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Abstract: 

In a distributed system with {\it attacks} and {\it defenses,}   both {\it attackers} and {\it defenders} 

are

self-interested entities. We assume a {\it reward-sharing} scheme among {\it interdependent} 

defenders; each

defender wishes to (locally) maximize her own total {\it fair share} to the attackers extinguished due 

to her

involvement (and possibly due to those   of others). What is  the {\em maximum} amount of 

protection

achievable by a number of such defenders against a number of attackers while  the system is in a 

{\it Nash

equilibrium}? As a measure of system protection, we adopt the {\it Defense-Ratio}~\cite{MPPS05a}, 

which



provides the expected (inverse) proportion of attackers caught by the defenders. In a {\it Defense-

Optimal}

Nash equilibrium, the Defense-Ratio is optimized.

We discover that the possibility of optimizing the Defense-Ratio (in a Nash equilibrium) depends in 

a  subtle

way on how the number of defenders compares to  two natural graph-theoretic thresholds  we 

identify. In this

vein, we obtain, through a  combinatorial analysis of Nash equilibria, a   collection of  trade-off 

results:

\begin{itemize}

\item When the number of defenders is either sufficiently small or sufficiently large,

there   are  cases where the Defense-Ratio can be optimized. The   optimization  problem is 

computationally

tractable for a large  number of defenders;    the problem becomes  ${\cal NP}$-complete for a 

small  number

of defenders and

the intractability is inherited from     a previously unconsidered combinatorial problem in

{\em Fractional Graph Theory}.

\item Perhaps  paradoxically, there is a middle range of values for the number

of defenders where optimizing the Defense-Ratio is never   possible.

\end{itemize}
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Abstract

In a distributed system with attacks and defenses, both attackers and defenders are self-
interested entities. We assume a reward-sharing scheme among interdependent defenders;
each defender wishes to (locally) maximize her own total fair share to the attackers extin-
guished due to her involvement (and possibly due to those of others). What is the maximum
amount of protection achievable by a number of such defenders against a number of attack-
ers while the system is in a Nash equilibrium? As a measure of system protection, we adopt
the Defense-Ratio [24], which provides the expected (inverse) proportion of attackers caught
by the defenders. In a Defense-Optimal Nash equilibrium, the Defense-Ratio is optimized.

We discover that the possibility of optimizing the Defense-Ratio (in a Nash equilibrium)
depends in a subtle way on how the number of defenders compares to two natural graph-
theoretic thresholds we identify. In this vein, we obtain, through a combinatorial analysis
of Nash equilibria, a collection of trade-off results:

• When the number of defenders is either sufficiently small or sufficiently large, there
are cases where the Defense-Ratio can be optimized. The optimization problem is
computationally tractable for a large number of defenders; the problem becomes NP-
complete for a small number of defenders and the intractability is inherited from a
previously unconsidered combinatorial problem in Fractional Graph Theory.

• Perhaps paradoxically, there is a middle range of values for the number of defenders
where optimizing the Defense-Ratio is never possible.
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1 Introduction

1.1 The Model and its Rationale

Safety and security are key issues for the design and operation of a distributed system; see, e.g.,
[1] or [6, Chapter 7]. Indeed, with the unprecedented advent of the Internet, there is a growing
interest to formalize, design and analyze distributed systems prone to malicious attacks and
(non-malicious) defenses. A new dimension stems from the fact that Internet servers and clients
are controlled by selfish agents whose interest is the local maximization of their own benefits
rather than the optimization of global performance [2, 5, 11, 12, 13]. So, it is a challenging task
to formalize and analyze the simultaneous impact of selfish and malicious behavior of Internet
agents (cf. [17]).

In this work, a distributed system is modeled as a graph G = (V,E); nodes represent the
hosts and edges represent the links. An attacker represents a virus; it is a malicious client
that targets a host to destroy. A defender is a non-malicious server representing the antivirus
software implemented on a subnetwork in order to protect all hosts thereby connected. Here is
the rationale and motivation for these modeling choices:

• Associating attacks with nodes makes sense since computer security attacks are often
directed to individual hosts such as commercial and public sector entities.

• Associating defenses with edges is motivated by Network Edge Security [20]; this is a
recently proposed, distributed firewall architecture where antivirus software, rather than
being statically installed and licensed at a host, is implemented by a distributed algorithm
running on a subnetwork. Such distributed implementations are attractive since they offer
increased fault-tolerance and the benefit of sharing the licensing costs to the hosts.

We focus here on the simplest possible case where the subnetwork is just a single link; a
precise understanding of the mathematical pitfalls of attacks and defenses for this simplest
case is a necessary prerequisite to mastering the general case.

In reality, malicious attackers are independent; each (financially motivated) attacker tries to
maximize on her own the amount of harm it causes during her lifetime (cf. [30]). Hence, it is
natural to model each attacker as a strategic player seeking to maximize the chance of escaping
the antivirus software; so, the strategy of one attacker does not (directly) affect the payoff of
another. In contrast, there are at least three approaches to modeling the defenses:

• Defenses are not strategic; this approach would imply the (centralized) optimization prob-
lem of computing locations for the defenders that maximize the system protection given
that attackers are strategic.

3
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• Defenses are strategic and they cooperate to maximize the number of trapped viruses. This
is modeled by assuming a single (strategic) defender, which centrally chooses multiple
links. This approach has been pursued in [10].

• Defenses are strategic but non-cooperative; so, each defender still tries to maximize the
number of trapped viruses she catches, while competing with the other defenders.

We have chosen to adopt the third approach. Our choice of approach is motivated as follows:

• In a large network, the defense policies are independent and decentralized. Hence, it may
be not so realistic to assume that a centralized (even selfish) entity coordinates all defenses.

• There are financial incentives offered by hosts to defense mechanisms on the basis of the
number of sustained attacks; consider, for example, the following scenaria:

– Prices for antivirus software are determined through recommendation systems, which
collect data from networks where scrutinized hosts were witnessed. Such price in-
centives induce a competition among defenders, resulting to non-cooperation.

– Think of a network owner interested in maximizing the network protection. Towards
that end, the owner has subcontracted the protection task to a set of independent,
deployable agents. Clearly, each such agent tries to optimize the protection she offers
in order to increase her reward; again, this manifests non-cooperation.

We materialize the assumption that defenses are independent and non-cooperative on the
basis of an intuitive reward-sharing scheme: Whenever more than one colocated defenders are
extinguishing the attacker(s) targeting a host, each defender will be rewarded with the fair
share of the number of attackers extinguished. So, each defender is modeled as a strategic
player seeking to maximize her total fair share to the number of extinguished attackers.

We assume two selfish species with α attackers and δ defenders; both species may use mixed
strategies. Note that δ is proportional to the real cost of purchasing and installing several units
of (licensed) antivirus software. The very special but yet highly non-trivial case with a single
defender was originally introduced in [24] and further studied in [10, 21, 22, 23]. In a Nash
equilibrium [26, 27], no player can unilaterally increase her (expected) utility.

To evaluate Nash equilibria, we employ the Defense-Ratio; this is the ratio of the optimum
number α over the expected number of attackers extinguished by the defenders (cf. [21, 22]).
Motivated by best-case Nash equilibria and the Price of Stability [3], we introduce Defense-

Optimal Nash equilibria where the Defense-Ratio attains the value max
{

1, |V |
2δ

}
(Definition

6.1); we choose this value since we observe that it is a (tight) lower bound on Defense-Ratio

4
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(Corollary 6.2). (Contrast Defense-Optimal Nash equilibria and the smallest possible Defense-
Ratio to worst-case Nash equilibria and the Price of Anarchy from the seminal work of Kout-
soupias and Papadimitriou [16].) A Defense-Optimal graph (for a given δ) is one that admits a
Defense-Optimal Nash equilibrium.

1.2 Contribution

We are interested in the possibility of achieving, and the complexity of computing, a Defense-
Optimal Nash equilibrium for a given number of defenders δ. We discover that this possibility
and the associated complexity depend on δ in a quantitatively subtle way: They are determined

by two graph-theoretic thresholds for δ, namely |V |
2 and β′(G) (the size of a Minimum Edge

Cover). (Recall that |V |
2 ≤ β′(G).)

Our chief tool is a combinatorial characterization of the associated Nash equilibria we ob-
tain (Proposition 5.1). For Pure Nash equilibria where both species use pure strategies, this
characterization yields some interesting necessary graph-theoretic conditions for Nash equilib-
ria (Proposition 5.9). Furthermore, this characterization yields some sufficient conditions for
Defense-Optimal Nash equilibria (Theorems 6.3 and 6.5).

Our end findings are as follows:

• When either δ ≤ |V |
2 or δ ≥ β′(G), there are cases allowing for a Defense-Optimal Nash

equilibrium.

– The case of few defenders
(

with δ ≤ |V |
2

)
: We provide a combinatorial characteri-

zation of Defense-Optimal graphs (Theorem 7.4), which points out an interesting
connection to Fractional (Perfect) Matchings [29, Chapter 2]. Roughly speaking,
these graphs make a strict subset of the class of graphs with a Fractional Perfect

Matching: for a Defense-Optimal graph, and assuming that δ ≤ |V |
2 , it is possible

to partition some Fractional Perfect Matching of it into δ smaller, vertex-disjoint
Fractional Perfect Matchings so that the total weight (inherited from the original

Fractional Perfect Matching) in each partite is equal to |V |
2 δ

(Theorem 7.4). Call such
a Fractional Perfect Matching a δ-Partitionable Fractional Perfect Matching; this is
a previously unconsidered, combinatorial concept in Fractional Graph Theory [29].

We prove that the recognition problem for the class of graphs with a δ-Partitionable
Fractional Perfect Matching is NP-complete (Corollary 2.19); this intractability
result holds for an arbitrary value of δ. Hence, so is the decision problem for a

Defense-Optimal Nash equilibrium
(

for δ ≤ |V |
2

)
(Corollary 7.7). To establish the

5
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NP-completeness of the recognition problem, we develop some techniques for the re-
duction of Fractional (Perfect) Matchings (Section 2.3); these may be of independent
interest.

We note that the recognition problem for the class of graphs with a δ-Partitionable
Fractional Perfect Matching simultaneously generalizes a tractable and an intractable
recognition problem: the first one concerns the class of graphs with a Perfect Match-
ing [7], while the second concerns the class of graphs whose vertex set can be parti-
tioned into triangles [9, GT11].

A further interesting number-theoretic consequence of the combinatorial characteri-

zation we have derived for Defense-Optimal graphs
(

for δ ≤ |V |
2

)
is that δ divides

|V | in a Defense-Optimal graph (Corollary 7.5).

On the positive side, we identify another restriction of the class of graphs with a
Fractional Perfect Matching that are Defense-Optimal in certain, well-characterized
cases (Theorem 7.8); these are the graphs with a Perfect Matching.

– The case of too many defenders (with δ ≥ β′(G)): We identify two cases where there
are Defense-Optimal Nash equilibria with a special structure, namely the vertex-
balanced Nash equilibria (Definition 9.1); their structure enables their polynomial
time computation (Theorems 9.2 and 9.5). The two corresponding algorithms rely
on the efficient computation of Minimum Edge Cover; the second algorithm requires
some relation between δ and α (namely, that 2δ divides α).

• The case of many defenders (with |V |
2 < δ < β′(G)): We provide a combinatorial proof

that there is no Defense-Optimal graph for |V |
2 < δ < β′(G) (Theorem 8.1). This is

somehow paradoxical since with fewer defenders
(

δ ≤ |V |
2

)
, we already identified cases

with a Defense-Optimal Nash equilibrium. However, since the Defense-Ratio in a Defense-

Optimal Nash equilibrium has a transition around the value δ = |V |
2 , this paradox may

not be wholly surprising.

Our techniques have identified several new classes of graphs for any arbitrary pair of values
of δ and α, such as graphs with δ-Partitionable Fractional Perfect Matching, Defense-Optimal
graphs and Pure graphs (which admit Pure Nash equilibria); each such class was defined to
support the existence of some Nash equilibria with a particular structure (for example, Defense-
Optimal Nash equilibrium or Pure Nash equilibrium). Our results have revealed a fine structure
among these classes, which is summarized in Figure 1.

6
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Graphs with δ-Partitionable 

Fractional Perfect Matching

Defense-Optimal graphs

Defender-Pure graphs

Pure graphs

Attacker-pure graphs

(2δ divides |V|, 

Theorem 7.8

Theorem 6.5

Theorem 6.3Proposition 7.1

(2δ divides α)

Theorem 9.4

Theorem 9.2

Theorem 8.1

Proposition 5.9

Perfect-Matching graphs

)(            )

or

Proposition 5.9

(Condition (i))

(2δ divides |V|)

Corollary 2.14

Figure 1: Some inclusion relationships among the graph classes associated with Nash equilibria
we have introduced. A directed edge from class C1 to class C2 indicates that C1 ⊆ C2; a condition
on the edge indicates the condition under which the inclusion holds. Clouded directed edges
indicate inclusions that have been demonstrated to be non-strict.
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1.3 Related Work and Comparison

We emphasize that the assumption of δ > 1 defenders has required a far more challenging
combinatorial and graph-theoretic analysis than those used for the case of a single defender
in [10, 21, 22, 23, 24]. Hence, we view this work as a major generalization of the work in [10,
21, 22, 23, 24] towards the more realistic case of δ > 1 defenders.

The notion of Defense-Ratio generalizes a corresponding definition from [21, Section 3.4] to
the case of δ > 1 defenders. The special case where δ = 1 of Theorem 7.4 was considered in [22,
Corollary 2]; this case allowed for a polynomial time algorithm to decide the existence of (and
compute) a Defense-Optimal Nash equilibrium by reduction to the recognition problem for a
graph with a Fractional Perfect Matching. In contrast, the decision problem for a Defense-

Optimal Nash equilibrium
(
for an arbitrary δ ≤ |V |

2

)
is NP-complete (Corollary 7.7).

Schechter and Smith [28] considered the complementary question of determining the mini-
mum number of defenders to catch a single attacker in a related model of economic threats.

1.4 Road Map

The rest of this paper is organized as follows. Section 2 collects together some background and
preliminaries from Graph Theory. A preliminary combinatorial lemma is formulated and proved
in Section 3. Section 4 presents the game-theoretic framework. The combinatorial structure of
the associated Nash equilibria is treated in Section 5. Section 6 considers Defense-Optimal Nash
equilibria. Sections 7, 8 and 9 treat the cases of few, many and too many defenders, respectively.
We conclude, in Section 10, with a discussion of the results and some open problems.

Throughout, for an integer n ≥ 1, denote [n] = {1, . . . , n}; for a number x �= 0, sgn(x)
denotes the sign of x (which is +1 or −1).

2 Background and Preliminaries from Graph Theory

Some basic definitions are articulated in Section 2.1. Fractional Matchings are recalled in
Section 2.2. Some reduction techniques for Fractional (Perfect) Matchings are developed in
Section 2.3. Section 2.4 treats δ-Partitionable Fractional Perfect Matchings.

2.1 Basics

We consider a simple undirected graph G = 〈V,E〉 (with no isolated vertices). The trivial
graph consists of a single edge. We will sometimes model an edge as the set of its two vertices.

8
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Denote as dG(v) the degree of vertex v in G. An edge (u, v) ∈ E is pendant if dG(u) = 1 but
dG(v) > 1. A path is a sequence of vertices v1, v2, · · · , vn+1 from V such that for each index
k ∈ [n], (vk, vk+1) ∈ E; in a cycle C, vn+1 = v1. The cycle C has length n, and C is even (resp.,
odd) if n is even (resp., odd). A triangle is a cycle of length three. We shall sometimes treat C
as a set of vertices; E(C) denotes the edge set induced by C in the natural way.

Vertex sets and edge sets induce subgraphs in the natural way. For a vertex set U ⊆ V ,
denote as G(U) the subgraph of G induced by U ; denote EdgesG(U) = {(u, v) ∈ E | u, v ∈ U}.
For an edge set F ⊆ E, denote as G(F ) the subgraph of G induced by F ; denote VerticesG(F ) =⋃

(u,v)∈F {u, v}. (We shall sometimes omit the index G when it is clear from context.) A
component is a maximal connected subgraph. A cycle is isolated (as a subgraph) if it is a
component; else, it is non-isolated. A component is cyclic if it contains a cycle; else, it is
acyclic.

For an undirected graph, both an odd and an even cycle are computable in polynomial time.
A linear time algorithm to compute an odd cycle is based on incorporating breadth-first search
into the constructive proof for the characterization of bipartite graphs due to König [14] (cf.
[15, Proposition 2.27]). Polynomial time algorithms to compute an even cycle have appeared
in [18, 25, 32].

A Vertex Cover is a vertex set V C ⊆ V such that for each edge (u, v) ∈ E either u ∈ V C

or v ∈ V C; a Minimum Vertex Cover is one that has minimum size, which is denoted as β(G).
An Edge Cover is an edge set EC ⊆ E such that for each vertex v ∈ V , there is an edge
(u, v) ∈ EC; a Minimum Edge Cover is one that has minimum size, which is denoted as β′(G).

Clearly, |V |
2 ≤ β′(G). Denote as EC(G) the set of all Edge Covers of G.

A Matching is a set M ⊆ E of non-incident edges; a Maximum Matching is one that has
maximum size. The first polynomial time algorithm to compute a Maximum Matching is due to
Edmonds [7]. It is known that computing a Minimum Edge Cover is polynomial time reducible
to computing a Maximum Matching—see, e.g., [31, Theorem 3.1.22] or [19].

A Perfect Matching is a Matching that is also an Edge Cover; so, a Perfect Matching

has size |V |
2 . A Perfect-Matching graph is one that has a Perfect Matching; note that in a

Perfect-Matching graph, β′(G) = |V |
2 . Since a Perfect Matching is a Maximum Matching,

any polynomial time algorithm to compute a Maximum Matching yields a polynomial time
algorithm to recognize Perfect-Matching graphs and compute a Perfect Matching.

2.2 Fractional (Perfect) Matchings

A Fractional Matching is a function f : E → [0, 1] where for each vertex v ∈ V ,
∑

e∈E|v∈e f(e) ≤
1. (Matching is the special case where f(e) ∈ {0, 1} for each edge e ∈ E.) For a Fractional

9
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Matching f , induced is the set E(f) = {e ∈ E | f(e) > 0}; |E(f)| is the size of f . The range of
a Fractional Matching f is the set Range(f) = {f(e) | e ∈ E}; so, Range(f) ⊆ [0, 1].

Given two Fractional Matchings f and f ′, write f ′ ⊆ f (resp., f ′ ⊂ f) if E(f ′) ⊆ E(f)
(resp., E(f ′) ⊂ E(f)). Say that two functions f : E → [0, 1] and f ′ : E → [0, 1] are equivalent if
for each vertex v ∈ V ,

∑
e∈E|v∈e f(e) =

∑
e∈E|v∈e f ′(e). Clearly, a function f : E → [0, 1] that

is equivalent to a Fractional Matching is also a Fractional Matching.

A Fractional Perfect Matching is a Fractional Matching f such that for each vertex v ∈ V ,∑
e∈E|v∈e f(e) = 1. (Perfect Matching is the special case where f(e) ∈ {0, 1} for each edge

e ∈ E. Note that in this special case, E(f) is a Perfect Matching; for an arbitrary Fractional
Perfect Matching, E(f) need not be a Perfect Matching.) In this case, for each vertex v ∈ V ,
there is at least one edge e ∈ E with v ∈ e such that f(e) > 0, so that e ∈ E(f); hence, for
a Fractional Perfect Matching f , E(f) is an Edge Cover. Note that a function f : E → [0, 1]
which is equivalent to a Fractional Perfect Matching is also a Fractional Perfect Matching.

A Fractional Maximum Matching is a Fractional Matching f that maximizes
∑

e∈E f(e)
among all Fractional Matchings. A Fractional Perfect Matching is a Fractional Maximum
Matching (but not vice versa). We observe a simple property of Fractional Perfect Matchings:

Lemma 2.1 For a Fractional Perfect Matching f , the graph G(E(f)) has no pendant edge.

Proof. Assume, by way of contradiction, that G(E(f)) has a pendant edge (u, v) with
dG(E(f))(u) = 1 and dG(E(f))(v) > 1. Since f is a Fractional Perfect Matching,

∑
e∈E|u∈e f(e) =

1 and
∑

e∈E|v∈e f(e) = 1. By assumption on u, the first equality implies that f((u, v)) = 1. By
assumption on v, the second equality implies that f((u, v)) < 1. A contradiction.

Lemma 2.1 implies that for a Fractional Perfect Matching f , each component of G(E(f)) is
either a single edge or a (non-trivial) subgraph of G with no pendant edges; in particular, each
acyclic component of G(E(f)) is a single edge. The proof for [29, Theorem 2.1.5] establishes as
a by-product that a Fractional Maximum Matching f with smallest size has no pendant edge;
so, Lemma 2.1 provides a complementary property for the special case of Fractional Perfect
Matchings.

The class of graphs with a Fractional Perfect Matching is recognizable in polynomial time
via a Linear Programming formulation. (See [4] for an efficient combinatorial algorithm.) The
same holds for the corresponding search problem.

2.3 Reductions of Fractional (Perfect) Matchings

Our starting point is a combinatorial property of a special case of a Fractional Maximum
Matching; this property is reported in [29, Theorem 2.1.5].
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Proposition 2.2 Consider a Fractional Maximum Matching f with smallest size. Then, f has
only single edges and odd cycles.

Proposition 2.2, outlaws, in particular, the induction of even cycles and non-isolated odd cycles
in a Fractional Maximum Matching with smallest size. In the spirit of Proposition 2.2, we
shall present two new reduction techniques for a Fractional (Perfect) Matching. The first
reduction will eliminate all induced even cycles from an arbitrary Fractional Matching. The
second reduction is applicable only to Fractional Perfect Matchings; it will eliminate all induced
non-isolated odd cycles when run on a Fractional Perfect Matching with no induced even cycles.

The corresponding elimination algorithms (EliminateEvenCycles and IsolateOddCycles in Fig-
ures 2 and 4, respectively) are inspired from the corresponding inexistence proof for Proposition
2.2. In more detail, that proof assumes the existence of an even or a non-isolated odd cycle and
derives a contradiction by relying on the property that the Fractional Matching is a Maximum
one of smallest size; the contradiction is derived by eliminating edges to get a Fractional (Max-
imum) Matching with less size. In contrast, our elimination algorithms compute in polynomial
time an even or a non-isolated odd cycle (as long as there are such), respectively; they keep
eliminating edges (as long as possible) till there are no more even or non-isolated odd cycles,
respectively.

2.3.1 Elimination of Even Cycles

We prove:

Proposition 2.3 Consider a Fractional Matching f . Then, there is a polynomial time algo-
rithm to transform f into an equivalent Fractional Matching f ′ ⊆ f with no even cycle.

To prove the claim, we present the algorithm EliminateEvenCycles in Figure 2.

Proof. We start with a first invariant of the algorithm EliminateEvenCycles:

Lemma 2.4 For each loop iteration of EliminateEvenCycles, upon completion of Step (3), f ′ is
a Fractional Matching equivalent to f .

Note that the input Fractional Matching f is already modified in the first (if any) loop iteration
of EliminateEvenCycles (in Step (4)), while the statement of Lemma 2.4 refers to the input
Fractional Matching f . The proof of Lemma 2.4 will use the current Fractional Matching f ;
reference to the input f will be restored in an inductive way upon completing the proof.
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Algorithm EliminateEvenCycles

Input: A graph G = 〈V, E〉 and a Fractional Matching f for G.
Output: An equivalent Fractional Matching f ′ ⊆ f with no even cycle.

While G(E(f)) contains an even cycle C do

(1) Choose an edge e0 ∈ E(C) such that f(e0) = mine∈E(C) f(e).

(2) Define a function g : E(C) → {−1, +1} with g(e) = −1 or +1 (alternately, starting with
g(e0) = −1).

(3) For each edge e ∈ E, set

f ′(e) :=

{
f(e) + g(e) · f(e0), if e ∈ E(C)
f(e), if e �∈ E(C)

.

(4) Set f := f ′.

Figure 2: The algorithm EliminateEvenCycles, which consists of a single loop. The precondition
for the loop is the existence of an even cycle C; so, upon termination, there will be no even cycle
for the output f ′. (Note that if there are no loop iterations, then f ′ = f .) Step (1) chooses an
edge e0 on the cycle C on which f is minimized, while Step (2) assigns a sign to each edge e on
C. (Since C is an even cycle, alternating signs are possible.) The new values for f ′ are assigned
in Step (3); note that f ′(e0) = 0. Step (4) prepares the input (f) for the next loop iteration.
An example execution of the algorithm EliminateEvenCycles is illustrated in Figure 3.

Proof. Fix any loop iteration of EliminateEvenCycles, upon completion of Step (3). Consider
any vertex v ∈ V . Then, by Step (3),

∑
e∈E|v∈e

f ′(e) =
∑

e∈E(C)|v∈e

f ′(e) +
∑

e∈E\E(C)|v∈e

f ′(e)

=
∑

e∈E(C)|v∈e

f ′(e) +
∑

e∈E\E(C)|v∈e

f(e)

If there is no edge e ∈ E(C) such that v ∈ e, then
∑

e∈E(C)|v∈ef
′(e) =

∑
e∈E(C)|v∈ef(e) = 0,

and we are done. So, assume otherwise. Since C is a cycle, there are (exactly) two edges e1,
e2 ∈ E(C) such that v ∈ e1 and v ∈ e2. Note that by Step (2), g(e1) + g(e2) = 0. Hence, by

12
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Figure 3: An example execution of the algorithm EliminateEvenCycles on a graph with a Frac-
tional Perfect Matching f ; the execution terminates after two loop iterations. For each loop
iteration, edges in E(f) are drawn thick; edges on the cycle C are drawn clouded. A number
next to each (thick) edge e ∈ E(f) indicates the value f(e); the sign of g(e) is also indicated
for each (clouded) edge e on the cycle C.

13



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Step (3),
∑

e∈E|v∈e

f ′(e) = f ′(e1) + f ′(e2) +
∑

eE\E(C)|v∈e

f(e)

= f(e1) + g(e1) · f(e0) + f(e2) + g(e2) · f(e0) +
∑

e∈E\E(C)|v∈e

f(e)

= f(e1) + f(e2) + (g(e1) + g(e2)) · f(e0) +
∑

e∈E\E(C)|v∈e

f(e)

= f(e1) + f(e2) +
∑

e∈E\E(C)|v∈e

f(e)

=
∑

e∈E(C)|v∈e

f(e) +
∑

e∈E\E(C)|v∈e

f(e)

=
∑

e∈E|v∈e

f(e),

which implies that f ′ is equivalent to f . By Step (4), it follows inductively that f ′ is equivalent
to the input Fractional Matching f . Since f is a Fractional Matching, this implies that f ′ is a
Fractional Matching, and the claim follows.

We continue with a second invariant of the algorithm EliminateEvenCycles:

Lemma 2.5 For each loop iteration of EliminateEvenCycles, upon completion of Step (3), (i)

f ′ ⊂ f and (ii) the even cycle C is eliminated from G(E(f ′)).

Similarly to Lemma 2.4, the statement of Lemma 2.5 (Condition (i)) refers to the input Frac-
tional Matching f . The proof of Lemma 2.5 will use the current Fractional Matching f ; reference
to the input f will be restored in an inductive way upon completing the proof.

Proof. Fix any loop iteration of EliminateEvenCycles, upon completion of Step (3). Consider
any edge e ∈ E. We proceed by case analysis.

• Assume that e �∈ E(C). Then, Step (3), implies that e ∈ E(f ′) if and only if e ∈ E(f).

• Assume that e ∈ E(C). Then, e ∈ E(f); so, it holds vacuously that if e ∈ E(f ′), then
e ∈ E(f).

The case analysis implies that f ′ ⊆ f . Since f ′(e0) = 0 while f(e0) > 0, this implies that f ′ ⊂ f .
By Step (4), Condition (i) follows now inductively. Since f ′(e0) = 0, edge e0 is eliminated from
G(E(f ′)), so that the even cycle C is eliminated from G(E(f ′)) and Condition (ii) follows.

Lemma 2.4 and Lemma 2.5 (Condition (i)) together imply that the output f ′ of algorithm
EliminateEvenCycles, which contains no even cycle due to the loop precondition, is a Fractional
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Matching which is equivalent to and contained in f . (By Lemma 2.5 (Condition (ii)), contain-
ment is strict exactly when there is at least one loop iteration.)

Lemma 2.5 (Condition (i) or (ii)) implies that at least one edge is eliminated from f in each
loop iteration and no edge is added. Hence, there are at most |E| loop iterations. Note that
each loop iteration takes O(|E|) time. Since an even cycle is computable in polynomial time,
it follows that the algorithm EliminateEvenCycles is polynomial time, and we are done.

2.3.2 Elimination of Non-Isolated Odd Cycles

We prove:

Proposition 2.6 Consider a Fractional Perfect Matching f with no even cycle. Then, there
is a polynomial time algorithm to transform f into an equivalent Fractional Perfect Matching
f ′ ⊆ f with no non-isolated odd cycle.

To prove the claim, we present the algorithm IsolateOddCycles in Figure 4.

Proof. Since G(E(f)) has no even cycle, the cycle vl, · · · , vr = vl determined in Step (2/a) is
odd. We now prove a preliminary property of the algorithm IsolateOddCycles:

Lemma 2.7 The path v1, v2, · · · , vr is disjoint from C\{v0}.

Proof. By way of contradiction, assume that there is a vertex vk with k ∈ [r] such that
vk ∈ C\{v0}. Since C has odd length, the vertices v0 and vk partition C into two paths C1 and
C2 of odd and even length, respectively. Consider the two concatenations of the path v1, · · · , vk

with C1 and C2, respectively; each of them is a cycle in G(E(f)) and one of them has even
length. A contradiction.

We start with a first invariant of the algorithm IsolateOddCycles.

Lemma 2.8 For each inner loop iteration in an outer loop iteration of IsolateOddCycles, upon
completion of Step (2/e), f ′ is a Fractional Perfect Matching equivalent to f .

Note that the input Fractional Perfect Matching f is already modified in the first inner loop
iteration in the first outer loop iteration of IsolateOddCycles (in Step (2/f)). Reminiscent of
Lemma 2.4, the statement of Lemma 2.8 refers to the input Fractional Perfect Matching f .
The proof of Lemma 2.8 will use the current Fractional Perfect Matching f ; reference to the
input f will be restored in an inductive way upon completing the proof.
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Algorithm IsolateOddCycles

Input: A graph G = 〈V, E〉 and a Fractional Perfect Matching f for G with no even cycle.
Output: An equivalent Fractional Perfect Matching f ′ ⊆ f with no non-isolated odd cycle.

While G(E(f)) contains a non-isolated odd cycle C do

(1) Choose a vertex v0 ∈ C with dG(E(f))(v0) ≥ 3 and an edge (v0, v1) ∈ E(f) with v1 �∈ C.

(2) While E(f) includes all edges from E(C) ∪ {(v0, v1)} do

(2/a) Choose a path v1, v2, · · · , vr with vr = vl for some l ∈ 0 ∪ [r − 2].

(2/b) Define a function g : E(C) ∪ {(vk, vk+1) | 0 ≤ k ≤ r − 1} →
{
+1,−1, +1

2 ,−1
2

}
with

g(e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1
2 or −1

2 , if e ∈ E(C) (alternately, starting with +1
2 for an edge incident to v0)

+1 or −1, if e = (vk, vk+1) for 0 ≤ k ≤ l − 1 with l > 0 (alternately, starting with −1)
+1

2 or −1
2 , if e = (vk, vk+1) for l ≤ k ≤ r − 1 (alternately, starting with a sign opposite

to the sign of the last value assigned by g)

.

(2/c) Choose an edge e0 ∈ E(C) ∪ {(vk, vk+1) | 0 ≤ k ≤ r − 1} that realizes the quantity

f0 := min

⎧⎨
⎩ min

e∈E(C)

f(e)
|g(e)| , min

l>0
0≤k≤l−1

f((vk, vk+1))
|g((vk, vk+1))| , min

l≤k≤r−1

f((vk, vk+1))
|g((vk, vk+1))|

⎫⎬
⎭ ;

(2/d) If g(e0) > 0, then set g := −g.

(2/e) For each edge e ∈ E, set

f ′(e) :=

⎧⎨
⎩ f(e) + g(e) · f(e0)

|g(e0)| , if e ∈ E(C) ∪ {(vk, vk+1) | 0 ≤ k ≤ r − 1}
f(e), otherwise

.

(2/f) Set f := f ′.

Figure 4: The algorithm IsolateOddCycles, which consists of an outer loop; the outer loop
includes an inner loop (Step (2)). The precondition for the outer loop is the existence of a
non-isolated odd cycle; so, upon termination, there will be no non-isolated odd cycle for f ′.
(Note that if there are no (outer) loop iterations, then f ′ = f .) For Step (1), note that a
vertex v0 ∈ C with dG(E(f))(v0) ≥ 3 exists since C is non-isolated; v0 has two incident edges
from C and at least one incident edge (v0, v1) outside C. The precondition for the inner loop is
the inclusion of all edges from E(C) ∪ {(v0, v1)} in E(f); note that C remains a (non-isolated)
cycle (and the inner loop continues) as long as no such edge has been eliminated from f (by
Step (2/e)). For Step (2/a), note that a path v1, · · · , vr with vr = vl for some l ∈ 0 ∪ [r − 2]
exists since G(E(f)) has no pendant edges (by Lemma 2.1); this path together with C make
a bicycle graph. For Step (2/b), note that Lemma 2.7 implies that for any vertex vk with
0 < k ≤ r, it holds that vk �∈ C\{v0}. So, Step (2/b) assigns a signed coefficient to each edge
e ∈ E(C) ∪ {(vk, vk+1) | 0 ≤ k ≤ r − 1}. Step (2/c) chooses an edge e0 on either the cycle C or
the outgoing path v1, v2, · · · , vr that minimizes a certain quantity f0 determined from f and g;

so, f0 = f(e0)
|g(e0)| . Step (2/d) adjusts g so that g(e0) < 0. The new values for f ′ are assigned in

Step (2/e); note that f ′(e0) = 0 (by Step (2/d)). Step (2/f) prepares the input (f) for the next
(inner) loop iteration. An example execution of the algorithm IsolateOddCycles is illustrated in
Figure 5.
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Figure 5: An example execution of the algorithm IsolateOddCycles on the graph with a Fractional
Perfect Matching f (with no induced even cycle) from Figure 3(c). The execution terminates
after two outer loop iterations; the first outer loop iteration incurs one inner loop iteration,
while the second outer loop iteration incurs two inner loop iterations. For each (inner or outer)
loop iteration, edges in E(f) are drawn thick; edges on the cycle C are drawn clouded. A
number next to each (thick) edge e ∈ E(f) indicates f(e); the sign of g(e) (for each edge e on
the cycle C), the vertex v0 and the edge e0 are also indicated for each iteration.
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Proof. The proof consists of two technical claims. The first claim determines the range of f ′.
Fix any inner loop iteration in an outer loop iteration of IsolateOddCycles, upon completion of
Step (2/e). We prove:

Claim 2.9 Range(f ′) ⊆ [0, 1].

Proof. By Step (2/e), it suffices to consider inductively an edge e from E(C) ∪ {(vk, vk+1) |
0 ≤ k ≤ r − 1}. By Step (2/f), it follows inductively that f is a Fractional Perfect Matching.

We first prove that f ′(e) ≥ 0. By Step (2/e), it suffices to consider the case where g(e) < 0,
so that g(e) = −|g(e)|. Then, by Step (2/e) and the choice of the edge e0,

f ′(e) = f(e) − |g(e)| · f(e0)
|g(e0)|

≥ 0,

as needed.

We now prove that f ′(e) ≤ 1. By Step (2/e), it suffices to consider the case where g(e) > 0,
so that g(e) = |g(e)|. We proceed by case analysis on whether there is an edge e′ adjacent to e

such that e and e′ are either both on the cycle C or both on the path v0, · · · , vl (with l > 0) or
both on the cycle vl, · · · , vr = vl.

Assume first that there is such an edge e′; clearly, |g(e′)| = |g(e)|. Then, by Step (2/e),

f ′(e)

= f(e) + |g(e)| · f(e0)
|g(e0)|

≤ 1 − f(e′) + g(e)
|g(e0)| · f(e0) (since f is a Fractional Matching)

≤ 1 − |g(e′)| · f(e0)
|g(e0)| + g(e) · f(e0)

|g(e0)| (by the choice of the edge e0)

= 1 − |g(e)| · f(e0)
|g(e0)| + g(e) · f(e0)

|g(e0)|
= 1,

as needed.

Assume now that there is no edge e′ adjacent to e such that e and e′ are either both on the
cycle C or both on the path v0, · · · , vl (with l > 0) or on the cycle vl, · · · , vr = vl. Since both
the cycle C and the cycle vl, · · · , vr = vl are odd, each of them includes at least three edges. It
follows that edge e lies neither on the cycle C nor on the cycle vl, · · · , vr = vl. Hence, edge e

lies on the path v0, · · · , vl (with l > 0). Since there is no edge e′ adjacent to e on this path, it
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follows that l = 1, so that e = (v0, v1). So, consider the edges e1 and e2 on the cycle C that are
adjacent to e. By the choice of g, it follows that |g(e1)| + |g(e2)| = |g(e)|. Hence,

f ′(e)

= f(e) + |g(e)| · f(e0)
|g(e0)| (by Step (2/e))

≤ 1 − f(e1) − f(e2) + |g(e)| · f(e0)
|g(e0)| (since f is a Fractional Matching)

≤ 1 − |g(e1)| · f(e0)
|g(e0)| − |g(e2)| · f(e0)

|g(e0)| + |g(e)| · f(e0)
|g(e0)| (by definition of e0)

= 1 −
(
|g(e1)| + |g(e2)| − |g(e)|

)
· f(e0)
|g(e0)|

= 1,

as needed. The proof is now complete.

We continue with the second technical claim:

Claim 2.10 f ′ is equivalent to f .

Proof. Consider any vertex v ∈ V . Then, by Step (2/e)),∑
e∈E|v∈e

f ′(e) =
∑

e∈E(C)∪{(vk,vk+1) | 0≤k≤r−1} | v∈e

f ′(e) +
∑

e∈E\(E(C)∪{(vk,vk+1) | 0≤k≤r−1}) | v∈e

f ′(e)

=
∑

e∈E(C)∪{(vk,vk+1) | 0≤k≤r−1} | v∈e

f ′(e) +
∑

e∈E\(E(C)∪{(vk,vk+1) | 0≤k≤r−1}) | v∈e

f(e).

If there is no edge e ∈ E(C) ∪ {(vk, vk+1) | 0 ≤ k ≤ r − 1} such that v ∈ e, then∑
e∈E(C)∪{(vk,vk+1) | 0≤k≤r−1} | v∈e

f ′(e) =
∑

e∈E(C)∪{(vk,vk+1) | 0≤k≤r−1} | v∈e

f(e)

= 0,

and we are done. So, assume otherwise. Note that by Step (2/b),∑
e∈E(C)∪{(vk,vk+1) | 0≤k≤r−1} | v∈e

g(e) = 0.

Hence, by Step (2/e),∑
e∈E|v∈e

f ′(e) =
∑

e∈E(C)∪{(vk,vk+1) | 0≤k≤r−1} | v∈e

f ′(e) +
∑

e∈E\(E(C)∪{(vk,vk+1) | 0≤k≤r−1}) | v∈e

f(e)

=
∑

e∈E(C)∪{(vk,vk+1) | 0≤k≤r−1} | v∈e

(f(e) + g(e) · f0) +
∑

e∈E\(E(C)∪{(vk,vk+1) | 0≤k≤r−1}) | v∈e

f(e)

=
∑

e∈E(C)∪{(vk,vk+1) | 0≤k≤r−1} | v∈e

f(e) + f0 ·
∑

e∈E(C)∪{(vk,vk+1) | 0≤k≤r−1} | v∈e

g(e)

+
∑

e∈E\(E(C)∪{(vk,vk+1) | 0≤k≤r−1}) | v∈e

f(e)

=
∑

e∈E | v∈e

f(e),
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which implies that f ′ is equivalent to f . By Step (2/f), it follows inductively that f ′ is
equivalent to the input Fractional Perfect Matching f .

Since f is a Fractional Perfect Matching, Claims 2.9 and 2.10 imply together that f ′ is a
Fractional Perfect Matching, and the claim follows.

We continue with a second invariant of the algorithm IsolateOddCycles:

Lemma 2.11 For each outer loop iteration of IsolateOddCycles, (a) for each inner loop itera-
tion, upon completion of Step (2/e), (i) f ′ ⊂ f , and (ii) some edge from E(C)∪{(vk, vk+1) | 0 ≤
k ≤ r − 1} is eliminated from E(f ′), and (b) for the last inner loop iteration, upon completion
of Step (2/e), the non-isolated odd cycle C is eliminated from G(E(f ′)).

Similarly to Lemma 2.8, the statement of Lemma 2.11 (Condition (a/i)) refers to the input
Fractional Perfect Matching f . The proof of Lemma 2.11 will use the current Fractional Perfect
Matching f ; reference to the input f will be restored in an inductive way upon completing the
proof.

Proof. Consider any outer loop iteration. For Condition (a), consider any inner loop iteration
within this outer loop iteration, upon completion of Step (2/e). Consider any edge e ∈ E.

• Assume that e �∈ E(C) ∪ {(vk, vk+1) | 0 ≤ k ≤ r − 1}. Then, Step (2/e) implies that
e ∈ E(f ′) if and only if e ∈ E(f).

• Assume that e ∈ E(C) ∪ {(vk, vk+1) | 0 ≤ k ≤ r − 1}. Then, e ∈ E(f); so, it holds
vacuously that if e ∈ E(f ′) then e ∈ E(f).

The case analysis implies that f ′ ⊆ f . Since f ′(e0) = 0 while f(e0) > 0, this implies that
f ′ ⊂ f . By Step (2/f), Condition (a/i) follows inductively.

Since f ′(e0) = 0, e0 is eliminated from E(f ′), so that some edge from E(C) ∪ {(vk, vk+1) |
0 ≤ k ≤ r − 1} is eliminated from E(f ′), and Condition (a/ii) follows.

To prove Condition (b), note that Condition (a/i) implies that there is a last inner loop
iteration (and the outer loop terminates). So, consider the last inner loop iteration. The
precondition for the inner loop implies that some edge from E(C)∪{(v0, v1)} has been eliminated
from E(f ′). Hence, the non-isolated odd cycle C is eliminated from G(E(f ′)), and Condition
(b) follows.

Lemma 2.8 and Lemma 2.11 (Condition (a/i)) together imply that the output f ′ of the
algorithm IsolateOddCycles, which contains no non-isolated odd cycle due to the outer loop
precondition, is a Fractional Perfect Matching which is equivalent to and contained in f . (By

20



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Lemma 2.11 (Condition (b)), containment is strict exactly when there is at least one outer loop
iteration.)

Lemma 2.11 implies that at least one edge is eliminated from f in each inner loop iteration
and no edge is added. Hence, there are at most |E| inner loop iterations in all outer loop
iterations. Note that each iteration of the inner loop takes O(|E|) time. Since an odd cycle
is computable in polynomial time, it follows that the algorithm IsolateOddCycles is polynomial
time, and we are done.

2.3.3 Recap

We are now ready to prove:

Proposition 2.12 Consider a Fractional Perfect Matching f . Then, there is a polynomial
time algorithm to transform f into an equivalent Fractional Perfect Matching f ′ ⊆ f with only
single edges and odd cycles.

To prove the claim, we present the algorithm EliminateEven&IsolateOddCycles in Figure 6. The
algorithm is the sequential cascade of the algorithms EliminateEvenCycles and IsolateOddCycles

from Figures 2 and 4, respectively.

Algorithm EliminateEven&IsolateOddCycles

Input: A Fractional Perfect Matching f for a graph G.
Output: A Fractional Perfect Matching f ′ with no even cycle and no non-isolated odd cycle.

(1) Apply EliminateEvenCycles on f to obtain f ′′.

(2) Apply IsolateOddCycles on f ′′ to obtain f ′.

Figure 6: The algorithm EliminateEven&IsolateOddCycles, incorporating the algorithms Elimi-

nateEvenCycles and IsolateOddCycles from Figures 2 and 4, respectively.

Proof. By Proposition 2.3, f ′′ ⊆ f is a Fractional Perfect Matching with no even cycle,
which is equivalent to f . By Proposition 2.6, f ′ ⊆ f ′′ is a Fractional Perfect Matching with no
non-isolated odd cycle, which is equivalent to f ′′. It follows that (1) f ′ is equivalent to f and
f ′ ⊆ f , and (2) f ′ has no even cycle and no non-isolated odd cycle. Since f is a Fractional
Perfect Matching, Condition (1) implies that f ′ is a Fractional Perfect Matching; by Lemma
2.1, this implies that each acyclic component of G(E(f ′)) is a single edge. By Condition (2),
it follows that each cyclic component of G(E(f ′)) is an (isolated) odd cycle. It follows that f ′

consists of single edges and odd cycles, and the proof is complete.
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2.4 δ-Partitionable Fractional Perfect Matchings

2.4.1 Definition and Preliminaries

We introduce a special class of Fractional Perfect Matchings:

Definition 2.1 Fix an integer δ ≥ 1. A Fractional Perfect Matching f : E → R is δ-

Partitionable if the edge set E(f) can be partitioned into δ (non-empty,) vertex-disjoint par-

tites E1, · · · , Eδ so that for each partite Ej with j ∈ [δ],
∑

e∈Ej
f(e) = |V |

2 δ .

Note that a 1-Partitionable Fractional Perfect Matching is a Fractional Perfect Matching.
Hence, the decision problem for a 1-Partitionable Fractional Perfect Matching is solved in
polynomial time. Note also that the restriction of a δ-Partitionable Fractional Perfect Match-
ing to each partite Ej with j ∈ [δ] is a Fractional Perfect Matching; so, for each partite Ej with
j ∈ [δ], for each vertex v ∈ V (Ej),

∑
e∈E|v∈e f(e) = 1. Since the partites are vertex-disjoint,

this implies that for each partite Ej with j ∈ [δ], for each vertex v ∈ V (Ej),
∑

e∈Ej |v∈e f(e) = 1.
We now prove a necessary condition for a δ-Partitionable Fractional Perfect Matching:

Proposition 2.13 Consider a δ-Partitionable Fractional Perfect Matching f . Then, for each

partite Ej with j ∈ [δ], |V (Ej)| = |V |
δ .

Proof. Fix a partite Ej with j ∈ [δ]. Then,

∑
e∈Ej

f(e) =
1
2

∑
v∈V (Ej)

( ∑
e∈Ej |v∈e

f(e)
)

=
1
2

∑
v∈V (Ej)

1

=
|V (Ej)|

2
.

Since f is δ-Partitionable, it follows that

|V (Ej)| = 2 ·
∑
e∈Ej

f(e)

= 2 · |V |
2 δ

=
|V |
δ

,

as needed.

Proposition 2.13 immediately implies:
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Corollary 2.14 If G has a δ-Partitionable Fractional Perfect Matching, then δ divides |V |, so

that δ ≤ |V |
2 .

We observe that the equality in the necessary condition δ ≤ |V |
2 in Corollary 2.14 is not always

necessary:

Proposition 2.15 There is a graph G and an integer δ such that G has a δ-Partitionable

Fractional Perfect Matching while δ <
|V |
2 .

Proof. Consider the cycle graph C3 and fix δ = 1. Clearly, β′(C3) = 2 so that δ <
|V |
2 .

Consider the function f : E(C3) → [0, 1] with f(e) = 1
2 for each edge e ∈ E(C3). Clearly, f is

an 1-Partitionable Fractional Perfect Matching, and the claim follows.

We finally prove that the equivalence relation on Fractional Perfect Matchings preserves
δ-Partitionability under a certain containment assumption:

Proposition 2.16 Consider a δ-Partitionable Fractional Perfect Matching f and an equivalent
Fractional Perfect Matching f ′ ⊆ f . Then, f ′ is δ-Partitionable.

Proof. Consider the δ (non-empty,) vertex-disjoint partites E1, · · · , Eδ. Define edge sets
E′

1, · · · , E′
δ so that for each j ∈ [δ], E′

j = {e ∈ Ej | f ′(e) > 0}. Since f ′ ⊆ f , it follows that
for each j ∈ [δ], E′

j ⊆ Ej . This implies that the collection E′
1, · · · , E′

δ partitions E(f ′). Since
the partites E1, · · · , Eδ are vertex-disjoint, this also implies that the edge sets E′

1, · · · , E′
δ are

vertex-disjoint; so call them partites. Fix any partite E′
j with j ∈ [δ]. Then,

∑
e∈E′

j

f ′(e)

=
∑

e∈Ej
f ′(e) (since f ′(e) = 0 for each e ∈ Ej\E′

j)

= 1
2 ·∑v∈V (Ej)

∑
e∈Ej |v∈e f ′(e)

= 1
2 ·∑v∈V (Ej)

∑
e∈E|v∈e f ′(e)

= 1
2 ·∑v∈V (Ej)

∑
e∈E|v∈e f(e) (since f and f ′ are equivalent)

= 1
2 ·∑v∈V (Ej)

1 (since f is Perfect)

= 1
2 · |V (Ej)|

= |V |
2δ

(by Proposition 2.13).

Hence, f ′ is δ-Partitionable, as needed.
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2.4.2 Characterization

We show:

Proposition 2.17 A graph G has a δ-Partitionable Fractional Perfect Matching if and only
if E contains a collection of δ (non-empty) vertex-disjoint edge sets E1, · · · , Eδ such that (1)⋃

j∈[δ] Ej is an Edge Cover, and (2) for each edge set Ej with j ∈ [δ], (i) Ej consists of single

edges and odd cycles, and (ii) |V (Ej)| = |V |
δ

.

Note that the edge sets E1, · · · , Eδ need not form a partition of E; in contrast, by Condition
(1), the induced vertex sets V (E1), · · · , V (Eδ) are required to form a partition of V .

Proof. Assume first that G has a δ-Partitionable Fractional Perfect Matching f . By Propo-
sition 2.12, there is an equivalent Fractional Perfect Matching f ′ ⊆ f with only single edges
and odd cycles. Since f is δ-Partitionable and f ′ ⊆ f , Proposition 2.16 implies that f ′ is
δ-Partitionable. So, the edge set E(f ′) can be partitioned into δ (non-empty), vertex-disjoint

partites E1, · · · , Eδ so that for each partite Ej with j ∈ [δ],
∑

e∈Ej
f(e) = |V |

2 δ
.

Consider now the (vertex-disjoint) edge sets E1, · · · , Eδ. Since f ′ is a Fractional Perfect
Matching, E(f ′) is an Edge Cover; so,

⋃
j∈[δ] Ej is an Edge Cover. Consider now any edge set

Ej with j ∈ [δ]. Since f ′ consists of single edges and odd cycles, Condition (2/i) follows; since
f ′ is a Fractional Perfect Matching, Condition (2/ii) follows from Proposition 2.13.

Assume now that E contains a collection of δ (non-empty,) vertex-disjoint edge sets E1, · · · , Eδ

such that (1)
⋃

j∈[δ] Ej is an Edge Cover, and (2) for each edge set Ej with j ∈ [δ], (i) Ej is a

collection of single edges and odd cycles, and (ii) |V (Ej)| = |V |
δ

. We shall prove that G has a
δ-Partitionable Fractional Perfect Matching f . The proof is constructive. Define the function
f : E → [0, 1] with

f(e) =

⎧⎪⎨
⎪⎩

1, if e ∈ Ej with j ∈ [δ] and Ej is a single edge
1
2 , if e ∈ Ej with j ∈ [δ] and Ej is an odd cycle
0, if e ∈ E\⋃j∈[δ] Ej

.

To prove that f is a Fractional Perfect Matching, consider any vertex v ∈ V . Since
⋃

j∈[δ] Ej

is an Edge Cover, this implies that v ∈ V (Ej) for some j ∈ [δ]. There are two cases:

• Assume that Ej is a single edge ej . Then, by construction,
∑

e∈E|v∈e f(e) = f(ej) = 1.

• Assume that Ej is an (isolated) odd cycle, so that v = ej∩e′j for a pair of consecutive edges
ej , e

′
j on the cycle. Then, by construction,

∑
e∈E|v∈e f(e) = f(ej) + f(e′j) = 1

2 + 1
2 = 1.
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The case analysis implies that f is a Fractional Perfect Matching. To prove that f is δ-
Partitionable, consider the partites E1, · · · , Eδ. Fix any partite Ej with j ∈ [δ]. Then,

∑
e∈Ej

f(e)

= 1
2
∑

v∈V (Ej)

∑
e∈Ej |v∈e f(e)

= 1
2
∑

v∈V (Ej)
1 (since f is Perfect)

= 1
2 |V (Ej)|

= |V |
2 δ

(by Condition (2/ii)).

It follows that f is δ-Partitionable, and the proof is now complete.

We observe an interesting special case of Proposition 2.17:

Proposition 2.18 A graph G has a |V |
2 -Partitionable Fractional Perfect Matching if and only

if G is Perfect-Matching.

Proof. Assume first that G has a |V |
2 -Partitionable Fractional Perfect Matching. Propo-

sition 2.17 implies that E contains a collection of |V |
2 (non-empty,) vertex-disjoint edge sets

E1, · · · , E |V |
2

such that (1)
⋃

j∈
[ |V |

2

]Ej is an Edge Cover, and (2) for each edge set Ej with

j ∈
[ |V |

2

]
, (i) Ej consists of single edges and odd cycles, and (ii) |V (Ej)| = 2. By Conditions

(2/i) and (2/ii), it follows that each edge set Ej with j ∈ [δ] is a single edge. Hence, the
collection of the (vertex-disjoint) edge sets is a Matching. By Condition (1), this implies that
the collection of the edge sets is a Perfect Matching.

Assume that G is Perfect-Matching with a Perfect Matching M . Consider the indicator function
f : E → {0, 1} for M , where f(e) = 1 if and only if e ∈ M ; so, f is a Fractional Perfect Matching,

and it remains to show that f is |V |
2 -Partitionable. For each edge ej ∈ M with j ∈

[ |V |
2

]
,

define the partite Ej := {ej}. Since M is a Perfect Matching, the partites are vertex-disjoint.

So, for each Ej with j ∈ [δ],
∑

e∈Ej
f(e) = 1 = |V |

2 |V |
2

, and this completes the proof.

2.4.3 Complexity

We define a natural decision problem about δ-Partitionable Fractional Perfect Matchings:

δ-PARTITIONABLE FPM

Instance: A graph G = 〈V,E〉 and an integer δ which divides |V |.
Question: Is there a δ-Partitionable Fractional Perfect Matching for G?
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Note that the restriction to instances for which δ divides |V | is inherited from Corollary 2.14
in order to exclude the non-interesting instances.

Proposition 2.18 identifies a tractable special case of δ-PARTITIONABLE FPM (namely, |V |
2 -

PARTITIONABLE FPM). We shall use Proposition 2.17 to show that in the general case where δ

is arbitrary, δ-PARTITIONABLE FPM is NP-complete. To do so, we shall observe an interesting
relation of some other (intractable) special case of the problem to a well known graph-theoretic
problem:

PARTITION INTO TRIANGLES

Instance: A graph G = 〈V,E〉 with |V | = 3δ for some integer δ.
Question: Can V be partitioned into δ disjoint vertex sets V1, · · · , Vδ, each containing exactly
three vertices, such that for each j ∈ [δ], E(Vj) is a triangle?

This problem is known to be NP-complete [9, GT11, attribution to (personal communication
with) Schaefer]. (This restriction to graphs G = 〈V,E〉 with |V | = 3δ is made in order to exclude
the non-interesting instances.) To prove that δ-PARTITIONABLE FPM is NP-complete (for an

arbitrary δ), we consider the special case of it with δ = |V |
3 :

|V |
3 -PARTITIONABLE FPM

Instance: A graph G = 〈V,E〉 with |V | = 3δ for some integer δ.

Question: Is there a |V |
3 -Partitionable Fractional Perfect Matching for G?

(The restriction to graphs G = 〈V,E〉 with |V | = 3δ is necessary since δ = |V |
3 is an integer.)

To prove that this special case is intractable, we prove that it coincides with PARTITION INTO

TRIANGLES: it incurs an identical set of positive instances. We prove:

Proposition 2.19 |V |
3 -PARTITIONABLE FPM = PARTITION INTO TRIANGLES

Proof. Consider a graph G = 〈V,E〉 with |V | = 3δ for some integer δ. Assume first that G is a

positive instance for |V |
3 -PARTITIONABLE FPM. By Proposition 2.17, E contains a collection

of |V |
3 (non-empty,) vertex-disjoint edge sets E1, · · · , E |V |

3
such that (1)

⋃
j∈
[ |V |

3

] Ej is an

Edge Cover, and (2) each edge set Ej consists of single edges and odd cycles with |V (Ej)| = 3.

It follows that each edge set Ej with j ∈
[ |V |

3

]
is a triangle. This implies that G is a positive

instance for PARTITION INTO TRIANGLES (with vertex sets V (E1), · · · , V (E |V |
3

)).
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Assume now that G is a positive instance for PARTITION INTO TRIANGLES. Consider

the corresponding partition of V into δ = |V |
3 disjoint vertex sets V1, · · · , V |V |

3
. This par-

tition induces a corresponding partition of E into a collection of |V |
3 vertex-disjoint partites

E1, · · · , E |V |
3

, where each partite Ej is a single triangle. Proposition 2.17 implies that G has

a |V |
3 -Partitionable Fractional Perfect Matching. Hence, G is a positive instance for |V |

3 -

PARTITIONABLE FPM, and we are done.

By Proposition 2.19, it follows that |V |
3 -PARTITIONABLE FPM is NP-complete. Since |V |

3 -

PARTITIONABLE FPM is a special case of δ-PARTITIONABLE FPM, this implies:

Corollary 2.20 δ-PARTITIONABLE FPM is NP-complete.

3 A Combinatorial Lemma

In this section, we prove a combinatorial lemma that will be useful later.

For a probability x, we define two probability literals, or literals for short: the positive literal
x and the negative literal x̄ = 1 − x. A probability product, or product for short, is a product
of probability literals x1 · · · xn for any n ≥ 1; we adopt the convention that x�1 · · · x�2 = 1
whenever �2 < �1. A constant probability product is the trivial one which equals to 1 and has
no literals. The expansion of a probability product is obtained when substituting each negative
literal x with 1 − x. So, an expansion contains positive literals and no negative literals.

The probability product x1 · · · xn is positive if all its probability literals are positive. More
generally, for any integer � ≤ n, the probability product x1 · · · xn is �-positive if exactly � of its
probability literals are positive; so, an n-positive probability product is a positive probability
product. For each � ∈ [n], denote as Pos�(x1, . . . , xn) the collection of all �-positive probability
products with literals defined from the probabilities x1, . . . , xn. We prove a combinatorial
identity for sums of probability products:

Lemma 3.1 For each integer n ≥ 2,

∑
�∈[n]

1
�
·

∑
x2...xn∈Pos�−1(x2,...,xn)

x2 · · ·xn =
∑
�∈[n]

(−1)�−1 · 1
�
·

∑
x2...x�∈Pos�−1(x2,...,xn)

x2 · · ·x� .

Note that the right-hand side (RHS) is a weighted sum of positive probability products, with
weights of alternating signs. In contrast, the left-hand side (LHS) is a weighted sum of arbitrary
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(not necessarily positive) probability products, with positive weights; an (�−1)-positive product
in the LHS is multiplied by 1

�
.

Proof. It suffices to establish that for each � ∈ [n], each (positive) probability product
x2 · · · x� ∈ Pos�−1(x2, . . . , xn) from the RHS appears in the expansion of the LHS with the same
coefficient. We proceed by case analysis on �.

• Assume first that � = 1, and fix any product x2 · · · x� ∈ Pos�−1(x2, . . . , xn) with � = 1 in
the RHS. By convention, there is only one such product and it is constant. The coefficient
of this product is (−1)1−1 · 1

1 = 1.

In the LHS, the only constant term is the constant term in the sum

∑
x2···xn∈Pos�−1(x2,...,xn)

x2 · · · xn

∣∣∣∣∣∣
�=1

= x2 · · · xn.

Clearly, this constant term is 1 and its coefficient is 1
1 = 1. The claim follows for � = 1.

• Assume now that � ≥ 2, and fix any product x2 · · · x� ∈ Pos�−1(x2, . . . , xn) from the sum∑
x2···x�∈Pos�−1(x2,...,xn) x2 · · · x� in the RHS. Note that all products in Pos�−1(x2, . . . , xn)

(in the RHS) have the same coefficient, which is (−1)�−1 · 1
�
. We calculate the coefficient

of this particular product in the expansion of the LHS.

Clearly, a k-positive product with k ≥ � in the LHS cannot include x2 · · · x� in its ex-
pansion. So, we only need to consider contributions from the expansions of k-positive
products with 0 ≤ k ≤ �− 1 (in the LHS) to the coefficient of the product x2 · · · x� in the
expansion of the LHS.

– Note that there are
(
�−1
k

)
ways to choose k positive literals (or � − 1 − k negative

literals) out of the (� − 1) literals x2, . . . , x� in order to form a k-positive product
that includes x2 · · · x� (multiplied with a coefficient) in its expansion. (All literals
x�+1, . . . , xn have to be negative since they do not appear in the product x2 · · · x�.)

– The sign of the resulting k-positive product is (−1)(�−1)−k, since each of the (�−1)−k

negative literals in it contributes one minus sign. (The negative literals x�+1, . . . , xn

do not contribute to the sign.).

– The absolute value of the coefficient of the resulting k-positive product is 1
k + 1.

So, the coefficient of x2 · · · x� in the expansion of the LHS is
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∑
0≤k≤�−1

(
� − 1

k

)
(−1)(�−1)−k 1

k + 1
=

∑
0≤k≤�−1

(
� − 1

(� − 1) − k

)
(−1)(�−1)−k 1

� − ((� − 1) − k)

=
∑

0≤k≤�−1

(
� − 1

k

)
(−1)k 1

� − k

=
1
�

∑
0≤k≤�−1

(
�

k

)
(−1)k

=
1
�

⎛
⎝ ∑

0≤k≤�

(
�

k

)
(−1)k −

(
�

�

)
(−1)�

⎞
⎠

=
1
�

(0 + (−1)�−1)

=
1
�

(−1)�−1 ,

and the claim follows for � ≥ 2.

The proof is now complete.

4 Game-Theoretic Framework

Section 4.1 introduces the strategic game ADα,δ(G). The associated pure Nash equilibria are
defined in Section 4.2. Section 4.3 considers mixed profiles; their associated Expected Utilities
are treated in Section 4.4. (Mixed) Nash equilibria are introduced in Section 4.5. Some special
profiles and corresponding special classes of Nash equilibria are treated in Section 4.6. Some
notation is articulated in Section 4.7.

4.1 The Strategic Game ADα,δ(G)

Fix integers α ≥ 1 and δ ≥ 1. Associated with a graph G is a (strategic) game ADα,δ(G):
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• The set of players is A ∪ D; A contains α attackers ai with i ∈ [α], and D contains
δ defenders dj with j ∈ [δ].

• The strategy set Sa of each attacker a is V ; the strategy set Sd of each defender d is
E. So, the strategy space S is S = (×a∈ASa) × (×d∈DSd) = V α × Eδ.

A profile (or pure profile) is an (α+ δ)-tuple s = 〈sa1 , . . . , saα , sd1 , . . . , sdδ
〉 ∈ S. The

profile s−b � tb is obtained from the profile s and a strategy tb for player b ∈ A ∪D by
substituting tb for sb in the profile s.

For each vertex v ∈ V , As(v) = {a ∈ A | sa = v} and Ds(v) = {d ∈ D | v ∈ sd}. Assume
that v ∈ sd. Then, the proportion Props(d, v) of defender d on vertex v in the profile
s is given by Props(d, v) = 1

|Ds(v)| .

• – The Utility of attacker a is a function Ua : S → {0, 1} with

Ua(s) =

{
0 , if sa ∈ sd for some defender d ∈ D
1 , if sa �∈ sd for every defender d ∈ D .

Intuitively, when the attacker a chooses vertex v, she receives 0 if it is caught by
a defender; otherwise, she receives 1.

– The Utility of defender d is a function Ud : S → Q with

Ud(s) =
|As(u)|
|Ds(u)| +

|As(v)|
|Ds(v)| ,

where sd = (u, v). Intuitively, the defender d receives the fair share of the total
number of attackers choosing each of the two vertices of the edge it chooses.

4.2 Pure Nash Equilibria

The profile s is a Pure Nash equilibrium [26, 27] if for each player b ∈ A ∪ D, for each
strategy tb ∈ Sb, Ub(s) ≥ Ub(s−b � tb); so, a Pure Nash equilibrium is a local maximizer for the
Utility of each player. Say that G admits a Pure Nash equilibrium, or G is Pure, if there
is a Pure Nash equilibrium for the strategic game ADα,δ(G).

4.3 Mixed Profiles

A mixed strategy for a player is a probability distribution over her strategy set; so, a mixed
strategy for an attacker (resp., a defender) is a probability distribution over vertices (resp.,
edges). A mixed profile (or profile for short) σ = 〈σa1 , . . . , σaα , σd1 , . . . , σdδ

〉 is a collection
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of mixed strategies, one for each player; σa(v) is the probability that attacker a chooses vertex
v, and σd(e) is the probability that defender d chooses edge e.

4.3.1 Supports

Fix now a mixed profile σ. The support of player b ∈ A ∪ D in the profile σ, denoted as
Supportσ(b), is the set of pure strategies in Sb to which b assigns strictly positive probability.
Denote Supportsσ(A) =

⋃
a∈A Supportσ(a) and Supportsσ(D) =

⋃
d∈D Supportσ(d). A mixed

profile σ induces a probability measure Pσ (on pure profiles) in the natural way. Note that in
a pure profile s, Supportss(A) ≤ α and Supportss(D) ≤ δ.

4.3.2 Expectations about Attackers

For each vertex v ∈ V , denote as |A|σ(v) the expected number of attackers choosing vertex v

in σ; so,

|A|σ(v) =
∑
a∈A

σa(v) .

Clearly, |A|σ(v) > 0 if and only if v ∈ Supportsσ(A). For an edge (u, v) ∈ E, denote

|A|σ((u, v)) = |A|σ(u) + |A|σ(v).

We observe:

Observation 4.1 For a mixed profile σ,

∑
v∈Supportsσ (A)

|A|σ(v) = α.

Proof. Clearly,

∑
v∈Supportsσ (A)

|A|σ(v) =
∑

v∈Supportsσ (A)

∑
a∈A

σa(v)

=
∑
a∈A

∑
v∈Supportsσ (A)

σa(v)

=
∑
a∈A

1

= α ,

as needed.
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4.3.3 Hitting Events and Vertices

Fix a vertex v ∈ V . For a defender d, denote as Hit(d, v) the event that defender d chooses an
edge incident to vertex v; clearly, for the mixed profile σ,

Pσ(Hit(d, v)) =
∑

e∈Supportσ (d)|v∈e

σd(e).

Denote as Hit(v) the event that some defender chooses an edge incident to vertex v. Clearly,

Hit(v) =
⋃
d∈D

Hit(d, v).

Finally, denote as Dσ(v) the set

Dσ(v) =
{

d ∈ D | there is an edge e ∈ Supportσ(d) such that v ∈ e
}

;

so, Dσ(v) is the set of defenders “hitting” vertex v.

A vertex v ∈ V is multidefender in the profile σ if |Dσ(v)| ≥ 2; that is, a multidefender
vertex is “hit” by more than one defenders. A vertex v ∈ V is unidefender in σ if |Dσ(v)| ≤ 1;
v is monodefender in σ if |Dσ(v)| = 1. So, for each unidefender (resp., monodefender) vertex
v, there is at most (resp., exactly) one defender d with an edge e ∈ Supportσ(d) such that v ∈ e;
if there is such a defender, denote it as dσ(v), else, set, by convention, PσHit((dσ(v), v)) = 0.

A profile σ is unidefender (resp., monodefender ) if every vertex v ∈ V is unidefender
(resp., monodefender) in σ; else the profile σ is multidefender. Note that for a unidefender
(resp., monodefender) profile σ, for each edge e ∈ E, there is at most (resp., exactly) one
defender d such that σd(e) > 0; if there is such a defender d, denote it as dσ(e), else set, by
convention, Pσ(dσ(e), e) = 0.

4.3.4 Hitting Probabilities

Since the events Hit(dj , v) and Hit(dj′ , v) with j �= j′ are independent and not mutually exclusive
(for a fixed vertex v), we immediately obtain a strengthening of the Union Bound:

Observation 4.2 For each vertex v ∈ V ,

Pσ(Hit(v))

{
<

=

∑
d∈D Pσ(Hit(d, v)), if v is multidefender in σ∑
d∈D Pσ(Hit(d, v)), if v is unidefender in σ

.

By the Principle of Inclusion-Exclusion, we immediately observe:
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Lemma 4.1 For a vertex v ∈ V ,

Pσ(Hit(v)) =
∑
l∈[δ]

(−1)l−1
∑

D′⊆D||D′|=l

∏
d∈D′

Pσ (Hit(d, v)) .

We continue to prove:

Lemma 4.2 For a mixed profile σ,

∑
v∈V

Pσ(Hit(v))

{
< 2 δ, if σ is multidefender
= 2 δ, if σ is unidefender

.

Proof. Clearly, ∑
v∈V

∑
d∈D

Pσ(Hit(d, v)) =
∑
v∈V

∑
d∈D

∑
e∈Supportσ (d)|v∈e

σd(e)

= 2
∑
e∈E

∑
d∈D

σd(e)

= 2
∑
d∈D

∑
e∈E

σd(e)

= 2 δ .

Hence, by Observation 4.2,

∑
v∈V

Pσ(Hit(v))

{
<
∑

v∈V

∑
d∈D Pσ(Hit(d, v)), if σ is multidefender

=
∑

v∈V

∑
d∈D Pσ(Hit(d, v)), if σ is unidefender{

< 2 δ, if σ is multidefender
= 2 δ, if σ is unidefender

,

as needed.

4.3.5 Minimum Hitting Probability, Maxhit Vertices and Maxhitters

Denote as

MinHitσ = min
v∈V

Pσ(Hit(v))

the Minimum Hitting Probability associated with the mixed profile σ. We observe:

Lemma 4.3 For a mixed profile σ,

MinHitσ ≤ 2δ
|V | .
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Proof. Assume, by way of contradiction, that MinHitσ > 2δ
|V | . Then,

∑
v∈V

Pσ(Hit(v)) ≥ |V | · MinHitσ

> 2δ,

a contradiction to Lemma 4.2.

A vertex v ∈ V is maxhit in the profile σ if Pσ(Hit(v)) = 1; say that a defender d ∈ D is a
maxhitter in σ if there is a vertex v ∈ Vertices(Supportσ(d)) such that Pσ(Hit(d, v)) = 1. We
observe:

Lemma 4.4 Consider a maxhit vertex v in a profile σ. Then, there is a (maxhitter) defender
d (in σ) with Pσ(Hit(d, v)) = 1.

Proof. Assume, by way of contradiction, that for each defender d ∈ D, Pσ(Hit(d, v)) < 1.
Since the set {Hit(d, v) | d ∈ D} is a family of independent events with none of them being
certain, this implies that the event Hit(v) =

⋃
d∈D Hit(d, v) is not certain. So, Pσ(Hit(v)) < 1.

A contradiction.

4.4 Expected Utilities

The mixed profile σ induces an Expected Utility Ub(σ) for each player b ∈ A ∪ D, which is
the expectation (according to σ) of the Utility of player b. We shall derive some formulas for
Expected Utilities. To do so, we first define and derive formulas for some auxiliary quantities. In
more detail, we define the Conditional Expected Proportion associated with the defenders; we
then use it to derive an expression for the Conditional Expected Utility for each attacker. The
Expected Utility of each attacker is then derived as a weighted sum of Conditional Expected
Utilities. Similarly, the Expected Utility of each defender is derived as a weighted sum of
Conditional Expected Utilities defined for the defenders in the natural way.

4.4.1 Conditional Expected Proportion

Induced by σ is the Conditional Expected Proportion Propd(σ−d � v) of defender d ∈ D on
vertex v, which is the expectation (induced by σ) of the proportion of defender d on vertex v

had she chosen an edge incident to vertex v. Clearly,

Propd(σ−d � v) =
∑
�∈[δ]

1
�

∑
D′⊆D\{d}||D′|=�−1

∏
dk∈D′

Pσ(Hit(dk, v))
∏

dk �∈D′∪{d}
(1 − Pσ(Hit(dk, v)))

Lemma 3.1 implies now an alternative expression for Conditional Expected Proportion.
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Lemma 4.5 For each pair of a defender d ∈ D and a vertex v ∈ V ,

Propd(σ−d � v) =
∑
�∈[δ]

1
�

(−1)�−1
∑

D′⊆D\{d}||D′|=�−1

∏
dk∈D′

Pσ(Hit(dk, v)) .

4.4.2 Attackers

Induced by σ is the Conditional Expected Utility Ua(σ−a �v) of attacker a ∈ A on vertex v,
which is the conditional expectation (induced by σ) of the Utility of attacker a had she chosen
vertex v. Clearly,

Ua(σ−a � v) = 1 − Pσ(Hit(v)) .

By the Law of Conditional Alternatives, we immediately obtain:

Lemma 4.6 Fix a mixed profile σ. Then, the Expected Utility Ua(σ) of an attacker a ∈ A is

Ua(σ) =
∑
v∈V

σa(v) · (1 − Pσ(Hit(v))) .

We continue with a preliminary observation:

Lemma 4.7 Fix a mixed profile σ. Then, for each vertex v ∈ V ,

Pσ(Hit(v)) =
∑
d∈D

Pσ(Hit(d, v)) · Propd(σ−d � v) .

Proof. By Lemma 4.5,
∑
d∈D

Pσ(Hit(d, v)) · Propd(σ−d � v)

=
∑
d∈D

Pσ(Hit(d, v)) ·

⎛
⎜⎜⎜⎝
∑
�∈[δ]

1
�

(−1)�−1
∑

D′⊆D\{d}
|D′|=�−1

∏
dk∈D′

Pσ(Hit(dk, v))

⎞
⎟⎟⎟⎠

=
∑
d∈D

∑
�∈[δ]

1
�

(−1)�−1
∑

D′⊆D\{d}
|D′|=�−1

∏
dk∈D′∪{d}

Pσ(Hit(dk, v))

=
∑
�∈[δ]

(−1)�−1 · 1
�

∑
d∈D

∑
D′⊆D\{d}
|D′|=�−1

∏
dk∈D′∪{d}

Pσ(Hit(dk, v)).
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Note that for each integer � ∈ [δ], for each set D′′ ⊆ D with |D′′| = �, there are � pairs of a
defender d ∈ D such that d ∈ D′′ and a set D′ ⊆ D′′ such that D′ ⊆ D \ {d} and |D′| = � − 1.
Hence,

∑
D′′⊆D
|D′′|=�

∏
dk∈D′′

Pσ(Hit(dk, v)) =
1
�

∑
d∈D

∑
D′⊆D\{d}
|D′|=�−1

∏
dk∈D′

Pσ(Hit(dk, v)).

It follows that∑
d∈D

Pσ(Hit(d, v)) · Propd(σ−d � v) =
∑
�∈[δ]

(−1)�−1
∑

D′⊆D
|D′|=�

∏
dk∈D′

Pσ(Hit(dk, v))

= Pσ(Hit(v)),

as needed.

4.4.3 Defenders

Induced by σ is also the Conditional Expected Utility Ud(σ−d �(u, v)) of defender d on edge
(u, v) ∈ E, which is the conditional expectation (induced by σ) of the Utility of defender d had
she chosen edge (u, v). Clearly,

Ud((σ−d � (u, v))) = Propd(σ−d � u) · |A|σ(u) + Propd(σ−d � v) · |A|σ(v) .

We prove:

Lemma 4.8 Fix a mixed profile σ. Then, the Expected Utility of a defender d ∈ D is

Ud(σ) =
∑
v∈V

Pσ(Hit(d, v)) · Propd(σ−d � v) · |A|σ(v) .

Proof. By the Law of Conditional Alternatives,

Ud(σ) =
∑

(u,v)∈E

σd((u, v)) · Ud((σ−d � (u, v)))

=
∑

(u,v)∈E

σd((u, v)) ·
(
Propd(σ−d � u) · |A|σ(u) + Propd(σ−d � v) · |A|σ(v)

)

=
∑
v∈V

⎛
⎝∑

e|v∈e

σd(e)

⎞
⎠ · Propd(σ−d � v) · |A|σ(v)

=
∑
v∈V

Pσ(Hit(d, v)) · Propd(σ−d � v) · |A|σ(v) ,

as needed.
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4.5 Nash Equilibria

A mixed profile σ is a Nash equilibrium [26, 27] if for each player b ∈ A∪D, for each mixed
strategy τb of player b, Ub(σ) ≥ Ub(σ−b �τb); so, a Nash equilibrium is a local maximizer of the
Expected Utility of each player. A (necessary and) sufficient condition for a Nash equilibrium
σ is that for each player b ∈ A∪D, for each pure strategy tb of player b, Ub(σ) ≥ Ub(σ−b � tb).
By the celebrated Theorem of Nash [26, 27], ADα,δ(G) has at least one Nash equilibrium. Say
that G admits a Nash equilibrium with a particular property if the game ADα,δ has a Nash
equilibrium with this particular property.

Clearly, in a Nash equilibrium σ, for each attacker a ∈ A, Ua(σ−a � v) is constant over
all vertices v ∈ Supportσ(a); for each defender d ∈ D, Ud(σ−d � e) is constant over all edges
e ∈ Supportσ(d). It follows that in a Nash equilibrium σ, for each attacker a ∈ A,

Ua(σ) = 1 − Pσ(Hit(v)),

for any vertex v ∈ Supportσ(a). So, for each attacker a ∈ A, the quantity Pσ(Hit(v)) is constant
over all vertices v ∈ Supportσ(a). In the same way, for each defender d ∈ D,

Ud(σ) = Propd(σ−d � u) · |A|σ(u) + Propd(σ−d � v) · |A|σ(v),

for any edge (u, v) ∈ Supportσ(d). So, for each defender d ∈ D, the quantity Propd(σ−d � u) ·
|A|σ(u) + Propd(σ−d � v) · |A|σ(v) is constant over all edges (u, v) ∈ Supportσ(d). Note that
in a Nash equilibrium σ, for each defender d ∈ D, Ud(σ) > 0; in contrast, it is possible that
Ua(σ) = 0 for some attacker a ∈ A. (See, for an example, the proof of Theorem 9.2.)

4.6 Some Special Profiles

A profile σ is uniform if each player uses a uniform probability distribution on its support;
so, for each attacker a ∈ A, for each vertex v ∈ Supportσ(a), σa(v) = 1

|Supportσ(a)| , and for

each defender d ∈ D, for each edge e ∈ Supportσ(d), σd(e) = 1
|Supportσ(d)| .

A profile σ is attacker-symmetric (resp., defender-symmetric) if for all pairs of at-
tackers ai and ak (resp., all pairs of defenders dj and dk), for all vertices v ∈ V , (resp., all
edges e ∈ E) σai(v) = σak

(v) (resp., σdj
(e) = σdk

(e)). A profile is attacker-uniform (resp.,
defender-uniform) if each attacker (resp., defender) uses a uniform probability distribution
on his support. Now, Attacker-Symmetric (resp., Defender-Symmetric) Nash equilib-

ria and Attacker-Uniform (resp., Defender-Uniform) Nash equilibria are defined in
the natural way. A Symmetric Nash equilibrium is both Attacker-Symmetric and Defender-
Symmetric. A Uniform Nash equilibrium is both Attacker-Uniform and Defender-Uniform.
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A profile σ is attacker-fullymixed (resp., defender-fullymixed) if for each attacker a

(resp., for each defender d), Supportσ(a) = V (resp., Supportσ(d) = E). Now, Attacker-

Fullymixed (resp., Defender-Fullymixed) Nash equilibria are defined in the natural way.
A Fullymixed Nash equilibrium is both Attacker-Fullymixed and Defender-Fullymixed.

A profile σ is defender-pure if each defender chooses a single strategy with probability 1 in
σ. Now Defender-Pure Nash equilibria are defined in the natural way. Say that G admits
a Defender-Pure Nash equilibrium, or G is Defender-Pure, if there is a Defender-Pure
Nash equilibrium for the strategic game ADα,δ(G).

Fix now a Perfect-Matching graph. Say that a profile is perfect-matching if Supportsσ(D)
is a Perfect Matching. Now, Perfect-Matching Nash equilibria are defined in the natural
way.

4.7 Notation

Fix a mixed profile σ. For a vertex v ∈ V , set

Edgesσ(v) = {e ∈ Supportsσ(D) | v ∈ e} ;

so, Edgesσ(v) consists of all edges incident to v that are included in the union of supports of
the defenders. For a vertex set U ⊆ V , set

Edgesσ(U) =
⋃
v∈U

Edgesσ(v);

so, Edgesσ(U) consists of all edges incident to a vertex in U that are included in the union of
supports of the defenders.

For an edge e ∈ E, set

Verticesσ(e) = {v ∈ e | v ∈ Supportsσ(A)} ;

so, |Verticesσ(e)| ≤ 2. For an edge set F ⊆ E, set

Verticesσ(F ) =
⋃
e∈F

Verticesσ(e);

so, Verticesσ(F ) consists of all vertices incident to an edge in U that are included in the union
of supports of the attackers.
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5 The Structure of Nash Equilibria

We provide an analysis of the combinatorial structure of the Nash equilibria associated with
the strategic game ADα,δ(G). Section 5.1 presents a combinatorial characterization of Nash
equilibria. Some necessary conditions for Nash equilibria are derived in Section 5.2. Section
5.3 treats the special case of Pure Nash equilibria.

5.1 Combinatorial Characterization

We show:

Proposition 5.1 (Characterization of Nash Equilibria) A profile σ is a Nash equilib-
rium if and only if the following conditions hold:

(1) For each vertex v ∈ Supportsσ(A), Pσ(Hit(v)) = MinHitσ.

(2) For each defender d ∈ D, for each edge (u, v) ∈ Supportσ(d),

Propd(σ−d � u) · |A|σ(u) + Propd(σ−d � v) · |A|σ(v)

= max(u′,v′)∈E

{
Propd(σ−d � u′) · |A|σ(u′) + Propd(σ−d � v′) · |A|σ(v′)

}
.

Proof. Assume first that σ is a Nash equilibrium. To establish Condition (1), consider any
vertex v ∈ Supportsσ(A); so, v ∈ Supportσ(a) for some attacker a. Since σ is a Nash equilibrium,
Pσ(Hit(v′)) is constant over all vertices v′ ∈ Supportσ(a). We prove:

Lemma 5.2 Fix any vertex u �∈ Supportσ(a). Then,

Pσ(Hit(u)) ≥ Pσ(Hit(v)).

Proof. Assume, by way of contradiction, that Pσ(Hit(u)) < Pσ(Hit(v)). Define τ = σ−a � τa,
where τa is any mixed strategy of attacker a such that u ∈ Supportτ(a). So, by construction,
Pτ(Hit(u)) = Pσ(Hit(u)). Then,

Ua(σ−a � τa)

= 1 − Pτ(Hit(u)) (since u ∈ Supportτ(a))

= 1 − Pσ(Hit(u))

> 1 − Pσ(Hit(v)) (by assumption)

= Ua(σ) (since v ∈ Supportσ(a)),

a contradiction.
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We are now ready to prove Condition (1). Consider any vertex u �∈ Supportσ(a) such
that u ∈ Supportσ(ak) for some attacker ak. (If such a vertex does not exist, then we are
done). By Lemma 5.2, Pσ(Hit(v)) ≤ Pσ(Hit(u)). Assume, by way of contradiction, that
Pσ(Hit(v)) < Pσ(Hit(u)). Since σ is a local maximizer of the Expected Utility of attacker ak,
and Uak

(σ) = 1 − Pσ(Hit(u)). Thus, u �∈ Supportσ(ak). A contradiction.

For Condition (2), fix a defender d and consider an edge (u, v) ∈ Supportσ(d). Since σ is a
Nash equilibrium, the quantity Propσ(d, v′) · |A|σ(v′) + Propσ(d, u′) · |A|σ(u′) is constant over
all edges (u′, v′) ∈ Supportσ(d). So, consider any edge (u′, v′) �∈ Supportσ(d). Assume, by way
of contradiction, that

Propd(σ−d � u′) · |A|σ(u′) + Propd(σ−d � v′) · |A|σ(v′)

> Propd(σ−d � u) · |A|σ(u) + Propd(σ−d � v) · |A|σ(v).

Denote τ = σ−d � τd, where τd is any mixed strategy of defender d such that (u′, v′) ∈
Supportτ(d). So, by construction, |A|τ(u′) = |A|σ(u′) and |A|τ(v′) = |A|σ(v′). Then,

Ud(σ−d � (u′, v′))

= Propd(σ−d � u′) · |A|τ(u′) + Propd(σ−d � v′) · |A|τ(v′) (since e′ ∈ Supportτ(d))

= Propd(σ−d � u′) · |A|σ(u′) + Propd(σ−d � v′) · |A|σ(v′)

> Propd(σ−d � u) · |A|σ(u) + Propd(σ−d � v) · |A|σ(v) (by assumption)

= Ud(σ) (since (u, v) ∈ Supportσ(d)) ,

a contradiction.

Assume now that the mixed profile σ satisfies Conditions (1) and (2). We will prove that
σ is a Nash equilibrium.

• Consider first an attacker a ∈ A. Then, for any vertex u �∈ Supportσ(a),

Ua(σ)

= 1 − Pσ(Hit(v)) (where v ∈ Supportσ(a))

≥ 1 − Pσ(Hit(u)) (by Condition (1))

= Ua(σ−a � u) .

• Consider now a defender d ∈ D. Then, for any edge (u′, v′) �∈ Supportσ(d),

Ud(σ)

= Propd(σ−d � u) · |A|σ(u) + Propd(σ−d � v) · |A|σ(v) (where (u, v) ∈ Supportσ(d))

≥ Propd(σ−d � u′) · |A|σ(u′) + Propd(σ−d � v′) · |A|σ(v′) (by Condition (2)) .
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It follows that σ is a Nash equilibrium. The proof is now complete.

We remark that Proposition 5.1 generalizes a corresponding characterization of Nash equilibria
for ADα,1(G) shown in [24, Theorem 3.1], where Condition (2) had the simpler counterpart (2’):

Proposition 5.3 A profile σ is a Nash equilibrium if and only if the following conditions hold:

(1) For each vertex v ∈ Supportsσ(A), Pσ(Hit(v)) = MinHitσ.

(2’) For each edge e ∈ Supportsσ(D), |A|σ(e) = maxe′∈E

{
|A|σ(e′)

}
.

5.2 Necessary Conditions

We now establish necessary conditions for Nash equilibria, which will follow from their char-
acterization (Proposition 5.1). We first prove a very simple expression for the total Expected
Utility of the defenders:

Proposition 5.4 In a Nash equilibrium σ,

∑
d∈D

Ud(σ) = α · MinHitσ.

Proof. Clearly,
∑
d∈D

Ud(σ)

=
∑

d∈D
∑

v∈V Pσ(Hit(d, v)) · Propd(σ−d � v) · |A|σ(v) (by Lemma 4.8)

=
∑

v∈V

(∑
d∈D Pσ(Hit(d, v)) · Propd(σ−d � v)

) · |A|σ(v)

=
∑

v∈V Pσ(Hit(v)) · |A|σ(v) (by Lemma 4.7)

=
∑

v∈Supportsσ(A) Pσ(Hit(v)) · |A|σ(v)

=
∑

v∈Supportsσ(A) MinHitσ · |A|σ(v) (by Proposition 5.1 (Condition (2)))

= MinHitσ ·∑v∈Supportsσ(A) |A|σ(v)

= α · MinHitσ (by Observation 4.1),

as needed.

We continue to show:

Proposition 5.5 In a Nash equilibrium σ, Supportsσ(D) is an Edge Cover.
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Proof. Assume, by way of contradiction, that Supportsσ(D) is not an Edge Cover. Then,
choose a vertex v ∈ V such that v �∈ Vertices(Supportsσ(D)). So, Edgesσ(v) = ∅ and Pσ(Hit(v)) =
0.

Fix an attacker a ∈ A. Since σ is a local maximizer for the Expected Utility of a, which is
at most 1, it follows that σa(v) = 1. Hence, for each (u′, v′) ∈ Supportsσ(D), |A|σ((u′, v′)) = 0,
since both u′ �= u and v′ �= v (by the choice of vertex v). So, |A|σ(u′) = |A|σ(v′) = 0. This
implies that for any defender d ∈ D,

Ud(σ) =
∑

(u,v)∈Supportσ (d)

σd((u, v)) · (Propd(σ−d � u) · |A|σ(u) + Propd(σ−d � v) · |A|σ(v))

= 0 .

Since σ is a Nash equilibrium, Ud(σ) > 0. A contradiction.

Proposition 5.5 immediately implies:

Corollary 5.6 A unidefender Nash equilibrium is monodefender.

We finally show:

Proposition 5.7 In a Nash equilibrium σ, Supportsσ(A) is a Vertex Cover of the graph
G(Supportsσ(D)).

Proof. Assume, by way of contradiction, that Supportsσ(A) is not a Vertex Cover of the
graph G(Supportsσ(D)). Then, there is some edge (u, v) ∈ Supportsσ(D) such that both u �∈
Supportsσ(A) and v �∈ Supportsσ(A). So, |A|σ((u, v)) = 0. Assume that (u, v) ∈ Supportσ(d)
for some defender d ∈ D. Since σ is a local maximizer for the Expected Utility of defender d,
it follows that σd((u, v)) = 0. So, (u, v) �∈ Supportσ(d). A contradiction.

5.3 Pure Nash Equilibria

We observe that for the special case of Pure Nash equilibria, Proposition 5.1 simplifies to:

Proposition 5.8 (Characterization of Pure Nash Equilibria) A pure profile s is a Pure
Nash equilibrium if and only if the following conditions hold:

(1) Supportsσ(D) is an Edge Cover.

(2) For each attacker d ∈ D, for each edge (u, v) ∈ Supports(d),

|As(u)|
|Ds(u)| +

|As(v)|
|Ds(v)| = max

(u′,v′)∈E

{ |As(u′)|
|Ds−j (u′)| + 1

+
|As(v′)|

|Ds−j (v′)| + 1

}
.
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We now use Propositions 5.5 and 5.7 to show:

Proposition 5.9 (Necessary Conditions for Pure Nash Equilibria) Assume that G is
Pure. Then, (i) δ ≥ β′(G) and (ii) α ≥ minEC∈EC(G) β(G(EC)).

Proof. By contradiction. Consider a Pure Nash equilibrium s. For Condition (i), assume
that δ < β′(G). Since |Supportss(D)| ≤ δ, it follows that |Supportss(D)| < β′(G). Hence,
Supportss(D) is not an Edge Cover. A contradiction to Proposition 5.5.

For Condition (ii), assume that α < minEC∈EC(G) β(G(EC)). Since |Supportss(A)| ≤ α, it
follows that |Supportss(A)| < minEC∈EC(G) β(G(EC)). By Proposition 5.5, Supportss(D) is an
Edge Cover; so, β(G(Supportsσ(D))) ≥ minEC∈EC(G) β(G(EC)). It follows that |Supportss(A)|
< β(G(Supportss(D))). Thus, Supportss(A) is not a Vertex Cover of the graph G(Supportss(D)).
A contradiction to Proposition 5.7.

We remark that Condition (i) (resp., Condition (ii)) in Proposition 5.9 is necessary for Defender-
Pure (resp., Attacker-Pure) Nash equilibria. We finally provide a counterexample to the con-
verse of Proposition 5.9:

Proposition 5.10 There is a graph G and integers α and δ such that (i) δ ≥ β′(G) and (ii)

α ≥ minEC∈EC(G) β(G(EC)) while G is not Pure.

Proof. Consider the graph G = (V,E) in Figure 7, and fix α = 2 and δ = 6. Clearly, β′(G) = 6
and minEC∈EC(G) = 2. So, Conditions (i) and (ii) from the claim hold. Towards a contradiction,
assume that G is Pure; consider a Pure Nash equilibirum s.

• By Proposition 5.5, Supports(D) is an Edge Cover. By the construction of G, this im-
plies that Supportss(D) = {(v2, v3), (v4, v5), (v4, v6), (v4, v7), (v4, v8), (v1, v)}, where v ∈
{v2, v4}. Since δ = 6, it follows that for each edge e ∈ Supportss(D), there is a unique
defender d such that sd = e.

• By Proposition 5.7, Supportss(A) is a Vertex Cover of the graph G(Supportss(D)). By
the construction of G, this implies that Supportss(A) = {v2, v4}. (Note that {v2, v4} is
the unique Vertex Cover of the graph G(Supportss(D)) with size at most 2.) Since α = 2,
it follows that Supports(a1) = v2 and Supports(a2) = v4.

Consider now the (unique) defender d ∈ D such that sd = (v4, v5). Clearly, Ud(s) = 1
4, but

Ud(s−d � (v2, v3)) =

{ 1
3 , if v = v2

1
2 , if v = v4

≥ 1
3
.

So, Ud(s−d � (v2, v3)) > Ud(s). A contradiction to the fact that s is a Nash equilibrium.
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v1

v3 v5

v4

v6 v8

v2

v7

Figure 7: The graph G used in the proof of Proposition 6.6. Edges in Supports(D) are drawn
thick; vertices in Supports(A) are squared.

6 Defense-Optimal Nash Equilibria

Section 6.1 introduces Defense-Optimal Nash equilibria and Defense-Optimal graphs. Some
sufficient conditions for Defense-Optimal graphs are presented in Section 6.2.

6.1 Definitions

The Defense-Ratio DRσ of a Nash equilibrium σ is the ratio of the optimal total Utility α of
the defenders over their total Expected Utility in σ; so,

DRσ =
α∑

d∈D Ud(σ)
.

By the definition of Defense-Ratio, Proposition 5.4 immediately implies:

Corollary 6.1 For a Nash equilibrium σ,

DRσ =
1

MinHitσ
.

Clearly, DRσ ≥ 1. Furthermore, Lemma 4.3 implies a second lower bound on Defense-Ratio:

Corollary 6.2 For a Nash equilibrium σ,

DRσ ≥ |V |
2 δ

.

Our next major definition encompasses these two lower bounds on Defense-Ratio.
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Definition 6.1 A Nash equilibrium σ is Defense-Optimal if DRσ = max
{

1, |V |
2 δ

}
.

The justification for the definition of a Defense-Optimal Nash equilibrium will come later,
when we construct Defense-Optimal Nash equilibria in two particular cases (Proposition 7.9

and Theorems 9.2 and 9.5); these constructions will establish that max
{

1, |V |
2δ

}
is a tight

lower bound on Defense-Ratio.

Say that that G is Defense-Optimal if G admits a Defense-Optimal Nash equilibrium.

6.2 Sufficient Conditions

We show:

Theorem 6.3 Assume that G has a δ-Partitionable Fractional Perfect Matching. Then, G is
Defense-Optimal.

Proof. Consider a δ-Partitionable Fractional Perfect Matching f and the corresponding (non-
empty) partites E1, · · · , Eδ. Recall that E(f) is an Edge Cover. Construct σ as follows:

• For each attacker a ∈ A:

– For each vertex v ∈ V , set σa(v) := 1
|V | ; so, Supportσ(a) = V .

So, for each vertex v ∈ V , |A|σ(v) =
∑

a∈A
1
|V | = α

|V | .

• For each defender dj ∈ D, with j ∈ [δ]:

– For each edge e ∈ E, set σdj
(e) := 2δ

|V | · f(e) if e ∈ Ej, and 0 otherwise; so,

Supportσ(dj) = Ej and all values of σdj
are non-negative.

Clearly, σ is attacker-symmetric, attacker-uniform, attacker-fullymixed and defender-symmetric;
moreover, σ is monodefender. Furthermore, for each vertex v ∈ V , Edgesσ(v) = {e ∈ E(f) |
v ∈ e}. To prove that σ is a (mixed) profile, we prove that for each defender dj ∈ D, σdj

is a
probability distribution (on E). Clearly,∑

e∈E

σdj
(e)

=
∑

e∈Ej
σdj

(e) (since Supportσ(dj) = Ej)

=
∑

e∈Ej

2δ
|V | · f(e) (by construction)

= 2δ
|V |
∑

e∈Ej
f(e)

= 1 (since f is δ-Partitionable);
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so, σdj
is a probability distribution, which establishes that σ is a profile.

We continue to prove that σ is a Nash equilibrium. We shall verify Conditions (1) and (2) in
the characterization of Nash equilibria (Proposition 5.1).

For Condition (1), fix a vertex v ∈ V . Since E(f) is an Edge Cover, there is a partite
Ej ⊆ E(f) such that v ∈ Vertices(Ej). Since the partites E1, · · · , Eδ are vertex-disjoint and
Supportσ(dj) = Ej , it follows that vertex v is monodefender in σ with dσ(v) = dj. We prove:

Claim 6.4 Pσ(Hit(v)) = 2δ
|V | .

Proof. Clearly,

Pσ(Hit(v))

= Pσ(Hit(dj , v)) (since v is monodefender in σ)

=
∑

e∈Supportσ (dj)|v∈e σdj
(e)

=
∑

e∈Supportσ (dj )|v∈e
2δ
|V | · f(e) (by construction of σ)

= 2δ
|V |
∑

e∈Supportσ (dj )|v∈e f(e)

= 2δ
|V |
∑

e∈Edgesσ (v) f(e) (since v is monodefender in σ)

= 2δ
|V |
∑

e∈E(f)|v∈e f(e)

= 2δ
|V | ·
∑

e∈E|v∈e f(e) (since f(e) = 0 for e �∈ E(f))

= 2δ
|V | · 1 (since f is a Fractional Perfect Matching),

as needed.

By Claim 6.4, Condition (1) holds trivially.

For Condition (2), consider a defender d ∈ D. Fix an edge (u, v) ∈ Supportσ(d). Since σ is
monodefender, Propd(σ−d � u) = Propd(σ−d � v) = 1. Hence,

Propd(σ−d � u) · |A|σ(u) + Propd(σ−d � v) · |A|σ(v) = |A|σ(u) + |A|σ(v)

=
2α
|V | .

Fix now an edge (u′, v′) �∈ Supportσ(d). Since E(f) is an Edge Cover, there are edges eu′ and
ev′ ∈ Ef such that u′ ∈ eu′ and v′ ∈ ev′ . By the construction of σ, this implies that there are
defenders du′ and dv′ such that eu′ ∈ Supportσ(du′) and ev′ ∈ Supportσ(dv′).

There are two cases for du′ (resp., dv′): either du′ = d or du′ �= d (resp., dv′ = d or dv′ �= d).
We shall treat each of them separately.
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• Assume first that du′ = d (resp., dv′ = d); since u′ is monodefender, it follows that
Propd(σ−d � u′) = 1 (resp., Propd(σ−d � v′) = 1).

• Assume now that du′ �= d (resp., dv′ �= d); since v′ is monodefender, Propd(σ−d � u′) < 1
(resp., Propd(σ−d � v′) < 1).

So, in all cases, Propd(σ−d � u′) ≤ 1 and Propd(σ−d � v′) ≤ 1. Thus,

Propd(σ−d � u′) · |A|σ(u′) + Propd(σ−d � v′) · |A|σ(v′) ≤ |A|σ(u′) + |A|σ(v′)

=
2α
|V | .

Now, Condition (2) follows.

Hence, by Proposition 5.1, σ is a Nash equilibrium. By Claim 6.4 and Condition (1) of Propo-

sition 5.1, it follows that MinHitσ = 2δ
|V | . By Corollary 6.1, it follows that DRσ = |V |

2δ . Since G

has a δ-Partitionable Fractional Perfect Matching, Corollary 2.14 implies that δ ≤ |V |
2 , so that

max
{

1, |V |
2 δ

}
= |V |

2 δ
. This implies that DRσ = max

{
1, |V |

2 δ

}
. Hence, σ is Defense-Optimal,

as needed.

We continue with another sufficient condition:

Theorem 6.5 Assume that G is Defender-Pure. Then, G is Defense-Optimal.

Proof. Fix an arbitrary Defender-Pure Nash equilibrium σ; so DRσ = 1. For each defender
d ∈ D, denote sd = (ud, vd) ∈ E. Since σ is a Nash equilibrium, Ud(σ) = Ud(σ−d � (ud, vd)).
So,

DRσ

= α∑
d∈D Ud(σ)

= α∑
d∈D Ud(σ−d � (ud, vd))

= α∑
d∈D (Propd(σ−d � ud) · |A|σ(ud) + Propd(σ−d � vd) · |A|σ(vd))

= α∑
d∈D

( |A|σ(ud)
|Dσ(ud)| + |A|σ(vd)

|Dσ(vd)|
) (since σ is Defender-Pure)

= α∑
v∈V

∑
d∈D|v∈Verticesσ(Supportσ(d))

|A|σ(v)
|Dσ(v)|

= α∑
v∈Supportsσ(A) |Dσ(v)| · |A|σ(v)

|Dσ(v)|
= α∑

v∈Supportsσ(A) |A|σ(v)

= 1 .
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v1 v3

v2

v4 v6

v5

Figure 8: The graph G used in the proof of Proposition 6.6. Edges in E(f) for the 2-
Partitionable Fractional Perfect Matching f are drawn thick.

By Corollary 6.1, it follows that MinHitσ = 1. Hence, Lemma 4.3 implies that δ ≥ |V |
2 . Since

DRσ = 1, it follows that DRσ = max
{

1, |V |
2 δ

}
, and Condition (i) follows.

We finally compare the sufficient conditions for a Defense-Optimal graph from Theorems 6.3
and 6.5:

Proposition 6.6 There is a graph G and an integer δ such that G has a δ-Partitionable Frac-
tional Perfect Matching while G is not Defender-Pure.

Proof. Consider the graph G = (V,E) in Figure 8, and fix δ = 2. Consider the function
f : E → [0, 1] with f(e) = 1

2 for each edge e ∈ E \ {(v3, v4)} and f(e) = 0 for e = (v3, v4).
Clearly, f is a 2-Partitionable Fractional Perfect Matching with E1 = {(v1, v2), (v2, v3), (v1, v3)}
and E2 = {(v4, v5), (v5, v6), (v4, v6)}. Since δ = 2 and β′(G) = 3, it follows by Proposition 5.9
(Condition (i)) that G is not Defender-Pure.

7 Few Defenders

We consider the case of few defenders where δ ≤ |V |
2 ; there, a Defense-Optimal Nash

equilibrium σ has Defense-Ratio DRσ = max
{

1, |V |
2 δ

}
= |V |

2δ , so that by Corollary 6.1,

MinHitσ = 2δ
|V | . This implies that

∑
v∈V Pσ(Hit(v)) ≥ 2δ. By Lemma 4.2, it follows that∑

v∈V Pσ(Hit(v)) = 2δ, so that σ is unidefender. By Corollary 5.6, σ is monodefender.

Section 7.1 provides some necessary conditions for Defense-Optimal Nash equilibria and
Defense-Optimal graphs. A combinatorial characterization of Defense-Optimal graphs is pre-
sented in Section 7.2, with an implication on the associated complexity. Section 7.3 considers
the special case of Perfect-Matching graphs.
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7.1 Necessary Conditions

We show a necessary condition for Defense-Optimal graphs:

Proposition 7.1 Assume that δ ≤ |V |
2 . Then, a Defense-Optimal graph has a δ-Partitionable

Fractional Perfect Matching.

Proof. Consider a Defense-Optimal Nash equilibrium σ. Recall that σ is monodefender.
Since MinHitσ(v) = 2δ

|V | and
∑

v∈V Pσ(Hit(v)) = 2δ, it follows that for each vertex v ∈ V ,

Pσ(Hit(v)) = 2δ
|V | .

We now define a function f : E → R; we will then prove that f is a δ-Partitionable Fractional
Perfect Matching. For each edge e ∈ E, set

f(e) :=

{ |V |
2δ · σdσ (e)(e), if e ∈ Supportsσ(D)

0, otherwise
.

By construction, E(f) = Supportsσ(D); so, for each vertex v ∈ V , {e ∈ E(f) | v ∈ e} =
Edgesσ(v). Since σ is monodefender, it follows that for each vertex v ∈ V , Pσ(Hit(v)) =
Pσ(Hit(dσ(v), v)). We prove:

Claim 7.2 For each vertex v ∈ V , ∑
e∈Edgesσ (v)

f(e) = 1.

Proof. By the construction of f ,∑
e∈Edgesσ (v)

f(e) =
∑

e∈Supportσ (dσ (v))|v∈e

f(e)

=
∑

e∈Supportσ (dσ (v))|v∈e

|V |
2δ

· σdσ (v)(e)

=
|V |
2δ

∑
e∈Supportσ (dσ (v))|v∈e

σdσ (v)(e)

=
|V |
2δ

· Pσ(Hit(dσ(v), v))

=
|V |
2δ

· Pσ(Hit(v))

=
|V |
2δ

· 2δ
|V |

= 1,
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as needed.

Since Edgesσ(v) = {e ∈ E(f) | v ∈ e}, Claim 7.2 implies that f is a Fractional Perfect Matching.
To prove that f is δ-Partitionable, define the (non-empty) sets E1, · · · , Eδ where for each j ∈ [δ],
Ej := Supportσ(dj). Clearly, ⋃

j∈[δ]

Ej =
⋃

j∈[δ]

Supportσ(dj)

= Supportsσ(D)

= E(f) .

Since σ is monodefender, it follows that for all pairs of distinct defenders dk and dl, Supportσ(dk)∩
Supportσ(dl) = ∅. Hence, it follows that the sets E1, · · · , Eδ, partition the set E(f); so, we
shall call them partites. We observe:

Claim 7.3 For each index j ∈ [δ],

∑
e∈Ej

f(e) =
|V |
2δ

.

Proof. By the construction of f and the partites E1, · · · , Eδ,∑
e∈Ej

f(e) =
∑

e∈Supportσ (dj)

f(e)

=
∑

e∈Supportσ (dj)

|V |
2δ

· σdj
(e)

=
|V |
2δ

∑
e∈Supportσ (dj )

σdj
(e)

=
|V |
2δ

,

as needed.

Claim 7.3 implies that f is δ-Partitionable, and the claim follows.

Proposition 7.1 establishes that the sufficient condition for a Defense-Optimal graph from The-

orem 6.3 is also necessary when δ ≤ |V |
2 .

7.2 Characterization and Complexity of Defense-Optimal Graphs

We now state a combinatorial characterization of Defense-Optimal graphs
(
for δ ≤ |V |

2

)
;

sufficiency and necessity follow from Theorem 6.3 and Proposition 7.1, respectively.
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Theorem 7.4 Assume that δ ≤ |V |
2 . Then, G is Defense-Optimal if and only if G has a

δ-Partitionable Fractional Perfect Matching.

We observe three implications of Theorem 7.4. The first one is an immediate consequence of
Theorem 7.4 and Corollary 2.14.

Corollary 7.5 Assume that δ ≤ |V |
2 and G is Defense-Optimal. Then, δ divides |V |.

The second implication is an immediate consequence of Theorem 7.4 and Proposition 2.18.

Corollary 7.6 Assume that δ = |V |
2 . Then, G is Defense-Optimal if and only if it is Perfect-

Matching.

Corollary 7.6 identifies a particular value of δ
(
namely, δ = |V |

2

)
for which the recognition

problem for Defense-Optimal graphs is tractable. For the third implication, Theorem 7.4 implies
that the complexity of recognizing Defense-Optimal graphs is that of δ-PARTITIONABLE FPM.
Hence, Proposition 2.19 immediately implies:

Corollary 7.7 Assume that δ ≤ |V |
2 . Then, the recognition problem for Defense-Optimal

graphs is NP-complete.

7.3 Perfect-Matching Graphs

We show:

Theorem 7.8 Assume that δ ≤ |V |
2 for a Perfect-Matching graph G. Then, G admits a

Defense-Optimal, Perfect-Matching Nash equilibrium if and only if 2 δ divides |V |.

Proof. The claim will follow from Propositions 7.9 and 7.10.

Proposition 7.9 Assume that δ ≤ |V |
2 for a Perfect-Matching graph G, where 2 δ divides |V |.

Then, G admits a Defense-Optimal, Perfect-Matching Nash equilibrium.

Proof. Consider a Perfect Matching M . Construct a profile σ as follows:

• For each attacker a ∈ A and for each vertex v ∈ V , set

σa(v) :=
1
|V | .

So, σ is attacker-symmetric, attacker-uniform and attacker-fullymixed. Clearly, for each
vertex v ∈ V , |A|σ(v) = α

|V | .
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• Partition M into δ sets M1, · · · ,Mδ , each with |V |
2δ edges; each defender dj with j ∈ [δ]

uses a uniform probability distribution over the set Mj . So, for each edge e ∈ Mj , set

σdσ (e)(e) :=
2δ
|V | .

Thus, Supportσ(dj) = Mj for each j ∈ [δ], so that Supportsσ(D) = M . Clearly, each
vertex v ∈ V is monodefender in σ with Pσ(Hit(v)) = Pσ(Hit(dσ(v), v)) = 2δ

|V | .

We shall verify Conditions (1) and (2) in the characterization of Nash equilibria (Proposi-
tion 5.1). For Condition (1), fix a vertex v ∈ V . Since Pσ(Hit(v)) = 2δ

|V | , Condition (1) follows

trivially. For Condition (2), consider any defender d ∈ D.

• Fix an edge (u, v) ∈ Supportσ(d). Since each edge is monodefender in σ, it follows that
Propd(σ−d � u) = Propd(σ−d � v) = 1. Hence,

Propd(σ−d � u) · |A|σ(u) + Propd(σ−d � v) · |A|σ(v) =
2α
|V | .

• Fix now an edge (u′, v′) �∈ Supportσ(d). Since M is an Edge Cover, there are edges
eu′ , ev′ ∈ M such that u′ ∈ eu′ and v′ ∈ ev′ . By the construction of σ, this implies that
there are defenders du′ and dv′ such that eu′ ∈ Supportσ(du′) and ev′ ∈ Supportσ(dv′).
Since each vertex is monodefender in σ, it follows that d �= du′ and d �= dv′ . Hence,
Propd(σ−d � u′) ≤ 1

2 and Propd(σ−d � v) ≤ 1
2, so that

Propd(σ−d � u′) · |A|σ(u′) + Propd(σ−d � v′) · |A|σ(v′) ≤ 1
2
· (|A|σ(u′) + |A|σ(v′)

)
=

α

|V | .

Now, Condition (2) follows. Hence, by Proposition 5.1, σ is a Nash equilibrium.

To prove that σ is Defense-Optimal, recall that for each vertex v ∈ V , Pσ(Hit(v)) = 2δ
|V | .

Hence, MinHitσ = 2δ
|V | . By Corollary 6.1, it follows that DRσ = |V |

2δ . Since δ ≤ |V |
2 , it follows

that DRσ = max
{

1, |V |
2 δ

}
. Hence, σ is Defense-Optimal.

We continue to prove:

Proposition 7.10 Assume that δ ≤ |V |
2 for a Perfect-Matching graph G, which admits a

Defense-Optimal, Perfect-Matching Nash equilibrium. Then, 2 δ divides |V |.
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Proof. Consider such a Nash equilibrium σ, and recall that MinHitσ = 2δ
|V | . Consider an

edge (u, v) ∈ Supportsσ(D); so, e ∈ Supportσ(d) for some defender d ∈ D. Proposition 5.7
implies that Supportsσ(A) is a Vertex Cover of the graph G(Supportsσ(D)). Hence, either
u ∈ Supportsσ(A) or v ∈ Supportsσ(A) (or both). Assume without loss of generality, that
u ∈ Supportsσ(A). Since σ is monodefender, there is a single defender dk such that u ∈
Vertices(Supportσ(d)). Hence, dk is identified with d. Since σ is Perfect-Matching, Supportσ(d)
is a Perfect Matching; this implies that Pσ(Hit(v)) = sd(e). We prove:

Claim 7.11 |Supportσ(d)| = |V |
2δ

Proof. Clearly,

∑
e∈Supportσ (d)

σd(e) =
∑

e∈Supportσ (d)

Pσ(Hit(v))

= |Supportσ(d)| · 2δ
|V |

Since σ is a profile,
∑

e∈Supportσ (d) σd(e) = 1. Hence, |Supportσ(d)| = |V |
2δ , as needed.

Claim 7.11 immediately implies that 2δ divides |V |, as needed.

The claim follows now from Propositions 7.9 and 7.10.

Note that while Corollary 7.5 applies to all graphs, Proposition 7.10 applies only to Perfect-
Matching graphs. However, the restriction of Corollary 7.5 to Perfect-Matching graphs does
not imply Proposition 7.10 unless δ is odd. (This is because 2 divides |V | and δ divides |V |
imply together that 2δ divides |V | exactly when δ is odd.) Hence, Proposition 7.10 strictly
strengthens Corollary 7.5 for the case where δ is even.

8 Many Defenders

We now consider the case of many defenders, where |V |
2 < δ < β′(G). In this case, a Defense-

Optimal Nash equilibrium σ has Defense-Ratio DRσ = max
{

1, |V |
2 δ

}
= 1. By Corollary 6.1,

this implies that MinHitσ = 1. It follows that for each vertex v ∈ V , Pσ(Hit(v)) = 1, so that
the number of maxhit vertices in σ is |V |. We show:

Theorem 8.1 Assume that |V |
2 < δ < β′(G). Then, G is not Defense-Optimal.
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Proof. Towards a contradiction, consider a Defense-Optimal Nash equilibrium σ. Consider any
(maxhit) vertex v ∈ V . By Lemma 4.4, there is a maxhitter d ∈ D in σ with Pσ(Hit(d, v)) = 1.
Use σ to construct a defender-pure profile τ as follows:

• Fix a defender d ∈ D. If d is maxhitter in σ, then τd is any edge (u, v) ∈ Supportσ(d)
such that d is maxhitter in σ for the vertex v ∈ V ; else, τd is any arbitrary edge (u, v) ∈
Supportσ(d).

By construction of τ , the following conditions hold:

(1) |Supportsτ(D)| ≤ δ.

(2) Each maxhit vertex in σ remains a maxhit vertex in τ ; so, the number of maxhit vertices
in τ is |V |.

Since δ < β
′
(G), Condition (1) implies that |Supportsτ(D)| < β′(G). Hence, Supportsτ(D)

is not an Edge Cover. So, there is some vertex v ∈ V with Pτ(Hit(v)) = 0. It follows that the
number of maxhit vertices in τ is less than |V |. A contradiction.

9 Too Many Defenders

We finally turn to the case of too many defenders where δ ≥ β′(G). In this case, |V |
2 δ

≤
|V |

2β′(G) ≤ 1; so, a Defense-Optimal Nash equilibrium σ has Defense-Ratio DRσ = 1. By

Corollary 6.1, this implies that MinHitσ = 1; so, that for each vertex v ∈ V , Pσ(Hit(v)) = 1.

Section 9.1 introduces vertex-balanced profiles. These profiles give rise to Defender-Pure,
Vertex-Balanced Nash equilibria and Pure, Vertex-Balanced Nash equilibria, which will be
treated in Sections 9.2 and 9.3, respectively.

9.1 (Defender-Pure and Pure,) Vertex-Balanced Profiles

We start with a significant definition:

Definition 9.1 A mixed profile σ is vertex-balanced if there is a constant c > 0 such that
for each vertex v ∈ V ,

|A|σ(v)
|Dσ(v)| = c.
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The following properties follow trivially for a vertex-balanced profile σ:

1 The set Supportsσ(D) is an Edge Cover. This matches the necessary condition for an
arbitrary Nash equilibrium from Proposition 5.5.

2 The set Supportsσ(A) is V . Note that this property is strictly weaker than the condition
defining an attacker-fullymixed profile σ, which requires that for each attacker a ∈ A,
Supportσ(a) = V .

We shall consider defender-pure, vertex-balanced profiles and pure, vertex-balanced profiles.
We prove a nice property of defender-pure, vertex-balanced profiles.

Proposition 9.1 A defender-pure, vertex-balanced profile is a local maximizer for the Expected
Utility of each defender.

Proof. Consider such a profile σ and a defender d ∈ D with σd = (u, v). Clearly,

Ud(σ) =
|A|σ(u)
|Dσ(u)| +

|A|σ(v)
|Dσ(v)|

= 2c.

Fix now an edge (u′, v′) �∈ Supportσ(d). Clearly,

Ud(σ−d � (u′, v′)) =
|A|σ(u′)

|Dσ(u′)| + 1
+

|A|σ(v′)
|Dσ(v′)| + 1

<
|A|σ(u′)
|Dσ(u′)| +

|A|σ(v′)
|Dσ(v′)|

= 2c,

and the claim follows.

Proposition 9.1 implies that a defender-pure, vertex-balanced profile, which is a local maximizer
for the Expected Utility of each attacker, is a Nash equilibrium. We shall present polynomial
time algorithms to compute Defender-Pure, Vertex-Balanced Nash equilibria and Pure, Vertex-
Balanced Nash equilibria which are Defense-Optimal for the case where δ ≥ β′(G); the second
algorithm will require an additional assumption.

9.2 Defense-Optimal, Defender-Pure, Vertex-Balanced Nash Equilibria

We show:
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Algorithm DefenderPure&VertexBalancedNE

Input: A graph G = 〈V, E〉 such that δ ≥ β′(G).
Output: A Defense-Optimal, Defender-Pure Vertex-Balanced Nash equilibrium σ.

(1) Choose a Minimum Edge Cover EC .

(2) Assign each defender to a distinct edge from EC in a round-robin fashion.

(3) Determine a solution
{
A(v) | v ∈ V

}
to the following linear system:

(a) For each vertex v ∈ V , A(v)
|Dσ(v)| is constant.

(b)
∑

v∈V A(v) = α.

(4) Assign a mixed strategy σ to each attacker in an arbitrary way so that for each vertex v ∈ V ,
|A|σ(v) = A(v).

Figure 9: The algorithm DefenderPure&VertexBalancedNE. By Step (2), σ is defender-pure;
note that the assignment exchausts all edges from the Minimum Edge Cover EC due to the
assumption that δ ≥ β′(G). Step (3) provisions for σ to be vertex-balanced; towards this end, it

provides for the ratio A(v)
|Dσ(v)| to be constant over all vertices v ∈ V . Finally, Step (4) provides

mixed strategies to the attackers that induce |A|σ(v) = A(v) for each vertex v ∈ V ; by Step
(3/a) this implies that σ is vertex-balanced. Since a Minimum Edge Cover is computable in
polynomial time, the algorithm DefenderPure&VertexBalancedNE is polynomial time.

Theorem 9.2 Assume that δ ≥ β′(G). Then, G admits a Defender-Pure, Vertex-Balanced
Nash equilibrium, which is computable in polynomial time.

To prove the claim, we present the algorithm DefenderPure&VertexBalancedNE in Figure 9.

Proof. By construction (Steps (1) and (2)) and the assumption that δ ≥ β′(G), it follows
that Supportsσ(D) is a Minimum Edge Cover. Since σ is defender-pure, this implies that for
each vertex v ∈ V , Pσ(Hit(v)) = 1; hence, for each attacker a ∈ A,

Ua(σ−a � v) = 1 − Pσ(Hit(v))

= 0.

This implies that σ is (vacuously) a local maximizer for the Expected Utility of each attacker.
By Proposition 9.1, it follows that σ is a Nash equilibrium.

By Theorem 6.5 and Theorem 9.2, it immediately follows:

Corollary 9.3 Assume that δ ≥ β′(G). Then, G is Defense Optimal.
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By Theorem 5.9 (Condition (i)) and Theorem 9.2, it finally follows:

Corollary 9.4 G is Defender-Pure if and only if δ ≥ β′(G).

Since a Minimum Edge Cover is computable in polynomial time, Corollary 9.4 implies that the
class of Defender-Pure graphs is recognizable in polynomial time (for an arbitrary value of δ).

9.3 Defense-Optimal, Pure, Vertex-Balanced Nash Equilibria

We show:

Theorem 9.5 Assume that δ ≥ β′(G) and 2 δ divides α. Then, G admits a Defense-Optimal,
Pure, Vertex-Balanced Nash equilibrium, which is computable in polynomial time.

To prove the claim, we present the algorithm Pure&VertexBalanced in Figure 10. The proof of
Theorem 9.5 is identical to the proof of Theorem 9.2.

Algorithm Pure&VertexBalancedNE

Input: A graph G = 〈V, E〉 such that δ ≥ β′(G) with 2δ divides α.
Output: A Defense-Optimal, Pure, Vertex-Balanced Nash equilibrium s.

(1) Choose a Minimum Edge Cover EC .

(2) Assign each defender to a distinct edge from EC in a round-robin fashion.

(3) For each vertex v ∈ V , set A(v) := |Dσ(v)| · α
2 δ .

(4) Assign each attacker to a vertex from V in an arbitrary way so that for each vertex v ∈ V ,
|A|σ(v) = A(v).

Figure 10: The algorithm Pure&VertexBalancedNE. The algorithm Pure&VertexBalancedNE dif-
fers from the the algorithm DefenderPure&VertexBalancedNE only in Steps (3) and (4). The
additional assumption that 2δ divides α suffices for Steps (3) and (4) to construct an attacker-
pure profile. By Step (2), σ is defender-pure. Step (3) provisions for σ to be vertex-balanced;

towards this end, it sets the ratio A(v)
|Dσ(v)| to the fixed (integer) value α

2δ for each vertex v ∈ V .

Hence, for each vertex v ∈ V , A(v) is integer. Finally, Step (4) assigns pure strategies to the
attackers that induce the (integer) value |A|σ(v) = A(v) for each vertex v ∈ V ; hence, σ is
vertex-balanced by construction. Since a Minimum Edge Cover is computable in polynomial
time, the algortihm Pure&VertexBalancedNE is polynomial time.
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10 Epilogue

We proposed and analyzed a new combinatorial model for a distributed system like the Internet
with selfish, malicious attacks and selfish, non-malicious, interdependent defenses. Through an
extensive combinatorial analysis of Nash equilibria for this model, we derived a comprehensive
collection of (in some cases surprising) trade-off results between the number of defenders and
the best possible Defense-Ratio of associated Nash equilibria.

Our work leaves numerous open problems relating to (i) the worst-case Nash equilibria for
this model, (ii) the investigation of alternative reward-sharing schemes for the defenders and
(iii) the complexity of computing and verifying (Defense-Optimal) Nash equilibria (especially
for the case of too many defenders) in this model.

Acknowledgments. We thank Martin Gairing, Loizos Michael, Florian Schoppmann, Karsten
Tiemann and the anonymous HICSS 2008 reviewers for many helpful comments and suggestions
on earlier versions of this paper.
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