linearizable execution. Thus, there exists a legal linearization τ of e such
that for each MCS process p, ops(e) | p = τ | p. We use the construction of e to
show simple properties of the sequence τ , namely that wopi

τ−→ wopj , and that
wopj

τ−→ ropk. Since τ is a legal operation sequence, these properties imply that
val (e)(ropk) = val (e)(wopj) = xj .

We now “perturb” the (admissible) execution e in order to obtain another ex-
ecution e′, which is not necessarily admissible; however, we shall show that if e′ is
admissible, then it is not linearizable. We construct e′ as follows.
(1) Set γ

(e′)
i (t) = t/σ − σ |WA(X, e)|, γ

(e′)
j (t) = t/σ + σ |WA(X, e)|, and

Linearizability in the Presence of Drifting Clocks 335

γ
(e′)
k (t) = t/σ. (2) For any process pl with clock γ′

l , define a mapping h′
l from � to

finite sequences of computation steps by pl as follows. Each step at pl associated
with real time t in hl is associated with real time γ̃

(e′)
l (γ(e)

l (t)) in e′; in addi-
tion, h′

l preserves the ordering of steps in hl. (3) e′ preserves the correspondence
between message-delivery and message-send events in e.

Since e is an execution of A, for each MCS process pl, hl is a history for pl

with clock γ
(e)
l . By rule (2), this implies that h′

l is a history for pl with clock
γ

(e′)
l ; moreover, for any real times t1, t2 ∈ � with t1 < t2, γ

(e′)
l (t2)− γ

(e′)
l (t1) =

(t2−t1)/σ. Since 1/ρ ≤ σ ≤ ρ, 1/ρ ≤ 1/σ ≤ ρ, γ(e′)
l is ρ-drifting; thus, by rule (3),

it follows that e′ is an execution of A. In addition, rule (2) immediately implies
that executions e and e′ are equivalent. We continue to establish a fundamental
property of the execution e′.

Lemma 1. Assume that e′ is an admissible execution. Then, e′ is not lineariz-
able.

Proof. We give a sketch of the proof. Since A is a linearizable implementation
and e′ is an admissible execution of A, e′ is a linearizable execution. Thus,
there exists a legal linearization τ ′ of e′ such that for each MCS process p,
ops(e′) | p = τ ′ | p. We show simple properties of the sequence τ ′, namely that

wopj
τ ′−→ wopi and wopi

τ ′−→ ropk. Since τ is a legal operation sequence, these
properties imply that val (e

′)(ropk) = val (e
′)(wopi) = xi. Since xi �= xj , it follows

that val (e)(ropk) �= val (e
′)(ropk). However, the equivalence of e and e′ implies

that val (e)(ropk) = val (e
′)(ropk). A contradiction.

3.2 Results for Specific Models of Delays

Our methodology is as follows. We first calculate message delays in execution e′

(independent of specific delay assumptions). Next, we consider separately each
specific assumption on delays; requiring that message delays in the execution e′

constructed in Section 3.1 satisfy the assumption yields the admissibility of e′,
which, by Lemma 1, implies the non-linearizability of e′. For the model with
lower and upper bounds on delays, we show:

Theorem 1. Consider the model with lower and upper bounds on the delays.
Let A be any linearizable implementation of read/write objects, including an
object X with at least two writers pi and pj, and a distinct reader pk. Fix any
parameters δij, δji, δik, δki, δjk, δkj > 0. Then, for any parameter σ ∈ [1/ρ, ρ],
there exists an admissible execution e of A with δij ∈ ∆

(e)
ij , δji ∈ ∆

(e)
ji , δik ∈

∆
(e)
ik , δki ∈ ∆

(e)
ki , δjk ∈ ∆

(e)
jk , δkj ∈ ∆

(e)
kj , such that either

|WA(X, e)|
< max{δij

2
− d

2σ2
,
d − u

2σ2
− δji

2
, δik − d

σ2
,
d − u

σ2
− δki,

d − u

σ2
− δjk, δkj − d

σ2
} ,

336 Maria Eleftheriou and Marios Mavronicolas

or

|WA(X, e)|
> min{δij

2
− d − u

2σ2
,

d

2σ2
− δji

2
, δik − d − u

σ2
,

d

σ2
− δki,

d

σ2
− δjk, δkj − d − u

σ2
} .

Proof. We give a sketch of the proof. Assume, by way of contradiction, that there
exists a linearizable implementation A of read/write objects, including the ob-
ject X , such that for any parameter σ ∈ [1/ρ, ρ], for every admissible execution e

of A with δij ∈ ∆
(e)
ij , δji ∈ ∆

(e)
ji , δik ∈ ∆

(e)
ik , δki ∈ ∆

(e)
ki , δjk ∈ ∆

(e)
jk , δkj ∈ ∆

(e)
kj ,

neither inequality holds. We establish that the execution e′ constructed in Sec-
tion 3.1 is an admissible execution of A; appealing to Lemma 1, this implies
that e′ is non-linearizable, which contradicts the fact that A is a linearizable
implementation. (To prove that e′ is an admissible execution, we show by case
analysis that for any pair of processes pl and pm, and for any message m received
by pm from pl, d(e′)(m) ∈ [d − u, d].

Theorem 1 establishes the existence of executions with “gaps” for the re-
sponse times of write operations. For the model with a bound on the round-trip
delay bias, we show:

Theorem 2. Consider the model with a bound on the round-trip delay bias. Let
A be any linearizable implementation of read/write objects, including an object X
with at least two writers pi and pj, and a distinct reader pk. Fix any parameters
δij, δji, δik, δki, δjk, δkj > 0. Then, for any parameter σ ∈ [1/ρ, ρ], there exists
an admissible execution e of A with δij ∈ ∆

(e)
ij , δji ∈ ∆

(e)
ji , δik ∈ ∆

(e)
ik , δki ∈

∆
(e)
ki , δjk ∈ ∆

(e)
jk , δkj ∈ ∆

(e)
kj , such that either

|WA(X, e)| < − ε

4σ2
+max{δik − δki

2
− ε

4σ2
,
δkj − δjk

2
− ε

4σ2
,
δij − δji

4
} ,

or

|WA(X, e)| >
ε

4σ2
+min{δik − δki

2
+

ε

4σ2
,
δkj − δjk

2
+

ε

4σ2
,
δij − δji

4
} .

The proof of Theorem 2 is similar to the proof of Theorem 1, and it is omitted.
Theorem 2 demonstrates the existence of executions with “gaps” on the response
times of write operations. In order to derive a worst-case lower bound on the
response time for write operations from Theorem 2, we set σ = 1/ρ, δij −δji = ε,
δik−δki = ε, and δkj−δjk = ε. With these choices, the upper limit on |WA(X, e)|
becomes negative, and, therefore, it cannot be met, which implies that the lower
limit on |WA(X, e)| must be met, which is positive for these choices. We obtain:
Corollary 1. Consider the model with a bound on the round-trip delay bias.
Let A be any linearizable implementation of read/write objects, including an
object X with at least two writers pi and pj, and a distinct reader pk. Then,
|WA(X)| > ρ2ε/4 + ε/4.

Linearizability in the Presence of Drifting Clocks 337

For the model of broadcast networks, we show:

Theorem 3. Consider the model of broadcast networks. Let A be any lineariz-
able implementation of read/write objects, including an object X with at least
two writers pi and pj, and a distinct reader pk. Fix any parameters δij , δji,
δik, δki, δjk, δkj > 0. Then, there exists an admissible execution e of A with
δij ∈ ∆

(e)
ij , δji ∈ ∆

(e)
ji , δik ∈ ∆

(e)
ik , δki ∈ ∆

(e)
ki , δjk ∈ ∆

(e)
jk , δkj ∈ ∆

(e)
kj , such that

either

|WA(X, e)| < − β

2σ2
+max{δij − δik − β

2σ2
, δjk − δji − β

2σ2
,
δkj − δki

2
} ,

or

|WA(X, e)| >
β

2σ2
+min{δij − δik +

β

2σ2
, δjk − δji +

β

2σ2
,
δkj − δki

2
} .

The proof of Theorem 3 is similar to the proof of Theorem 1, and it is
omitted. Theorem 3 demonstrates the existence of executions with “gaps” on the
response times of writes operations. In order to derive a worst-case lower bound
on the response time for write operations from Theorem 3, we set σ = 1/rho,
δij − δik = β, δjk − δji = β, and δkj − δki = β. With these choices, the upper
limit on |WA(X, e)| becomes negative, and, therefore, it cannot be met, which
implies that the lower limit on |WA(X, e)| must be met, which is positive for
these choices. We obtain:

Corollary 2. Consider the model of broadcast networks. Let A be any lineariz-
able implementation of read/write objects, including an object X with at least
two writers pi and pj, and a distinct reader pk. Then, |WA(X)| > ρ2β/2+β/2.

4 Reads

A construction of a non-linearizable, if admissible, execution is presented in
Section 4.1; this execution is used in Section 4.2 for deriving necessary conditions
for the read operation under specific assumptions on the delays. We refer to any
linearizable implementation A of read/write objects including an object X with
at least two readers pi and pj , and a distinct writer pk.

4.1 A Non-Linearizable, if Admissible, Execution

This construction is based on one in [2, Section 4] and [12, Section 5]. We start
with an admissible execution e, in which pi reads ⊥ from X , then pj and pi

alternate reading from X while pk is writing x to X , and finally pj reads x
from X ; moreover, we assume that all clocks in e run at a rate of σ, for some
constant σ such that 1/ρ ≤ σ ≤ ρ. Thus, there exists a read operation rop0, say
by pi, that returns ⊥ and is immediately followed by a read operation rop1 by pj

that returns x. If pi’s history is shifted later by |RA(X, e)|, while pj ’s history
is shifted earlier by |RA(X, e)|, while both are either “swelled” or “shrinked”

338 Maria Eleftheriou and Marios Mavronicolas

by a factor of σ, the result is an execution e′ in which rop1 precedes rop0. If,
in addition, all clocks are correspondingly “swelled” or “shrinked” by the same
factor σ, all three processes still “see” the same events occurring at the same local
time and cannot, therefore, distinguish between e and e′; thus, in particular, pj

and pi still read x and ⊥ in their read operations rop1 and rop0, respectively, in
this order. This implies that e′, if admissible, is non-linearizable. We now present
some details of the construction.

Let b = �|WA(X)|/2|RA(X)|�. By the serial specification of X , there exists
an admissible execution e of A consisting of the following operations at pro-
cesses pi, pj , and pk. For each integer l, 0 ≤ l ≤ b, pi performs a read operation
rop(2l)

i on X ; for each integer l, 0 ≤ l ≤ b, pj performs a read operation rop(2l+1)
j

on X ; pk performs a write operation wopk on X with val (e)(wopk) = x. For
each l, 0 ≤ l ≤ 2b + 1, let rop(l) = rop(l)

i if l is even, or rop(l)
j if l is odd.

The definition of the call times of read operations in e is inductive. For the basis
case, t(e)c (rop(0)) = 0. Assume inductively that we have defined t

(e)
c (rop(l)) where

0 ≤ l < 2b+ 1. Then, t
(e)
c (rop(l+1)) = t

(e)
c (rop(l)) + |rop(l)|. Set also tc(wopk) =

|rop(0)|. Moreover, assume that γ
(e)
i (t) = γ

(e)
j (t) = γ

(e)
k (t) = σ t for some con-

stant σ such that 1/ρ ≤ σ ≤ ρ, so that all clocks γ
(e)
i , γ

(e)
j , and γ

(e)
k are ρ-drifting.

(We omit reference to clocks of other processes in this extended abstract.)
Since A is a linearizable implementation and e is an admissible execution of

A, e is a linearizable execution. Thus, there exists a legal linearization τ of e such
that for each MCS process pl, ops(e) | l = τ | l. We use the construction of e to
show simple properties of the operation sequence τ , namely that rop(0)

i
τ−→ wopk

and that wopk
τ−→ rop(2b+1)

j . We show that for each l, 0 ≤ l ≤ 2b, rop(l) τ−→
rop(l+1). These properties imply that there exists an index l0, 0 ≤ l0 ≤ 2b, such
that rop(l0) τ−→ wopk

τ−→ rop(l0+1). Since τ is a legal operation sequence, this
implies that val (e)(rop(l0)) = ⊥ and val (e)(rop(l0+1)) = x. Assume, without loss
of generality, that l0 is even, so that rop(l0) is a read operation by process pi.

We now “perturb” the (admissible) execution e in order to obtain another
execution e′ which is not necessarily admissible; however, we shall show that
if e′ is admissible, then it is not linearizable. We construct e′ as follows. (1) Set
γ

(e′)
i (t) = t/σ − σ |RA(X, e)|, γ

(e′)
j (t) = t/σ + σ |RA(X, e)|, and γ

(e′)
k (t) = t/σ.

(2) e′ preserves the correspondence between message-delivery and message-send
events in e. (3) For any process pl, each step at pl occurring at real time t in e is
scheduled to occur at real time γ̃

(e′)
l (γ(e)

l (t)) in e′; in addition, e′ preserves the
ordering of steps in e. Since e is an execution of A, for each MCS process pl, hl

is a history for pl with clock γ
(e)
l . By rule (2), this implies that h′

l is a history
for pl with clock γ

(e′)
l ; moreover, for any real times t1, t2 ∈ � with t1 < t2,

γ
(e′)
l (t2) − γ

(e′)
l (t1) = (t2 − t1)/σ. Since 1/ρ ≤ σ ≤ ρ, 1/ρ ≤ 1/σ ≤ ρ, so that

γ
(e′)
l is ρ-drifting; thus, by rule (3), it follows that e′ is an execution of A. In
addition, rule (3) immediately implies that executions e and e′ are equivalent.
We continue to show a fundamental property of the execution e′.

Linearizability in the Presence of Drifting Clocks 339

Lemma 2. Assume that e′ is an admissible execution. Then, e′ is not lineariz-
able.

4.2 Results for Specific Models of Delays

We consider separately each specific assumption on message delays; requiring
that message delays in the execution e′ constructed in Section 4.1 satisfy the
assumption yields the admissibility of e′, which, by Lemma 2, implies that e′ is
not linearizable. For the model with lower and upper bounds on the delays, we
show:

Theorem 4. Consider the model with lower and upper bounds on the delays. Let
A be any linearizable implementation of read/write objects, including an object X
with at least two readers pi and pj, and a distinct writer pk. Fix any parameters
δij, δji, δik, δki, δjk, δkj > 0. Then, there exists an admissible execution e of
A with δij ∈ ∆

(e)
ij , δji ∈ ∆

(e)
ji , δik ∈ ∆

(e)
ik , δki ∈ ∆

(e)
ki , δjk ∈ ∆

(e)
jk , δkj ∈ ∆

(e)
kj , such

that either

|RA(X, e)|
< max{δij

2
− d

2ρ2
,
d − u

2ρ2
− δji

2
, δik − d

ρ2
,
d − u

ρ2
− δki,

d − u

ρ2
− δjk, δkj − d

ρ2
} ,

or

|RA(X, e)|
> min{δij

2
− d − u

2ρ2
,

d

2ρ2
− δji

2
, δik − d − u

ρ2
,

d

ρ2
− δki,

d

ρ2
− δjk, δkj − d − u

ρ2
} .

For the model with a bound on the round-trip delay bias, we show:

Theorem 5. Consider the model with a bound on the round-trip delay bias. Let
A be any linearizable implementation of read/write objects, including an object X
with at least two readers pi and pj, and a distinct writer pk. Fix any parameters
δij, δji, δik, δki, δjk, δkj > 0. Then, there exists an admissible execution e of
A with δij ∈ ∆

(e)
ij , δji ∈ ∆

(e)
ji , δik ∈ ∆

(e)
ik , δki ∈ ∆

(e)
ki , δjk ∈ ∆

(e)
jk , δkj ∈ ∆

(e)
kj , such

that either

|RA(X, e)| < − ε

4ρ2
+max{δik − δki

2
− ε

4ρ2
,
δkj − δjk

2
− ε

4ρ2
,
δij − δji

4
} ,

or

|RA(X, e)| <
ε

4ρ2
+min{δik − δki

2
+

ε

4ρ2
,
δkj − δjk

2
+

ε

4ρ2
,
δij − δji

4
} .

Theorem 5 demonstrates the existence of executions with “gaps” on the re-
sponse times of read operations. In order to derive a worst-case lower bound
on the response time for read operations from Theorem 5, we set σ = 1/ρ,
δij − δji = ε, δik − δki = ε, and δkj − δjk = ε. With these choices, the upper limit
on |RA(X, e)| becomes negative, and, therefore, it cannot be met, which implies
that the lower limit on |RA(X, e)|, which is positive for these choices, must be
met. We obtain:

340 Maria Eleftheriou and Marios Mavronicolas

Corollary 3. Consider the model with a bound on the round-trip delay bias.
Let A be any linearizable implementation of read/write objects, including an
object X with at least two readers pi and pj, and a distinct writer pk. Then,
|RA(X)| > ρ2ε/4 + ε/4.

For the model of broadcast networks, we show:

Theorem 6. Consider the model of broadcast networks. Let A be any lineariz-
able implementation of read/write objects, including an object X with at least
two readers pi and pj, and a distinct writer pk. Fix any parameters δij , δji,
δik, δki, δjk, δkj > 0. Then, there exists an admissible execution e of A with
δij ∈ ∆

(e)
ij , δji ∈ ∆

(e)
ji , δik ∈ ∆

(e)
ik , δki ∈ ∆

(e)
ki , δjk ∈ ∆

(e)
jk , δkj ∈ ∆

(e)
kj , such that

either

|RA(X, e)| < − β

2ρ2
+max{δij − δik +

β

2ρ2
, δjk − δji +

β

2ρ2
,
δkj − δki

2
} ,

or

|RA(X, e)| >
β

2ρ2
+max{δij − δik +

β

2ρ2
, δjk − δji +

β

2ρ2
,
δkj − δki

2
} .

Theorem 6 demonstrates the existence of executions with “gaps” on the re-
sponse times of read operations. In order to derive a worst-case lower bound
on the response time for read operations from Theorem 6, we set σ = 1/rho,
δij − δik = β, δjk − δji = β, and δkj − δki = β. With these choices, the upper
limit on |RA(X, e)| becomes negative, and, therefore, it cannot be met, which
implies that the lower limit on |RA(X, e)| which is positive for these choices,
must be met. We obtain:

Corollary 4. Consider the model of broadcast networks. Let A be any lineariz-
able implementation of read/write objects, including an object X with at least
two readers pi and pj, and a distinct writer pk. Then, |RA(X)| > ρ2β/2 + β/2.

References

1. H. Attiya, A. Herzberg, and S. Rajsbaum, “Optimal Clock Synchronization under
Different Delay Assumptions,” SIAM Journal on Computing, Vol. 25, No. 2, pp. 369–
389, April 1996. 329, 329, 329, 329, 329, 329, 329, 329, 332, 332, 332, 332

2. H. Attiya and J. L. Welch, “Sequential Consistency versus Linearizability,” ACM
Transactions on Computer Systems, Vol. 12, No. 2, pp. 91–122, May 1994. 328,
328, 328, 329, 329, 330, 330, 332, 334, 337

3. S. Chaudhuri, R. Gawlick, and N. Lynch, “Designing Algorithms for Distributed
Systems Using Partially Synchronized Clocks,” Proceedings of the 12th Annual ACM
Symposium on Principles of Distributed Computing, pp. 121–132, August 1993. 328,
328, 328, 329, 329, 329

4. D. Dolev, R. Reischuk, and H. R. Strong, “Observable Clock Synchronization,”
Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Com-
puting, pp. 284–293, August 1994. 332

Linearizability in the Presence of Drifting Clocks 341

5. R. Friedman, “Implementing High-Level Synchronization Operations in Hybrid
Consistency,” Distributed Computing, Vol. 9, No. 3, pp. 119–129, December 1995.
328, 328, 328, 329, 329, 329, 332

6. J. Halpern and I. Suzuki, “Clock Synchronization and the Power of Broadcasting,”
Proceedings of the 28th Annual Allerton Conference on Communication, Control
and Computing, pp. 588–597, October 1990. 329, 332

7. M. Herlihy and J. Wing, “Linearizability: A Correctness Condition for Concurrent
Objects,” ACM Transactions on Programming Languages and Systems, Vol. 12,
No. 3, pp. 463–492, July 1990. 328, 332, 333

8. J. Kleinberg, H. Attiya, and N. Lynch, “Trade-offs Between Message Delivery and
Quiesce Times in Connection Management Protocols,” Proceedings of the 3rd Israel
Symposium on the Theory of Computing and Systems, pp. 258–267, January 1995.
329, 329

9. M. J. Kosa, “Making Operations of Concurrent Data Types Fast,” Proceedings of the
13th Annual ACM Symposium on Principles of Distributed Computing, pp. 32–41,
August 1994. 328, 328, 328, 329, 329

10. J. Lundelius and N. Lynch, “An Upper and Lower Bound for Clock Synchroniza-
tion,” Information and Control, Vol. 62, pp. 190–204, August/September 1984. 330,
332

11. M. Mavronicolas and N. Papadakis, “Trade-off Results for Connection Manage-
ment,” Proceedings of the 11th International Symposium on Fundamentals of Com-
putation Theory, pp. 340–351, Lecture Notes in Computer Science, Vol. 1279,
Springer-Verlag, Krakow, Poland, September 1997. 329, 329

12. M. Mavronicolas and D. Roth, “Efficient, Strongly Consistent Implementations
of Shared Memory,” Proceedings of the 6th International Workshop on Distributed
Algorithms (WDAG’92), pp. 346–361, Lecture Notes in Computer Science, Vol. #
647, Springer-Verlag, November 1992. 328, 328, 328, 329, 329, 329, 330, 330, 332,
334, 337

13. B. Patt-Shamir and S. Rajsbaum, “A Theory of Clock Synchronization,” Proceed-
ings of the 26th Annual ACM Symposium on Theory of Computing, pp. 810–819,
May 1994. 329, 329, 332

14. K. Sugihara and I. Suzuki, “Nearly Optimal Clock Synchronization under Un-
bounded Message Transmission Time,” Proceedings of the 3rd International Con-
ference on Parallel Processing, pp. 14–17, 1988. 329, 332

	Introduction
	Framework
	Writes
	A Non-Linearizable, if Admissible, Execution
	Results for Specific Models of Delays

	Reads
	A Non-Linearizable, if Admissible, Execution
	Results for Specific Models of Delays

