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Abstract. A packet-switching network is stable if the number of packets
in the network remains bounded at all times. A very natural question that
arises in the context of stability and instability properties of such net-
works is how network structure precisely affects these properties. In this
work, we embark on a systematic study of this question in the context
of Adversarial Queueing Theory, which assumes that packets are adver-
sarially injected into the network. We consider size, diameter, maximum
vertex degree, minimum number of disjoint paths that cover all edges of
the network, and network subgraphs as crucial structural parameters of
the network, and we present a comprehensive collection of structural re-
sults, in the form of bounds on both stability and instability thresholds
for various greedy protocols:
– We present a novel, yet simple and natural, construction of a network
parameterized by its size on which certain compositions of univer-
sally stable, greedy protocols are unstable for low rates. The closeness
of the drop to 0.5 is proportional to the increase in size.

– It is now natural to ask how unstable networks with small (constant)
size be. We show that size of 22 suffices to drop the instability thresh-
old for the FIFO protocol down to 0.704. This results is the current
state-of-the-art trade-off between size and instability threshold.

– The diameter, maximum vertex degree and minimum number of
edge-disjoint paths play a significant role in an improved analysis
of stability threshold for the FIFO protocol. The results of our anal-
ysis reveal that a calibration of these parameters may be a valuable
asset for the design of networks with as high as possible stability
threshold.

– How much can network subgraphs that are forbidden for stability af-
fect the instability threshold? Through improved combinatorial con-
structions of networks and executions, we improve the state-of-the-
art instability threshold induced by certain known forbidden sub-
graphs on networks running a certain greedy protocol.
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Our results shed more light and contribute significantly to a finer under-
standing of the impact of structural parameters on stability and insta-
bility properties of networks.

1 Introduction

Motivation-Framework. Objectives. A lot of research has been done in the
field of packet-switched communication networks for the specification of their
behavior. In such networks, packets arrive dynamically at the nodes and they
are routed in discrete time steps across the edges. In this work, we embark on
a study of the impact structural network properties have on the correctness
and performance properties of networks. We study here greedy protocols as our
test-bed. In some cases, we consider networks in which different switches can
use different greedy protocols. This is motivated by the heterogeneity of modern
large-scale networks such as the Internet.
Framework of Adversarial Queueing Theory. We focus on a basic adversarial
model for packet arrival and path determination that has been recently intro-
duced in a pioneering work by Borodin et al. [3]. It was developed as a robust
counterpart to classical Queueing theory [4] that replaces stochastic by worst
case assumptions. The underlying goal is to determine whether it is feasible
to prove stability results even when packets are injected by an adversary. At
each time step, the adversary may inject a set of packets into some nodes. For
each packet, the adversary specifies a simple path that the packet must traverse;
when the packet arrives to its destination, it is absorbed by the system. When
more than one packets wish to cross a queue at a given time step, a contention-
resolution protocol is employed to resolve the conflict. A crucial parameter of
the adversary is its injection rate r, where 0 < r < 1. Among the packets that
the adversary injects in any time interval I, at most �r|I|� can have paths that
require any particular edge. We say that a packet p requires an edge e at time t
if the edge e lies on the path from its position to its destination at time t.
Stability. Stability requires that the number of packets in the system remains
bounded at all times. We say that a protocol P is stable [3] on a network G
against an adversary A of rate r if there is a constant C (which may depend on
G and A) such that the number of packets in the system is bounded at all times
by C. We say that a protocol P is universally stable [3] if it is stable against
every adversary of rate less than 1 and on every network. We also say that a
network G is universally stable [3] if every greedy protocol is stable against every
adversary of rate less than 1 on G.
Greedy Protocols. We consider six greedy protocols– ones that always advance
a packet across a queue (but one packet at each discrete time step) whenever
there resides at least one packet in the queue (see Table 1).
Network Structure. Important parameters of it are: (a) the used protocols, (b)
graph parameters such as minimum degree, diameter, size, (c) forbidden sub-
graphs for stability and (d) the subclasses of parameterized families of networks.
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Table 1. Greedy protocols considered in this paper (US stands for universally stable).

Protocol name Which packet it advances: US
Shortest-in-System (SIS) The most recently injected packet

√
Longest-in-System (LIS) The least recently injected packet

√
Furthest-to-Go (FTG) The furthest packet from its destination

√
Nearest-to-Source (NTS) The nearest packet to its origin

√
First-In-First-Out (FIFO) The earliest arrived packet at the queue X
Nearest-To-Go-Using-LIS The nearest packet to its destination or the least X
(NTG-U-LIS) recently injected packet for tie-breaking

Contribution. How does the network structure precisely affect stability? In this
work, we present a comprehensive collection of structural results in the form of
bounds, on both stability and instability thresholds.

– We present an innovative parameterized adversarial construction for esti-
mating instability thresholds in heterogeneous networks. Our parameterized
approach considers that each execution (phase) of the adversarial construc-
tion consists of distinguished time periods (rounds) whose number depends
on the parameterized network topology. We apply our construction in in-
stances of a parameterized network family and prove that when the network
size parameter k tends to infinity then the instability threshold for the com-
positions of LIS-SIS, LIS-NTS and LIS-FTG fast converges to 0.5.

– We present a general analysis showing that any network G has an upper
bound on injection rate for FIFO stability that depends only on the minimum
number of edge-disjoint paths that cover G, the maximum in-degree, and
the maximum directed path length of the network. This result improves
the previous known upper bound for FIFO stability of [5] for all networks.
Furthermore, for several networks our stability bound is better than the one
estimated in [8] such as the network U1 in Figure 1.

– We demonstrate an ad-hoc FIFO network that uses only 22 queues and it is
unstable for any r ≥ 0.704. The corresponding parameterized network [8] for
r = 0.704 needs at least 361 queues. Thus, we show that ad-hoc constructions
may beat the parametric ones with respect to the network size.

– In the model of non-simple paths (paths do not contain repeated edges), we
study two simple graphs (U2 and U3 in Figures 1, 4) that have been shown
in [2] to be forbidden subgraphs for universal stability. Note that U3 is an
extension of U1 (Figures 1) for n = 0, m = 1 and d = 2. For these graphs we
show instability for lower rates than those in [2] via a different construction.

Related Work. Adversarial Queueing Theory was developed by Borodin et
al. [3] as a more realistic model that replaces traditional stochastic assumptions
in Queueing Theory by more robust, worst-case ones. Subsequently, adversarial
queueing theory, and corresponding stability and instability issues, received a lot
of interest and attention (see, e.g., [1,2,5,6,7,9]). The universal stability of SIS,
LIS, NTS and FTG protocols was established by Andrews et al. [1]. The subfield
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Fig. 1. Networks U1, U2 and their extensions Γ (U1) and Γ (U2) [2, Lemma 7]

of study of the stability properties of compositions of universally stable protocols
has been opened recently by Koukopoulos et al. [6,7] where lower bounds of 0.683
and 0.519 on the instability threshold of the composition pairs LIS-SIS, LIS-NTS
and LIS-FTG were respectively presented.

The subfield of proving stability thresholds for greedy protocols on every
network was first initiated by Diaz et al. [5] showing an upper bound on injection
rate for the stability of FIFO in networks with a finite number of queues that is
based on network parameters. In an alternative work, Lotker et al. [8] proved
that any greedy protocol can be stable in any network if the injection rate of the
adversary is upper bounded by 1/(d+ 1), where d is the maximum path length
that can be followed by any packet. Also, they proved that for a specific class of
greedy protocols, time-priority protocols the stability threshold becomes 1/d.

The instability of FIFO for small-size networks (in the model of adversarial
queueing theory) was first established by Andrews et al. [1, Theorem 2.10] for
injection rate r ≥ 0.85. Lower bounds of 0.8357 and 0.749 on FIFO instability
were presented by Diaz et al. [5, Theorem 3] and Koukopoulos et al. [6, Theorem
5.1]. An alternative approach for studying FIFO instability is based on param-
eterized constructions for networks with unbounded size. Using this approach,
Lotker et al. [8] proved an instability threshold of 1

2 + ε for FIFO; the network
size is a function of r that goes to infinity very fast as r goes down to 0.5.

In [2, Lemma 7], a characterization for directed network graphs (digraphs)
universal stability is given when the packets follow non-simple paths (paths
do not contain repeated edges). According to this characterization a digraph
is universally stable if and only if it does not contain as subgraph any of the
extensions of U1 (Γ (U1) or U2 (Γ (U2) where the parameters n,m, d, l, k represent
numbers of consecutive edges with l, k, n ≥ 0 and m, d > 0 (see Figure 1). These
graphs have been shown to have instability thresholds of 0.84089 for a certain
greedy protocol.

2 The Model

The adversarial queueing model considers a communication network that is mod-
elled by a directed graph G = (V,E), where |V | = n, |E| = m. Each node u ∈ V
represents a communication switch, and each edge e ∈ E represents a link be-
tween two switches. In each node, there is a buffer (queue) associated with each
outgoing link. Buffers store packets that are injected into the network with a
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route, which is a simple directed path in G. When a packet is injected, it is
placed in the buffer of the first link on its route.

In order to formalize the behavior of a network under the adversarial queueing
model, we use the notions of system and system configuration. A triple of the
form 〈G,A,P〉 where G is a network, A is an adversary and P is the used protocol
on the network queues is called a system. The execution of the system proceeds
in global time steps numbered 0, 1, . . .. Each time-step is divided into two sub-
steps. In the first sub-step, one packet is sent from each non-empty buffer over
its corresponding link. In the second sub-step, packets are received by the nodes
at the other end of the links; they are absorbed (eliminated) if that node is their
destination, and otherwise they are placed in the buffer of the next link on their
respective routes. In addition, new packets are injected in the second sub-step.
Furthermore, the configuration Ct of a system 〈G,A,P〉 in every time step t is
a collection of sets {St

e : eεG}, such that St
e is the set of packets waiting in the

queue of the edge e at the end of step t. The time evolution of the system is a
sequence of such configurations C1, C2, . . . such that the load restriction imposed
by the Adversarial Queueing Theory [3] is satisfied.

In the adversarial constructions we study here for proving instability, we
assume that there is a sufficiently large number of packets s0 in the initial system
configuration. This will imply instability results for networks with an empty
initial configuration, as established by Andrews et al. [1, Lemma 2.9]. Also, for
simplicity, and in a way similar to that in [1], we omit floors and ceilings and
sometimes count time steps and packets roughly. This only results to loosing
small additive constants while we gain in clarity.

3 Stability in Heterogeneous Networks

Before proceeding to the adversary constructions we give two basic definitions.
Definition 3.1We denote Xi the set of packets that are injected into the system
in the ith round of a phase. These packet sets are characterized as “investing”
flows because they will remain in the system till the beginning of the next phase.
Definition 3.2 We denote Si,j the jth set of packets the adversary injects into
the system in the ith round of a phase. These packet sets are characterized as
“short intermediate flows” because they are injected on judiciously chosen paths
of the network for blocking investing flows.
A Parameterized Network Family.We provide here a parameterized family
of heterogeneous networks Nk. The motivation that led us to such a parameter-
ization in the network topology is two-fold: (a) the existence of many parallel
queues in the network allows the adversary to simultaneously inject several short
intermediate flows that block the investing flows in the system, without violating
the rule of the restricted adversarial model, (b) such a parameterized network
topology construction, enables a parameterized analysis of the system configura-
tion evolution into distinguished rounds whose number depends on the parame-
terized network topology. In LIS-FTG composition, the parameterization, besides
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Fig. 2. A network Nk that uses LIS-SIS protocols

the parallel edges, includes additional chains of queues for the exploitation of
FTG in blocking investing flows.
A Parameterized Adversarial Construction. In order for our adversarial
construction to work, we split the time into phases. In each phase we study the
evolution of the system configuration by considering distinguished time rounds.
For each phase, we inductively show that the number of packets in the system
increases. Applying repeatedly this inductive argument we show instability.
Theorem 3.1 Let r > 0.5. There is a network Nk where k is a parameter linear
to the number of network queues and an adversary A of rate r, such that the
system 〈Nk,A,Pr〉 is unstable if Pr is a composition of LIS protocol with any
protocol of a) SIS, b) NTS and c) FTG.
Sketch of proof. Part a) This proof is based on the preservation of all the
investing flows injected during a phase into the system. We consider an instance
of the parameterized network family (network Nk in Figure 2). All the queues
use the LIS protocol except the queues f1, f

′
1, h1, . . . , hk−1, h

′
1, . . . , h

′
k−1 that use

the SIS protocol. Moreover, the edges hk, h
′
k use protocol P, that can be any of

LIS or SIS because there is no packet conflict in these queues.
Inductive Hypothesis: At the beginning of phase j, there are sj packets that are
queued in g

′
1, h

′
1, . . . , h

′
k−1 requiring to traverse the edges e0, f1, f2, g1, h1.

Induction Step: At the beginning of phase j+1 there will be more than sj packets
(sj+1 packets) that will be queued in g1, h1, . . . , hk−1 requiring to traverse the
edges e1, f

′
1, f

′
2, g

′
1, h

′
1.

We construct an adversary A such that the induction step holds. Proving
that the induction step holds, we ensure that the inductive hypothesis will hold
at the beginning of phase j + 1 for the symmetric edges with an increased value
of sj , sj+1 > sj . From the inductive hypothesis, initially, there are sj packets
(called S − flow) in the queues g

′
1, h

′
1, . . . , h

′
k−1 requiring to traverse the edges
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e0, f1, f2, g1, h1. In order to prove that the induction step works it is assumed that
there is a large enough number sj of packets in the initial system configuration.
Phase j consists of l = k + 1 rounds with l ≥ 3, that is k ≥ 2. The sequence of
injections is as follows:
Round 1: It lasts sj steps. The adversary injects a set X1 of |X1| = rsj packets
in e0 wanting to traverse the edges e0, f3, g1, h1, e1, f

′
1, f

′
2, g

′
1, h

′
1 and a set S1,1 of

|S1,1| = rsj packets in f1 that require to traverse only the edge f1.
Evolution of the system configuration. X1 packets are blocked by the S − flow
packets in e0. S − flow packets are delayed by S1,1 packets in f1. Thus, at the
end of this round a set Y of |Y | = rsj packets of S remain in queue f1.
Round 2: It lasts rsj steps. The adversary injects a set X2 of |X2| = r2sj

packets in e0 requiring to traverse the edges e0, f3, g1, h2, e1, f
′
1, f

′
2, g

′
1, h

′
1. Also,

it injects a set S2,1 of |S2,1| = r2sj packets in f2 wanting to traverse f2, g2, h1.
Evolution of the system configuration. X1 and S2,1 packets are blocked in g1 and
f2 correspondingly by Y packets. X2 packets are blocked in e0 by X1 packets.

Since the number of rounds depends on the network topology (i.e. l = k+1),
we next analyze an intermediate round t, 3 ≤ t < l.
Round t (intermediate round): It lasts rt−1sj steps. The adversary injects
t − 1 short intermediate flows St,1, . . . , St,t−1 of |St,1| = . . . = |St,t−1| = rtsj

packets. Flow St,j with 1 ≤ j ≤ t − 1 and j �= 2 is injected in gj+1 wanting to
traverse the edges gj+1, hj . Flow St,2 is injected in queue f2 wanting to traverse
the edges f2, g3, h2. In addition, an investing flow Xt of |Xt| = rtsj packets is
injected in f3 wanting to traverse the edges f3, g1, ht, e1, f

′
1, f

′
2, g

′
1, h

′
1.

Evolution of the system configuration. St,j packets with 3 ≤ j ≤ t−1 are blocked
in gj+1 by St−1,j−1 packets, while flows St,1 and St,2 are blocked in g2 and f2
correspondingly by St−1,1 packets. Xt packets are blocked in g1 by Xt−1 packets
that were injected in round t − 1. At the end of round t, there is a number of
t − 3 different cases for the queues where X1, . . . , Xt−1 are queued depending
on their position at the beginning of the round and the injection rate r. In case
i (1 ≤ i ≤ t − 3) we have: at the beginning of round t, a portion or all Xi

packets along with Xi+1, . . . , Xt−1 are queued in g1, while the rest Xi packets
are queued in hi and all the X1, . . . , Xi−1 packets are queued in h1, . . . , hi−1
correspondingly. Then, at the end of round t, two cases can happen. In both
cases, X1, . . . , Xi−1 packets are queued in h1, . . . , hi−1 correspondingly. In the
first one, a portion or all Xi packets in g1 are queued with the rest Xi packets in
hi and Xi+1, . . . , Xt−1 packets remain in g1. In the second one, all the Xi packets
in g1 are queued with the rest Xi packets in hi, a portion of Xi+1 packets is
queued in hi+1, while the rest Xi+1 packets along with Xi+2, . . . , Xt−1 remain
in g1. Note that, in all possible system configurations at the end of round t, the
investing flows X1, . . . , Xt remain into the system.
Round l: It lasts rl−1sj steps. The adversary injects an investing flow Xl of
|Xl| = rlsj packets in f3 wanting to traverse the edges f3, g1, hl, e1, f

′
1, f

′
2, g

′
1, h

′
1.

Evolution of the system configuration. Xl packets are blocked in g1 by Xl−1 that
was injected in the system at round l−1. X1, . . . , Xl−1 packets are blocked in the
system by flows Sl−1,1, . . . , Sl−1,l−2. Therefore, at the end of round l, the number
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of packets that are queued in g1, h1, . . . , hl−2 = hk−1 requiring to traverse the
edges e1, f

′
1, f

′
2, g

′
1, h

′
1 is sj+1 = |X1| + . . .+ |Xl|.

In order to have instability, we must have sj+1 > sj . This holds for rk+2−2r+
1 < 0. This argument can be repeated for an infinite number of phases ensuring
the instability of the system 〈Nk,A, LIS − SIS〉. Also, k → ∞ =⇒ rk+2 → 0,
because 0 < r < 1. Thus, for instability it suffices −2r + 1 < 0, i.e. r > 0.5.
Parts b, c) The adversarial constructions that are used in Parts a, b, c. One
difference is the use of NTS and FTG protocols in the networks of Parts b, c
correspondingly where SIS is used in the network of Part a. The topology of
the used networks in Parts a, b, c is similar. The only difference is the use of
additional paths in the network of Part b that start at queues that use FTG.
These paths have sufficient lengths, such that the short intermediate packet
flows have priority over the investing packet flows when they conflict in queues
that use FTG. On the other hand, the injection of short intermediate flows in
Part b with the same paths as in Part a is enough to guarantee their priority
over investing flows when they conflict in queues that use NTS. As in Part a,
it is proved that for any r > 0.5 the system 〈Nk,A,Pr〉 is unstable if Pr is a
composition of LIS NTS or FTG. ��

Notice that our method converges very fast to 0.5 for small values of the
parameter k that depends on the network size. This can be shown easily if in
the inequality rk+2 − 2r+1 < 0 the parameters r, k are replaced by appropriate
values. Therefore, for k = 7 the instability threshold is 0.501 and the number of
network queues is 36 in the case of LIS-SIS and LIS-NTS (given by 8+4k), while
it is 102 in the case of LIS-FTG (given by 14 + 4k + 10(k − 1)).

4 Structural Conditions for FIFO Stability

We denote “old” a packet that was injected in previous time periods than the
current one. The earliest time step in a time period, at which all the old packets in
the system have been served is denoted by M . Denote j(G) the minimum number
of edge-disjoint paths that cover the network G. Thus, consider the disjoint paths
Π1, Π2, . . . , Πj(G). The number of packets in the path Πj , where 1 ≤ j ≤ j(G),
at time step M will be denoted as s(Πj). Furthermore, the maximum in-degree,
and the maximum directed path length of the network G will be denoted as α(G)
and d(G) respectively. Notice that if α(G) = 1 then we have a tree or a ring, that
is known to be universally stable [1], so we assume α(G) > 1. We show:

Theorem 4.1 Let r2GΣ
d(G)−1
i=0 (α(G) + r)i = 1

j(G) . Then for any network G, and
any adversary with r ≤ rG the system 〈G,A,FIFO〉 is stable.
Proof. Let us denote the queues of G as Q1, Q2, . . . , Qm and their loads at time
t ≥ 0 as q1(t), q2(t), . . . , qm(t). Let P (0) = Σqi(0) be the initial load. We will
construct an infinite sequence of consecutive distinguished time periods, ti, at
which P (ti) ≤ P (0) thus keeping the network stable. The fact that we are using
a FIFO protocol implies that after a certain time all the old packets will leave
the system. We will compute a bound to this time.
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Let’s now, consider the worst case of an old packet being last in a queue Qj

at time 0 and targeted with the largest simple path in the network. Rename
the queues in this simple path as Qj ≡ Qj0 , . . . = Qjd(G)−1 . Note that at time
M1 = qj0 all packets of this queue will have been served. Thus these packets
have passed to the next queues in the path. Moreover, they can be delayed by
at most rM1 new injections. Furthermore, the size of any Qji

is bounded above
by (α(G) + r)M1. We repeat the same procedure, each time considering the last
queue in the path that still contains old packets. After d(G)− 2 additional steps
(M2,M3, . . . ,Md(G)−1) all the old packets would disappear or being in Qjd(G) .
Define P (t) = maxm

i=0 {qi(t)}. Working in the previous way, an absolute bound
for the delay of the last old packet in Qj is M = M1 + . . .+Md(G)−1, where for
every 0 < i < d(G), we have M1 ≤ q(Σj<iMj), with M0 = 0. Moreover, during
a period of q(t) steps starting at time t, we have P (t+ P (t)) ≤ (α(G) + r)P (t).
Solving the recurrence, the total time is M ≤ Σ

d(G)−1
i=0 (α(G) + r)iP (0)

At time step M all the old packets have been absorbed and only the injected
packets in the time period [0 . . .M ] will remain in the system. Because j(G) is
the minimum number of edge-disjoint paths in the network, during this period in
the worst case at most j(G)rM packets will be injected in the network. Therefore
the total number of packets in the network at time step M is at most P (M) ≤
j(G)rM . At time step M , s(Πj) packets exist in each disjoint path Πj from the
definitions. Note that the minimum number of packets in a disjoint path Πj at
time step M (min{s(Πj)}) is significantly bigger comparing to the number of
network edges. This allows us to assume that when a disjoint path Πj has s(Πj)
packets, then in each time step of a time period of s(Πj) time steps, r packets
arrive into the path and one packet leaves it.

Assume now s = min {s(Πj)}. The change of the number of packets in the
disjoint path Πj in absolute values, ∆Πj

, at M + s time step will be ∆Πj =
Σ

min {s(Πj)}
0 |r−1| = |r−1|min {s(Πj)} ≤ |r−1|s(Πj). Thus, the total change of

the system configuration will be ΣΠj∆Πj ≤ ΣΠj |r−1|s(Πj) = |r−1|ΣΠjs(Πj).
But, P (M) = ΣΠjs(Πj). Thus, ΣΠj∆Πj ≤ |r−1|P (M) is at most the change of
the system configuration for a time period with s = min{s(Πj)} steps. Consider
now, the consecutive time intervals with duration: s, rs, r2s, . . . , rks, where k
is such that rks ≥ 1 and rk+1s < 1. The same argument as in the case of s
time steps can be used for ris time steps. For each of these time intervals the
change of the system configuration will be at most ri(r − 1)P (M). Let t1 be
the time at which rks finishes. The packets in network G at time t1 are all
new. Thus, the number of packets in the system at time t1 is at most P (t1) ≤
P (M) + (r − 1)P (M) + r(r − 1)P (M) + . . .+ rk−1(r − 1)P (M) = rkP (M).

For stability, we need P (t1) ≤ P (0). Thus, we must choose an r such that
rkP (M) ≤ P (0). But, P (M) ≤ j(G)rM ≤ j(G)rΣd(G)−1

i=0 (α(G) + r)iP (0). Thus,
rkj(G)rΣd(G)−1

i=0 (α(G)+r)iP (0) ≤ P (0). For k = 1 this equation takes its smallest
value r2Σd(G)−1

i=0 (α(G) + r)i ≤ 1
j(G) . This is equivalent to find in the real interval

(0, 1), the root rG of the polynomial −r2j(G)(α(G)+r)d(G)+r2j(G)+α(G)+r−1.
By the Bolzano Theorem, this polynomial has a root rG in (0, 1). ��
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Fig. 3. The Network G

In order to compare this bound with the bound of [5] we make the following
analysis: Letm be the number of queues in any network G. We get by definition of
the minimum number of edge-disjoint paths j(G) that 1

j(G) ≥ 1
m (1). The bound

of [5] is the biggest r satisfying 2−r
1−r rmΣ

d(G)−1
i=0 (α(G)+r)i ≤ 1 (2). Let us call it r1.

Our new bound is the longest value of r satisfying r2j(G)Σd(G)−1
i=0 (α(G)+r)i ≤ 1

(3). Let us call it r2. Thus, r1 satisfies equation (2) as an equality. The same
holds for r2 and equation (3). Let f(r) = Σ

d(G)−1
i=0 (α(G) + r)i. Note that f(r)

is monotone and increasing with r > 0. But, 2−r1
1−r1

r1mf(r1) = 1 =⇒ 1
2m ≤

r1f(r1) ≤ 1
m (4) because ∀r ∈ (0, 1) it holds that 1 ≤ 2−r

1−r ≤ 2. Since r2 ≤
1, it holds r2f(r2) > r22f(r22) = 1

j(G) . Thus, from (1), (4) we take r22f(r22) >

r1f(r1) =⇒ r22 > r1 and this implies r2 > r1 since r1 ∈ (0, 1).
Lemma 4.2 In all networks G, we have

√
r1 < r2 (thus, r2 > r1).

The upper bound 1/d(G) was obtained in [8] for FIFO stability. From this and
the previous lemma we conclude to the following theorem,
Theorem 4.3 Let r∗ = max {r2, 1

d(G)}. Then for every G, and any adversary
with r ≤ r∗ the system 〈G,A,FIFO〉 is stable.

To illustrate the strength and applicability of our analytical techniques to-
wards the threshold of 1/d(G) for FIFO stability in [8], we apply them to a simple
network with three queues (network U1 in Figure 1). The upper bound for this
is 1/3 in [8], while in our case is:
Corollary 4.4 Let 0 < r < 0.339. Then, for network U1 and any adversary A
with injection rate r the system 〈U1,A,FIFO〉 is stable.

5 Instability of Small-Size FIFO Networks

Theorem 5.1 Let r ≥ 0.704. There is a network G and an adversary A of rate
r such that the system 〈G,A,FIFO〉 is unstable.
Sketch of proof. The main ideas that are hidden behind the adversarial con-
struction we use to prove this theorem are the following: (i) We split the time
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e1
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e2

Fig. 4. Network U3

into phases. In each phase we study the evolution of the system configuration
by considering corresponding time rounds. For each phase, we inductively show
that the number of packets in the system increases. This inductive argument can
be applied repeatedly, thus showing instability. (ii) We use an inductive hypoth-
esis with two parts. The first part specifies the position of the initial packets at
the beginning of a phase (at the beginning of phase j, sj packets are queued in
s e1, f

′
3, f

′
4, f

′
5, f

′
6, f

′
8 requiring to traverse the edges e0, f1, f3, f5) and that their

number is smaller than the number of packets in the corresponding subset of
queues that will serve as initial packets at the beginning of the next phase (at
the beginning of phase j + 1, sj+1 packets will be queued in e0, f3, f5, f4, f6, f8
requiring to traverse the edges e1, f

′
1, f

′
3, f

′
5). This part of inductive hypothesis

holds for r ≥ 0.704. The second part guarantees that the initial packets in each
phase will traverse their path as a continuous flow. This holds for r ≥ 0.609.
Clearly, r ≥ max{0.704, 0.609} = 0.704 suffices for instability of the network G.
(iii) We achieve further delay of packets initially residing in the system by ex-
ploiting multiple “parallel” paths of the network topology. (iv) In order to create
instability, we heavily exploit the fair mixing property of FIFO stating that if
two packet sets arrive at the same queue simultaneously will mix according to
the initial proportions of their sizes. ��

6 Unstable Subgraphs

Consider the networks U2 and U3 (see Figures 1, 4) that use NTG-U-LIS protocol.
Theorem 6.1 Let r ≥ 0.794. There is a network Ui and an adversary A of
rate r, such that the system 〈Ui,A,NTG − U − LIS〉 is unstable where Ui is the
network a) U2, b) U3.
Sketch of proof. We assume that there is a large enough number of packets
sj in the initial system configuration. Furthermore, we consider that the time is
split into phases, each one of which consists of three distinguished time rounds
with durations sj , rsj and r2sj for a phase j respectively. The proof is based
on induction on the number of phases. In Part a the inductive argument states
that if at the beginning of a phase j, there are sj packets in the queues e1, e2
(the same queues in Part b) requiring to traverse the edges e1, f2 and e2, f1, f2
correspondingly (the edge f1 in Part b), then at the beginning of phase j + 1
there will be more than sj packets in the queues e1, e2 (the same queues in Part
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b) requiring to traverse the edges e1, f2 and e2, f1, f2 correspondingly (the edge
f1 in Part b). In Parts a,b the basic idea behind the adversarial construction is
the injection of two types of packet sets during a phase. One packet type is used
for the reproduction of the inductive argument. The adversary tries to keep as
many of these packets can in the queues e1, e2 of the network at the end of each
phase. The packets of the other type are injected on judiciously chosen paths to
keep as many of the packets of the other type in the system. In Part a at the
end of round 3, there is a remaining portion of packets (r3sj) in e1 (e2 in Part
b) that require to traverse the edges e1, f2 (e2, f1 in Part b) and r3sj packets
in e2 (e1 in Part b) requiring to traverse the edges e2, f1, f2 (e1, f1 in Part b).
Therefore, the number of packets in e1, e2 requiring to traverse the edges e1, f2
and e2, f1, f2 (the edge f1 in Part b) is sj+1 = 2r3sj . For instability it suffices
sj+1 > sj , i.e. r ≥ 0.794. This argument can be repeated for an infinite number
of phases showing that the number of packets in the system increases forever. ��

7 Conclusions

Note that the technique used to get an instability threshold of 0.5 for certain
compositions of universally stable protocols might produce lower bounds, if one
finds a network allowing more investing flows to stay in the network. The tech-
nique that gets the upper bound on FIFO stability is based on a fundamental
FIFO property, namely that in any FIFO network, old packets exit the network
after some bounded time (by their size and the network structure). We feel that
a refinement of such a technique may answer the fundamental open question of
whether FIFO is stable below a certain fixed rate.
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